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0. Abstract 

An investigation was carried out into light scattering by Gaussian rough ice crystals. 

Gaussian rough crystal geometries were generated using roughness parameters 

derived from mineral dust grains, which have been reported to be suitable proxies for 

rough ice crystals. Light scattering data for these geometries was computed using 

the discrete dipole approximation (DDA) method. 

Phase functions, 2D scattering patterns, degree of linear polarisation patterns and 

asymmetry parameters were computed for smooth, moderately rough and highly 

rough crystals with a variety of orientations and size parameters. 

A sodium fluorosilicate ice analogue crystal with three partially roughened prism 

facets was created using focused ion beam (FIB) milling and 2D scattering patterns 

were collected from it using the small ice detector (SID) 3 cloud probe. 

It was found that roughness reduces features in the phase function compared to 

scattering by smooth hexagonal prisms, particularly when the roughness features 

were horizontally much larger than the wavelength. However, the most effective 

roughness model also takes account of horizontal features whose size is closer to 

that of the wavelength. Horizontal features smaller than the wavelength have very 

little effect. 
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1. Introduction 

A hospitable climate is vital to our long-term survival, and so the study of it is very 

important. The conclusion that the climate is being changed rapidly by human activity 

[1] makes this study even more urgent, because rapid climate change reduces 

biodiversity [2], increases the number of people at risk of hunger [3] and makes parts of 

the world less habitable, by causing more extremes in temperature and rainfall in 

different parts of the world [1], and by causing sea levels to rise [1]. The effects of this 

change are already being felt [1], and will continue to increase in severity.  

Several methods have been used to study climate change. Data from the past, including 

recorded temperature measurements [4] and proxies [5,6], have been analysed to 

produce plots of climate behaviour over the past which can be compared to ice core 

samples [7] of the atmospheric composition over the same time period. Future climate 

behaviour can be predicted by the use of climate models [1] which work well for 

predicting the global climate decades into the future; however, there are necessarily 

assumptions and simplifications involved that limit the accuracy of these methods, 

making longer term predictions unreliable, making it more difficult to plan how to 

mitigate and adapt to climate change, and preventing the feasibility of predictions of 

future local weather [8]. 

One of the largest sources of error within these models is the interaction of clouds with 

radiation [9]. It is known that they have a large effect [10,11], but their interaction with 

the climate is complex; their overall effect depends on the balance between reflected, 

absorbed and transmitted shortwave (from the sun) and longwave (from the surface and 

lower clouds) radiation [18]. 

Ice clouds are particularly difficult to model accurately, as the particles within them are 

non-spherical and their scattering behaviour is largely determined by both the 

interactions of these individual particles with incoming radiation and the average size, 

shape and the number density of these crystals within the cloud [10,13]; this makes 

their light scattering behaviour much more difficult to quantify [1,14]. 

Although cirrus clouds allow most incident sunlight to pass through them, their extent 
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makes them a major factor; cirrus coverage is typically 30% [21]; over the tropics it is 

typically 70% [20]. An additional source of complexity is the fact that ice crystals found 

in nature have recently been found to have rough surfaces; these crystals make up a 

sizable proportion of all crystals within cirrus clouds [12,15]. Ice crystals that are pristine 

(i.e. have not undergone melting or aggregation) have a regular hexagonal prism shape 

with smooth facets; due to the 60° prism angle this should produce a halo at 22° 

(assuming an adequately large size parameter) - however, this is quite rarely seen from 

real cirrus clouds [19]. Roughness in ice crystal geometry has a large effect on the 

radiative properties – more roughness leads to a lower asymmetry parameter, which 

means more light scattered back towards the light source [22]. Understanding the 

extent to which roughness causes this effect is important for better characterising ice 

crystals in clouds. 

Previous work on characterising ice crystal roughness has focused on light scattering 

simulations, since direct imaging in clouds is not accurate enough to characterise it [27]. 

These have been performed using geometric optics ray tracing simulations, with facets 

being randomly tilted as a ray hits [16]. This method can be improved upon, as tilted 

facets are not usable within exact light scattering models, the simulation is not exactly 

repeatable and it does not account for more complex ray paths, as the tilting only occurs 

when the ray hits. This issue has been looked at previously [17], however the 

parameters used in such studies are not derived from physical measurements and do not 

take account of multiple roughness scales. 

Work on ice crystal roughness has also been performed by growing them inside scanning 

electron microscopes [28] and cloud chambers [29]. Ice crystal analogue-based 

laboratory experiments have also been performed [22]; these analogues are hexagonal 

crystals made of sodium fluorosilicate. Their refractive index is very similar to that of ice, 

but they don’t melt at room temperature and therefore make it possible to study how 

light scattering by ice crystals behaves in detailed physical experiments. 
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Therefore, the aim of the work described here is to generate roughened crystal 

geometries for use with light scattering computations; roughened ice analogue crystals 

will also be manufactured using the same geometry. The parameters of this roughness 

will be derived from analysis of suitable proxy materials, since in-situ measurements of 

cloud ice crystals are unfeasible to the required degree of accuracy. The rough ice 

analogue will be created by using Focused Ion Beam (FIB) milling to etch the roughness 

geometry onto the prism facets of ice crystal analogues. Light scattering computations 

will be performed for crystals with a range of orientations, size parameters and 

roughness types and magnitudes, and light scattering experiments will be performed on 

both the smooth and rough ice analogues. These results will be analysed and compared 

and conclusions drawn about the effect of this roughness on the phase function, degree 

of linear polarisation and asymmetry parameter. 
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2. Theory 

2.1 Cirrus clouds and ice crystals 

Cirrus clouds (Fig. 2-1) are wispy clouds that are made up of ice crystals. They form at 

heights between 4km and 20km above sea level [31], above most other cloud types. 

Their thickness varies between 100m and 8km [31], and they cover approximately 30% 

of the Earth [21], with 70% coverage over the tropics [20]. 

 

Fig. 2-1: Cirrus clouds over Hatfield, Hertfordshire. 

These clouds form when water vapour undergoes deposition, and begins below -20°C in 

the presence of aerosols for nucleation to start on, or below -40°C otherwise. This 

process is initiated when warm air is forced upwards – the lower temperature at higher 

altitudes causes the moisture to cool down rapidly. The crystals grow as more water and 

water vapour nucleates on them. A type of cirrus known as a contrail can also form from 

aircraft exhaust; this results in much smaller crystals than normal cirrus. 
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The ice crystals they are composed of are formed from water molecules that arrange into 

hexagonal crystals when they turn into ice. These crystals can become columns, plates, 

rosettes or conglomerations of all these. The lengths of these can vary from hundredths 

of a millimetre to millimetres. 

Cirrus clouds sometimes cause optical effects that can be seen in the sky – halos, 

sundogs and arcs are sometimes seen (Fig. 2-2). 

 

Fig. 2: A halo caused by ice crystals in a cirrus cloud over Stockholm, Sweden. The 22° halo can be seen, and 

the inset shows the path light takes through ice crystals for it to form. Photograph credit: Peter Rosén via 

Spaceweather.com 
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2.2 Light scattering theory and conventions 

2.2.1 Stokes Parameters 

The Stokes Parameters describe the intensity and polarisation state of the electric field of 

a beam of light. They are as follows: 

𝐼 = 𝐸𝑝𝐸𝑝
∗ + 𝐸𝑠𝐸𝑠

∗          (2.1)(𝑎) 

𝑄 = 𝐸𝑝𝐸𝑝
∗ − 𝐸𝑠𝐸𝑠

∗          (2.1)(𝑏) 

𝑈 = −𝐸𝑝𝐸𝑠
∗ − 𝐸𝑠𝐸𝑝

∗      (2.1)(𝑐) 

𝑉 = 𝑖(𝐸𝑠𝐸𝑝
∗ − 𝐸𝑝𝐸𝑠

∗)     (2.1)(𝑑) 

Where 𝐸𝑝 is the parallel part of the electric field and 𝐸𝑝
∗ is its complex conjugate; 𝐸𝑠 is the 

perpendicular part of the electric field and 𝐸𝑠
∗ is its complex conjugate . I describes the 

energy flux of the beam, Q and U describe the linear polarisation of the beam and V 

describes the circular polarisation of the beam. For convenience, they are usually 

described in a column matrix: 

𝑆 = [

𝐼
𝑄
𝑈
𝑉

]          (2.2) 

2.2.2 Scattering Matrix 

The scattering matrix describes how the intensity and polarisation of a light beam is 

changed by scattering caused by a single particle. The notation used for the matrix 

elements can be seen below: 

 [

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑝41 𝑝42 𝑝43 𝑝44

]          (2.3) 

It can be multiplied by the Stokes matrix of incident light to give the Stokes matrix of 

scattered light. 
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[

𝐼𝑠𝑐𝑎

𝑄𝑠𝑐𝑎

𝑈𝑠𝑐𝑎

𝑉𝑠𝑐𝑎

] =
1

𝑘2𝑟2
 [

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑝41 𝑝42 𝑝43 𝑝44

] [

𝐼𝑖𝑛𝑐

𝑄𝑖𝑛𝑐

𝑈𝑖𝑛𝑐

𝑉𝑖𝑛𝑐

]          (2.4) 

Where r is the distance of the scattered light from the particle and k is the wavenumber,  

𝑘 = 2𝜋/𝜆. 

For enough randomly oriented symmetric scattering objects, symmetries will occur 

between different particles. This means that the scattering matrix can be simplified so 

only 6 independent terms remain [35]: 

[

𝑝11 𝑝12 0 0
𝑝12 𝑝22 0 0
0 0 𝑝33 𝑝34

0 0 −𝑝34 𝑝44

]          (2.5) 

2.2.3 Phase function and asymmetry parameter 

The phase function is an azimuthally averaged description of the intensity of scattered 

light (p11 from the scattering matrix) as a function of scattering angle θ. The way the 

phase function’s angular orientation for scattering events is defined can be seen in Fig. 

2-3.  It is normalised using the following: 

1

2
∫ 𝑑𝜃 sin 𝜃 𝑝11(𝜃) = 1

𝜋

0

          (2.6) 



11 
 

 

 

Fig. 2-3: The angular orientation of the phase function for a scattering event. The light source is at the top; 

backward scattered light is light directed back towards the light source, whereas forward scattered light is light 

directed away from the light source. 

The asymmetry parameter, g, is given by the following: 

𝑔 =
1

2
∫ 𝑑𝜃 sin 𝜃 cos 𝜃 𝑝11(𝜃)          (2.7)

𝜋

0

 

It describes the extent to which light is scattered forward or backward. If it is positive, 

more light is scattered forward than backward; if it is negative, more light is scattered 

backward than forward. 

2.2.4 Degree of linear polarization 

The degree of linear polarisation is derived from the Stokes parameters and is given by: 

𝐷𝐿𝑃 =
√𝑄2 + 𝑈2

𝐼
          (2.8) 

When the simplified scattering matrix for multiple randomly oriented scattering objects is 

multiplied by the Stokes matrix for unpolarised light, the following is found: 
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[

𝑝11 𝑝12 0 0
𝑝12 𝑝22 0 0
0 0 𝑝33 𝑝34

0 0 −𝑝34 𝑝44

] [

𝐼0

0
0
0

] = [

𝑝11𝐼0

𝑝12𝐼0

0
0

]          (2.9) 

Therefore, the degree of linear polarisation for unpolarised light can be defined as: 

𝐷𝐿𝑃 = −
𝑝12

𝑝11

         (2.10) 

2.2.5 Size parameter 

This describes the size of a scattering object relative to the wavelength of light that 

passes through it. It is given by the equation below, where X is the size parameter, r is 

the longest dimension of the scattering object and λ is the wavelength of the incident 

light. 

𝑋 =
2𝜋𝑟

𝜆
          (2.11) 

 

2.2.6 Rayleigh scattering 

Rayleigh scattering is the process by which light beams are deflected by particles which 

are smaller than the wavelength of the propagating light. As a light wave passes a small 

particle, it induces the charges in the particle to oscillate at the same frequency as the 

wave. 

Violet and blue light is more efficiently scattered by the particles in the Earth’s 

atmosphere than red and green light. This is what gives rise to the blue colour of the 

sky. 

2.2.7 Mie theory 

This method gives the exact result for light being scattered by a perfect sphere. It uses a 

spherical wave equation with boundary conditions set at the sphere's surface; this 

enables the separation of the variables and gives a solvable partial differential equation. 

This method is not suitable for computing light scattering by facetted particles. 
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2.2.8 T-matrix 

T-matrix [32] is a light scattering method that solves the Maxwell equations for light 

traversing objects. It uses a transformation matrix to relate the spherical wave functions 

that describe the incident and scattered fields. It is useful for exactly computing light 

scattering by small particles with rotational symmetry; however, computational time 

requirements increase dramatically as scatterer complexity and size increase. This 

means that it is not a suitable method for calculating light scattering by roughened 

particles. 

2.2.9 Discrete Dipole Approximation (DDA) 

The discrete dipole approximation [33] is a light scattering theory that exactly solves the 

Maxwell equations for objects that are divided into discrete dipoles. Usually, the object is 

split into 10 dipoles for each wavelength distance in each dimension, which has a slight 

impact on the accuracy of the results as compared to the T-matrix method. A scattering 

computation is performed by simulating how these dipoles respond to both the incident 

field and the fields produced by all the other dipoles. The scattered field is then found by 

considering the contributions of all the dipoles. DDA is able to handle objects of any 

complexity, but its computational demands increase dramatically with particle size. This 

makes it suitable for computing light scattering by small rough particles. 

