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The empowerment formalism offers a goal-independent utility function fully derived from
an agent’s embodiment. It produces intrinsic motivations which can be used to generate
self-organizing behaviours in agents. One obstacle to the application of empowerment
in more demanding (esp. continuous) domains is that previous ways of calculating em-
powerment have been very time consuming and only provided a proof-of-concept. In this
paper we present a new approach to efficiently approximate empowerment as a parallel,
linear, Gaussian channel capacity problem. We use pendulum balancing to demonstrate
this new method, and compare it to earlier approximation methods.
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The road leading to a goal does not separate you from the desti-

nation; it is essentially a part of it. — Charles DeLint

1. Introduction

The traditional approach to decision making or control is to realize what the goals

are, and then figure out how to get to them. But how should one act if there are

no goals, or if they are yet unknown. This problem of self-motivated behaviour

generation has in recent year been approached from numerous directions, which

will be detailed in the related work section.

1



May 25, 2012 14:40 WSPC/INSTRUCTION FILE ContiPaper

2 Christoph Salge, Cornelius Glackin and Daniel Polani

In this paper we will focus on the empowerment formalism [18, 19] which offers a

solution by assigning to every state an empowerment value, which does not depend

on an externally given goal, but rather on the intrinsic dynamical structure of the

agent-environment interaction. The idea then is to enter a state where one’s own

actions matter the most, where they have the greatest impact on the world as the

agent perceives it.

The least empowered is the case where every action will lead to the same out-

come, or looking at a more general stochastic interpretation, where the outcome

distribution is unaffected by the agent’s actions. This “worst case” scenario has

vanishing empowerment; it is equivalent to agent “death”.

The highest empowerment is achieved in the case where all actions lead to

distinct (non specific) and unique outcomes. Thus, the selection of a particular

action is reflected in what happens to the agent and there are no ineffectual actions.

Between those extreme cases the empowerment is lowered, either by overlapping

results (so several actions will lead to the same outcome) or by actions that have

different possible outcomes (so taking an action cannot assure what happens).

We illustrate this with a simple introductory gridworld example. Consider an

agent located in a maze where no target state has been specified a priori. When

the target is later revealed the agent should be in the most advantageous position,

meaning it can reach any possible target quickly. In this case, it makes sense to

position it in a location of maximal “centrality”, i.e. minimum average distance to

all possible locations. This, again, turns out to be closely related to the spot from

which the largest amount of states can be reached in a fixed number of actions

(here: action sequences), i.e. with the highest empowerment value. If one was in a

maze and it was not yet clear where the goal is, it would be reasonable to go to

a spot from which one can reach the most other places in the maze. In Fig. 1 the

empowerment for five step long action sequences is visualized. The central positions,

those that have a low average distance to all other positions, are shown to have high

empowerment.

Empowerment is formalized, which will be detailed later, as the channel capacity

between an agent’s actions, and its sensors. Note that this means it can be computed

from the agent’s perspective, since it only requires access to the agent’s sensors and

actions. This allows the quantitative application of this goal-free utility to agent

control problems with subjective information only. This results in promising self-

motivated and self-organized behaviour, as seen in [1, 2, 15, 18, 19, 21].

In this paper we focus entirely on the continuous domain, since it encompasses

a lot of important control problems and robotic actuation. Previous work of Jung

[15] has shown how empowerment can be computed for the continuous domain

via discrete random sampling, but the process is very time consuming, making it

impractical for typical applications.

We present an alternative, faster approach, by approximating this class of prob-

lems by a linear, continuous channel capacity computation. In particular, this new
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Fig. 1. The graph depicts the empowerment values for 5 step action sequences for the different
positions in a 10 × 10 maze. Walls are shown in white, and cells are shaded according to empow-
erment. As the key suggests empowerment values are in the range [3.46, 5.52] bits. This figure
demonstrates that by simply assessing its options (in terms of movement possibilities), the agent
can discover implicit features of the world. The most empowered cells in the labyrinth are those
that can reliable reach the most positions within the next 5 steps. The graph is a reproduction of
the results in [19]

approach allows us to deal with systems with continuous actions, and we can now

adjust the horizon of the empowerment computation continuously. As a downside,

this approach requires a local linear approximation of the system.

1.1. Overview

First we will briefly reflect on the motivation of empowerment as a goal-independent

utility function, and its uses for self-organized behaviour generation. We will then

formally introduce empowerment as a quantitative measure and the two existing

methods of computing it in the discrete and continuous domain respectively.

In the next section we will then demonstrate that empowerment can instead be

approximated by computing the capacity for parallel, linear, Gaussian channels if

the linear transformation matrix between actuators and sensors is known.

The simulation of the simple pendulum will then be used to demonstrate how

this method can be applied to an actual continuous system. For this method to

work, one needs to obtain the transformation matrix describing the dynamics of

the system. We will show, on the one hand, how to derive it from a given mathe-

matical model and, on the other hand, how one can obtain it empirically, via linear

regression on available samples. Furthermore, we will look at the resulting pendu-

lum control, and how the parameters of the empowerment calculation affect the
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pendulum behaviour.

In the next section we then compare the resulting empowerment landscapes

for the Gaussian channel method to those obtained by Jung’s existing method,

including a variation that also relies on empirical sampling and binning. Finally,

all the methods are discussed regarding their specific benefits and shortcomings in

view of the application of empowerment to guide self-organization in a continuous

agent-environment system.

2. Related Work

It is now well understood that embodied agents already receive an adaptive and evo-

lutionary advantage by virtue of their embodiment alone [24]. While many forms

of adaptation and learning require some external goal-orientated supervision, cri-

tique, or perspective, embodiment provides a vehicle for self-determination which

does not necessitate such external goals. The agent’s perception of the world it is

embodied in, with regard to the worlds structure and dynamics, provides significant

prior structure to inform the agent and facilitate its decision making processes. The

actions resulting from decisions made are only limited by the agents perception,

complexity, and degree to which it has adapted to its environment. Much recent

work concentrates on modelling information structure in such a perception-action

loop [17, 22, 7, 20, 29].

This appreciation of the virtues of embodiment has prompted the development

of many techniques to exploit such guided self-organisation of agent behaviour.

Homeokinesis [13] is a predictive methodology that combines evolution and learn-

ing, and drives an embodied agent to achieve a better understanding of its own

embodiment. The aim for the agent is to sustain a smooth controlled behaviour,

but unlike homeostasis [14], an older cybernetic perspective on intrinsic motiva-

tion, which attempts to preserve a stationary state, homeokinesis aims to produce

a stable kinetic regime.

