
Teaching Object-Oriented Programming with Games

Lu Yan
School of Computer Science, University of Hertfordshire

Hatfield, Hertfordshire AL10 9AB, UK

Abstract

First-year students in CS/IT curriculum are often
overwhelmed by the introduction to programming
module, which is a mandatory component for the
whole study program. In this paper, we discuss the
difficulties students may encounter in this module and
propose a novel approach to teaching programming to
new programmer with games. We reflect on our
experiences on making the programming module
friendly and improving the success rate among new
programmers. We present our learning theory,
teaching methodology and assistive software with
technical details.

Key Words: object-oriented, programming, game,
greenfoot, bluej.

1. Introduction and background

Introduction to programming is a traditional and
compulsory module for first-year CS/IT students.
Though the content of this module has evolved a great
deal over years due to the advance and trend of
computing technology as well as the rise and fall of
different programming languages, it is a common
observation that teaching programming to new
programmers is hard. However, since this module is the
foundation for advanced level modules, it is always a
challenge for the module team to effectively and
efficiently deliver it.

Nowadays, object-oriented programming is the
mainstream in computing industry, so Java is often
offered as the first language for first-year students to
learn. Though Java is a modern language without
history burden and unnecessarily complex syntax as
C++, it still presents a steep learning curve for novice
students.

 Our students, like the majority of today’s students,
are well acquainted with the use of computers. Most of

them have experiences with computer game, word
processing software, search engine, social networking
site and instant messenger. However, since CS/IT
program has no formal course prerequisites, students
are not necessarily acquainted with programming; in
fact few of them have prior experiences of
programming, nor are those experiences object-
oriented.

2. Difficulties from both student’s and
teacher’s views

Learning introduction to programming is hard. It is
not mainly due to the lack of prior computing
experience, but the lack of problem-solving skills.
Computer engineers/scientists usually need to apply
logic thinking and problem-solving skills when writing
a piece of software. However, students are often not
well-trained with those skills in high school, which puts
them in a difficult position when enrolled into
university studies.

Abstract concepts and thinking may be another
difficulty students will face in learning object-oriented
programming. Class and object are core concepts in
this module, but it is fairly hard to find the equivalence
in real life. Students therefore struggle to comprehend
even more complex concepts such as inheritance and
polymorphism if they cannot grasp the basic class and
object thinking way.

Teaching introduction to programming is hard.
Introduction to programming is not about abstract
object-oriented concepts and practical programming
skills alone, but really about the interactions and
interweaving of both. So any approach without
balancing the two sides will not succeed in practice.
Moreover, as this is the first programming module for
new students, it is inevitable to include issues from
software process, data structure, project management,
operating systems and even mathematics, which are
definitely not the focus but the background of this
module.

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.13

969

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.13

969

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

Another difficulty in teaching this module arises
from keeping students attention and interests
throughout the module. Traditionally, programming is
taught in a way of creating simple text-based programs.
Most of the teachers around my age shall still
remember the infamous HelloWorld example:

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

which was de facto first program students would learn
from any Java textbook. However, today’s students are
grown up in an environment where computer are
already part of their life. Text-based programs are
neither impressive nor familiar to them. Most of them
have little experience with command line, but mouse-
assisted graphic environments. So, those example
programs are not attractive to them, and actually
foreign to them.

3. A bit of learning theory

The UK Professional Standards Framework for
teaching and supporting learning in higher education
[1] sets out a framework and detailed standards to align
our teaching practice. The core concept is to be a
reflective professional [2-6].

Figure 1. Kolb learning cycle

Reflective practice is important as it enables us to

learn from our experiences. Kolb [7] developed a
theory of experiential learning called the Kolb Cycle or
the Learning Cycle in Figure 1. The cycle comprises
four stages: concrete experience, reflective observation,
abstract conceptualization, active experimentation; it
can be entered at any point but all stages should be

followed in a sequence for a successful learning
process to take place [8].

The Kolb cycle implies that it is not enough to have
an experience to learn, but the reflection after the
experience does. It is critical to reflect on the
experience to formulate concepts which can be applied
to new environments. Finally, the learning will be
tested in new situations and new settings. In this way,
theory, action, reflection and practice are linked into a
dynamic cycle and complement each other [9-12].

We have applied the Kolb cycle as an inspiration
and guidance in the introduction to programming
module delivery, rather than approaching the problem
in a simple and linear way.

4. Our reflection and related works

There are two main aims in the introduction to
programming module: object-oriented thinking and
Java programming skills. The former, as we believe,
can be taught successfully with satisfying results by
focusing on fundamental principles of object-
orientation, for instance, via metaphors.

A pioneer study by Sims-Knight et al. shows that it
is possible to teach object-oriented design without
programming [19]: students played an extant computer
game and then watched an expert demonstrate how to
design that game. The expert explained the design
considerations in an object-oriented way and students
then created their own designs for this game. This
approach reinforced our idea on using games in
programming teaching.

Zhu et al. proposed a way to teach object-oriented
programming (C++) by putting methodology first and
language second [16]. They proposed to introduce the
object concept by observing the real world. This
proposal coincides with our approach on using
metaphors.