2.2.10 Geometric Optics (GO) 

Geometric optics is an approximate light scattering theory that uses the concept of ray 

tracing – that is, treating light as rays, and tracing how these rays pass through a 

scattering medium using Snell’s law and the Fresnel equations, which are described 

below. The results of this simulation are combined with the diffraction caused by the 

scattering object’s projected cross-section. This method trades accuracy for 

computational speed; it is a much less accurate method than those which solve the 

Maxwell equations, but light scattering simulations can be performed much more quickly. 

It is useful for particles with large size parameters, as these are less sensitive to its 
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inaccuracy and are impractical for computation with methods that solve the Maxwell 

equations. 

Snell’s law describes how the direction of the propagation of a ray in geometric optics is 

altered by passing from a medium with one refractive index into a medium with another 

refractive index. Here, the refractive index of the first medium is given by n1, the 

refractive index of the second medium is given by n2, the angle of incidence is given by 

θ1 and the angle of refraction is given by θ2. 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2           (2.12) 

Two different outcomes are possible; either the ray will partially be transmitted into the 

second medium at the angle θ2 from the normal and partially be reflected back into the 

first medium by the angle θ1 from the normal (Fig. 2-4); or, if the incident angle is at or 

exceeds the critical angle, the ray will be totally reflected at the angle θ1 from the 

normal. The critical angle can be found by setting θ2 equal to 90°. 
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Fig. 2-4: Diagram showing the incident (I), transmitted (T) and reflected (R) ray paths for light passing 

through a boundary between media with different refractive indices. 

The Fresnel equations [36] calculate the ratios of the transmitted and reflected electric 

fields to that of the incident field and their polarisation states. Intensity is the square of 

these values. 

Where s-polarisation is perpendicular to the plane of incidence (the plane containing the 

incident ray and the normal vector of the surface), and p-polarisation is parallel to the 

plane of incidence: 

𝑟𝑝 =
tan(𝜃1 − 𝜃2)

tan(𝜃1 + 𝜃2) 
                                  (2.13)(𝑎) 

𝑟𝑠 = −
sin(𝜃1 − 𝜃2)

sin(𝜃1 + 𝜃2)
                                 (2.13)(𝑏) 

𝑡𝑝 =
2 sin 𝜃2 cos 𝜃1

sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)
          (2.13)(𝑐) 

𝑡𝑠 =
2 sin 𝜃2 cos 𝜃1

sin(𝜃1 + 𝜃2)
                                 (2.13)(𝑑) 

Where 𝑟𝑝is the reflected p-polarisation, 𝑟𝑠 is the reflected s-polarisation, 𝑡𝑝 is the 

transmitted p-polarisation and 𝑡𝑠 is the transmitted s-polarisation. 

 

2.2.11 Ray Tracing with Diffraction on Facets (RTDF) 

This is an adaptation [34] of the geometric optics method that increases its accuracy 

without massively increasing the computational overhead. Each facet is treated as a set 

of slits which cause the ray path to deviate from what would be expected using ray 

tracing alone. The concept of energy flow lines is used to model this deviation; slit size, 

distance between where the ray has hit and where the edges of the slit are and the 

wavelength of the incident light are all taken into account. 
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It is useful for simulating scattering by particles that are too big to be computed in a 

reasonable amount of time using methods that solve the Maxwell equations and too 

small to be accurately modelled using geometric optics. 
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3. Measurement Techniques 

3.1 Small Ice Detector (SID) 3 

SID3 (Fig. 3-1) is a device which is used to determine the light scattering caused by 

particles which pass through its 532nm laser beam (Fig. 3-2). The laser beam is emitted 

from the probe arm at the top right of Fig. 3-1, down towards the head at the bottom 

right of Fig. 3-1, where a CCD camera is positioned to image the resultant scattering. It 

is primarily intended as a cloud-based probe, but can also be set up for use in the 

laboratory. 

 

Fig. 3-1: The Small Ice Detector (SID) 3 cloud probe, without the protective cover it would have in cloud-based 

operation. The laser beam extends down (in the orientation shown) from the arm on the right towards the 

head, in which the CCD collector sits. In cloud-based operation, particles pass through from the right and 

travel through the beam, triggering the CCD to take an image. 

Cloud-based operation requires a particle to trip two trigger detectors, mounted in the 

head. If this happens, an image is captured by the CCD camera in the head, which has a 

resolution of 780x582 pixels and is positioned directly below the laser beam on Fig. 3-1. 

Lab-based operation is performed by placing a particle in the scattering volume and 

manually triggering the detector. 

Two dimensional forward scattering patterns are produced when the CCD is triggered. 

The highest scattering angle it can record is 25°, which means the 22° ice crystal halo 

can be seen. There is a beamstop to block out the main forward scattering diffraction 

peak, which means the lowest scattering angle it can record is 6 deg. 
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Fig. 3-2: Dimensions of the SID3 laser beam (not to scale); edge is defined as being the Gaussian beam 

profile. Relative to the diagram, particles flow vertically. 

The CCD produces radially distorted images (Fig. 3-3) because it is flat – which means 

that scattering angle does not vary linearly with distance from the centre of the image. 

To create images that are linear in scattering angle, a correction routine was created. 

This involved creating a square of projector transparency with a grid of dots printed on it 

and placing it within the optics of the detector. A cluster of pollen grains mounted on a 

fibre was placed in the scattering volume and scattering images were collected of this 

grain at many orientations. This was averaged to get an image with the whole angular 

range of the detector illuminated, save for the dots. Scattering images were also 

captured of the fibre without the pollen cluster, and this was subtracted from the 

averaged result. The brightness within the scattering range was then inverted and a star 

detection algorithm was used to find the centroids of the dots. A quartic correction 

routine was created to and its parameters were found by finding the least square error 

between the dot locations and where they would be in an undistorted image. Use of this 

method reduced the mean error of the dot positions by 90%. 
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Fig. 3-3: The dots array before (left) and after (right) the quartic correction. Below are the scales – it can be 

seen that the scattering angle does not vary linearly. 

 

 

 

 

 

 

 

 



20 
 

3.2 Ice Analogues 

Ice analogue crystals are made of sodium fluorosilicate, and are grown from solutions of 

sodium carbonate, fluorosilicic acid and triethanol amine [30]. They have quasi-

hexagonal structure and a similar refractive index to that of ice, but do not melt at room 

temperature; this means they are a suitable model for hexagonal ice crystals and can be 

used for light scattering experiments in the laboratory. Some ice analogues can be seen 

in Fig. 3-4. 

 

Fig. 3-4: Ice analogue crystals viewed through an optical microscope at 4X magnification. 
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4. Gaussian Random Crystals 

4.0 Why? What are they? 

Ice crystal roughness, and its effect on light scattering by cirrus clouds, has not been 

adequately investigated. Light scattering computations exploring this area have mostly 

used crystal geometries with facets that randomly tilt as light hits them [16], an 

artificial, non-physical construct. Within this model the same facet will tilt in a different 

direction each time it interacts with light. This means each light scattering computation 

is not exactly repeatable and doesn’t allow for more complex light interactions at the 

crystal surface, such as diffraction. 

In the laboratory, ice roughness has been investigated using ice crystal analogues [22]; 

in general, rougher analogues show a closer agreement to scattering images taken using 

the SID3 cloud probe than smoother ones. However, the roughness present is introduced 

as the analogue crystal is growing and cannot be made to obey parameters which 

describe the dominant frequencies and standard deviation of the required roughness. 

A Gaussian random crystal (Fig. 4-1) is constructed from a Gaussian random surface 

(Fig. 4-2). This is a surface for which the height varies as a function of the lateral x and 

y dimension; each point’s height is calculated as a Fourier series in which each frequency 

term is multiplied by a Gaussian random amplitude. Gaussian roughness has previously 

been used to describe roughness for cylinders [23] and spheres [24]. The fundamental 

parameters in Gaussian roughness are a correlation length, which describes the 

dominant frequencies, and a standard deviation, which describes the variation in height. 
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Fig. 4-1: A Gaussian random crystal. 

 

Fig. 4-2: A Gaussian random surface. 
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4.1 As input for light scattering computations 

4.1.1 Gaussian random surface 

A method was devised for creating input files describing the geometry of roughened 

hexagonal prisms in the Macke [16] crystal format for use with computational light 

scattering models. 

The implementation of this involved the use of a Gaussian random surface creation 

method, adapted from previous work by Muinonen & Saarinen [23], which makes use of 

a 2D Fourier series method, takes as its parameters the correlation length and standard 

deviation to create roughness across a surface. This is used to create a rough facet 

which can then be folded into a hexagonal prism shape and joined together. 

Gaussian random surfaces can be created by applying a two dimensional Fourier series 

across a flat surface to generate roughened height values. Theoretically, the height of 

one coordinate is given by the following: 

𝑧(𝑥, 𝑦) = ∑ ∑ 𝑧𝑝𝑞 𝑒
𝑖(𝑝𝐾𝑥+𝑞𝐾𝑦)          (4.1)

∞

𝑞=−∞

∞

𝑝=−∞

 

Where K= 𝜋/L, and L is half a period in x & y, which must be chosen to be large 

compared to the correlation length. zpq are independent Gaussian random complex 

numbers for each p,q integer pair, generated between -1 and 1. To get zpq, the Marsaglia 

polar method is used; this involves calculating two uniformly distributed random 

numbers, G and H, between -1 and 1. As long as 𝐷 = 𝐺2 + 𝐻2 is less than 1, 𝐹 = √
−2 ln 𝐷

𝐷
 is 

calculated. Two Gaussian random numbers can be found by multiplying each of these 

uniform random numbers by F. 

The computed zpq values are modified by the variance, 𝜎2
, and Kronecker deltas of the p 

and q values: 
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𝑉𝑎𝑟 (𝑅𝑒(𝑧𝑝𝑞 )) =
1

8
(1 + 𝛿𝑝0 + 𝛿𝑞0 + 5𝛿𝑝0𝛿𝑞0)𝑐𝑝𝑞𝜎2         (4.2)(𝑎) 

𝑉𝑎𝑟 (𝑅𝑒(𝑧𝑝𝑞 )) =
1

8
(1 + 𝛿𝑝0 + 𝛿𝑞0 − 3𝛿𝑝0𝛿𝑞0)𝑐𝑝𝑞𝜎2         (4.2)(𝑏) 

 

and the same zpq values are used for all x,y. cpq are cosine series coefficients, and are 

defined later. 

However, practicality requires that p & q must both only take a finite number of values, 

and so the correlation statistics of the surface must be taken into account to calculate 

suitable limits for these values. This makes use of the correlation function chosen to 

represent Gaussian random surfaces: 

𝐶(ζ, η) = 𝑒
−[

ζ2+η2

2𝑙2 ]
          (4.3) 

Where ζ is the difference between the x positions of two points, η is the difference 

between the y position of the same two points and l is the correlation length. 

It also requires the surface’s two dimensional Fourier expansion: 

𝐶(ζ, η) = ∑ ∑ 𝑐𝑝𝑞 cos 𝑝𝐾ζ cos 𝑞𝐾η          (4.4)

∞

𝑞=−∞

∞

𝑝=−∞

 

Instead of iterating the Fourier expansion through infinite p and q, they will only be 

iterated until both equations are equal within a suitable tolerance. This tolerance is set 

as 1E-6, and both equations are evaluated for ζ=0, η=0. This results in p & q being 

iterated through until the following is satisfied:  
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1 − ∑ ∑ cpq < 1 × 10−6          (4.5)

𝑞𝑚𝑎𝑥

q=−𝑞𝑚𝑎𝑥

𝑝𝑚𝑎𝑥

p=−𝑝𝑚𝑎𝑥

 

Where qmax must be less than or equal to pmax and cpq is given by this equation: 

𝑐𝑝𝑞 = [(2 − 𝛿𝑝0)√
𝜋

2

𝑙

𝐿
𝑒

−(
1
2

𝑝2𝜋2𝑙2

𝐿2)
] [(2 − 𝛿𝑞0)√

𝜋

2

𝑙

𝐿
𝑒

−(
1
2

𝑞2𝜋2𝑙2

𝐿2)
]          (4.6) 

 

4.1.2 Crystal Creation 

The Gaussian random hexagonal prism is created by generating a roughened surface 

that can be folded to form a crystal. This is made up of six adjacent rectangular parent 

facets which form the prism facets and twelve equilateral triangular parent facets – two 

per prism facet – which eventually form the basal facets (Fig. 4-3). Firstly the 

coordinates required to describe the unroughened prism facets are created. The length 

and width values are set separately, as are the values describing the number of points 

along the length and width of each prism facet. After the roughening has been 

completed quadrilateral Macke format subfacets are generated, which can be split into 

two triangular subfacets each if required. 
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Fig. 4-3: The crystal in its unfolded state. The triangles will be folded down, and then the rectangle will be 

folded to create the prism facets. The correlation length is 1 μm, and the standard deviation is 0.3 μm. 

 Secondly, the coordinates describing the triangular parent facets are added, with each 

triangle being added in turn. Coordinates are added in rows, beginning with the row 

connecting the triangle to its adjacent prism facet and concluding with the final 

coordinate forming the parent triangular facet’s point. After the roughening has been 

completed equilateral triangular Macke format subfacets are formed out of these 

coordinates. 

