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We describe quantum protocols for voting and surveying. A key feature of our schemes is the use of
entangled states to ensure that the votes are anonymous and to allow the votes to be tallied. The entanglement
is distributed over separated sites; the physical inaccessibility of any one site is sufficient to guarantee the
anonymity of the votes. The security of these protocols with respect to various kinds of attack is discussed. We
also discuss classical schemes and show that our quantum voting protocol represents a N-fold reduction in
computational complexity, where N is the number of voters.
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I. INTRODUCTION

A well-established consequence of the proven security �1�
of quantum key distribution is that quantum systems can be
used for unconditionally secure classical information trans-
mission. It is widely believed that classical cryptosystems
cannot distribute a key such as a one-time pad with uncon-
ditional security. Without a one-time pad classical cryptosys-
tems are secure only on condition that insufficient computa-
tional resources are available to render them vulnerable.
While this assumption is reasonable at the present time, we
anticipate that, in the future, quantum computers will be de-
veloped which may be used to attack cryptosystems reliant
upon either integer factorization or discrete logarithm evalu-
ation using, for example, Shor’s algorithm. The security of
most common cryptosystems is dependent on the fact that no
known efficient classical algorithm exists that can break par-
ticular implementations used within the time period for
which security is desired. As such, although quantum com-
putation will bring many benefits, it will also be highly dis-
ruptive with regard to data security.

For this reason, it is highly probable that, to create cryp-
tographic keys, we will have to turn to quantum mechanics
to provide us with alternative means of establishing security.
Fortunately, the practical implementation of quantum cryp-
tography has advanced considerably over that of quantum
computation. We are therefore unlikely to face a “security
gap.” Indeed, the first commercial quantum key distribution
systems have recently appeared on the market �2�. Develop-
ments such as these increase our confidence in quantum
cryptography and lead us to enquire, more broadly, about
which tasks requiring secure communication could be imple-
mented using quantum states.

It is known that for some tasks, such as bit commitment,
quantum mechanics cannot help �3�. However, for others,
such as secret sharing, a number of novel quantum protocols
have been developed �4�. In an �n ,k� secret sharing scheme,
a classical message is split among n parties. The key prop-

erty of such a scheme is that no less than k of these parties
can extract any information about the secret, while any k of
them can extract the secret in its entirety.

In some situations, it is more desirable that the identity of
the person who sent the message, rather than the message
itself, be kept secret �5�. Examples include elections, anony-
mous ballots and referendums. Here each voter should
should feel able to cast their vote without the prospect of
coercion or repercussion. Only collective features of the set
of votes, such as the tally of “yes” and “no” votes, are cal-
culated and made public.

In this paper, we describe quantum protocols for voting
and a related task that we term surveying. Surveying is simi-
lar to voting in most respects. The main difference is that in
surveying, the value of the vote cast is not restricted to a
binary yes or no but may take any integer value. As such,
surveying corresponds to collecting estimates of some nu-
merical quantity, such as profit and loss values. The identities
of the people who make each bid are kept private, although
the sum of the bids is made public. We also analyze the
security of these protocols under some simple attacks.

To set our work in context, we review in Sec. II a selec-
tion of protocols currently employed in secure classical elec-
tion schemes. We devote Sec. III to the description of our
protocols. The first of these is a simple quantum protocol for
comparative voting. Here, we consider two parties voting on
a question with a yes or no answer. The aim is not to deter-
mine the tally itself, but to determine whether or not both
parties voted identically without knowing the value of each
of the votes. We show that this is possible by encoding the
voting information in an entangled state.