The other aim, Java programming skills, can be
taught in a modern, interesting and attractive way. Our
philosophy is to use graphics to capture and retain the
interest of students (i.e., let students explore
programming skills in a graphically rich environment).
Besides non-text based examples, simple games could
be used as examples. Since most of our students have
played some kind of games, they are familiar with the
common game rules and no background information on
games is needed.

Game maker [20] is an integrated environment for
learning object-oriented design. Users can create games
without writing a single line of code with game maker’s
drag-and-drop techniques. This idea has been a major
inspiration for us.

970970

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

Chen et al. reported an extensive case study on
design and execution of an object-oriented
programming laboratory course [15]. In that course,
students were required to implement a small-to-
medium scale interactive computer game in one
semester, making use of a game framework. Similar
courses were also reported in [17-18, 21]. We
appreciate those approaches to teaching object-oriented
programming with games, but we do believe that we
should be careful with the selection of games, and
don’t be too ambitious at the initial point since our
students are new programmers.

5. Object-oriented thinking in Greenfoot

We have adopted a GUI-centered approach to
teaching object-orientation concepts. Our view is that
before letting students to create a trivial application,
whether a toy program or a simple game, it is important
to ensure students truly understand the basic concepts
of object-oriented notions and really manipulate them
think in the object-oriented way. We achieved that with
an assistive software environment called Greenfoot
[13].

5.1. Brief introduction to Greenfoot

The Greenfoot system is a framework and
environment to create interactive, simulation-like
applications in a two-dimensional plane [13].
Greenfoot allows implemention of and interaction with
objects in the context of scenarios.

Once objects are created in Greenfoot, they can
interactively be placed into a Greenfoot world, and
users can directly play with these objects and invoke
methods in those objects.

The Greenfoot system is also an integrated
development environment (IDE): it contains an editor,
a compiler and a debugger. The underlying runtime and
compiler uses standard Java. Greenfoot classes are
standard Java classes.

5.2. The wombat scenario

One classic example of teaching object-orientation
is the wombat scenario. A Greenfoot version of this is
shown in Figure 2. As in this scenario, wombats live in
a grid area and move freely with commands. The world
also consist some rocks and leaves. When a wombat
meets a rock, it will turn to other directions; when a
wombat meets a leaf, it will eat that leaf.

Figure 2. The wombat scenario

When using this scenario, students would typical be
given an initial world, which contains an instance of
wombat and possibly rocks and leaves.

5.3. Student activities

Students can perform the same activities as the
teacher does, but we do encourage students explore this
new environment proactively and link those important
object-oriented concepts such as object, class and
method to this mini-game.

� Observing behaviors: when students use

Greenfoot for the first time, they will typically
interact with an initial world given by the
teacher. For example, the initial view would be
similar to Figure 2. Students can press the Run
button to observe how the wombat moves, turns
and eats leaves.

� Invoking methods: students can then directly
play with an individual object. For instance,
students will right click the wombat icon and all
available methods in the wombat object would
show as Figure 3. Students will then try all
those methods.

� Instantiating objects: as the next step, students
will create a new world by instantiating objects.
Students select a constructor by right click a
class from the actor list, as shown in Figure 4.
The mouse cursor will then show the icon of the
object, which can be placed into the world.

After students have instantiated several objects and

played the interactions among different objects, the

971971

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

teacher will then bring up the concept of class and
object, and indentify the relationship between class and
object.

Figure 3. Invoking methods

Figure 4. Instantiating objects

6. Java programming in BlueJ

We have selected BlueJ [14] as the IDE to teach
students Java programming skills. BlueJ is a
programming environment specifically designed for
education. Besides GUI-centric design, BlueJ also
encourages students to define classes and their
relationships with an UML-like notation. We believe it
is good for teaching both programming language skills
and software engineering principles.

6.1. Brief introduction to BlueJ

BlueJ is a software environment developed to

support the learning and teaching of object-oriented
programming [14]. It can also be deemed as an ultra-
light IDE for small scale Java development, though it
lacks many advanced features comparing to NetBeans
and Eclipse.

Like Greenfoot [13], students can interactively
instantiate and test objects. All objects have a simple
representation on an object bench. It is also possible to
inspect these objects, and execute their methods.

Another significant advantage of BlueJ is the clear
separation of the concepts of classes and objects.
Object-oriented concepts such as class, object and
method are represented visually and in its interaction
design in the interface.

6.2. The picture game

Instead of the monotonic HelloWorld, the first

Java program in BlueJ is a graphically rich one, the
picture game. Figure 5 shows the BlueJ interface, class
diagram and object bench of the game. This program
displays a picture of house like Figure 6 on the screen,
which is built from three basic shapes: circle, square
and triangle.

Figure 5. The BlueJ interface

Since students have already played with the

Greenfoot environment, they will explore the BlueJ in a
very similar way. With the foundation of object-
oriented concepts, they usually have no difficulty in
understanding class diagram and object bench in Figure
5. Now they are ready for some real programming
tasks.