In living organisms decision making is of course the province of neural pathways,

and information theory has long provided a mechanism for analysing the efficiency

and redundancy inherent in sensory stimuli [4, 6]. Information theory is considered

to form the basis of an ecological theory of sensory processing [3], ecological in the

sense that the information theory can be used to assess the neural response resulting

from the stimulus environment. Hence, it is hypothesised that agents or organisms

benefit from optimising informationally the sensory and neural configurations they

apply to their environment. Predictive information-based methodologies [25, 8, 5]

demonstrate one way in which information theory can provide such intrinsic moti-

vation for an agent. Additionally, the concept of “flow” [12] from psychology has

been used to provide a vehicle for intrinsic motivation in machine learning [26, 28]

and related fields [16, 30]. In this work, another approach is adopted, namely that of

empowerment [18, 19, 21, 1, 2, 15], an information-theoretic utility function which

is universal in the sense that it is independent from a specific external task. Em-
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powerment derives solely from the perception the agent has of its environment, and

the means it has to affect that environment (its actions).

2.1. Motivation for Empowerment

It is generally accepted in the game of chess, that moving a knight to the outer

squares of the board limits the knight’s mobility and its ability to affect the game,

a phenomena known colloquially as “a knight on the rim is grim”. A knight on the

edge of the board has fewer potential moves to make, it has lower empowerment.

Empowerment can therefore be seen as a measure of mobility, but may be even

further generalised colloquially as the tendency of an agent or organism to keep its

options open [21], whether its options concern mobility, food, reproduction, or any

other means by which an organism or agent can exert control over its environment.

2.2. Information Theory Fundamentals

Empowerment is formalized using terms from information theory, first introduced

by Shannon [27]. For self-containedness, we introduce the relevant information-

theoretic notions. The first information theoretic quantity to understand is entropy,

which is a measure of uncertainty. Entropy is defined as

H(X) = −
∑

x∈X

p(x) log p(x) (1)

where X is a discrete random variable with values x ∈ X , and p(x) is the prob-

ability mass function such that p(x) = Pr{X = x}. Throughout this paper base

2 logarithms are used by convention, and therefore the resulting units are in bits.

Introducing another random variable Y , jointly distributed with X , enables the

definition of the conditional entropy

H(X |Y ) = −
∑

x∈X

p(y)
∑

y∈Y

p(x|y) log p(x|y). (2)

This measures the remaining uncertainty about X if Y is known. Since Eq. (1) is

the general uncertainty of X , and Eq. (2) the remaining uncertainty if Y has been

observed, their difference, called mutual information, quantifies the information one

can gain about X by observing Y . Mutual information is defined as

I(X ;Y ) = H(Y )−H(Y |X). (3)

The mutual information is symmetric (see [11]), since

I(X ;Y ) = H(Y )−H(Y |X) = H(X)−H(X |Y ). (4)

Considering the classical communication problem of transmitting a signal over a

channel, essentially there is a sender and a receiver. The sender transmits a signal,

denoted by the random variable X , and the receiver receives a potentially different

signal, denoted by the random variable Y . The communication channel defines how
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the transmitted signal is transformed into the received signal. In the case of discrete

signals, the channel itself is described by the conditional probability distribution

p(y|x). Mutual information (Eq. (3), (4)) may then be interpreted as the amount

of information, on average, that the received signal contains about the transmitted

signal. The channel capacity is then defined as the maximum mutual information

for the channel over all possible distributions p(x) of the transmitted signal

C = max
p(x)

I(X ;Y ). (5)

Hence the channel capacity is defined as the maximum amount of mutual infor-

mation the received signal Y can contain about the transmitted signal X . Mutual

information is calculated using p(x) and p(y|x), but channel capacity is calculated

on p(y|x) alone, as p(x) is determined by the maximization criterion (Eq. (5)).

2.3. Empowerment Formalism

Empowerment is an information theoretic quantity which represents the capacity

of the perception-action loop [18]. The perception-action loop formalism considers

the whole system as consisting of sensor (St), actuator (At) and rest of system (Rt)

at time t. These components and the dependencies between them evolve through

time and can be illustrated with a Bayesian network (Fig. 2).

Rt−1

St−1 At−1

Rt

St At

Rt+1

Fig. 2. The perception-action-loop visualised as a Bayesian network. S is the sensor, A is the
actuator, and R represents rest of the system.

Rt is included to formally account for the effects of the actuation on the future

sensoric input. In terms of the classical communication problem, Rt is the state of

the actuation channel.

Empowerment is defined for stochastic dynamical systems where transitions

arise as the result of making a decision, e.g. such as an agent interacting in an

environment. Here a vector-valued state space S ⊂ R
D and a discrete action space

A = {1, ...,NA} are assumed. The transition function is given by p(st+1|st, at)
and describes the probability of transitioning from state st to state st+1 when the

agent makes action decision at. The system is fully defined for such 1-step actionsa,

aNote that the actual channel in general depends on the current state of the world, i.e. on Rt,
so, strictly spoken, we consider a particular channel at a particular Rt and hence empowerment
will depend on Rt. For ease of notation, however, we will not write this dependence on Rt in the
following derivation.
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and empowerment may be defined as the channel capacity of the agent’s actuation

channel terminating at the sensor [19]

Et := C (p(st+1|st, at)) = max
p(at)

I(St+1;At|st). (6)

Instead of using a single action as the transmitted signal, we are interested in

more general n-step actions. Thus for n > 1, we define an n-step action sequence

as ~ant := (at, ..., at+n−1), and the transition function then becomes p(st+n|st,~ant ).
Thus n-step empowerment is defined as:

Et := C (p(st+n|st,~ant )) = max
p(~an

t
)
I(St+n;At|st) (7)

Empowerment is measured in bits. Empowerment has a number of interpreta-

tions: one can consider it as the number of distinguishable options available to

an agent [18]. An agent attempting to maximize empowerment as it moves, at-

tempting to maximize its available options at any time. Another interpretation is

that of an information-theoretic analogue of the concept of combined “controllabil-

ity/observability” known from control theory. Empowerment measures the amount

of (Shannon) information that an agent can potentially “inject” into the environ-

ment via its actions and recapture later. It is important to note that it only identifies

potential information injection, not what the agent actually ends up doing.

In this paper, for simplicity all agents are considered to have perfect knowledge

of the environment, although imperfect information and its effects on the empower-

ment state-space will be discussed later. This implies that Rt and St are the same

and makes it possible to define empowerment purely in terms of state transitions,

i.e. in terms of states S and their successors S ′ and actions A. Hence, using Eq.