Subsequently, we describe a protocol for anonymous sur-
veying. It proves robust against certain kinds of attack. We
discuss adaptations of the protocol for an anonymous ballot
for binary-valued ballots and the relationship between the
privacy of a vote and the ability for a voter to cheat by
making multiple votes. We conclude in Sec. IV with a dis-
cussion of our results.
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II. CLASSICAL VOTING PROTOCOLS

Various properties have emerged from the literature as
being desirable attributes of classical secret ballot voting
schemes. Amongst these is the concept of resilience which
involves the properties of universal verifiability, privacy, and
robustness �6�. A universally verifiable election scheme is a
scheme deemed open to scrutiny by all interested parties.
Compliance with this property ensures that ballots are car-
ried out correctly and that subsequent tallies are fairly as-
sessed. For a scheme satisfying the privacy property an hon-
est participant is assured that their vote remains confidential,
provided that the number of attackers does not grow too
large. With the property of robustness, an election scheme
has the capacity to recover from faults again, provided that
the number of parties involved does not grow too large.
Schemes satisfying these three properties are said to be re-
silient. Another desirable property of an election scheme,
particularly as a counter to the risk of vote buying or coer-
cion, is that it is receipt-free. Receipt-free election schemes
ensure that voters cannot prove, to other parties, the particu-
lar vote cast within the scheme �7,8�. Further “desirable
properties” are to be found in the literature, for example �9�.
Voting protocols performed within a classical setting are in
general grouped according to their use of homomorphisms,
MIX nets, and blind signatures.

Homomorphic election schemes. These �6,10–14� involve
the use of a homomorphic, probabilistic encryption scheme
consisting of a plaintext space V, a ciphertext space C �each
of which form group structures �V , � � and �C , ��� under ap-
propriate binary operations � and ��� together with a family
of homomorphic encryption schemes �Ei�i�N+ such that
Ei :V→C by v�c=Ei�v�. The homomorphic property �13�
may be defined as follows: let cj =Eij

�v j� and ck=Eik
�vk� for

j , ij ,k , ik�N+; then ∃i�N+ s.t. cj��ck=Ei�v j �vk�. Homomor-
phic election schemes are important since they allow one to
derive tallies without the need to decrypt individual votes.
Such schemes lead to resilient election schemes �6,13�.

MIX net schemes. MIX nets were first introduced by
Chaum �15�, and have found applications in scenarios in-
volving anonymity, elections and payments. A MIX net elec-
tion scheme involves the use of “shuffle machine agents”
referred to as MIX servers �16�, which take as input a cipher-
text vector �these could be, for example, encrypted votes�
�c1 ,c2 , . . . ,cn�� � i=1

n Ci submitted by, for example, “voters”
�v1 , . . . ,vn� and produces as output a permuted vector �in
which the components are shuffled� of corresponding output
�for example, decrypted votes� such that the link between the
source for each ciphertext �“encrypted vote”� and its result-
ing plaintext �“vote”� remains hidden. The resilience proper-
ties of privacy, verifiability and robustness may be presented
in terms of “t-privacy,” “t-verifiability,” and “t-robustness,”
where it is understood that t refers to the number of mali-
cious MIX servers that the scheme can withstand given at
most n−2 malicious sources. A scheme satisfying the above
three t-properties is said to be t resilient �17�.

The development of classical MIX net schemes to
achieve, in particular, privacy initially led to ciphertext
whose size was proportional to the number of MIX servers

involved in the scheme. This problem was resolved by Park,
Itoh, and Kurosawa �16�, resulting in ciphertext whose
length was independent of the number of MIX servers. Sako
and Kilian �18�, produced a general MIX net scheme satis-
fying verifiability but failing with regard to robustness. The
first resilient MIX net scheme was produced by Ogata, Ku-
rosawa, Sako, and Takatani �17,19�.

Blind signature schemes. These were also introduced by
Chaum �20� and have been developed with applications in
anonymity, election, and payment schemes. The basic con-
cept involves obtaining a signature to authenticate a “mes-
sage,” for example, an encrypted vote, without the signer
being able to observe the message �“vote”� itself or its sig-
nature. Verification regarding the signature is however sup-
ported by such schemes whilst maintaining privacy regarding
the actual plaintext. A signer is thus denied the ability to link
a particular plaintext with its corresponding “blind” signature
�21�. Variations upon such schemes are to be found with, for
example, “fair blind signatures” �22� in which the possibility
of, for example, blackmail is discussed �23�.