At the stage of the roughening and subfacet creation being completed, if a composite 

surface (i.e., one with multiple roughness scales) is required, this is the stage at which it 

is most easily created; as long as both component surfaces have an equal number of 

coordinates and the same size before being roughened, all that is required is to add 

together the z-values for each coordinate. 
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Thirdly, the triangular parent facets are rotated downwards by 90° around the prism 

facet-triangle facet edge y-value (Fig. 4-4). A discontinuity can be seen, as the edge has 

not been rotated; to correct for this, the edge is rotated around its own unroughened 

height by 45°. 

Coordinate rows either side of the boundary can also be rotated. For example, if it was 

required to rotate the two prism facet rows and the two basal facet rows nearest to the 

boundary; the furthest of the two prism facet rows from the boundary would be rotated 

towards the basal facet (around its own unroughened position) by 15°, and the nearest 

would be rotated towards the basal facet (again, around its own unroughened position) 

by 30°. Similarly, the furthest of the two basal facet rows would be rotated towards the 

prism facet (around its own unroughened position) by 15° and the nearest of the prism 

facet rows would be rotated towards the prism facet (around its own unroughened 

position) by 30°. 

Fourthly, the individual prism facets are rotated into position. The first step of this 

involves rotating five adjacent prism facets and their adjacent triangular parent facets 

around the unroughened edge between the first and second prism facets by 60° (Fig. 4-

5). The next iteration involves rotating four adjacent prism facets and their adjacent 

triangular parent facets by 60° around the unroughened edge between the second and 

third prism facet, leaving the first and second prism facets and their adjacent triangular 

parent facets in place. This is continued until the iteration in which just the sixth prism 

facet and its adjacent triangles are rotated, at which point all the parent facets will be in 

position. 
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Fig. 4-4: The crystal with its triangles folded down. (a) shows the crystal without the boundary between the 

prism facets and the triangular parent facets rotated; (b) shows it with the boundary rotated. The correlation 

length is 1μm, and the standard deviation is 0.1 μm. 
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Fig. 4-5: The crystal with one prism facet rotation competed. The triangles on each side will fit together to 

form the hexagonal surface. Correlation length is 1μm, standard deviation is 0.1μm. 

As with the 90° rotation of the triangular parent facets, rotation of the prism facets will 

have resulted in discontinuities at the edges; to correct for this, the edge is rotated by 

30° around its own unroughened position. 

Once the rotations are complete, there are gaps left due to the roughness that need to 

be joined together. The first and last prism facets are connected using a 2D interpolation 

method that takes the non-edge values of both facets and uses these to generate values 

which can be applied to the edges of both to join them together. 

The triangles at either end of the prism facets also need to be joined together to create 

the basal facets. This is done by interpolating for each point over all the triangles for that 

basal facet, excluding the points along the edges of each triangle (Fig. 4-6). 
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Fig. 4-6: The crystal with all the sections folded into position and the unconnected edges joined together. It 

has a correlation length of 1μm and a standard deviation of 0.1μm. 

 

4.1.3 Sand Grain Microscopy 

To obtain suitable parameters for roughness generation, analysis of the surface of an ice 

crystal in a cirrus cloud would be ideal. However, in situ cloud imaging methods aren’t 

able to provide the required optical resolution, and so a suitable proxy is needed. 

Measures of roughness show that mineral dust grain roughness has a similar effect on 

light scattering as ice crystal roughness [25]; therefore, work was done to derive these 

parameters from mineral dust grain samples. 

Samples (e.g. (Fig. 4-7)) were prepared for detailed microscopy work using the Park 

Systems XE-100 Atomic Force Microscope (AFM) at Cardiff University. For this, suitably 

sized dust grains were selected – they needed to be less than approximately 50μm in 
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size but also as large as possible within that constraint to get as large a scan area as 

possible (grains measured varied from 40μm to 54μm). 50μm is approximately the size 

of grain that shows similar scattering pattern-derived roughness as that of naturally 

occurring cirrus ice crystals; since roughness producing processes can change with 

particle size (for example, roughening can be introduced by collisions between grains in 

air; at smaller sizes, van der Waal’s forces have a larger effect and the mass involved in 

each collision is decreased as compared to larger particles), much larger grains may not 

give suitable properties. 

For preparation, firstly a suitably sized rough desert dust grain from a sample collected 

in Mitribah, Kuwait was selected using optical microscopy. Secondly, a glass coverslip 

had epoxy glue applied to its surface using a thin strand of carbon fibre; this was 

necessary to create suitably small spots of glue on the glass so a dust grain could be 

stuck to the spot without sinking into it. 

The grain was then picked up and deposited onto a glue spot smaller than itself on the 

previously prepared coverslip using a fine tungsten needle and a micromanipulator. 

Optical microscope images were taken at x4, x10, x20 and x40 magnifications to enable 

the grain to be found in subsequent work; the underside of the coverslip was then glued 

to an electron microscope stub. 

Images were taken of the topography of the sample grains using a Scanning Electron 

Microscope (SEM). This was done to simplify the AFM work, which is otherwise forced to 

be done semi-blind as it is difficult to tell where the imaging probe is on the grain 

surface using the instrument’s camera. 

Measurements were then done using the AFM. For all the samples, the maximum area 

that could be scanned was 20μm x 20μm. 
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Fig. 4-7: An SEM scan of a sand grain from Mitribah, Kuwait, of length 40μm. 

 

4.1.4 Retrieval of roughness parameters 

Data gained from the AFM work on dust grains was analysed to derive the correlation 

length and standard deviation values. Firstly, scanning artifacts were averaged out and 

the surface had a fitted 2D polynomial subtracted from it to remove the grain’s overall 

long-range profile and leave just the roughness (Fig. 4-8). 
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Fig. 4-8: (a) shows the surface before it has had the overall profile removed. (b) shows the surface after the 

overall long-range profile has been removed. 
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Secondly, the Fourier spectrum of the surface was generated and then all frequencies 

above a cutoff were nulled (Fig. 4-9). The remaining spectrum was inversely 

transformed and a new surface was created that contained only the low frequencies (Fig. 

4-10). This was visually compared with the fitted surface, and the process was repeated 

with the cutoff being varied until the created surface appeared to match the large-scale  

 

Fig. 4-9: Power spectrum of low frequencies of the measured surface. The frequency cutoff is at 0.6μm-1. 
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Fig. 4-10: Simulated surface containing only low frequencies from the measured surface. 

 

features in the fitted surface. A high frequency surface (Fig. 4-12) was then created 

using the previously discarded part of the spectrum (Fig. 4-11). 

Thirdly, these surfaces were analysed to obtain values for the standard deviation and 

correlation length. Correlation lengths for both surfaces were retrieved by calculating 

autocorrelation and using a rearranged form of equation 3. The surface created using 

only high frequencies shows edge effects, and so the edges were not considered in 

deriving these parameters. 
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Fig. 4-11: Power spectrum of high frequencies of the measured surface. The frequency cutoff is at 0.6μm-1. 

 

Fig. 4-12: Surface containing only high frequencies from the measured surface. 
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4.2 Manufacturing of Gaussian rough ice crystal analogues 

4.2.1 Ice analogue selection 

Ice analogues selected must have a large aspect ratio to reduce the effect on light 

scattering of the basal facets, which are not formed smoothly; and to reduce the 

proportion of the crystal length that will later be attached to a glass fibre. They must 

also be large enough to be easily handled using the micromanipulator and be small 

enough that light scattering computations can realistically be done using the discrete 

dipole approximation. The prismatic facets should be smooth and the crystal should not 

show any obvious defects from the required hexagonal prism shape (Fig. 4-13). 

 

Fig. 4-13: An SEM image of a fibre-mounted ice analogue that satisfies the requirements. The length is 

approximately 90µm and the prism diameter is approximately 20µm. 
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4.2.2 Holder preparation 

A holder is made up of three parts. The first part is a mild steel rod of length 7mm and 

diameter 1.55mm. At both ends, the cross-section was filed down to a semi-circle – this 

means the crystal will better stay in position when rotated and is necessary for rotation 

with the SEM mount. 

The second part is copper wire – approximately 3mm in length and of 50µm diameter. 

This was glued onto one of the filed-down flats on the steel rod using conducting epoxy 

glue. The unattached end was made to project out as an extension of the cylinder axis. 

The third part is a glass fibre. This was pulled using a Kopf Instruments Model 720 

needle/pipette puller with the solenoid set to full and a heater value of 10 to produce an 

end that tapers down to a radius of curvature of just a few µm. Once the fibre was 

pulled, a 3mm length of it including the point was placed between two clean glass slides. 

This setup was held in place and the part sticking out was flexed up and down until it 

snapped off – the remainder of the fibre was then discarded. The glass slides ensured 

that the snap occurred at the required position along the fibre. 

To attach the fibre to the rest of the holder, the remainder of the fibre was gently moved 

so that the thicker end slightly overhung the glass slide it was on. The free end of the 

copper wire had epoxy glue applied to it and this was pressed against the thicker end of 

the glass fibre so that the two attached. When the glue set, the copper wire was bent so 

that the fibre point was in line with the steel rod axis. 

Finally, the holder was sputter coated with gold using an Emitech SC7620 sputter coater, 

making all surfaces conductive. This allows easier examination of the fibre with a 

scanning electron microscope (SEM) (Fig. 4-14). The holder is only handled with inverted 

forceps; this means that accidents are less likely which is important because it is very 

fragile. 
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Fig. 4-14: An SEM image of a gold sputter coated glass fibre. 

4.2.3 Analogue mounting 

Crystal mounting was done using micromanipulators and an optical microscope. The 

analogue was first picked up using a tungsten probe, and usually attached to the probe 

by van der Waal’s force; where this alone was not sufficient for the crystal to stick, the 

probe was dipped in a 3.5% solution of glycerol to make the crystal easier to pick up. 

This probe was then placed into a remote hydraulic micromanipulator (a Narishige MHW-

103), but not yet placed in the optical microscope. 

Once this was done, the mount was set up in a different micromanipulator (same make 

and model) and placed in an inverted optical microscope (Olympus CK2). Epoxy glue was 

prepared; glue with a setting time of 30 minutes was used as enough time was needed 

to allow the attaching procedure to be carried out. A separate probe was dipped in the 

glue, and then mounted in the optical microscope. 

The probe with the glue and the probe with the holder were both positioned in the 

optical microscope’s view (Fig. 4-15); the micromanipulator was then operated to dip the 
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point of the fibre into the glue (Fig. 4-16). The glue-bearing probe and its mount were 

then removed and the glue was wiped off the probe. The glue spot can be seen at higher 

magnification in figure 4-17. 

 

Fig. 4-15: Optical microscope image of a glue spot and a fibre at 4X magnification. 
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Fig. 4-16: Optical microscope image of a fibre with its point dipped into a glue spot at 4X magnification. 
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Fig. 4-17: A glue spot on a fibre at 40x magnification. 
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Fig. 4-18: Optical microscope image of a glue-dipped sputtered fibre and a probe-mounted ice analogue crystal 

at 4X magnification. 

Next, the micromanipulator with the probe bearing the crystal was placed in the optical 

microscope. The fibre and the crystal were brought into view (Fig. 4-18), and the 

micromanipulators were used to manoeuvre the fibre so that it touched a small 

proportion of the length of one of the prism facets (Fig. 4-19). The micromanipulators 

were then used to separate the fibre and crystal from the probe the crystal was attached 

to before. 
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Fig. 4-19: Optical microscope image of an ice analogue crystal being attached to a glue-dipped sputter coated 

fibre at 4X magnification. 

The crystal should point along the rod axis. This was often not the case at this stage, 

and the crystal quite often bent at a 90 angle to what was desired. This can be rectified 

using the probe to which the crystal was originally attached to push it back into the 

desired position (Fig. 4-20). In the case that the whole crystal couldn’t be in focus at the 

same time, the probe with the holder was rotated by 90 within its micromanipulator and 

the crystal was again pushed into the desired position. 
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Fig. 4-20: Optical microscope image of an ice analogue crystal attached to a fibre with a probe being used to 

correct the crystal orientation at 4X magnification. 
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4.2.4 Ion beam milling 

An ice analogue (Fig. 4-25) had three facets roughened using a Carl Zeiss Gemini 

1540XB FIB/SEM system. This system uses a focused beam of gallium ions to sputter a 

defined pattern into a surface, and so it can be used to create Gaussian roughness on 

the surface of a mounted ice crystal analogue. 

Six facets would have been better; however this wasn’t possible because the available 

milling time was limited. The work was also difficult to do; the crystal had to be carefully 

aligned by hand for each individual facet and charge build-up meant that the milling had 

to be done slowly. 

This crystal was used for scattering experiments using SID3 – the results can be seen in 

Fig. 5-13 and Fig. 5-15. 

To make this possible, an adaptor was created to allow mounted ice crystal analogues to 

be held in place inside SEM systems (Figs. 4-21 & 4-22). It is an aluminium cylinder with 

a collar and a cut-out at the top, a hole extending horizontally from the cut out part to 

the edge of the cylinder and a threaded hole with a 2mm diameter grub screw which 

enters the remaining part of the cylinder top and reaches down to the first hole. 
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 Fig. 4-21: Left - an SEM adaptor for mounted ice crystal analogues. The rotation disc can also be seen 

attached to a rod. Right – the rotation disc. 