(3) and (5), the empowerment C(s) of a particular state s may be defined as the

Shannon channel capacity (Eq. (5)) between A, the action selection, and S ′, the

resulting successor state. By making substitutions for entropy and conditional en-

tropy in terms of actions, states, and successor states into Eq. (5), it can be shown

that empowerment can be written asb:

C(s) := max
p( ~av)

Nn
∑

v=1

p(~av)

∫

S

p(s′|s,~av) log p(s′|s,~av)ds′ (8)

For further details on the derivation of Eq. (8), refer to [15]. Note that actions have

been assumed discrete, hence the sum over the actions, but states are continuous,

therefore the density integral over the states. In this way, the perception-action loop

formalism is treated as an interpretation of the classical communication problem.

With the perception-action loop, a discrete memoryless communication channel,

bFor notational convenience, instead of writing p(st+n|st, ~ant ) we will now just write p(s′|s, ~a)
to denote the transition from state s to state s

′ under action sequence ~a. We will also use the
parameter v to loop over the actions of ~a
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there exist algorithms to calculate the channel capacity, for example the iterative

algorithm Blahut-Arimoto [9] which is discussed in the next section.

2.4. Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm (BA) [9] is an expectation maximization (EM) type

algorithm for computing the channel capacity given by Eq. (8). BA iterates over

distributions pk(~a), where k is the iteration parameter, converging towards the

distribution that maximises Eq. (8). Since a discrete action space is assumed, pk(~a)

can be represented by a vector pk(~a) ≡ (p1k, ..., p
Nn

k ). We follow the general notation

from [15], and define the variable dv,k as:

dv,k :=

∫

S

p(s′|s,~av) log
[

p(s′|s,~av)
∑Nn

i=1 p(s
′|s,~ai)pik

]

ds′. (9)

BA begins with initialising p0(~a) to be uniformly distributed, by simply setting pv0 =
1

Nn
for all actions v = 1, ..., Nn (action sequences for multiple step empowerment).

At each iteration k ≥ 1, the new approximation for the probability distribution

pk(~a) is obtained from the old one pk−1(~a) using

pvk := z−1
k pvk−1 exp(dv,k−1) (10)

where z−1
k is a normalisation parameter ensuring that the approximation for the

probability distribution pk(~a) sum to one for all actions v = 1, ..., Nn, and is defined

as

zk :=

Nn
∑

v=1

pvk−1 exp(dv,k−1). (11)

Thus pk(~a) is calculated for iteration step k, it can be used to obtain an estimate

Ck(s) for the empowerment C(s) using

Ck(s) =

Nn
∑

v=1

pvk · dv,k. (12)

The algorithm can be iterated over a fixed number of times or until the absolute

difference |Ck(s)− Ck−1(s)| drops below an arbitrary chosen threshold ǫ.

The remaining issue with using BA for continuous space is the evaluation of the

high-dimensional integral in dv,k (Eq. 9). The next section outlines two different

Monte-Carlo(MC) based approaches for addressing this issue.

2.5. Empowerment in Continuous Space

To calculate empowerment from Eq. (8) in the continuous domain, we can employ

different methods. First this section will outline how empowerment may be calcu-

lated by discretising the continuous domain using binning. Secondly, an approach

that assumes that p(s′|s,~av) may be approximated by a multivariate Gaussian dis-

tribution is presented.
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2.5.1. Monte-Carlo Binning Approach

Binning is a useful technique for approximating the continuous state space as it

does not rely on making assumptions about the underlying distributions. However,

care should be taken with any binning approach to ensure that where possible each

bin contains approximately the same number of samples to ensure no bias is in-

advertently applied [23]. Binning results in replacing the conditional probability

densities p(s′|s,~a) by regular probabilities p(s̃′|s,~a). Once the continuous data has

been binned, the BA algorithm can be applied to the resulting conditional distribu-

tion, substituting the high-dimensional integral in Eq. (9) with a summation over all

bins. Resulting empowerment landscapes derived using this method for the simple

pendulum will be presented later.

2.5.2. Monte-Carlo Multivariate Gaussian Approach

The Monte-Carlo binning approach has several drawbacks, one being that the bin-

ning can introduce artefacts stemming from the arbitrary way in which bins are

allocated. However, the main drawback is that it requires many bins to be used

to get an accurate representation of empowerment. This requirement of many bins

places a significant additional computational load on an already computationally

costly methodology. For this reason, in [15] a Monte-Carlo Multivariate Gaussian

Approach was used. To introduce it, we essentially follow the exposition from [15].

In this approach, the assumption that p(s′|s,~av) is a multivariate Gaussian, or

can be reasonably well-approximated by it, is made, i.e.

s′|s, ~av ∼ N (µv,Σv) (13)

where µv = (µv,1, ..., µv,D)T is the mean of the Gaussian and the covariance matrix

is given by Σv = diag(σ2
v,1, ..., σ

2
v,D). The mean and covariance will depend upon

the action ~av and the state s. Samples from the distribution will be denoted s̃ and

can be generated using standard algorithms.

The following algorithm summarises how to compute the empowerment C(s)

given a state s ∈ S and transition model p(s′|s,~av):

(1) Input:

(a) Specify state s whose empowerment is to be calculated.

(b) For every action v = 1, ..., Nn, define a (Gaussian) state transition model

p(s′|s,~av), which is fully specified by its mean µv and covariance Σv.

(2) Initialise:

(a) p0(~av) := 1/Nn for v = 1, ..., Nn.

(b) Draw NMC samples s̃′v,i each, according to distribution density p(s′|s,~av) =
N (µv,Σv) for v = 1, ..., Nn.

(c) Evaluate p(s̃′v,i|s,~aµ) for all v = 1, ..., Nn; µ = 1, ..., Nn; and sample i =

1, ..., NMC .
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(3) Iterate the following variables for k = 1, 2, ... until |ck − ck−1| < ǫ or the

maximum number of iterations is reached:

(a) zk := 0, ck−1 := 0

(b) For v = 1, ..., Nn

i. dv,k−1 :=
1

NMC

NMC
∑

i=1

log

[

p(s̃′v,i|s,~av)
∑Nn

j=1 p(s̃
′
v,i|s,~aj)pk−1(~aj)

]

ii. ck−1 := ck−1 + pk−1(~av) · dv,k−1

iii. pk := pk−1(~av) · exp(dv,k−1)

iv. zk := zk + pk(~av)

(c) For v = 1, ..., Nn

i. pk(~av) := pk(~av) · z−1
k

(4) Output:

(a) Empowerment C(s) ≈ ck−1 (estimated).