Sender untraceability schemes. These schemes allow in-
formation to be sent anonymously. For example, in Chaum’s
Dining Cryptographers’ Problem �24� a group of diners wish
to determine if either an external agency or one of the group
is paying anonymously for the meal. The solution requires
1 bit of information to be broadcast anonymously using a
communication channel available to all diners. The simplest
situation occurs for three diners with only two possible sce-
narios: one diner is to pay the bill or no diners pay the bill.
The diner who pays broadcasts the message 1 in the follow-
ing way. Each diner shares a single binary-digit one-time pad
with the other two. The broadcast is executed by each diner
adding the two numbers on the one time pads he or she
holds. If one of the diners is paying he or she adds 1 to the
value of the sum. The results modulo 2 are announced pub-
licly to all diners. The sum of the 3 broadcast messages
modulo 2 is 1 only if the message 1 is sent by a paying diner
otherwise it is 0. Thus a message is broadcast but the identity
of a paying diner is untraceable.

The security of a classical scheme is deemed to be one of
two varieties: computational or unconditional �also known as
information-theoretic� security �25�. A scheme which can be
broken in principle but requires more computing power than
a realistic adversary can access in a given critical time is
deemed computationally secure. Examples are schemes
based on the integer factorization problem and the discrete
logarithm problem. Such computationally secure schemes
are under threat from quantum computing. On the other
hand, a scheme which is secure even if an adversary has
unlimited computing resources is said to be unconditionally
secure. A one time pad encryption scheme is unconditionally
secure. Homomorphic maps and mixed nets not based on the
one time pad are computationally secure. Blind signatures
can be applied in an unconditionally secure manner to au-
thenticate a vote and sender untraceability provides anonym-
ity with unconditional security. Chaum’s secret ballot proto-
col �26�, which uses blind signature and sender untraceability
schemes, allows unconditionally secret voting. The sender
untraceability component of the protocol requires one-time
pads between all pairs of voters, that is N�N−1� /2 one time
pads are required for a ballot with N voters.
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III. QUANTUM PROTOCOLS FOR ANONYMOUS
SURVEYING AND VOTING

In this paper we examine a number of quantum protocols
for ballots �32–34�. In light of the foregoing classical
schemes, we desire the ballots to satisfy the following gen-
eral rules.

�R1� The vote of each voter should be kept secret from all
other voters.

�R2� The person �the tallyman� calculating the collective
quantity should not be able to gain information about the
voting of individual voters.

�R3� The votes should be receipt-free. This is to say that it
should impossible for a voter to prove how they voted to a
third party, even if they wanted to. This condition thwarts
vote buying and ensures the uncoercibility of the voter.

An additional rule applies for the special case of a re-
stricted ballot where the range of values of each vote is re-
stricted.

�R4� A voter may not make more than one vote, that is,
the value of each vote should not count as more than one
vote.

We call a ballot where the votes are restricted to being
binary-valued a binary-valued ballot. A specific example is a
simple referendum. We call a ballot that satisfies the first
three rules but not the fourth an anonymous survey.

Additional �ancillary� people may be involved in the bal-
lot, but they must not have access to any more information
about the voting than the tallyman. There are a number of
different kinds of ballots depending on the nature of the bal-
lot question and the collective voting information required.

A. Comparative ballot

The first quantum voting protocol we shall describe is a
simple comparative protocol which we call a comparative
ballot. Consider two voters, Alice and Bob, voting on a ques-
tion with a response of either “yes” or “no.” There is also a
tallyman, whose principal aim is to determine whether or not
they agree, i.e., whether or not they have cast the same vote.