There is also a disc which is used for rotation while the crystal is mounted. This has a 

hole through its centre which has a flat piece of metal fixed inside. This addition means 

that the hole can lock on to the flat on the steel rod part of the ice analogue holders and 

this enables it to be used to rotate the crystal on the SEM mount. 

To use the SEM mount, the free end of the rod part of the ice analogue holder rod was 

pushed into the SEM mount hole, taking care not to touch the fibre. The rod was pushed 

far enough through so that the filed-down part protruded. The grub screw was then 

tightened to lock the holder in place and the rotation disc was attached to the flat part of 

the rod. Using a reflecting optical microscope and the rotation disc, the crystal was 

rotated to have a prism facet facing up. This process can be repeated so that each prism 

facet in turn can be upward facing, loosening and tightening the grub screw each time.  
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Fig. 4-22: Schematics of the holder. (a) is the front view, (b) is the top view, (c) is the side view and gives a 

view of the hole, and (d) is the disc. 

 

Examples of milled ice analogues can be seen in Figs. 4-23, 4-24 and 4-25. The ice 

analogue in Fig. 4-23 is attached to a substrate and was milled prior to the initiation of 

this project as a test of the feasibility of ion beam milling on sodium fluorosilicate, using 

a variable pitch eggbox pattern.  
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Fig. 4-23: Left: An eggbox geometry test pattern. Right: An ice analogue crystal, affixed to a substrate, with 

the same eggbox pattern sputtered into it. Images courtesy of Joseph Ulanowski. 

The ice analogue in Fig. 4-24 has a Gaussian rough pattern milled into it. It is a test 

crystal, glued to a substrate and so cannot be used in scattering experiments. Fig. 4-25 

shows a fibre mounted ice analogue with a pattern sputtered into it on three facets. 

 

Fig. 4-24: An ice analogue crystal, affixed to a substrate, with a Gaussian rough surface sputtered into it. 
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Fig. 4-25: A fibre mounted ice analogue crystal with a pattern sputtered into three adjacent prism facets. 
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5. Light scattering by Gaussian random crystals 

5.1 Computations performed using the discrete dipole approximation 

Computations were carried out using the ADDA [26] implementation of the discrete 

dipole approximation light scattering model to find the light intensity as a function of 

azimuthal angle and scattering angle for smooth, moderately rough and highly rough 

hexagonal columns at a wavelength of 532nm. Four different beam orientations were 

considered (Fig. 5-1) for a fixed crystal orientation (Fig. 5-2). 

Using this model, the incident beam originally propagates along the x-axis; Fig. 5-2 

shows the rotations performed to achieve these beam orientations; all make an angle of 

30° with the x axis in the x-y plane, and make an initial rotation of 0°, 10°, 20° or 30° 

with the y axis in the y-z plane projection. Four crystal size parameters were considered; 

20, 40, 60 and 100, with roughness being scaled proportionately with size. 
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Fig. 5-1: The crystal orientations used in this work as seen by the incident beam, shown for a two-scale rough 

crystal. All beam rotations are at 30° in the x-y plane; (a) has no other rotation, (b) is rotated 10° in the y-z 

plane, (c) is rotated 20° in the y-z plane and (d) is rotated 30° in the y-z plane. The coordinate system used 

can be seen in Fig. 5-2. 
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Fig. 5-2: The top image shows the coordinate system in which the beam sits. Below left is the rotation around 

the z-axis, and below right is the rotation around the x-axis. 
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Fig. 5-3: Phase functions of smooth (blue lines), one-scale rough (red lines) and two-scale rough (green lines) 

crystals. Different columns in the diagram represent different beam orientations - from left to right, the angle 

in the y-z plane increases from 0° to 30° in steps of 10°. Different rows represent different size parameters - 

from top to bottom, the size parameter is 20, 40, 60 and 100. 

Fig. 5-3 shows the phase functions from DDA calculations.  

At a size parameter of 20, roughness makes little difference to the result with respect to 

the pristine crystal’s scattering pattern – this can also be seen from the 2D scattering 

patterns in Fig. 5-5 and Fig. 5-6, which show little difference to the smooth case other 

than features being slightly smudged out. This is due to the fact that its surface 

roughness is small compared to the wavelength, and so light scattering is not sensitive 

to it. Most of the difference that can be seen is in the backward direction (i.e., a 

scattering angle >90°), which is due to the fact that forward scattering is dominated by 

external diffraction, which has a low sensitivity to surface roughness because it only 
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depends on the crystal’s 3-dimensional contour. Roughness also increases side 

scattering (i.e., at a scattering angle of ~90°). 

At a size parameter of 40, some roughness effects can be seen in the forward direction – 

features present in the smooth case are still present in the rough cases, but less 

pronounced. This is most noticeable in the 20°-40° range, where the depth of the 

troughs is noticeably reduced. Below 20°, no difference can be seen – external 

diffraction is still dominant here. This agrees with the 2D scattering pattern in Fig. 5-5, 

which shows little difference for one-scale roughness and slightly more for two-scale 

roughness compared to the smooth pattern. However, a large effect can be seen in the 

backward direction – features present for the smooth case are much reduced in the 

rough cases, particularly for the two-scale rough crystal; those peaks that remain seem 

to be shifted towards lower scattering angles. This is evident in the 2D scattering 

patterns in Fig. 5-6, which show that one-scale roughness distorts the features that 

appear for the smooth crystal and that two-scale roughness largely turns these features 

into speckle. 

At a size parameter of 60, roughness affects forward scattering with respect to its 

smooth counterpart more than for smaller size parameters. The depth of the troughs 

(with respect to the smooth crystal’s scattering pattern) in the range of 20°-40° is much 

reduced, as is the height of the peaks in the range of 40°-60°. The 2D scattering 

patterns in Fig. 5-5 also show this; it is particularly evident for two-scale roughness. 

Little remains of the features in the backward scatter direction; the peak at 120° has 

mostly disappeared, particularly for the two-scale rough crystal – which has no features 

left apart from a slight peak beyond 160°. Fig. 5-6 confirms that the features have 

disappeared, with only speckle remaining. 

At a size parameter of 100, most of the features from the smooth pattern in the forward 

direction beyond 10° are greatly reduced - particularly for the two-scale rough crystal, 

for which the features in the 20°-60° range have disappeared. This agrees with what can 
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be seen in Fig. 5-5. In the backward direction, no features remain for either one or two-

scale roughness. Fig. 5-6 shows that only speckle remains. 

For the pristine crystal at this size parameter the size parameter is closest to geometric 

optics ray tracing, and several peaks can be identified for each orientation. The primary 

contribution for each is identified below; it is important to note that more complex ray 

interactions can produce the same exit angle (e.g. external reflection and refraction-

internal reflection-refraction interactions). 

For the orientation at 0° in the x-y plane, peaks can be seen for the smooth crystal at 

51° (caused by reflection off the prism facets), 80° (due to light passing through the two 

prism facets and passing through the two opposite them), 120° (due to light reflecting 

off the basal facet) and 152° (due to light passing through the basal facet facing the 

beam, internally reflecting off the other basal facet and exiting back through the first 

basal facet). 

For the orientation at 10° in the x-y plane, peaks can be seen for the smooth crystal at 

10° (due to reflection off the prism facet that is slightly revealed by the rotation), 48° 

(due to reflection off the prism facet that is slightly rotated away), 55° (due to reflection 

off the remaining upward facing prism facet), 120° (due to reflection off the basal facet) 

and 160° (due to light passing through the basal facet facing the beam, internally 

reflecting off the other basal facet and exiting back through the first basal facet). 

For the orientation at 20° in the x-y plane, peaks can be seen for the smooth crystal at 

20° (due to reflection off the prism facet that is being revealed by the rotation), 38° 

(due to reflection off the prism facet that is being rotated away from the beam), 58° 

(due to reflection off the remaining upward facing prism facet), 120° (due to reflection 

off the basal facet) and 170° (due to light passing through the basal facet facing the 

beam, internally reflecting off the other basal facet and exiting back through the first 

basal facet). 
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For the orientation at 30° in the x-y plane, peaks can be seen for the smooth crystal at 

28° (due to reflection off the two prism facets that now face the beam to the same 

extent), 60° (due to reflection off the remaining upward facing prism facet), 120° (due 

to reflection off the basal facet) and 180° (due to light passing through the basal facet 

facing the beam, internally reflecting off the other basal facet and exiting back through 

the first basal facet). 
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Fig. 5-4: Tables of asymmetry parameters calculated for the crystals for which light scattering was modelled. 

 



59 
 

In general, it can be seen that roughness causes peaks and troughs that appear for 

smooth particles in the phase function of large crystals to be smoothed out, particularly 

two-scale roughness. As crystal size reduces, this roughness effect is lessened. 

Fig. 5-4 shows the asymmetry parameters derived from DDA calculations. At size 

parameters of 20 and 40, the asymmetry parameter reduces slightly for one-scale 

roughness and increases for two-scale roughness with respect to that for the smooth 

crystal case. The decrease for one-scale roughness would suggest a slight increase in 

reflectance. The increase in asymmetry parameter for the two-scale case suggests that 

the cloud becomes less reflective, allowing more energy to reach the ground. 

 At a size parameter of 60, one-scale roughness increases the asymmetry parameter – 

implying a decrease in cloud reflectance; whereas two-scale roughness reduces it as 

compared with the smooth crystal – implying an increase in cloud reflectance.  

At a size parameter of 100, the asymmetry parameter slightly reduces for one-scale 

roughness and drops markedly for two-scale roughness. This means that in both cases, 

but particularly in the two-scale rough case, the reflectance of the cloud increases - 

causing less radiation to be scattered towards the ground. 

Experimental results on rough ice analogues show that the asymmetry parameter would 

be expected to reduce for observed rough crystals compared to smooth ones [22], so 

this suggests that two-scale roughness is a better model for real ice crystal roughness. 
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Fig. 5-5: Forward light scattering images for the crystals at one orientation. The orientation considered is 

where the beam orientation is rotated 30° in the x-y plane and 30° in the y-z plane. Different rows represent 

different crystal size parameters; from top to bottom, the rows represent the 20, 40, 60 and 100 size 

parameters. Different columns represent different roughnesses; from left to right the rows represent the 

smooth, one-scale rough and two-scale rough cases. The scale for the scattering pattern can be seen on the 

left; blue represents azimuthal angles and red represents scattering angles. Since brightness increases with 

crystal size parameter, grey-scale ranges were varied to best show the features at each size parameter. 
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Fig. 5-5 shows the forward scattering patterns produced by DDA calculations. As the size 

parameter increases, the features in the scattering pattern all become more 

concentrated for the smooth crystal. This is due to the fact that the prism facets act as 

diffracting apertures; as aperture size increases, diffraction features get smaller. 

At a size parameter of 20, very little difference can be seen between either of the 

roughness scale crystals and the smooth crystal. This is due to the roughness mostly 

being smaller than the wavelength, and can be seen in the phase function in Fig. 5-3. 

At a size parameter of 40, a little difference can be seen for the one-scale rough case for 

the feature with an azimuth of 120° and a scattering angle of 45°, with respect to the 

smooth crystal. For the two-scale rough case, changes are apparent at large scattering 

angles - at an azimuth of 300° the features spread out, whereas at an azimuth of 120° 

the features have almost disappeared. Also, the two-scale rough pattern shows more 

deviation from the smooth pattern at low scattering angles than for the one-scale rough 

crystal at the same azimuth. 

At a size parameter of 60, the one-scale rough pattern shows slight differences to the 

smooth pattern at low scattering angles, particularly the feature at an azimuth of 120° 

and a scattering angle of 45°. Intensity is reduced for larger scattering angles. The two-

scale rough pattern shows more deviation, particularly at larger scattering angles where 

the features almost disappear. 

At a size parameter of 100, the one-scale rough pattern clearly shows a speckle pattern 

– this is a result of the pristine crystal’s diffraction features being broken up by 

interference modified by the rough surface. At larger scattering angles, brightness is 

much reduced for all features. For the two-scale rough pattern, all features beyond very 

small scattering angles have disappeared; only the feature at the centre, caused by 

external diffraction, remains. 

Overall, it can be seen that roughness spreads out the intensity of features in the 

forward scattering pattern compared to smoothness, apart from the direct forward 
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scattering peak. Two-scale roughness has a larger effect than one-scale roughness, and 

the effect is increased as crystal size parameter increases. 
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Fig. 5-6: Backward light scattering images for the crystals at one orientation. The orientation considered is 

where the beam orientation is rotated 30° in the x-y plane and 30° in the y-z plane. Different rows represent 

different crystal size parameters; from top to bottom, the rows represent the 20, 40, 60 and 100 size 

parameters. Different columns represent different roughnesses; from left to right the rows represent the 

smooth, one-scale rough and two-scale rough cases. The scale for the scattering pattern can be seen on the 

left; blue represents azimuthal angles and red represents scattering angles. Since brightness increases with 

crystal size parameter, grey-scale ranges were varied to best show the features at each size parameter. 



64 
 

Fig. 5-6 shows the backward scattering patterns produced by DDA calculations. As size 

parameter increases, features become more concentrated for the smooth crystal, as 

discussed for the forward scattering hemisphere. 

At a size parameter of 20, only slight smudging out of the features from the smooth case 

can be seen in the one-scale rough scattering pattern. This is slightly more pronounced 

for the two-scale rough crystal. 