(b) Distribution p(~a) achieving the maximum mutual information.

As with the MC binning approach, results for the MC multivariate Gaussian ap-

proach for the simple pendulum will be presented later.

3. Empowerment Approximation in Continuous State Space

In this section we introduce a faster method to compute empowerment for a con-

tinuous, but locally linear domain. We will show how the more general problem

of computing channel capacity in the continuous domain, given some specific as-

sumptions, can essentially be reduced to parallel Gaussian channels, where channel

capacity can be determined with well-established algorithms.

3.1. Continuous, Locally Linear Empowerment

Let S be a multi-dimensional, continuous random variable defined over the vector

space R
n. Let A be a multidimensional random variable defined over Rm. We will

call A the action variable, and S the perception variable, and we assume that there

is a linear transformation T : Rm → R
n that defines the relation of those variables

as

S = TA+ Z. (14)

Z is another multi-dimensional, random variable defined over R
n, modelling the

noise in the system. Z is independent of A and S. Each dimension q ≤ n of Z

is independent of each other dimension, and has a normal distribution with Zq ∼
N (0, Nq) for each dimension. A possible explanation for this noise, if we are dealing

with an agent, would be the measurement inaccuracy introduced by the agent’s

sensors.
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What we want to calculate again is the channel capacity

C = max
p(a):E(A2)<P

I(S;A). (15)

The power constraint P is introduced to limit the values A can assume, otherwise the

channel capacity could be made arbitrarily large, by allowing sufficiently large action

amplitudes to render all outcomes distinguishable. The power constraint can model

a “physical” power constraint as a conceptual limitation of action amplitudes (i.e.

deviations from the “neutral” action). Generally, we will not assume a necessarily

physical interpretation of power, but rather a conceptual one.

3.2. MIMO channel capacity

If we assume, in addition to our assumption of independent noise, that the variance

of the noise in each dimension is 1, then the problem is similar to computing the

channel capacity for a linear, multiple input, multiple output channel (MIMO) with

additive Gaussian noise.

This can be solved by standard methods [31], namely by applying a Singular

Value Decomposition (SVD) to the transformation matrix T , that decomposes T as

T = UΣV ∗ (16)

where U and V are unitary matrices and Σ is a diagonal matrix with non-negative

real values on the diagonal. This allow us to transform Eq. (14) to

U∗S = ΣV ∗A+ U∗Z. (17)

Each dimension of the resulting variables U∗S, ΣV ∗A and U∗Z can be treated as

an independent channel (see [31]), reducing this to computing the channel capacity

for linear, parallel channels with added Gaussian noise, as in [11],

C = max
Pi

∑

i

1

2
log

(

1 +
σiPi

E [(U∗Z)2i [

)

= max
Pi

∑

i

1

2
log(1 + σiPi) (18)

where σi are the singular values of Σ, and Pi is average power used in the i-th

channel, following the constraint that
∑

i

Pi ≤ P. (19)

Since the channel capacity achieving distribution is a Gaussian distribution, this

means the optimal input distribution is a Gaussian with a variance of Pi for each

channel. We can simplify Eq. (18) because the expected value for the noise is 1.0,

since the unitary matrix applied to Z does not scale, but only rotates the input, so

it retains its original variance of 1.0.

The optimal power distribution that maximizes Eq. (18) can then be found with

the water-filling algorithm [11].
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3.3. Transformation of Noise

If we assume that the noise Zi ∼ N (0, Ni) is Gaussian and independent in each

dimension, but has different variances Nq for each channel, we cannot easily remove

the noise from Eq. (18) after the transformation with U∗. Rotating the noise would

introduce covariances between the different noise distributions for each channel.

If we want to make sure that the noise distributions are still independent after

being transformed we could ensure that they are spherical (having the same variance

in each dimension) before they are transformed. Assuming independent, but non-

spherical noise distributions

Zi ∼ N (0, Ni) (20)

we now define a diagonal matrix D as

D =







d1 · · · 0
...

. . .
...

0 · · · dn






with di =

1√
Ni

. (21)

If all the values for Ni are positive, non-zero values, then D is a non-singular

diagonal matrix, with positive, non-zero diagonal values. Scaling a continuous ran-

dom variable with a scalar s changes the information contained in that variable to

H(sX) = H(X)+ log(s). Mutual Information remains unaffected, so if we multiply

S, the random variable that results from our actions with the scaling matrix D, it

would do nothing to S’s informational content about A. Thus it follows that

I(S;A) = I(DS;A) = I(DTA+DZ;A). (22)

By replacing T , the transformation from A to S with DT we create a channel

capacity problem with the same channel capacity, but with spherical, independent

noise. It can then be solved with the standard algorithm outlined in the last section

which relies on independent noise.

The contribution of the different noise levels to the channel capacity are not lost

but merely included in the matrixDT . Realizing this also makes it easier to compute

the original solution, because we do not need to keep track of the different noise

levels in E
[

(U∗Z)2i
]

, since the resulting channel capacity is now only dependent on

the singular values of DT .

3.3.1. Noise with Zero Variance

Some discussion concerning the treatment of noise is in place. We remind the reader

that in a non-degenerate deterministic continuous scenario, i.e. a scenario without

noise, different action sequences will in general lead to different states, thus em-

powerment will be maximal and equal to log |A| (with |A| the number of action

sequences).
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Since in the present Gaussian model the action space is continuous, there are

infinitely many action sequences. The ensuing empowerment value will thus be

infinite, unless the noiseless degrees of freedom are not affected by the actions.

Only the presence of noise induces an “overlap” of outcome states that allows

one to obtain meaningful empowerment values. However, this is not a significant

limitation in practice, as virtually all applications need to take into account actua-

tor, system and/or sensor noise.

We now generally assume that parallel noise on the output channel is trans-

formed away by the procedure from Sec. 3.3. Therefore, in our examples, unless

otherwise noted we assume that the variance of noise is one, and the mean of the

noise zero. This is without loss of generality; any non-zero mean could be immedi-

ately transformed away since any affine transformation in the system would leave

the mutual information unaffected.

4. Experiments (Pendulum)

In this section we will discuss a simple but illustrative experiment: the simple pendu-

lum balancing task. The pendulum task will showcase how our new approximation

procedure can be applied to non-linear models via linear approximation. We will

demonstrate two different methods to obtain the linear transformation matrix.

We will then compare the results of our approximation with Jung’s more generic

empowerment estimation (see Sec. 2.5.2), as well as with the modified version that

relies on binning to obtain the resulting action distributions (see Sec. 2.5.1).