We wish the result of this comparison task to be determin-
istic and always correct �i.e., unambiguous�. It should be
noted in this context that, if instead of classical information,
we wish to unambiguously compare pure quantum states,
then certain restrictions would apply. In particular, the pos-
sible states would have to be linearly independent �27�.

Alice and Bob are assumed to be at spatially separated
sites A and B. The protocol entails beginning with the ballot
state representing one particle shared between the two sites A
and B:

�C0� =
1
	2

��1,0� + �0,1�� . �1�

Here, �n ,m�
�n�A � �m�B represents n particles �bosons� oc-
cupying a spatial mode at site A and m particles occupying
an orthogonal spatial mode at site B in second quantization
notation. A voter makes a yes vote by applying the operator

exp�iN̂��, where N̂ is the voter’s local particle number op-

erator and exp�iN̂���n�=exp�in���n�. A no vote is cast by

simply doing nothing, which formally amounts to applying
the identity operator. If both voters make the same vote, then
the ballot state is unchanged �up to a possible overall sign
inversion.� If, on the other hand, their votes are different,
then the ballot state is transformed into

�C1� = ±
1
	2

��1,0� − �0,1�� , �2�

where the sign±depends on who votes yes. At all times, the
voter at one site cannot determine the vote cast at the other
site. This is because the reduced density operator represent-
ing the state of the particle at each site is always the maxi-
mally mixed state ��0��0�+ �1��1�� /2. The voting is kept
strictly private to the respective voters.

The two-particle state is then transferred to the site of the
tallyman who performs a measurement in the basis
��1,0�± �0,1��	2. The tallyman is able to discern whether the
voters have made the same or opposite vote even though he
is unable to determine how each voter cast their vote. This
situation is similar in some respects to the Deutsch-Jozsa
algorithm for deciding the balanced or unbalanced nature of
a binary function �28�. Also the single particle state in Eq. �1�
is the same state used in the data hiding protocol of Verstra-
ete and Cirac �29�. Whereas in Ref. �29� a third party stores
a secret in the state shared by Alice and Bob, here it is Alice
and Bob who store secrets in the shared state. Our protocol
satisfies rules 1 and 2 of private ballots, namely each vote is
is known only to its corresponding voter, and the tallyman
has access only to the collective �comparative� information.
The potential for cheating is limited by the very nature of the
comparative ballot; voters can only make a single vote. The

application of an operator other than exp�iN̂�� is interpreted
as indecision in the sense that the result of repeated identical
ballots is stochastic.

B. Anonymous survey

In the above protocol, the voting information was stored
in locally inaccessible phase factors in a entangled state. This
technique can be applied to other situations where we wish
to maintain anonymity. One such scenario is as follows.

Let us suppose that the chief executive officer �CEO� of a
firm wants to gauge the effect of a possible action; he sur-
veys the opinion of his management team to find out what
each member thinks the likely profit �or loss� will be. To
avoid the dishonest responses due to rivalry, grovelling, fear
of repercussions, etc., the CEO wants the survey to be
anonymous. The managers must report the estimated profit
or loss for their particular department. The CEO is interested
in the total for the whole company. An alternative, but essen-
tially equivalent, situation is that the managers estimate the
total profit or loss for the firm as a whole, and the CEO
wants the average of the estimates, that is, the sum of the
estimates divided by the number of managers. In both cases
the sum of the estimates is made public and the individual
amounts are private. We call the protocol for determining the
sum while keeping the individual amounts secret an anony-
mous survey.
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An anonymous survey should obey rules R1–R3. We now
describe a quantum protocol that satisfies these rules. We
retain the general terminology of “voters,” “votes,” and the
“tally.” The basic principle of the protocol involves a two-
mode discrete phase state �30,31� shared between the voters
and the tallyman. A vote is made by translating the phase
value of the phase state. Due to the shared nature of the state,
the actual value of the phase is hidden from both the voters
and the tallyman in a manner analogous to secret sharing
�29�.