At a size parameter of 40, one-scale roughness causes the sideward scattering features 

to be smeared out and features near the centre to almost disappear. For two-scale 

roughness, there is no single backscattering peak but features near the centre are 

broken up into speckle. Near the edges, features are smeared out. 

At a size parameter of 60, one-scale roughness causes features near the centre to 

disappear; features near the edges are smeared out a lot. Two-scale roughness results 

in some speckle near the centre and causes all the features near the edges to be turned 

into speckle. 

At a size parameter of 100, in both roughness cases none of the features from the 

smooth crystal pattern remain; only speckle can be seen. 

In general, roughness smudges out, blurs and removes features that are prominent in 

the backward scattering pattern of the pristine crystal. Two-scale roughness shows more 

of an effect than one-scale roughness, and the effect increases as the crystal size 

parameter is increased. 
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Fig. 5-7: Graphs showing the difference between average degree of linear polarization for a smooth crystal and 

its rough counterparts of the same size and at the same orientation. One-scale rough (blue) and two-scale 

rough (green) crystal results, both with the smooth results subtracted, are shown. The orientation considered 

is where the crystal is rotated 30° in the x-y plane and 30° in the x-z plane. (a) has a size parameter of 20, 

(b) has a size parameter of 40, (c) has a size parameter of 60 and (d) has a size parameter of 100. 

Fig. 5-7 shows azimuthally-integrated graphs of the value of degree of linear polarization 

(DLP). This is defined as -p12/p11. For the largest size parameter, comparison between 

DLP and the corresponding phase function graph from Fig. 5-3 shows that the largest 

changes in DLP introduced by roughness are in similar angular positions to the peaks in 

the phase function for the smooth crystal that get removed by roughness- for example, 

this can be consistently seen for the scattering angle range 160°-180°. 

For the size parameter of 20, it can be seen that DLP increases for both roughness scales 

around 90°, which in both cases corresponds with an increase in intensity (see Fig. 5-3). 
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One-scale roughness reduces the DLP value in the range 140-180°. Two-scale roughness 

causes a reduction between 120° and 160°, and an increase between 160° and 180°. 

For the size parameter of 40, it can be seen that one-scale roughness causes a large 

decrease between 155° and 175° and a slight increase around 60°. Two-scale roughness 

again causes a slight increase around 60. It also causes a noticeable increase in the DLP 

value at 135°, a large drop between 155° and 165° and a large increase between 165° 

and 175°. 

For the size parameter of 60, it can be seen that one-scale roughness causes a drop in 

DLP at 40°, an increase in the range 60°-90°, drops at 100° and 170°, and an increase 

around 140°. Two-scale roughness causes an increase at 40°, an increase in the range 

60°-90°, an increase around 140°, a decrease around 160° and a large increase at 175°. 

For the size parameter of 100, it can be seen that one-scale roughness causes a slight 

increase at 40°, a decrease around 100° a slight increase in the range 120°-150° and a 

large drop in the range 165°-180°. Two-scale roughness causes a higher increase at 

40°, a slight decrease around 100°, an increase in the range 120°-160° and a large 

decrease between 170° and 180°. 

Overall, it appears that changes in the degree of linear polarization can be observed for 

all size parameters and for both roughness types as compared to pristine crystals. The 

effect is stronger for two-scale roughness than for one-scale roughness, particularly for 

backward scattering and smaller size parameters. 
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Fig. 5-8: Forward degree of linear polarization images for the crystals at one orientation. The orientation 

considered is where the beam is rotated 30° in the x-y plane and 30° in the y-z plane. Different rows 

represent different crystal size parameters; from top to bottom, the rows represent the 20, 40, 60 and 100 

size parameters. Different columns represent different roughnesses; from left to right the rows represent the 

smooth, one-scale rough and two-scale rough cases. The scale for the scattering pattern can be seen on the 

left; blue represents azimuthal angles and red represents scattering angles. Since brightness increases with 

crystal size parameter, grey-scale ranges were varied to best show the features at each size parameter. 
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Fig. 5-8 shows the degree of linear polarization patterns for the forward scattering 

hemisphere, derived from DDA calculations. It can be seen that light with a scattering 

angle of below approximately 20° has little polarization; this is due to it being dominated 

by external diffraction. The effects of the external diffraction can also be seen at and 

near the centre of the images in Fig. 5-5 and at scattering angles below 20° in Fig. 5-3. 

Features in the 2D forward scattering intensity patterns cannot be readily identified in 

these patterns, however it can be seen that the patterns are all oriented towards the 

same azimuth of 125°. 

Patterns of high and low polarisation can be seen for scattering by smooth crystals that 

vary based on both azimuthal angle (especially for smaller size parameters) and 

scattering angle. The azimuthal variation is noticeably distorted by the introduction of 

roughness (particularly two-scale roughness) for all size parameters considered; this 

effect increases as size parameter increases. The scattering angle variation only 

becomes noticeably distorted at size parameter 100 – this is more noticeable for two-

scale roughness. 

At a size parameter of 20, roughness slightly smears out the azimuthal pattern in the 

smooth case, particularly at scattering angles between 20° and 90°. It also slightly 

increases polarization in regions that are unpolarized for the smooth crystal. These 

effects are more prominent for two-scale roughness than for one-scale roughness. 

At a size parameter of 40, one-scale roughness causes much distortion in the azimuthal 

pattern as compared to smoothness; this is apparent for the whole scattering angle 

range considered (0°-90°), and is even more pronounced for two-scale roughness. Both 

increase polarization in regions that are unpolarized for the smooth crystal. 

At a size parameter of 60, one-scale roughness causes great distortion to the azimuthal 

pattern. This is even more pronounced for the two-scale rough crystal pattern. 

At a size parameter of 100, one-scale roughness causes a huge distortion in the 

azimuthal pattern and some loss of the scattering angle pattern at scattering angles up 
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to 45°. For two-scale roughness, the azimuthal pattern can no longer be seen and the 

scattering angle pattern completely disappears. 

In general, roughness removes azimuthal dependence and, for larger crystals, scattering 

angle dependence from the degree of linear polarization pattern for forward scattering 

and redistributes polarisation. Two-scale roughness has more of an effect than one-scale 

roughness, as compared to smoothness. The effect of roughness increases as size 

parameter increases. 
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Fig. 5-9: Backward degree of linear polarization images for the crystals at one orientation. The orientation 

considered is where the beam is rotated 30° in the x-y plane and 30° in the y-z plane. Different rows 

represent different crystal size parameters; from top to bottom, the rows represent the 20, 40, 60 and 100 

size parameters. Different columns represent different roughnesses; from left to right the rows represent the 

smooth, one-scale rough and two-scale rough cases. The scale for the scattering pattern can be seen on the 

left; blue represents azimuthal angles and red represents scattering angles. Since brightness increases with 

crystal size parameter, grey-scale ranges were varied to best show the features at each size parameter. 
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Fig. 5-9 shows the degree of linear polarization patterns for the backscattering 

hemisphere, derived from DDA calculations. As with DLP for forward scattering, high and 

low polarisation can be seen to alternate with both scattering angle and azimuthal angle 

for smooth crystals. 

At a size parameter of 20, one-scale roughness distorts the azimuthal variation, as 

compared to the smooth crystal. This effect is increased for two-scale roughness, which 

also shows some distortion in the scattering angle polarization variation at scattering 

angles greater than 160°. 

At a size parameter of 40, one-scale roughness greatly distorts the azimuthal pattern 

with respect to the pattern for the smooth crystal and causes some distortion in the 

scattering angle polarization pattern at angles above 150°. Two-scale roughness causes 

the azimuthal pattern to become even more distorted and distorts the scattering angle 

polarization pattern at angles greater than 135°. 

At a size parameter of 60, one-scale roughness distorts most of the azimuthal pattern to 

the extent that it is unrecognizable and disrupts the scattering angle pattern at angles 

above 135°. Two-scale roughness completely distorts the azimuthal pattern and warps 

the scattering angle pattern for angles greater than 120°. 

At a size parameter of 100, neither roughness scale shows any pattern in the backward 

azimuthal range any longer. One scale roughness shows no pattern in scattering angle 

DLP above 100°; two-scale roughness shows no pattern in scattering angle DLP at all for 

backward scattering. 

In general, roughness removes structure in the degree of linear polarization pattern for 

backward scattered light and redistributes polarisation. This is more pronounced for 

larger crystals and for two-scale roughness. Roughness has a greater distorting effect on 

DLP for backward scattering than forward scattering; this is also true for the phase 

function (Fig. 5-3). 
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5.2 Light scattering experiments on smooth and rough ice analogues 

 

Light scattering experiments were carried out on smooth and rough hexagonal ice 

analogue crystals using the SID3 probe. Data from these experiments was compared 

with DDA (for small columns of length 20 µm and hexagon radius 10 µm) and RTDF (for 

large columns of length 100µm and hexagon radius 10 µm as well as small columns) 

modelling results, all at a wavelength of 532nm, to look for similarities and differences 

between these two approaches. This is necessary because DDA is the more accurate of 

the two methods, but DDA-produced data is not available for the large column due to 

computational restrictions. The DDA data will be used to check the accuracy of RTDF 

data for a pristine crystal of the same size parameter. This will be used to inform a 

comparison of ice analogue crystal used in the SID3 experiments with RTDF data for a 

pristine crystal of the same size parameter. 

Two different crystal orientations were considered; one with a crystal prism facet 

perpendicular to the beam, and one with the edge between two crystal prism facets 

perpendicular to the beam (Fig. 5-10). 

Phase functions were not calculated; rather, the maximum brightness within an 

azimuthal angular range (Fig. 5-11) was considered. This is because SID3 has a limited 

scattering angle range, meaning the phase function cannot be found as it would need to 

be normalized for all possible scattering angles. Modelling results are also examined 

using this method to enable comparison with SID3. 
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Fig. 5-10: The orientations considered. Blue shows the beam direction relative to the crystal for edge-on 

results; red shows the beam direction relative to the crystal for facet-on results. 
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Fig. 5-11: Image showing the azimuthal angular ranges for an example SID3 scattering pattern. Azimuthal 

angles are shown in red. Two azimuthal ranges can be seen marked in yellow, both centred on the opposite 

“arms” of the scattering pattern. The scattering angle is shown in green. 
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Fig. 5-12: Graphs of relative (normalised) intensity as a function of scattering angle computed using DDA for 

two-scale rough (right column) and smooth (left column) crystals at a facet-on orientation (top row) and an 

edge-on orientation (bottom row). In all cases, the crystal is of length 20μm and hexagon radius 10μm. These 

graphs are not phase functions – they instead show the maximum intensity within a defined azimuthal range 

for each scattering angle; the two azimuthal angles considered are represented separately on the graph by 

different colours. 

It can be seen from Fig. 5-12 that roughness reduces the intensity of the 22° halo for 

both edge-up and facet-up orientations and that the intensity is higher for the edge-up 

orientation than the facet-up orientation.. For the facet-up orientation, the diffraction 

peaks move and no longer appear at the same scattering angles for the two opposite 

azimuths  (represented by different colours - see (Fig. 5-11) for an explanation of 

opposite azimuths), and the intensity of them increases. For the edge-up orientation, the 

diffraction pattern only slightly changes; the intensity is very similar and the scattering 

angles at which the peaks appear are unchanged. 
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Comparing the graphs for the smooth crystals with the top row of Fig. 5-13 shows how 

RTDF and DDA differ; RTDF appears to overestimate the intensity of diffraction peaks, 

particularly below 10°. For upward facing facets, it estimates the halo peak to be 

broader than it really is, but it does a good job of replicating the positions of diffraction 

peaks and the halo peak. 

Bearing these comments in mind, comparisons can be drawn between RTDF results for a 

smooth crystal of length 100μm and hexagon radius of 10μm, and SID3 scattering 

results for a smooth ice analogue of the same size. Also, the way in which roughness 

changes the experimental results for ice analogues will be compared with the way 

roughness changes the DDA results. 
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Fig. 5-13: Graphs of relative (normalised) intensity as a function of scattering angle computed using RTDF for 

crystals at a facet-on orientation (left column) and an edge-on orientation (right column). The top row show 

results for a crystal of length 20μm and hexagon radius 10μm; the bottom row shows results for a crystal of 

length 100μm and hexagon radius 10μm. In all cases, simulations were performed using 200000 rays. The 

green and blue lines represent opposite azimuthal “arms” (see Fig. 11). The smaller crystal is normalised 

relative to the DDA results, whereas the larger crystal is normalised relative to the SID3 results (see Fig. 5-14 

for these) – relative to the smaller crystal, the larger crystal is much brighter. 
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Fig. 5-14: Graphs showing relative (normalised) intensity as a function of scattering angle for ice crystal 

analogues of length 100μm and hexagon radius 10μm, captured using SID3. Smooth crystals are in the left 

column and rough ones in the right column; the top row shows crystals with a prism facet facing up and the 

bottom row shows crystals with the edge facing up. Blue and red represent the two opposite azimuths. 

Comparing the bottom row of Fig. 5-13 with the left column of Fig. 5-14, it can be seen 

that a good agreement is achieved between them regarding the position of the halo 

peak, however this peak extends into a higher scattering angle for one of the azimuths 

of the experimental result. This is likely due to a crystal alignment problem. The other 

azimuth shows, as expected from the earlier comparison, that the halo peak is less 

broad than RTDF would suggest. Diffraction peaks are less apparent for the experimental 

results than the modelling results, but the peaks at 5° and 10° for facet-up scattering, 

as well as the halo peak can be discerned. The reduction in the brightness of the 

diffraction peaks shown by the previous comparison between RTDF and DDA enables the 

diffraction peaks to be better matched with the experimental results, particularly in the 

case of the edge facing the beam. 
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It can be seen from Fig. 5-14 that, for the facet-up case, roughness reduces the overall 

intensity as compared to the smooth crystal graph; it can also be seen that the positions 

of the diffraction peaks are different for the two different azimuths. This agrees with 

what would be expected, based on Fig. 5-12. 