4.1. Matrix Calculation

In order to approximate the empowerment landscape for the state space of the

simple pendulum we calculate the matrix that describes how the system transforms

control inputs into successor states for all possible starting points in the state space.

The rest of the section gives the slightly tedious calculation of the relevant matrices,

to make clear how the formalism from Sec. 3.2 is to be applied here. The reader less

interested in technical details can skip directly to the result just before Sec. 4.1.1.

Consider a pendulum, its current state at the time t defined by its angle: φ, and

its angular velocity φ̇

st =

(

φt

φ̇t

)

. (23)

We now want to look at the development of the pendulum state for three time

stepsc, all of which are of duration ∆t. We approximate behaviour of the pendulum

by assuming that it develops linearly within the duration of each time step.

cThe choice of three time steps stems from the fact that this is the smallest number of steps which
will give non-trivial results. Thus the computation must necessarily extend beyond a simple linear
approximation of the successive step.
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The agent can apply an action in form of a control input ut which is added

to the acceleration of the pendulum during each time step. The next state of the

pendulum at t+∆t can then be computed as

st+∆t = st +At∆t+But∆t (24)

with the matrices At and B as

At =

(

φ̇t
g
l
sinφt

)

, (25)

B =

(

0

1

)

. (26)

For the next step we need to calculate a new A-matrix, At+∆t, since the nonlinearity

of the system causes A to depend on the new s. The values can be computed as:

At+∆t =

(

φ̇t+∆t
g
l
sinφt+∆t

)

(27)

A similar matrix At+2∆t can be computed for the third step. Straightforward inser-

tion and reformulation allow us to compute the actual values for st+3∆t as

φt+3∆t = ∆tΦ2 + Φ1 + 3∆tut + 2∆tut+∆t, (28)

φ̇t+3∆t = Φ2 +
g∆t

l
sin(Φ1 + 2∆tut) + ∆tut +∆tut+∆t +∆tut+2∆t. (29)

with Φ1 and Φ2 representing the following terms that do not depend on any of the

control inputs u:

Φ1 = ∆t

(

g∆t

l
sin(φt) + 2φ̇t

)

+ φt, (30)

Φ2 =
g∆t

l
sin(∆tφ̇t + φt) +

g∆t

l
sinφt + φ̇t. (31)

We now want to express the values of xt+3∆t as a linear equation of the following

form, where K is a constant matrix, whose value only depends on the starting state

st:

st+3∆t = K + T





ut

ut+∆t

ut+2∆t



 . (32)

Since φt+3∆t is already in linear form, there is nothing left to do here. The only

problem is the sine term for φ̇t+3∆t in Eq. (29). Therefore, we use the Euler form

of the Taylor approximation to linearise part of Eq. (29). φ̇t+3∆t can be expressed

as a sum of functions, where all functions but f1(ut) are linear:

φ̇t+3∆t = f1(ut) + f2(ut+∆t) + f3(ut+2∆t) + Φ2. (33)
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We approximate f1 around ut = 0 as

f1(ut) ≈ f1(0) +
d

dut

f1(0)(ut − 0), (34)

f1(ut) ≈
g∆t

l
sin(Φ1) + ut∆t

(

(∆t)2g

l
cos(Φ1) + 1

)

. (35)

Since f1 is now linearised, we can now write st+3∆t as

(

φt+3∆t

φ̇t+3∆t

)

=

(

∆tΦ2 +Φ1
∆tg
l

sin(Φ1) + Φ2

)

+∆t

(

2∆t ∆t 0
(∆t)2g

l
cos(Φ1) + 1 1 1

)





ut

ut+∆t

ut+2∆t



 .

(36)

The singular values of the matrix T can then be used to calculate the channel

capacity for the pendulum:

T =

(

2∆t ∆t 0
(∆t)2g

l
cos(∆t( g∆t

l
sin(φt) + 2φ̇t) + φt) + 1 1 1

)

. (37)

The reason we have to cover at least three time steps is that fewer steps would fail

to capture the non-linearity of the system since it does not allow change in the first

input to propagate through all variables. The resulting approximated empowerment

landscape would essentially be constantd.

More steps are possible, but their calculation is omitted for reasons of brevity.

The matrix T for 4 steps is

T =

(

∆t3g
l

cosΦ1 + 3∆t 2∆t ∆t 0
2∆t2g

l
cos(Φ2∆t+Φ1) +

∆t2g
l

cosΦ1 + 1 ∆t2g
l

cos(Φ2∆t+Φ1) + 1 1 1

)

.

(38)

Note, all resulting matrices only have two rows, and thereby a maximum of

two singular values. The power distribution that maximises channel capacity can

therefore be calculated analytically for this example.

4.1.1. Resulting Control

To control the actuation of the pendulum we implement a 1-step greedy algorithm,

which chooses an action in the present state that will maximize the empowerment

of the resulting state.

The simulation used to test this algorithm computes the evolution of the pen-

dulum in time steps of 100 Hz. At each time step the current velocity is dampened

dA more detailed and systematic characterization of the interaction between system nonlinearity
and empowerment landscape is envisaged, but is outside of the scope of the present paper and will
be undertaken in future work.
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by the factor 0.00005 (which is not reflected in the empowerment model), and all

the simulation we discuss here start with the pendulum in the lower rest position.

At each time step the algorithm knows which state st the pendulum is in, and

decides how much power is applied to the pendulum actuator over the next time

step. For every step this can be up to the maximum power of
√
Pi, measured in

meters per second square. We remind the reader again that this is not “power” in

the physical sense and is therefore not measured in units of work per time. The

overall power constraint is given as P , the sum of the Pi for the respective time

steps i.e. three or four. Since we are working with the four-step matrix, there are

four power values for the four successive actions.

First, we will define possible n actuator input candidates as the evenly spaced

values between
√
Pi and −√

Pi (n is chosen as an odd number, to allow zero ac-

tuation as an action). Negative −√
Pi is a full powered actuator input into the

opposite angle direction than Pi. Note that the choice of n actions is a parameter of

the greedy control algorithm that uses empowerment as a utility function, it does

not affect the calculation of empowerment itself, which will still be performed based

on the assumption of continuous actions.

For each of those values we then compute how the system would develop if this

input were applied continuously for the next 50 time steps e. The empowerment

of each resulting state (after 50 time steps) is then computed by inserting the

state’s parameters into the 4-step matrix from Eq. (38). The actuator input for the

next single time step is the one which leads to the highest empowered state after

50 time steps. After one time step this calculation is performed again, this time

extrapolating from the current state.

The resulting control shows how the pendulum traverses the state space (Fig. 3).