We again use a system of identical particles in the second
quantization formalism. We employ N particles, where N is
equal to or larger than the number of voters. The particles are
prepared in the following ballot state:

�B0� =
1

	N + 1
�
n=0

N

�N − n,n� , �3�

where �n ,m�
�n�T � �m�V and �n�V ��n�T� represents n par-
ticles localized in a spatial mode at site V �respectively T�.
The sites V and T are assumed to be remote from each other.
Voters have access only to V and not T, whereas the tallyman
has access only to T and not V. Voter i makes a vote by

applying the phase shifting operation exp�iN̂V�i� to the spa-

tial mode at site V, where N̂V�n�V=n�n�V and �i=�i� / �N
+1� for a vote corresponding to an amount �i. For example,
after the vote of the first voter the ballot state becomes

�B1� =
1

	N + 1
�
n=0

N

exp�in�1��N − n,n� . �4�

The second voter makes a vote in a similar manner with the
phase shifting angle �2. This voting process is repeated for
all voters. The resulting ballot state after the mth voter is

�Bm� =
1

	N + 1
�
n=0

N

exp�in�m��N − n,n� , �5�

where �m=�i=1
m �i. The net value of the accumulated votes is

Mm=�i=1
m �i which can be deduced from the final phase angle

using

�m =
2�Mm

N + 1
. �6�

Note that at any point in this operation the tallyman, who
does not have access to the site V, can only see the mixed
state

TrV��Bm��Bm�� =
1

N + 1�
n=0

N

��n��n��T, �7�

which is invariant under the phase shifting operation. Like-
wise, the voters, who do not have access to the site T, can
only see the mixed state

TrT��Bm��Bm�� =
1

N + 1�
n=0

N

��n��n��V. �8�

The voting of individual voters is therefore secret from other
voters and the tallyman.

At the end of the survey the particles at site V are trans-
lated to a mode at site T so that the ballot state is as in Eq. �5�
but with �n ,m�
�n�T � �m�T. We imagine that the tallyman
has access to both modes at site T. The states �N−n ,n� form
an orthonormal basis for an N+1 dimensional subspace. We
define another orthonormal basis as follows �30�:

�Tn� =
1

	N + 1
�
k=0

N

exp�ink���N − k,k� , �9�

where �=2� / �N+1� and

�Tn�Tm� = �nm. �10�

The ballot states are all eigenstates of the tally operator

T̂ = �
n=0

N

n�Tn��Tn� . �11�

To find the tally, the tallyman finds the expectation value of
the tally operator which yields

�Bm�T̂�Bm� = Mm. �12�

The tallyman can access the tally only once he is in posses-
sion of all particles. The voting of individual voters is kept
secret from both the tallyman and the voters while the par-
ticles are shared between the sites.

Attack by colluding voters. Two voters A and B can col-
lude in the following manner to deduce information about
other voters. First we write the ballot state as

�B0� =
	N + 1

2�


0

2�

������������d� , �13�

where the single-mode phase states �30� are given by

������ =
1

	N + 1
�
n=0

N

e−in��N − n� , �14�

������ =
1

	N + 1
�
n=0

N

ein��n� . �15�

Imagine that voter A locally measures the phase of the sys-
tem at the voting site; this will project the system onto a state
of the form ��������������, where �� represents the outcome
of the measurement. The tally M of votes of subsequent vot-
ers then accumulates locally in the phase of the local system,
resulting in the state ������������+M���. Subsequent mea-
surement of the phase by voter B and comparison with the
phase measured by A will then reveal the amount M.

Detection of attack. We note that the ballot state, in the
absence of the attack, has a fixed number of particles N. In
contrast the projection onto a phase state induces a distribu-
tion of particles, and so the attack alters the total particle
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number on average. Thus the attack can be detected by the
tallyman making a measurement of the total particle number

N̂ and checking if it differs from N. The probability of de-
tecting the attack by this method is 1− PN where PN=1/ �N
+1� is the probability of finding N particles in the state
��������������.