For the edge-up case, overall intensity is again reduced and the diffraction peaks shift; 

as would be expected when comparing with Fig. 5-12. It can be seen that there is a big 

difference between the results for the two different azimuths; this is likely due to the 

difference in the quality of the roughening between the two facets that collect the 

incident beam (Fig. 4-25). 
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Fig. 5-15: 2D scattering patterns from an ice analogue crystal of length 100μm and hexagon radius 10μm, 

captured using SID3. Smooth crystals are in the left column and rough ones in the right column; the top row 

shows crystals with the facet facing up and the bottom row shows crystals with the edge facing up. Scattering 

angle varies linearly between 0° and 25°, and is represented by the radial distance from the centre of the 

scattering pattern. Azimuthal angle varies as shown in Fig. 5-11. The scale for these patterns can be seen in 

Fig. 5-11. 

 

Fig. 5-15 shows 2D scattering patterns for rough and smooth ice analogues, derived 

from experimental results. This confirms the overall drop in intensity in the investigated 

angular region, in both the facet-up and edge-up cases. The difference between the two 

azimuths in the rough edge-up result is clear to see, especially when compared with the 

smooth result. 
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6. Conclusions 

Phase function, asymmetry parameter and degree of linear polarisation results were 

computed for smooth, one-scale Gaussian rough and two-scale Gaussian rough crystals 

of various orientations and size parameters of 20, 40, 60 and 100. This was done using 

the DDA method; the computations were done at the University of Helsinki by Antti 

Penttilä. 

Phase functions show that the effects of roughness increase with particle size in the 

investigated range; little change is seen (compared to the smooth crystal case) for rough 

crystals at a size parameter of 20; however at a size parameter of 100, most of the 

peaks and troughs (apart from the peak at 0°) have disappeared. These effects are more 

potent, and appear at lower size parameters, for crystals with two-scale roughness. 

Asymmetry parameters are changed inconsistently by roughness compared to those for 

smooth crystals at low size parameters, but the asymmetry parameter is consistently 

lower at higher size parameters for two-scale roughness than for the smooth crystal. The 

latter agrees with previous results [22] and suggests that two-sale roughness is the 

better model for real roughness. 

2D scattering patterns show that roughness causes characteristic features related to 

smooth crystals to blur and disappear at large enough size parameters for both forward 

and backward scattering. The effect becomes stronger as the crystal size parameter 

increases, and is more apparent for two-scale roughness than for one-scale roughness. 

With two-scale roughness at a size parameter of 100 considered, only the external 

diffraction peak with some speckle remains for forward scattering; for backward 

scattering, only speckle remains. 

Degree of linear polarisation 2D patterns show that, compared to results for smooth 

crystals, roughness disrupts patterns in scattering angle and azimuth and makes light 

more polarised (although the opposite also occurs in some angular regions) for forward 

and backward scattered light. Backward scattering is affected more than forward 
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scattering; the same effect is seen for intensity. These effects become more pronounced 

for larger crystals and for two-scale roughness. 

The surface of an ice analogue was roughened using focused ion beam milling (FIB). This 

was not an ideal reproduction of a rough ice analogue; only three of the facets were 

roughened, the roughness had deviations from the Gaussian random pattern, two of the 

facets had only a small proportion of their surfaces roughened and the depth of the 

roughness had to be compromised on. This is largely a result of the ice analogue crystal 

needing to be fibre-mounted in order to enable light scattering measurements; ion beam 

irradiation-induced charging on the crystal was a particular problem, and overall this was 

pushing right at the limit of what FIB could achieve. The amount of milling that could be 

done was also limited by the availability of the FIB/SEM machine and operator. 

Nevertheless, an interesting result was found from SID measurements for the crystal 

orientation which had the edge between two prism facets pointing up – one of these 

prism facets was relatively well-roughened, and so greatly reduced the intensity of the 

halo peak at the azimuth it contributed to, as well as removing most of the higher order 

external diffraction peaks, whereas the other facet doesn’t show this. 

Overall, it can be concluded that Gaussian roughness with the investigated parameters 

removes features from the phase function as compared with smooth hexagonal prisms 

and reduces the asymmetry parameter, as long as the roughness features are 

horizontally at least as large as the wavelength – this appears to begin happening 

noticeably at a size parameter of 40. Larger roughness features cause more deviation in 

light scattering from scattering observed for smooth crystals, but the most effective 

roughness model investigated here takes account of both these large features and 

features whose size is closer to that of the wavelength. 

Several possibilities exist for future research based on the work presented in this thesis. 

The modelling work could be extended by performing simulations at more orientations 

and by looking at how DLP and phase function change when only the standard deviation 
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and only the correlation length of a crystal is varied. Creation of a bounding box method 

for RTDF would enable simulations for larger size parameters.  The crystal creation 

routines could be modified to enable the creation of extra crystal geometries such as 

rosettes and aggregates. The roughness parameters could be made more realistic by 

looking at the roughness of ice grown inside an SEM using a method such as 

photogrammetry to get the three dimensional data. Rough ice analogue manufacturing 

would be improved by making the attachment between the mount and the crystal. One 

method for achieving this could be to replace the glass fibre with a very thin metal wire 

coated in another metal which has a low melting point (lower than that of the crystal) – 

the crystal would be fixed in place by heating up the area and then allowing it to cool. 
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9. Appendix 

9.0 Introduction to the appendix 

 

Below is the code used to generate a Gaussian random crystal. The process first requires that an 

input file be created, describing the hexagon radius, number of facets along the hexagon radius, 

prism facet length, number of facets along the prism facet length, correlation length, standard 

deviation and an offset value, which tells the code how many facets to offset by and is intended to 

avoid problems caused by calculating z(x,y) at and near x=0 & y=0. The name used for this file is 

vals.in, and it looks like this: 

 

5. !length of each hexagon side 
7 !number of polygons along each hexagon edge - should be large enough to correctly plot the 
correllation length 
10. !length of prism surfaces 
14 !number of polygons along prism facet length edge - should be large enough to correctly 
plot the correllation length 
1.0 !correllation length 
0.3 !standard deviation 
100 !number of facets to offset by - to deal with corner effects for each surface 
! 
!all length values in μm 

Once this has been created, the required output filename should be set inside the code grfstrip.f90; 

it should then be compiled and run. This generates the roughened strip described in section 4.1.2. 

If more roughness scales are required the file vals.in should be edited to change the correlation 

length and standard deviation. The other values should be left alone – the number of facets along 

the edges should be large enough to accommodate the smaller of the correlation lengths. The 

output filename in grfstrip.f90  must be changed; the code should then be re-compiled and run 

again. Once this is complete, the source code of comp.f90 should be edited to point to the correct 

strip filenames and to produce the required output filename. It should then be compiled and run, 

producing a strip file in which each z(x,y) is the sum of the same z(x,y) from the input files. 

 

Whether or not a multiple roughness scale is required, the subsequent procedure is the same. The 

code crystal.f90 should be edited to point to the output of grfstrip.f90 (in the case of a single 

roughness scale) or of comp.f90 (in the case of multiple roughness scales). The output filename must 

also be set. This is then compiled and run. The output file will describe a crystal which does not yet 

have its edges joined together. It will also output a file, mlvals.in, which is the same as vals.in except 

that the Fortran 90 comments are removed, to make the values readable for Matlab. 
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Finally, the Matlab file join.m should be edited so that the input filename is the same as the output 

filename of crystal.f90; the output filename should also be set – this will be the final crystal. 

If the crystal produced has a small number of facets (<5000), the Matlab file srfh.m can be used to 

display it – each facet is represented by a wire frame, as in figures 4-2 to 4-6. To do this, the filename 

of the crystal should be set in the code and it should then be run. 

 

All code used to create and display the crystal is reproduced below.  Section 9.1 contains the code 

for grfstrip.f90, section 9.2 contains the code for comp.f90, section 9.3 contains the code for 

crystal.f90, section 9.4 contains the code for join.m and its associated functions, and section 9.5 

contains the code for srfh.m. 
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9.1 grfstrip.f90 
 
!Generate a Gaussian random rectangle 
!Copyright Chris Collier 
!Adapted from Appendix A of JQSRT 64 (2000) 201-218, Muinonen & Saarinen 
 
PROGRAM GRFStrip 
IMPLICIT NONE 
 
COMPLEX(8) :: i, zxy, ipKxqKy 
REAL(8) :: pi, targetdiff, clen, hlength, pflength, stdev 
INTEGER :: nfhl, nfsl, npfw, noffset, nfsw, nl, nw, nfacets, eval, nptsrow, ntp, ntf, szfc 
INTEGER, DIMENSION(:,:), ALLOCATABLE :: e1, e2, e3, e4 
REAL(8) :: L, K, swidth, lstep, wstep, loffset, woffset, a, xval, ystart 
INTEGER :: j1, j2, j3, j4, itlim, dp0, dq0, p, q, pqval, n, nzxy, n2, szedges 
REAL(8) :: p1, p1sq, p2, cc, ccp1, ccp2, diff, diffold, zpqr, zpqi, sdzr, sdzi, zx, zy, Kx, Ky, rn, pKx, psq 
COMPLEX, ALLOCATABLE, DIMENSION(:,:) :: zpq 
INTEGER :: m, m2, m3, nr 
REAL(8), DIMENSION(:,:), ALLOCATABLE :: facetcoords 
INTEGER, DIMENSION(:), ALLOCATABLE :: lwedge, rwedge, ledges, tpts 
REAL :: rnd1, rnd2 
 
!set constants 
pi=4.*ATAN(1.)   !pi 
i=CMPLX(0.,1.)   !set i 
targetdiff=10.**(-6.0) !required difference between correlation function and its expansion 
CALL set_rseed()  !seed the random number generator 
 
!read in input values 
OPEN(UNIT=3, FILE='vals.in', STATUS='OLD') 
READ(UNIT=3, FMT=*) hlength  !hexagon radius 
READ(UNIT=3, FMT=*) nfhl  !number of subfacets along hexagon radius 
READ(UNIT=3, FMT=*) pflength !prism facet length 
READ(UNIT=3, FMT=*) nfsl  !number of subfacets along prism facet length 
READ(UNIT=3, FMT=*) clen  !correlation length 
READ(UNIT=3, FMT=*) stdev  !standard deviation 
READ(UNIT=3, FMT=*) noffset   !number of subfacets to offset by - to deal with edge effects 
CLOSE(3) 
 
!set various things 
nfsw=6*nfhl    !number of subfacets along 6 hexagon radii 
nl=nfsl+1    !number of vertices along prism facet length 
nw=nfsw+1    !number of vertices along 6 hexagon radii 
npfw=nfhl+1    !number of vertices along hexagon radius 
nfacets=nfsl*nfsw  !number of subfacets in 6 pr 
L=2.*hlength   !L from Muinonen & Saarinen 
K=pi/L     !K from Muinonen & Saarinen 
swidth=6.*hlength  !"width" of the strip - 6*hexagon radius 
ntp=6*(npfw**2-npfw) !number of vertices in the triangles 
szfc=nl*nw+ntp   !size of the coordinates array 
ALLOCATE(facetcoords(szfc,3)) 
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lstep=pflength/REAL(nfsl)  !distance between adjacent vertices in x 
wstep=swidth/REAL(nfsw)   !distance between adjacent vertices in y 
loffset=REAL(noffset+1)*lstep !distance from 0 to use as minimum x 
woffset=REAL(noffset+1)*wstep !distance from 0 to use as minimum y 
 
OPEN(UNIT=1, FILE='strip.crystal', STATUS='REPLACE') 
!OPEN(UNIT=2, FILE='points.dat', STATUS='REPLACE') 
 
!generate the initial rectangle 
ALLOCATE(lwedge(nw), rwedge(nw), ledges(7*nl)) 
n=0 
n2=0 
DO j1=1+noffset,nw+noffset !offsets included to avoid boundary effects 
 DO j2=1+noffset,nl+noffset 
  n=n+1 
  facetcoords(n,1)=REAL(j2)*lstep 
  facetcoords(n,2)=REAL(j1)*wstep 
  facetcoords(n,3)=0.  !set z values as 0 to begin with 
  !remember which values describe the left & right of the strip 
  IF (j2 .EQ. 1+noffset) THEN 
   lwedge(j1-noffset)=n 
  ELSE IF (j2 .EQ. nl+noffset) THEN 
   rwedge(j1-noffset)=n 
  END IF 
  !remember top & bottom of prism facets 
  IF (MOD(j1-noffset-1,nfhl) .EQ. 0) THEN 
   n2=n2+1 
   ledges(n2)=n 
  END IF 
 END DO 
END DO 
 
!determine edges of each prism facet 
eval=1+nfsw/6 
ntf=12*(eval-1)**2 
ALLOCATE(e1(6,eval), e2(6,eval))!, e3(6,nl), e4(6,nl)) 
DO j1=1,6 
 e1(j1,:)=lwedge(2-j1+eval*(j1-1):j1*eval) 
 e2(j1,:)=rwedge(2-j1+eval*(j1-1):j1*eval) 
 !e3(j1,:)=ledges(1+(j1-1)*nl:j1*nl) 
 !e4(j1,:)=ledges(j1*nl+1:(j1+1)*nl) 
END DO 
 