In this case, the pendulum accelerates with full power in one direction, until it hits

the point were its acceleration is not powerful enough to carry it any higher. Then

it accelerates with full power into the opposite direction, swinging through the rest

point, up to the highest possible point on the other side. This is repeated until it

reaches the top, were it decelerates before reaching the apex, so it comes to rest

right in the topmost position.

For an underpowered pendulum, this is the optimal strategy for reaching the

top position. Should the pendulum be so underpowered that it would not be able to

reach the top, due to dampening for example, it would then end up in the highest

possible periodic oscillation.

Note that this results purely from greedily optimizing the resulting empower-

ment value of the control action. There is no hard-coded incentive or reward for the

eWe choose to make a greedy selection of actions based on the states that would be reached within
50 time steps (or 0.5 seconds) to capture the non-linear nature of the system. In essence, we wanted
the simulation to be more fine-grained than the control algorithm. The main difference this longer
lock-ahead introduces is a smoothness in the resulting trajectories. A one step greedy algorithm
still produces similar pendulum upswing, but there are sharper turns in the trajectories
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Fig. 3. Graph depicting the state space of a pendulum and its associated empowerment values. The
solid line shows the trajectory of a pendulum controlled by a greedy empowerment maximization
algorithm based on the underlying Gaussian quasilinear empowerment landscape. The dashed line
shows the controlled pendulum trajectory based on a greedy maximisation of the Monte Carlo
Gaussian approach.

pendulum to reach the topmost rest position. Rather, the top position appears to

be an advantageous state to start in if required to reach a larger number of states

reliably in the imminent time horizon.

Additionally, note that the greedy algorithm does not implement a gradient

ascent in the empowerment landscape, because the dynamics of the system impose

certain state changes. If the pendulum has a high velocity in a given direction, then

there will be a large change in pendulum angle in the successor state regardless of

what the control input is. Hence the pendulum control is not necessarily able to

climb up on a ridge in the empowerment landscape, if the dynamics are moving the

state away from that ridge of high empowerment.
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Fig. 4. A plot of the pendulums behaviour for different values of ∆t and P , with the pendulum
starting in the lower rest position. The white area results in oscillation, the grey indicates reaching
the upper rest position, and in the black area the pendulum remains in the lower position.

4.2. Variable Parameters

Once the dynamics of the system are defined, the empowerment landscape produced

by our new approximation algorithm depends essentially only on two parameters,

the time step length ∆t, and the power constraint P . If we vary through those

parameters, as seen in Fig. 4, we can observe three different classes of behaviour:

• The pendulum swings up and comes to a controlled rest in the upper position.

• The pendulum swings up continuous to oscillates

• The pendulum remains in the lower rest position

Note that only the power constraint is an actual parameter of the pendulum

system, while ∆t is only relevant for the control algorithm. So all the entries in Fig. 4

for similar power deal with a similar system. Since every power has at least one entry

that manages to reach the upper rest position, it is possible for all examined power

levels to get there. So the differences in the behaviour of systems with similar power

constraints result only from the different empowerment landscapes that form the
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basis of our control algorithm, and not from any differences in the actual pendulum

system.

4.2.1. Variation of the Power Constraint

A closer look at the different underlying empowerment landscapes in Fig. 5 shows

their changes in regard to power constraint P and time step length ∆t.

In general, an increase in power will result in an increase in empowerment, no

matter where in the state space the system. This is not immediately visible, since

the colouring of the graphs is normalized, so the black and white correspond to the

lowest and highest empowerment value in that sub graph, respectively.

A more interesting effect is a potential inversion of the empowerment landscape.

Inversion means that for two specific points in the state space it might be that

for one power level the first has a higher empowerment than the other, but for a

different power level this relationship is reversed, and now the second has a higher

empowerment.

This is a result of how the capacity is distributed on the separate parallel chan-

nels. Be reminded, each channel i contributes its own amount to the overall capacity

C = max
Pi

∑

i

1

2
log(1 + σiPi) (39)

subject to a total power constraint P . Depending on the different values for σi,

power is first allocated to the channel with the highest amplification value σi, up

to a point were the return in capacity for the invested power diminishes so much

that adding power to a different channel yields more capacity. From that point on

the overall system acts as if it was one channel of bigger capacity.

So, for low power, the factor that determines the channel capacity is the value

of the largest σ alone. Once the power increases, the values of both the σ become

important. It is therefore possible that for low power, a point with one large σ has

comparatively high empowerment, while for a higher power level, another point has

a higher empowerment, because the combination of all the σ is better. This case is

what actually happens in the pendulum example. In Fig. 5 we can consider the row

of landscapes for a ∆t of 0.7. With increasing power there appears a new ridge of

local maximal empowerment around the lower rest position of the pendulum. This

actually causes the pendulum to remain in the lower rest position for the examples

with higher power.

It is striking that this effect somewhat coincides with the transition from an

underpowered pendulum to one that can easily reach any point in its state space

without any upswing manoeuvres. If this proves indeed to be the case, it would

imply that this change in the computed empowerment landscape actually reflects

a true change in fundamental qualitative characteristics of the model. We suspect

that this observation may offer a key for a more thorough interpretation of the

phenomenon in the future.
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Fig. 5. A visualization of the different empowerment landscapes resulting from computation with
different parameters for time step length ∆t and power constraint P . All computations are based
on the analytically derived four-step transformation matrix T from Eq. (38).

4.2.2. Variation of the Time Step Duration

Another parameter we can vary when computing the empowerment landscape is ∆t,

the time step length. This parameter does not change the dynamics of the simulation
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itself, but it is a variable that characterizes the interaction between controller and

system, and thus has considerable influence on the computation of empowerment

itself.

Since we are dealing with a stepwise linear approximation, an overly long time

step size will make the approximation worse. In our pendulum simulation this results

in some high frequency patterns (such as ∆t = 1.5, in Fig. 5) which also seem to

be, according to Fig. 4, damaging to the control algorithm.

On the other hand, as the value for ∆t becomes infinitesimal small, several of the

terms in our matrix from Eq. (38) vanish. The resulting empowerment landscape

approximates sin(φt). While this might be a better approximation for a very short

look into the future, and it also retains the upper rest position as a point of high

empowerment, it turns out not to be very helpful for our greedy control algorithm.

In the worst case the pendulum is actuated towards the top, up to that point were

gravity compensates for the force of actuation. The actuator still tries to move the

pendulum higher, and so the pendulum remains in that point of equilibrium, unable

to find a path through the state space that will end up in the upper rest position.