Defence. A defence against this colluding attack is to use
a multiparty ballot state such as

�B0�� =
1

	N + 1
�
n=0

N

�K�N − n�,n,n, . . . ,n� , �16�

where �i , j , . . . ,k�
�i�T � �j��1
� . . . �k�VK

for K voting sites Vi,
i=1, . . . ,K where K is equal to or larger than the number of
voters. Each voter i is assigned a unique voting site Vi for
casting a vote as before, i.e., using the phase shifting opera-

tion exp�iN̂Vi
�i� to the spatial mode at site Vi. The colluding

attack is foiled because each voting site is used by a single
voter. The final multipartite ballot state is

�Bm� � =
1

	N + 1
�
n=0

N

exp�in�m��K�N − n�,n,n, . . . ,n� �17�

and the corresponding multipartite tally operator is given by

T̂� = �
n=0

N

n�Tn���Tn�� , �18�

where

�Tn�� =
1

	N + 1
�
k=0

N

exp�ink���K�N − k�,k,k, . . . ,k� . �19�

After all the particles are translated to the tallyman, the tal-
lyman determines the value of the tally from the expectation

�Bm� �T̂��Bm� �=Mm in the same manner as before.

C. Anonymous binary-valued ballot

A special case of an anonymous survey is an anonymous
ballot for binary-valued votes which we call an “anonymous
binary-valued ballot.” A simple referendum would be a spe-
cific example of this kind of ballot. Here, instead of votes
being an arbitrary integer, each vote is of a binary nature, yes
or no, corresponding to an answer to a public question. The
anonymous survey protocol above could be used for an
anonymous binary-valued ballot provided the voters were
honest and restricted their vote value accordingly. For ex-
ample, voter k could choose a phase shift angle of �i=0 for a
no vote and �i=2� / �N+1� for a yes vote. The tally Mm in
Eq. �6� then corresponds to the number of yes votes �the
number of no votes being calculated from the number of
participating voters less Mm�. There are special situations
where it is in the voters’ interest to vote honestly, for in-
stance, where the public ballot question is one of a personal
nature �requiring anonymity� and where the voters want to
know the true proportion of voting population sharing the
same view. Of course, in general, the voters may be tempted
to vote more than once and, for example, a voter may choose

�k=4� / �N+1� to record two yes votes. It is therefore impor-
tant that rule R4 is enforced in anonymous binary-valued
ballots.

The underlying reasons why the anonymous protocol does
not satisfy R4 are rather simple and quite general. Consider
two parties Alice and Bob, and the entire initial ballot state
�B0�. Let YA and YB be the unitary operators used by Alice
and Bob respectively to register yes votes. It is assumed that
they would both vote no by applying the identity operator.
Any tensor product structure arising from, e.g., Alice and
Bob registering their votes on different systems is taken to be
implicit in these definitions. Let us now consider the impli-
cations of anonymity and define

� = ��YA − YB��B0�� , �20�

where �����
�� ���. Anonymity requires that for either a yes
or no vote, it should be impossible to determine who made
this vote. It therefore requires that �=0.

Let us now suppose that one of the parties, say Alice,
wishes to cheat. She wishes to vote yes twice by making it
appear as though both she and Bob have voted yes, where
Bob is some other voter who has voted no �and in a suffi-
ciently large ballot that such a party exists is a fair assump-
tion�. Suppose that Alice votes after Bob. Then, for Alice’s
cheating to go undetected, the states YBYA�B0� and YB

2 �B0�
must be completely indistinguishable. That this is the case
under conditions of anonymity can be seen from

��YBYA − YB
2��B0�� = �YB�YA − YB��B0�� = � , �21�

where the last step follows from the unitary invariance of the
norm. Under conditions of anonymity, �=0 and so the two
states are completely indistinguishable, concealing Alice’s
actions.