DEALLOCATE(lwedge, rwedge, ledges) 
 
a=wstep*SQRT(3.)/2. !length of triangle subfacets 
!generate triangles 
DO j1=1,6 
 CALL trigen(-a, e1(j1,1), eval, wstep, szfc, facetcoords, n, 1, 2*(j1-1)+1) 
 CALL trigen(a, e2(j1,1), eval, wstep, szfc, facetcoords, n, 2, 2*j1) 
END DO 
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nzxy=nl*nw+ntp !total number of vertices in the strip 
 
PRINT*, 'Initial facet created' 
 
!calculate the limits in p & q 
itlim=0       !iteration limit 
p1=SQRT(pi/2.)*clen/L   !precalculate parts of the function 
p1sq=p1**2.      ! "   " "
 "    " 
p2=-0.5*(pi**2.)*((clen/L)**2.) ! "   " " "    " 
j1=0 
DO !loop through setting a new max p,q (j1) each time 
 cc=0. 
 DO p=0,j1!*FLOOR(AR) 
  dp0=0 
  IF (p==0) THEN 
   dp0=1 
  END IF 
  ccp1=REAL(2-dp0)*p1sq*EXP((REAL(p)**2.)*p2) 
  DO q=0,j1 
   dq0=0 
   IF (q==0) THEN 
    dq0=1 
   END IF 
   !calculate cc 
   ccp2=REAL(2-dq0)*EXP((REAL(q)**2.)*p2) 
   cc=cc+ccp1*ccp2 
   !IF (cc>1.02) THEN 
   ! STOP 
   !END IF 
  END DO 
 END DO 
 !calculate the difference between the correlation function and the correlation expansion 
 diffold=diff 
 diff=ABS(1.-cc) 
 IF (diff .LT. targetdiff) THEN 
  itlim=j1 
  EXIT 
 END IF 
 IF (cc > 1.02) THEN 
  STOP '(p,q) will never be found. Exiting...' 
 END IF 
 IF (diff .EQ. diffold) THEN 
    PRINT*, p 
    STOP '(p,q) will never be found. Exiting...' 
  END IF 
 j1=j1+1 
END DO 
PRINT*, 'Limit in p & q is:', itlim 
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pqval=itlim+1 
 
!calculate all z_pq 
ALLOCATE(zpq(2*itlim+1,2*itlim+1)) 
!calculate z_pq for p=0, q=0 
CALL RNDG(rnd1) 
rn=rnd1 
zpq(pqval,pqval)=p1*stdev*rn 
!calculate z_pq for p=0 q=/=0 
DO q=1,itlim 
 cc=p1sq*2.*EXP((REAL(q)**2.)*p2) 
 sdzr=SQRT((1./4.)*cc)*stdev  
 sdzi=sdzr 
 CALL RNDG(rnd1) 
 rn=rnd1 
 zpqr=rn*sdzr 
 CALL RNDG(rnd2) 
 rn=rnd2 
 zpqi=rn*sdzi 
 zpq(pqval,pqval+q)=zpqr+i*zpqi 
 zpq(pqval,pqval-q)=zpqr-i*zpqi 
END DO 
!calculate z_pq for all other p,q 
DO p=1,itlim 
 psq=REAL(p)**2. 
 DO q=-itlim,itlim 
  dq0=0 
  IF (q==0) THEN 
   dq0=1 
  END IF 
  !correlation coefficients 
  cc=2.*REAL(2-dq0)*p1sq*EXP(p2*(psq + REAL(q)**2.)) 
  !std dev of the real & imag parts of z_pq 
  sdzr=SQRT((1./8.)*REAL(1+dq0)*cc)*stdev 
  sdzi=sdzr 
  !calculate z_pq & z_-p-q & save into array zpq 
  CALL RNDG(rnd1) 
  rn=rnd1 
  zpqr=rn*sdzr 
  CALL RNDG(rnd2) 
  rn=rnd2 
  zpqi=rn*sdzi 
  zpq(pqval+p,pqval+q)=zpqr+i*zpqi 
  zpq(pqval-p,pqval-q)=zpqr-i*zpqi 
 END DO 
END DO 
PRINT*, 'Coefficient values set' 
 
!calculate z_xy for all points 
n=0 
DO j1=1,nzxy 
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 zxy=0. 
 n=n+1 
 Kx=K*facetcoords(n,1) 
 Ky=K*facetcoords(n,2) 
 !p=0, q=0 
 zxy=zpq(pqval,pqval) 
 !p=0, q=/=0 
 DO q=1,itlim 
  !add contributions for z_0q & z_0-q 
  ipKxqKy=i*REAL(q)*Ky 
  zxy=zxy+zpq(pqval,pqval+q)*EXP(ipKxqKy)+zpq(pqval,pqval-q)*EXP(-ipKxqKy) 
 END DO 
 !remaining p,q 
 DO p=1,itlim 
  pKx=REAL(p)*Kx 
  DO q=-itlim,itlim 
   !add contributions for z_pq & z_-p-q 
   ipKxqKy=i*(pKx + (REAL(q)*Ky)) 
   zxy=zxy+zpq(pqval+p,pqval+q)*EXP(ipKxqKy)+zpq(pqval-p,pqval-q)*EXP(-
ipKxqKy) 
  END DO 
 END DO 
 facetcoords(n,3)=REAL(zxy) 
END DO 
DEALLOCATE(zpq) 
PRINT*, "Real and imaginary parts of final z_xy:", zxy 
 
!shift the facet to zero position 
zx=loffset + pflength/2. 
zy=woffset + swidth/2. 
facetcoords(:,1) = facetcoords(:,1)-zx 
facetcoords(:,2) = facetcoords(:,2)-zy 
 
!save the generated facet 
PRINT*, 'Saving the surface' 
 
!!separate file, just a list of x,y,z values - for visualisation 
!m=0 
!DO j1=1,nw 
! DO j2=1,nl 
!  m=m+1 
!  WRITE(UNIT=2, FMT=*) facetcoords(m,1), '', facetcoords(m,2), '', facetcoords(m,3) 
! END DO 
!END DO 
!!add the triangles 
!DO j1=1,ntp 
! m=m+1 
! WRITE(UNIT=2, FMT=*) facetcoords(m,1), '', facetcoords(m,2), '', facetcoords(m,3) 
!END DO 
!CLOSE(UNIT=2) 
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!write the number of facets 
WRITE(UNIT=1, FMT=*) nfacets+ntf 
 
!write the number of vertices for each facet 
DO j1=1,nfacets 
 WRITE(UNIT=1, FMT=*) 4 
END DO 
DO j1=1,ntf 
 WRITE(UNIT=1, FMT=*) 3 
END DO 
 
!write the x,y,z values for each vertice of each subfacet - rectangles 
m=0 
DO j1=1,nfsw 
 IF (j1 .NE. 1) m=m+1 
 DO j2=1,nfsl 
  m=m+1 
  WRITE(UNIT=1, FMT=*) facetcoords(m,1), '', facetcoords(m,2), '', facetcoords(m,3) 
  WRITE(UNIT=1, FMT=*) facetcoords(m+1,1), '', facetcoords(m+1,2), '', 
facetcoords(m+1,3) 
  WRITE(UNIT=1, FMT=*) facetcoords(m+nl+1,1), '', facetcoords(m+nl+1,2), '', 
facetcoords(m+nl+1,3) 
  WRITE(UNIT=1, FMT=*) facetcoords(m+nl,1), '', facetcoords(m+nl,2), '', 
facetcoords(m+nl,3) 
 END DO 
END DO 
 
!add the triangles 
m=nl*nw 
ALLOCATE(tpts(eval*(eval+1)/2)) 
!left triangles 
DO j1=1,6 
 !create an array containing row numbers for all points in the triangle 
 tpts(1:eval)=e1(j1,:) 
 DO j2=m+1,m+ntp/12 
  tpts(eval+j2-m)=j2+(2*j1-2)*ntp/12 
 END DO 
 m2=0 
 DO j2=1,eval-1 
  !# points on this row: 
  nr=eval+1-j2 
  IF (j2 .NE. 1) m2=m2+1 
  m3=m2+1 
  IF (nr .NE. 2) THEN !handle the last row 
   DO j3=2,nr-1 !generate triangles that point away from the main triangle 
point 
    m3=m3+1 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3),:) 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr),:) 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr-1),:) 
   END DO 
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  END IF 
  m3=m2 
  !loop through points in the row 
  DO j3=1,nr-1 !generate triangles that point towards the main triangle point 
   m3=m3+1 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3),:) 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+1),:) 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr),:) 
  END DO 
  m2=m3 
 END DO 
END DO 
DEALLOCATE(e1) 
!right triangles 
DO j1=1,6 
 !create an array containing row numbers for all points in the triangle 
 tpts(1:eval)=e2(j1,:) 
 DO j2=m+1,m+ntp/12 
  tpts(eval+j2-m)=j2+(2*j1-1)*ntp/12 
 END DO 
 m2=0 
 DO j2=1,eval-1 
  !# points on this row: 
  nr=eval+1-j2 
  IF (j2 .NE. 1) m2=m2+1 
  m3=m2+1 
  IF (nr .NE. 2) THEN !handle the last row 
   DO j3=2,nr-1 !generate triangles that point away from the main triangle 
point 
    m3=m3+1 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3),:) 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr),:) 
    WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr-1),:) 
   END DO 
  END IF 
  m3=m2 
  !loop through points in the row 
  DO j3=1,nr-1 !generate triangles that point towards the main triangle point 
   m3=m3+1 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3),:) 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+1),:) 
   WRITE(UNIT=1, FMT=*) facetcoords(tpts(m3+nr),:) 
  END DO 
  m2=m3 
 END DO 
END DO 
DEALLOCATE(tpts, e2, facetcoords) 
 
CLOSE(UNIT=1) 
 
END PROGRAM GRFStrip 
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! Random number generation: 
! RNDG: Gaussian distribution with zero mean and unit standard deviation 
! set_rseed: Seed the random number generator 
 
subroutine RNDG(r1) 
 
! Returns a normally distributed random deviate with zero mean and  
! unit variance. Version 2002-12-16. 
! Copyright (C) 2002 Karri Muinonen 
 
implicit none 
integer :: flg,irnd,xrandom 
real :: RNDU,q1,q2,r1,r2 
save flg, r2 
data flg/0/ 
common irnd 
 
if (flg.eq.1) then 
 r1=r2 
 flg=0 
 return 
endif 
 
flg=0 
q1 = 0. 
 
do while ((q1.ge.1. .or. q1.le.0.)) 
 CALL RANDOM_NUMBER(r1) 
 CALL RANDOM_NUMBER(r2) 
 r1=2.*r1-1. 
 r2=2.*r2-1. 
 q1=r1**2.+r2**2. 
end do 
 
q2=sqrt(-2.*log(q1)/q1) 
r1=r1*q2 
r2=r2*q2 
flg=1 
     
end 
 
!Seed the inbuilt random number generator - only needs to be called once per program 
!Copyright Daniel Brown, Aberystwyth University 
SUBROUTINE set_rseed() 
 
  IMPLICIT NONE 
  REAL :: r 
  INTEGER :: a, b, c, size, i 
  INTEGER, ALLOCATABLE, DIMENSION(:) :: seed 
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  CALL RANDOM_SEED(size) 
  ALLOCATE(seed(size)) 
 
  CALL SYSTEM_CLOCK(a,b,c) 
  DO i=1,size 
     CALL RANDOM_NUMBER(r) 
     seed(i) = NINT(r*REAL(a)) 
  END DO 
 
  CALL RANDOM_SEED(PUT=seed) 
 
  DEALLOCATE(seed) 
 
END SUBROUTINE set_rseed 
 
!generate a triangle 
!IN:- 
!a: length of polygons within the triangle 
!sp: list of prism facet edges 
!eval: number of unique points along the edge facing the prism facet 
!wstep: gap between points along the width 
!szfc: number of rows in the vertice array 
!lr: indicate which side of the prism facets the triangles should be 
!tas: indicate which triangle this is 
!INOUT:- 
!n: vertice row number 
!te: row numbers of points on the triangle edge 
!fc: vertice array 
SUBROUTINE trigen(a, sp, eval, wstep, szfc, fc, n, lr, tas) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: eval, szfc, lr, sp, tas 
REAL(8), INTENT(IN) :: a, wstep 
INTEGER, INTENT(INOUT) :: n 
REAL(8), DIMENSION(szfc,3), INTENT(INOUT) :: fc 
INTEGER :: j1, j2, nptsrow, aa, m 
REAL(8) :: x, y, ys 
 
 
x=fc(sp,1) !starting position in x 
ys=fc(sp,2) !starting position in y 
y=ys 
 
m=(tas-1)*(eval-1)+1 !track the row having its vertices calculated 
DO j1=1,eval-1   !loop through the vertice rows 
 nptsrow=eval-j1  !number of vertices in the row 
 x=x+a    !x position of the row 
 y=y+wstep/2.  !y position of the start of the row 
 DO j2=1,nptsrow  !loop through all vertice in the row 
  n=n+1   !identify the vertice 
  fc(n,1)=x  !x position of the vertice 
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  fc(n,2)=y+REAL(j2-1)*wstep !y position of the vertice 
  fc(n,3)=0.  !z position 
 END DO 
 m=m+1     
END DO 
 
