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INVERSE SYSTEMS OF ABSTRACT LEBESGUE SPACES
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(Communicated by William J. Davis)

Abstract. We show that inverse limits exist in the category of L spaces

and positive linear contractions between them. This result generalizes the well-

known classical results for inverse systems of Choquet Simplexes and of L-balls,

but our proof is simple and more purely geometrical. The result finds physical

application in the study of random fields.

Let Z be a Banach lattice with positive cone C and norm || • ||. We say

that Z is an AL-space (short for Abstract Lebesgue space) iff || • || is affine on

C. See [7, §8, p. 112] for further information about ^4F-spaces.

Let / be a linear map between two ,4F-spaces Z2 and Zx . We say that f

is a contraction iff \\fx\\x < ||jt||2 for all x e C2. A positive linear contraction

f:Z2^Zx is called an AL-morphism .

Note that for an v4Z.-morphism / we have ||/jc||, < ||x||2 for all x e Z2

since

ll/xii^iiiAi.ii^n/ixy^iiWjii^iwi.;
however, an ^IL-morphism need not be a lattice homomorphism, an isometry,

or even one-to-one.

Let F be a directed set, and suppose that we have an AL-space Zi associated

with each / e D and an v47_-morphism fi : Z( —» Z associated with each pair

i, j e D where t> j .

If this system is consistent in the sense that

fji = fjk fu       for a11 i>k> j in D,

then we call (Z(., f¡¡)D an inverse ,4L-system.

Now suppose further that Z is an ,4L-space, and f. : Z —► Z( for i e D are

/4F-morphisms satisfying

fj - fji fi       for a11 ' > J in D ■

Then we call (Z , f.)D a prefix of (Z(., fn)D .
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If every other prefix (Y, g.)D of (Z¡, fj¡)D factors through (Z,f)D in the

sense that there exists an /IF-morphism g : 7 —► Z with

g¡ = f g      for all i e D,

then we call (Z , f)D the inverse AL-limit of (Zj., fAD .

Theorem. For every inverse AL-system (Zi, f¡A)D the inverse AL-limit (Z , f)D

exists and is unique.

Proof. Clearly the inverse /IF-limit is unique up to ^/.-isomorphism if it exists.

We demonstrate existence by constructing the inverse ^4L-limit explicitly.

Let nz stand for YlieDZ¡ and let n¡: UZ —> Z( denote the coordinate

projections. Write x( for ni x where x e TIZ .

Define

\\x\\ = sup ll-xr-ll -   for xeUZ,
i€D

Z = {x e nz : ||x|| < oo and fji xl = x for all i > j e D},

C = {xeZ:xje Ci for all i e D},

and let fi: Z —► Z, be the restriction of tz, to Z .j i i i
We shall show that Z equipped with C and ||.|| is an AL-space. First we

note that (Z , C) is a vector lattice with sum and modulus given by

(x + y)j = Xj + yj,       (|x|), = lim fJt\xt\,

where |.|; denotes modulus in Z( and the limit is in ||.||  .

To see that the definition of modulus makes sense we use a property of AL-

spaces, that every monotone increasing norm-bounded net converges in norm

to its least upper bound. This is easy to prove directly, or see [7, 8.2, p. 113].

Clearly A|x(|; is a monotone increasing sequence in Z with norm bounded

by ||x||. Hence this sequence is norm convergent in Z , and indeed A(|x|)( =

(|x|). and || \x\ || = ||x|| < oo. Thus |x| e Z and is easily seen to be the least

upper bound in Z of {x, -x}.

It is now easy to verify that ||.|| is a lattice norm for Z and is additive on

C. To show the norm complete under these conditions it suffices to prove that

every monotone increasing norm bounded net (x ) in Z has a least upper

bound x [7, 8.2, p. 113]. But this is easy, set

x, = lim x       for j e D
7 n        J

and argue as in the previous paragraph to show that x eZ and is the required

least upper bound.

This establishes that Z is an AL-space. The fi are obviously ,4F-mor-

phisms so (Z, fA)D is a prefix of (Z(, fAD . For any other prefix (Y, gA)D

define g: Y —> Z by (gy)i■ = gl y . Verification of the factorization property is

now routine. Hence (Z , f)D is the inverse ,4L-limit of (Z;, f¡¡)D ■   □
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If the dual of a Banach space can be ordered in such a way as to make it an

^IL-space, then the unit ball of the dual endowed with the weak- * topology is

called an L-ball [5].

If all the y4L-spaces Z¿ are dual spaces of this form then our theorem implies

the result of D. A. Edwards [3, Corollary 5, p. 231] that the inverse limit of a

system of F-balls is an L-ball.

If in addition each 5( = {x e C¡: \\x\\¡ =1} is a weak-* closed face of the

corresponding L-ball, then the S¡ are Choquet simplexes.

Conversely (see for example [2, Corollary 3, p. 411]) every Choquet simplex is

affine homeomorphic to a simplex of this form. Each affine continuous map F

from 5; into 5, then extends naturally to an v4L-morphism from Z; into Z

(although this ^L-morphism may fail to be an isometry.)

Thus our theorem also implies the result of F. Jellett, E. B. Davies, and G.

F. Vincent-Smith [4, 1] that the inverse limit of a system of Choquet simplexes

is a Choquet simplex.

Results of this type are of interest in statistical mechanics (see for example

[8, §4.3]). There, the spaces of measures used to underlie the representations of

Gibbs states for Föllmer specifications are ^L-spaces, and the corresponding

substochastic kernals are y4L-morphisms.

Often we are concerned only with geometric properties which are intrinsic

to the relèvent inverse limit space (see for example [6, §1.6]) and in such cases

our theorem establishes sufficient structure to determine the phases.
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