For larger time step duration the pendulum displays the behaviour described

earlier, which can also be seen in Fig. 3. The pendulum swings up and reverses the

actuation at the apex, gathering even more energy. Eventually it reaches the high

rest position. Approaching the rest position the control algorithm then breaks the

pendulum to not overshoot the upper position. This is helped by the fact that for

larger ∆t the ridges of high empowerment leading towards the upper rest position

define a good approach to the top rest position. If the time step duration decreases

it becomes harder for the pendulum to approach and decelerate, since the guiding

“ridges” of high empowerment vanish (See Fig. 5). Lacking the predictive power of

larger time steps, successful deceleration now depends on how closely the trajectory

of the pendulum leads to the upper rest position. Sometimes, when ∆t is too small,

the pendulum just overshoots and enters some oscillating behaviour, were it swings

around fully (See Fig. 3). This happens at different levels of power, because varying

the power influences how the pendulum initially approaches the top.

Basically, ∆t defines the horizon of our empowerment calculation. The smaller

it gets the worse it becomes at predicting the future. A good value for ∆t should

therefore balance the need for prediction with the need for good approximation.

4.3. Approximation via Sampling

In general it will not always be possible to rely on a fully known mathematical

model to obtain the transformation matrix T analytically. An alternative, which is

compatible with the Gaussian channel approximation, would be the reconstruction

of an approximated linear transformation matrix empirically via linear regression.

Consider a system available as a black box simulation, or a real world experiment

that can be repeated several times. Where this is not possible, one can often still

operate under the “ergodic” assumption, meaning one replaces repeated separate
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runs starting in a state by the statistics obtained from a single run that keeps

revisiting the same state sufficiently often for the statistics. This assumption even

includes an agent who finds itself in a similar (according to its sensors) position,

and has a record of different actions it took, and the respective outcomes.

In any case, we assume now that m samples of transitions have been obtained for

a given starting state, consisting of the inputs (actions) and the respective outputs

(resulting state). In the pendulum case this would be the applied power u for the

length of the four time steps each, and the two values (speed φ̇ and angle φ) of the

resulting pendulum state.

If we put all the inputs into a m× 4 matrix F (the four actions from one sample

form a row), and all the outputs into a m× 2 matrix G (each row is a sample of the

resulting angle and velocity), we can then compute a linear transformation matrix

T̂ which minimizes the least squares error as:

T̂ = (FTF )−1(FTG) (40)

We performed the linear approximation for two different sampling methods, ran-

dom sampling and regular sampling. For regular sampling there were five different

actuation levels for each time step (full actuation each direction, half actuation in

each, no actuation), creating 54 = 625 samples. For the random sampling we also

created 625 samples, but for each of their 4 time steps their actuation was chosen

from a continuous, uniform, random distribution bound by the maximal actuations

in each direction. The resulting mappings T̂ after linear regression were used to

create the empowerment landscapes in Fig. 6.

Fig. 6. Three graphs depicting the different empowerment landscapes obtained with a. analytical
computation, b. regular sampling and c. random sampling. All simulation were for 4 time steps
with 0.7 second, with P = 0.1.

We see that the regular sampling closely resembles the landscape created with

the analytical model. The random sampling, however, contains a lot of noise for the

same number of samples, even so it still retains a very rough qualitative similarity

in the empowerment landscape; especially the low empowered zone around the
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lower rest position. A pendulum actuated with this landscape will actually manage

to leave the lower rest position, but fails in most cases to stabilize in the upper

position. It is, however, clear that, whenever there is a choice, regular sampling is

preferable.

4.4. Comparison of Empowerment Landscapes

This section evaluates the different methodologies for calculating empowerment

for the pendulum. In general the discernment of empowerment landscapes can be

affected greatly by the limitations of sensors as shown by Fig. (7). Although in this

paper sensor accuracy is assumed to be perfect (the global state of the world is

known to the agent), a degradation of the empowerment landscape can be observed

with some instances of the Monte-Carlo binning methodology. In particular, Fig. 7

shows the same 1-step empowerment landscape all generated using 36 angle bins

and 0, 2, and 20 speed bins respectively. It can be seen from Fig. 7 (a) that ignoring

the angular speed state results in a simplistic representation of the empowerment

landscape. Introducing 2 speed bins, one for positive speed and one for negative,

begins to transform the empowerment landscape as shown by Fig. 7 (b). Fig. 7 (c)

shows the effects of incorporating 20 speed bins with the angle bins. Fig. 7 (d) shows

the 1-step empowerment landscape generated using the MC multivariate Gaussian

approach [15]. Comparing Fig. 7 (c) and (d), one can see that the empowerment

landscapes are similar, increasing the number of speed bins in Fig. 7 plot (c) will

only make them more so, but the resulting computational cost with the binning

approach is even more severe than with the MC multivariate Gaussian approach.

Fig. 7. Comparison of the two MC methodologies, demonstrating that incorporating increased
knowledge of the state space improves the discernment of the empowerment landscape; (a) shows
1-step empowerment using the binning approach when only angle states are binned and angular
speed states are ignored; (b) shows that when two angular speed state bins are introduced along
with the angle state bins that the empowerment landscape becomes more than a simple sinusoid;
(c) demonstrates that the empowerment landscape that is obtained the more speed state bins
are added, approximates the Multivariate Gaussian approach in plot (d). Suggesting that the
Multivariate Gaussian approach provides the most accurate representation of the empowerment
landscape for the pendulum, with the binning methodology only providing comparable results for
large numbers of bins.
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Figure 8 shows a three dimensional representation of the 3-step empowerment

landscape generated using the MC multivariate Gaussian approach. The figure

shows the same landscape with various orientations from birdseye (top left) and

then from left to right progressively more towards cross-section viewpoints. The fig-

ure highlights the extent of the nonlinearity of the empowerment landscape. As can

be seen from the cross-sectional plots, the gradient change in empowerment values

are steep. The resulting landscape is filled with some local minima, but contains one

global minimum corresponding to the angle that the pendulum is in the downward

resting position (θ = 180o).

Fig. 8. 3 dimensional representation of Monte Carlo multivariate Gaussian evaluation of the 3-step
empowerment landscape for the simple pendulum.

Figure 9 shows a comparison between the MC multivariate Gaussian approach

and the Gaussian channel approximation. On the top row of the figure (plots (a)

to (c)) the MC multivariate Gaussian approach was used to generate the empower-

ment landscapes for a fixed time step of 0.2 seconds for 1- to 3-step empowerment

respectively. On the bottom row of Figure 9 (Plots (d) to (f)) the Gaussian channel

approximation was employed for powers 0.1, 0.5, 0.9, and ∆t 0.5, 0.9 and 1.3 respec-
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tively. Both methodologies calculate the empowerment landscape for future action

selection, they both employ different interpretations of the empowerment horizon.