We may also require that Alice can cheat undetected irre-
spective of the order in which she and Bob cast their votes.
This will be the case if

�YA,YB��B0� = 0. �22�

This condition is automatically satisfied if Alice and Bob
register their votes on different systems, or the same opera-
tors if they use a common system, as is the case in the pro-
tocol we have described.

It follows that to protect against this kind of cheating
strategy, some of the properties of the protocol must be
changed. The key one seems to be unitarity. It is therefore
interesting to explore the possibility of maintaining anonym-
ity yet preventing cheating if we drop unitarity and use irre-
versible operations to register votes. We will now see that
doing so does allow for a certain degree of improvement. In
particular, we will see how the use of irreversibility can limit
the extent of one party’s cheating to a mere 0.5 votes, and
only at the expense of reduced privacy, in contrast with the
limitless extent to which they can cheat using unitary opera-
tions with impunity.

The possibility of cheating can be restricted by introduc-
ing an element of irreversibility into the voting procedure.
One way of doing this would be to restrict the operation able
to be performed by each voter to the appropriate values by
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directly restricting the macroscopic devices used to perform
the voting operations. However, since the restricted device is
not in the total control of the voter �by necessity� it seems
likely that evidence of the action taken by the voter could be
traced in the local environment and so criterion R1 is not
guaranteed to be satisfied. This is clearly a general problem
with irreversible operations.

One way to restrict the votes without macroscopic means
is to replace the initial ballot state Eq. �3� with

�B0�� =
1

	N + 1
�
n=0

N

�2�N − n�,n,n� , �23�

where �i , j ,k�
�i�T � �j�Vi
� �k�V2

and V1 and V2 label two
voting sites which are controlled by two ballot agents A1 and
A2, respectively. Each voter privately records their vote in a
�separate� pair of qutrits �i.e., a pair of spin-1 systems� with
the state ��0,−1�+ �−1,0�� /	2 for a no vote or the state
��0,1�+ �1,0�� /	2 for a yes vote. Here the qutrit states �−1�,
�0� and �1� correspond to eigenstates of the z component of
spin. One qutrit is given to each of the ballot agents who
locally apply the operation

exp�iN̂�1���1

4
+

1

2
	̂z

�1��� � exp�iN̂�2���1

4
+

1

2
	̂z

�2��� ,

�24�

where �=2� / �N+1�, 	z
�i� is the z component of spin for

qutrit i at site Vi, and N̂�i� operates on the spatial mode in �B0��
at site Vi. This allows the votes to accumulate in the discrete
phase angle as before and ensures that each voter casts a
single vote.

Attacks by ballot agents. The two separated ballot agents
cannot separately learn the nature of the vote with certainty.
For example, one ballot agent may measure the z component
of spin on the qutrit at his site. This would reveal the nature
of the vote only half of the time.

Defence: tamper evidence. The attack by the ballot agents
will result in the qutrit pair being in a product of eigenstates
of the z component of spin. Thus to detect the attack, the
qutrit system should be immediately returned to the voter
following the action by the ballot agents, and be subjected to
measurement in a basis which includes the states represent-
ing yes and no votes to determine if the state has been
changed. The attack will be detected one half of the time.
Any instances of changed states are made public, and hence
attempted cheating by a ballot agent will be detected, on
average. The qutrit system is therefore tamper evident, on
average, in this sense.

Alternatively, the privacy of the vote can be increased by
increasing the number of ballot agents and the number of
qutrits used to store each vote. For example, in a three-qutrit,
three-ballot agent scheme, the ballot state would be

�B0�� =
1

	N + 1
�
n=0

N

�3�N − n�,n,n,n� . �25�

The votes would be made by preparing the states ��0,0 ,
−1�+ �0,−1,0�+ �−1,0 ,0�� /	3 for a no vote or the state

��0,0 ,1�+ �0,1 ,0�+ �1,0 ,0�� /	3 for a yes vote, and each bal-
lot agent Ai applies the operation

exp�iN̂�i���1

6
+

1

2
	̂z

�i��� �26�

to their local qutrit system and the spatial mode of �B0��. A
measurement of the z component of spin of one of the qutrits
by a ballot agent will now reveal the value of the vote only
one third of the time, making the vote more private.