972972

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

Figure 6. The picture game

6.3. Student activities

As a preliminary warm-up, based on what they have

learned in Greenfoot, students are encouraged to
explore BlueJ environment proactively and try at least
three things:

� Observing behaviors
� Invoking methods
� Instantiating objects

Figure 7. Inspecting objects

The teacher will then instruct them to explore

advanced features of BlueJ, and stepwise modify the
code of picture to generate a picture of their own
design.

� Inspecting objects: students are told to right

click an object and select the inspect option
from the pop-up menu. An object inspector
window like Figure 7 would appear, and
complete set of values for the object’s fields
would be listed. Now the teacher will explain
important object-oriented concepts such as

field, parameter, property and reference to
students.

Figure 8. Modifying code

So far we covered how student can play with objects
without looking at the source code. The next step is to
modify the existing class in picture and learn how to
write methods properly.

� Modifying code: students will double-click a
class and the integrated editor would pop up
with the source code like Figure 8. First,
students are required to mimic the code of the
picture class, but their resulting image should
be significant different than the original one.
Then, students are allowed to modify code
freely to create more realistic pictures and
animations such as sunset.

7. Concluding remarks

We have presented our approach to teaching object-

oriented programming with games. This approach may
be characterized by (1) object-orientation first,
programming second (2) graphically rich examples (3)
game as the trigger.

The proposed approach provides a positive and
supportive atmosphere in which students can learn the
principles of object-oriented programming. It keeps
students interested and reinforces those programming
principles.

973973

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

Acknowledgements

This work was part of the CPAD program running at
the University of Hertfordshire in 2008.

References

[1] The UK Professional Standards Framework for teaching
and supporting learning in higher education, 2006.
http://www.heacademy.ac.uk

[2] H. Fry, S. Ketteridge and S. Marshall S. A Handbook for
Teaching & Learning in Higher Education: Enhancing
Academic Practice (2nd Edition), Routledge, London, 2003.

[3] J. Biggs. Teaching for Quality Learning at University (2nd
Edition), Open University Press, Berkshire, 2003.

[4] P. Ramsden. Learning to Teach in Higher Education,
Routledge, London, 1995.

[5] G. Gibbs. Learning by Doing: A guide to Teaching and
Learning Methods, Oxford Further Education Unit, Oxford
Polytechnic, Oxford, 1988.

[6] N. Hatton and D. Smith. Reflection in Teacher
Education, in Teaching and Teacher Education, vol. 11, pp.
33-49, 1995.

[7] D.A. Kolb. Experiential Learning experience as a source
of learning and development, Prentice Hall, New Jersey,
1984.

[8] D. Boud, R. Keogh and D. Walker. Reflection: Turning
Experience in to Learning, London: Kogan Page, 1985.

[9] A. Brockbank and I. McGill. Facilitating Reflective
Learning in Higher Education, SHRE/Open University Press,
Buckingham, 1998.

[10] J. Cowan. On Becoming an Innovative University
Teacher Reflection in Action, SRHE/OU, Buckingham,
1998.

[11] J. Moon. Reflection in Learning and Professional
Development Theory and Practice, Kogan Page, London,
1999.

[12] D. Schon. The Reflective Practitioner How
Professionals Think in Action, Avebury, London, 1991.

[13] The Greenfoot project. http://www.greenfoot.org

[14] The BlueJ project. http://www.bluej.org/

[15] W.-K. Chen and Y. C. Cheng. Teaching Object-
Oriented Programming Laboratory with Computer Game

Programming, in IEEE Transactions on Education, vol. 10,
no. 3, pp. 197-203, IEEE Press, 2007.

[16] H. Zhu and M. Zhou. Methodology first and language
second: A way to teach object-oriented programming, in
Proc. 18th Annu. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’03),
Anaheim, CA, 2003.

[17] J. D. Bayliss and S. Strout. Games as a "flavor" of CS1,
in Proc. 37th Special Interest Group Computer Science
Education Tech. Symp. (SIGCSE’06), Houston, TX, 2006.

[18] C. Alphonce and P. Ventura. Using graphics to support
the teaching of fundamental object-oriented principles in
CS1, in Proc. 18th Annu. Conf. Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’03), Anaheim, CA, 2003.

[19] J. E. Sims-Knight and R. L. Upchurch. Teaching
Object-Oriented Design without Programming: A Progress
Report, in Computer Science Education, vol. 4, no. 1, pp.
135-156, Routledge, 1993.

[20] M. Overmars. Learning object-oriented design by
creating games, in IEEE Potentials, vol. 23, no. 5, pp. 11-13,
IEEE Press, 2005.

[21] J. Ryoo, F. Fonseca and D. S. Janzen. Teaching Object-
Oriented Software Engineering through Problem-Based
Learning in the Context of Game Design, in Proc. IEEE 21st
Conference on Software Engineering Education and
Training (CSEET’08), Charleston, South Carolina, 2008.

974974

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on May 25,2010 at 14:33:55 UTC from IEEE Xplore. Restrictions apply.