In general it is difficult to compare the two methodologies in the sense that the

first method uses a finite time step and hence has a fixed empowerment calculation

horizon in time. The Gaussian channel approximation, on the other hand, uses a

combination of power (P ) and time step (∆t) to determine the empowerment hori-

zon. Nevertheless the two methodologies can be compared qualitatively with one

another for particular choice of parameters. In either case, if one greedily maximises

the action selection based on relative empowerment values when travelling through

the pendulum state-space, the resultant control is very similar, as the majority of

the peaks and troughs of the empowerment landscapes for the two methodologies

coincide.

Fig. 9. Comparison between MC multivariate Gaussian approach (a,b,c) and the Gaussian channel
approximation (d,e,f). Plots (a) to (c) generated using a fixed time step of 0.2 seconds for 1 to
3-step empowerment. Plots (d) to (f) generated for powers 0.1, 0.5, 0.9, and ∆t 0.5, 0.9 and 1.3
respectively

5. Discussion

Comparing the different methods to approximate empowerment it seems that while

they differ in their detailed empowerment landscapes, they nonetheless create sim-

ilar overall structures and behaviour. Looking at all four approximation methods,
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in particular, for the low-powered pendulum we see that all of them assign:

• a low empowerment value to the lower rest position

• a high empowerment value to the upper rest position

• high values to a path leading towards the upper rest position

The last one seems to be particularly important for the resulting behaviour, since

it allows our greedy control approaches to find a trajectory through the state space

that leads towards the upper rest position. A naive approach, where the acceleration

just tries to directly move the pendulum towards the top all the time simply does

not work in the underpowered case.

Most problems, both for the pendulum behaviour and for the similarity of the

approximation arise when either power or the time step length are getting too large.

This is probably caused by two different factors.

Firstly, since we are only dealing with approximations, it seems likely that large

time steps make the linear approximations more susceptible to error, and likewise,

high power levels can also create larger errors in the approximations.

Secondly, since empowerment is defined in regard to the agent’s sensors, several

parameters not only change the numerical approximation, by which empowerment

is calculated, but actually change the value per se. For example, if we are binning

the values as the actual sensors quantize the values, then a calculation based on

binning might actually be closer to the actual empowerment value than assuming

that the agent senses the resulting states continuously.

Similar considerations have to be taken for agent’s with vastly different power

levels. An agent with high power might actually have a different empowerment

landscape than one that only has little actuation power. The same can be said

for the temporal horizon the agent is considering. There might be something just

behind the temporal horizon that completely changes the landscape (such as the

death of the agent), and therefore different horizons can actually have radically

different empowerment landscapes. So, basically, the approximation of the original

problem becomes worse, not because of some systematic error, but because the

system is actually determining the empowerment for a different system.

When comparing the control strategies resulting from the quasilinear approach

and the Monte Carlo Gaussian approach , there is a paradigm difference between the

power and time step parameters with the quasilinear approach, and the magnitude

of the control input with the Monte Carlo approach. This can be clearly seen from

Fig. 3, which shows that although the phase and angular velocity are similar, there

are some minor differences because of this. Additionally, there are some further

minor differences that result from different underlying empowerment maps.

A remark is in place concerning the generality of the results. To introduce the

Gaussian quasilinear approximation to empowerment, we have exclusively concen-

trated on the pendulum scenario and compared it to earlier methods in this partic-

ular scenario.
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How it will fare in other, more general, scenarios needs to be investigated further,

but it should be mentioned that the older methods have been shown to successfully

operate in a variety of more complex and involved scenarios [1, 2, 10, 15, 18, 19, 21];

this gives rise to hopes that the quasilinear Gaussian approximation will be able to

inherit the advantageous qualities of the other approximation methods, even when

transferred to other scenarios.

The most critical problem for the quasilinear approximation (see also Future

Work) is the case of hard transitions of dynamics (such as collisions). The more

general (but slower) empowerment approximation methods give appealing and in-

tuitive results in these cases [1, 2, 18, 19, 21], but how the quasilinear approximation

will fare here and whether it needs to be modified to keep pace with the other meth-

ods, remains to be seen.

5.1. Performance Comparison

As discussed in Sec. 5, the presented methods are not exactly computing the

same underlying empowerment, and variable parameters in each method cannot

be equated directly. Therefore, it is not easy to create a meaningful quantitative

comparison in terms of a percentile increase in running time. But the qualitative

differences in performance are so large that this is not necessary.

Computing the full empowerment landscape for more than two time steps in the

future with the Blahut/Arimoto-based MC binning, or MC Multi-variant Gaussian

approach takes days. Computing the same landscape based on the SVD of the linear

transformation matrix happens in less than one second. If the matrix is derived

beforehand with the mathematical model, the greedy control algorithm runs in real

time. If the matrix T has to be computed via linear regression, it is slightly slower,

mostly due to the amount of simulated sampling being done.

Another comparative advantage of both the MC binning, and the linear regres-

sion based matrix decomposition, is its wider applicability, since they can extract

models from sampled data, which might be obtained via repeated experimentation,

or from some black box simulation model.

6. Future Work

The work presented demonstrates that fast empowerment calculation that can be

used in a real-time system (such as actual robotic control) is in the realm of the

possible. This is in contrast to the traditional methods which, while demonstrat-

ing desirable properties of empowerment, were too slow for practical application.

To proceed further in this direction two main challenges have to be addressed: the

representation of real world energy constraints, and the ability to deal with discon-

tinuities in the system.

Model extraction also becomes relevant, since more complex control systems do

not necessarily offer enough structural insight for an observer to construct explicit

equations describing them. Therefore it becomes necessary to either construct the
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transition matrix T for every point in the state space from empirical data, or to

construct a model for the overall system from data, and automatically derive the

transition matrix for each point.

Especially hard discontinuities in the dynamics, such as collisions, can make it

arbitrarily difficult to model the relationship between input and output as a linear

transformation, making the approximation error uncontrollably large. A decompo-

sition into separately treated linear approximations might be able to circumvent

this.

At the same time, the underlying empowerment concept is completely unaffected

by discreteness or continuity of the system it deals with. It would therefore be

desirable to to seamlessly include discrete system dynamics that is completely non-

linear in nature.

Finally, we conclude that it would be desirable to transfer some of the generality

of the underlying empowerment concept into methods for empowerment calculation

in systems combining continuous and discrete dynamics, especially systems of real-

world relevance.
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