Attacks by voters. A voter need not prepare the states cor-
responding to a yes or no vote. Indeed, he may try to maxi-
mize the value of his vote, for example, by preparing the
qutrit pair in the cheat state �1,1�. The action of the operator
in Eq. �24� applied by the two ballot agents then increases
the phase angle of the ballot state by 3� /2, that is, by 1.5
votes �35�.

Defence: tamper-evidence versus vote-value tradeoff. The
attack by the voter may increase the value of the vote, but
this is at the expense of abandoning the tamper-evident na-
ture of the qutrit system. A measurement of the z component
of spin of one of the qutrits in the cheat state will reveal the
value of the vote without altering the state; this allows a
ballot agent to determine the vote without being detected.
Hence, a voter may cheat by a half vote but only at the
expense of losing the privacy of his vote.

IV. DISCUSSION

We have introduced quantum protocols for ensuring the
anonymous voting in a number of different scenarios. Cen-
tral to the protocols is the ballot state, which is an entangled
state shared between at least two sites. The ballot state stores
the tally of the votes which are registered using local opera-
tions. At all times the value of the vote tally stored in the
ballot state is not available at any one site, but only in the
collection of the sites. The ballot therefore represents a dis-
tributed memory and this property ensures the privacy of
each vote and thus the anonymity of each voter. After all
votes have been made, the vote tally can be determined by a
collective measurement.

We identified four rules �R1–R4� which lead to desirable
properties of anonymous ballots. The different kinds of ballot
depend on the ballot question, the collective information re-
quired and the subset of rules. We described protocols for a
comparative ballot, where the yes or no answers of two vot-
ers are compared, an anonymous survey, where the voters
make anonymous votes of integer value, and an anonymous
binary-valued ballot, where the yes and no answers to a bal-
lot question are tallied anonymously. We note that an anony-
mous binary-valued ballot is closely related to an election,
and indeed, it corresponds to an election for the special case
of two candidates. We are currently exploring other possibili-
ties.

We have analyzed our protocols against a number of at-
tacks. In particular, we found that for the anonymous binary-
valued ballot the cheating by a voter is associated with re-
duced security. In one variant of the protocol, while the value
of the vote of an honest voter is 1, a dishonest voter can
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make a vote of value equal to 1.5 and essentially cheat by 0.5
vote. However, this occurs at the cost of reduced privacy
since the tamper-evident nature of the protocol, which allows
the voter to detect an attack by a ballot agent, is only avail-
able if an honest vote is made. The various schemes are
unconditionally secure on average in the sense that attacks
can be detected with nonzero probability.

For comparison, we note that Chaum’s classical secret
ballot protocol is also unconditionally secure �26�. The se-
crecy is protected through the use of one-time pads which are
shared between all pairs of voters. In a ballot with N voters,
this requires each voter to distribute N−1 one time pads with
the other voters. Thus the computational complexity of the
protocol from the perspective of a voter is of order N. In
contract, in our quantum voting scheme each voter needs to
share a single multiparty entangled state with the tallyman.
For example, the tallyman could locally prepare a set of spa-
tial modes in the ballot state and then teleport the states of
the entangled modes to each corresponding voter. The com-
putational complexity from the perspective of a voter is
therefore of order unity, which is an N-fold reduction.

We also found a related property �35� for our anonymous
binary-valued ballot protocol as follows: as the protocol is
modified to increase the privacy of the vote, the restriction
on the possible values of an individual vote weakens. This
appears to be a general trade-off property and we are cur-
rently exploring it in more detail. Indeed our results repre-
sent an initial study of this topic and are not intended to be
complete. We hope our results will stimulate further research
into this area.
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