END SUBROUTINE 
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9.2 comp.f90 
!Create composite surface 
!vertices must all be in the same place in x&y 
 
PROGRAM comp 
 
IMPLICIT NONE 
INTEGER :: j1, j2, m, s1nf, s2nf, s1np, s2np 
INTEGER, DIMENSION(:), ALLOCATABLE :: s1f, s2f 
REAL(8), DIMENSION(:,:), ALLOCATABLE :: s1p, s2p, sp 
REAL(8) :: sd1, sd2 
 
!read in 1st surface 
OPEN(UNIT=1, FILE='strip1.crystal', STATUS='OLD') 
READ(UNIT=1, FMT=*) s1nf 
ALLOCATE(s1f(s1nf)) 
DO j1=1,s1nf 
 READ(UNIT=1, FMT=*) s1f(j1) 
END DO 
s1np=SUM(s1f) 
ALLOCATE(s1p(s1np,3)) 
m=0 
DO j1=1,s1nf 
 DO j2=1,s1f(j1) 
  m=m+1 
  READ(UNIT=1, FMT=*) s1p(m,1), s1p(m,2), s1p(m,3) 
 END DO 
END DO 
CLOSE(1) 
 
!read in 2nd surface 
OPEN(UNIT=2, FILE='strip2.crystal', STATUS='OLD') 
READ(UNIT=2, FMT=*) s2nf 
ALLOCATE(s2f(s2nf)) 
DO j1=1,s2nf 
 READ(UNIT=2, FMT=*) s2f(j1) 
END DO 
s2np=SUM(s2f) 
ALLOCATE(s2p(s2np,3)) 
m=0 
DO j1=1,s2nf 
 DO j2=1,s2f(j1) 
  m=m+1 
  READ(UNIT=2, FMT=*) s2p(m,1), s2p(m,2), s2p(m,3) 
 END DO 
END DO 
CLOSE(2) 
 
!superimpose the two surfaces 
ALLOCATE(sp(s1np,3)) 
sp(:,1)=s1p(:,1) 
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sp(:,2)=s1p(:,2) 
sp(:,3)=s1p(:,3)+s2p(:,3) 
 
!output the new surface 
OPEN(UNIT=3, FILE='strip.crystal', STATUS='REPLACE') 
WRITE(UNIT=3, FMT=*) s1nf 
DO j1=1,s1nf 
 WRITE(UNIT=3, FMT=*) s1f(j1) 
END DO 
DO j1=1,s1np 
 WRITE(UNIT=3, FMT=*) sp(j1,1), sp(j1,2), sp(j1,3) 
END DO 
CLOSE(3) 
 
DEALLOCATE(s1f, s2f, s1p, s2p, sp) 
 
END PROGRAM comp 
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9.3 crystal.f90 
 
!Fold a grfstrip-generated strip into a crystal shape 
PROGRAM crystal 
IMPLICIT NONE 
 
REAL(8) :: pi, hlength, pflength, clen, stdev, L, K, swidth, lstep, wstep, ndevmax 
INTEGER :: nfhl, nfsl, noffset, nfsw, nl, nw, npfw, npf, ntp, szfc, loffset, woffset, szle 
INTEGER :: nf, np, m, j1, j2, eval, v, u, np1pf, sztn 
INTEGER, ALLOCATABLE, DIMENSION(:) :: f, le, tn, pfwe 
REAL(8), ALLOCATABLE, DIMENSION(:,:) :: p 
REAL(8), DIMENSION(6,2) :: bv 
 
pi=4.*ATAN(1.) 
 
!open the output file 
OPEN(UNIT=1, FILE='fc.crystal', STATUS='REPLACE') 
 
!read in input values 
OPEN(UNIT=3, FILE='vals.in', STATUS='OLD') 
READ(UNIT=3, FMT=*) hlength 
READ(UNIT=3, FMT=*) nfhl 
READ(UNIT=3, FMT=*) pflength 
READ(UNIT=3, FMT=*) nfsl 
READ(UNIT=3, FMT=*) clen 
READ(UNIT=3, FMT=*) stdev 
READ(UNIT=3, FMT=*) noffset 
CLOSE(UNIT=3) 
 
!set various things 
nfsw=6*nfhl 
nl=nfsl+1 
nw=nfsw+1 
npfw=nfhl+1 
npf=nfsl*nfsw 
L=2.*hlength 
K=pi/L 
swidth=6.*hlength 
ntp=6*(npfw**2-npfw) 
np1pf=npf*2/3 
szfc=nl*nw+ntp 
lstep=pflength/REAL(nfsl) 
wstep=swidth/REAL(6*nfhl) 
loffset=REAL(noffset+1)*lstep 
woffset=REAL(noffset+1)*wstep 
eval=1+nfhl   !number of vertices along hexagon radius 
 
!matlab version of input values file 
OPEN(UNIT=10, FILE='mlvals.in', STATUS='REPLACE') 
WRITE(UNIT=10, FMT=*) hlength 
WRITE(UNIT=10, FMT=*) nfhl 
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WRITE(UNIT=10, FMT=*) pflength 
WRITE(UNIT=10, FMT=*) nfsl 
WRITE(UNIT=10, FMT=*) clen 
WRITE(UNIT=10, FMT=*) stdev 
WRITE(UNIT=10, FMT=*) noffset 
CLOSE(UNIT=10) 
 
!!!!!!!!!!!!!!!!!!!!!! 
!!!Read in surfaces!!! 
!!!!!!!!!!!!!!!!!!!!!! 
PRINT*, 'Reading in surface...' 
!read in hexagons 
OPEN(UNIT=2, FILE='strip.crystal') 
READ(UNIT=2, FMT=*)nf 
ALLOCATE(f(nf)) 
DO j1=1,nf 
 READ(UNIT=2, FMT=*) f(j1) 
END DO 
np=SUM(f) 
ALLOCATE(p(np,3)) 
m=0 
DO j1=1,nf 
 DO j2=1,f(j1) 
  m=m+1 
  READ(UNIT=2, FMT=*) p(m,1), p(m,2), p(m,3) 
 END DO 
END DO 
CLOSE(UNIT=2) 
PRINT*, 'read in' 
CALL cog(p, np, 0) 
 
!get points along prism facet width edges 
ALLOCATE(pfwe(24*nfhl)) 
DO j1=1,6*nfhl 
 pfwe(4*j1-3)=1+(j1-1)*nfsl*4 
 pfwe(4*j1-2)=4+(j1-1)*nfsl*4 
 pfwe(4*j1-1)=j1*nfsl*4-2 
 pfwe(4*j1)=j1*nfsl*4-1 
END DO 
 
!make most negative z the base z value 
ndevmax=0.0 
DO j1=1,np 
 IF (p(j1,3)<ndevmax) THEN 
  ndevmax=p(j1,3) 
 END IF 
END DO 
PRINT*, 'roughness offset =', ndevmax 
p(:,3)=p(:,3)-ndevmax 
DEALLOCATE(pfwe) 
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!!!!!!!!!!!!!!!!!!!!!! 
!!!Crystal creation!!! 
!!!!!!!!!!!!!!!!!!!!!! 
 
PRINT*, 'Creating the crystal' 
 
!rotate the triangles to point down 
v=4*npf 
u=3*(eval-1)**2 
DO j1=1,12 
 CALL trotate(p(v+1:v+u,:), u, eval) 
 v=v+u 
END DO 
 
!perform rotations at prism facet-hex facet edges 
CALL tedgerotate(p, np, nfhl, nfsl) 
 
!get boundary values 
bv(:,2)=0. !set unroughened z values 
DO j1=1,5 
 bv(j1,1)=p(1+np1pf*j1,2) !unroughened y values 
END DO         
bv(6,1)=p(np1pf*6,2) 
 
!perform rotations at prism facet-prism facet edges 
DO j1=1,5 
 CALL pfedgerotate(p, np, nfhl, nfsl, bv, j1) 
END DO 
 
!rotate to form the crystal 
DO j1=1,5 
 sztn=12-2*j1 
 ALLOCATE(tn(sztn)) 
 DO j2=1,sztn/2 
  tn(j2)=j1+j2 
  tn(sztn/2+j2)=6+j1+j2 
 END DO 
 !perform a rotation 
 CALL crotate(p(j1*np1pf+1:np,:), np-j1*np1pf, np1pf*(6-j1), tn, sztn, nfsl, bv, j1) 
 DEALLOCATE(tn) 
END DO 
 
PRINT*, 'Saving the crystal' 
 
!write the number of facets 
WRITE(UNIT=1, FMT=*) nf 
 
!write the number of vertices for each facet 
DO j1=1,nf 
 WRITE(UNIT=1, FMT=*) f(j1) 
END DO 
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!write the x,y,z values for each corner of each facet 
DO j1=1,np 
 WRITE(UNIT=1, FMT=*) p(j1,1), '', p(j1,2), '', p(j1,3) 
END DO 
CLOSE(UNIT=1) 
 
END PROGRAM 
 
!rotate a triangle 
!IN:- 
!np: number of points 
!eval: number of unique points along the edge facing the prism facet 
!INOUT:- 
!p: coordinate array 
SUBROUTINE trotate(p, np, eval) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: np, eval 
REAL(8), DIMENSION(np, 3), INTENT(INOUT) :: p 
REAL(8), DIMENSION(np, 3) :: tempp 
INTEGER, DIMENSION(3*eval-4) :: el 
INTEGER :: j1, j2, flag, etfa 
REAL(8) :: xval, xv 
 
!create list of points not to rotate - i.e. edge points 
DO j1=1,eval-2 
 el(j1)=3*j1-2 
END DO 
etfa=3*eval-6 !last coordinate row in a triangle pointing away from the main triangle point 
DO j1=1,eval-1 
 el(j1+eval-2)=3*j1-2+etfa 
 el(j1+2*eval-3)=3*j1-1+etfa 
END DO 
 
!get x value of the triangle base 
xval=p(el(1),1) 
 
!assign temporary array 
tempp=p 
 
IF (xval>0.) THEN 
 tempp(:,1)=-tempp(:,1) !if the triangles are on the right, make sure they rotate the correct 
way 
 xv=-xval 
ELSE 
 xv=xval 
 tempp(:,3)=-tempp(:,3) 
END IF 
 
!compare row numbers to the previous list 
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!only rotate rows that aren't in that list 
DO j1=1,np 
 flag=0 
 DO j2=1,3*eval-4 
  IF (j1==el(j2)) THEN 
   flag=1 
   EXIT 
  END IF 
 END DO 
 IF (flag==0) THEN 
  p(j1,1)=tempp(j1,3)+xval 
  p(j1,2)=tempp(j1,2) 
  p(j1,3)=tempp(j1,1)-xv 
 END IF 
END DO 
 
END SUBROUTINE 
 
!rotate a section of the crystal 
!IN:- 
!np: number of points 
!pfe: last points array row describing a polygon in a prism facet 
!t2r: triangles to rotate 
!szt2r: numbers of triangles to rotate 
!nfsl: number of facets along the strip length 
!nr: n'th rotation - describes which bv row to use 
!INOUT:- 
!bv: boundary values in y & z - describe axis to rotate around 
!p: points array 
SUBROUTINE crotate(p, np, pfe, t2r, szt2r, nfsl, bv, nr) 
IMPLICIT NONE 
 
REAL(8), PARAMETER :: pi=4.*ATAN(1.) ,angle=-pi/3., ca=COS(angle), sa=SIN(angle) 
INTEGER, INTENT(IN) :: np, szt2r, pfe, nfsl, nr 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
INTEGER, DIMENSION(szt2r), INTENT(IN) :: t2r 
REAL(8), DIMENSION(np,3) :: tp 
REAL(8), DIMENSION(6,2), INTENT(INOUT) :: bv 
REAL(8), DIMENSION(6,2) :: bvtmp 
INTEGER :: j1, j2, sz1t, flag, sct, ect, dr, ev, v1, v2 
REAL(8) :: yval, zval 
INTEGER, DIMENSION(2*nfsl) :: el 
 
!nr: n'th rotation 
!shift the points so they are rotating around the axis 
yval=bv(nr,1) 
zval=bv(nr,2) 
p(:,2)=p(:,2)-yval 
p(:,3)=p(:,3)-zval 
 
!assign temporary array 



107 
 

tp=p 
 
!number of points in one triangle 
sz1t=(np-pfe)/12 
 
!work out which triangle points to not rotate 
ev=1+INT(SQRT(REAL(sz1t/3))) 
v1=3*(ev-2)+1 
 
!rotate the triangles 
DO j1=1,szt2r 
 !start of the current triangle 
 sct=pfe+sz1t*(t2r(j1)-1)+1 
 !end of the current triangle 
 ect=pfe+sz1t*t2r(j1) 
 IF ((j1 .EQ. 1) .OR. (j1 .EQ. szt2r/2 +1)) THEN 
  DO j2=sct,ect 
   IF ((j2-sct+1 .NE. v1)) THEN! .AND. (j2 .NE. v2)) THEN 
    p(j2,2)=ca*tp(j2,2) - sa*tp(j2,3) 
    p(j2,3)=sa*tp(j2,2) + ca*tp(j2,3) 
   END IF 
  END DO 
 ELSE 
  p(sct:ect,2)=ca*tp(sct:ect,2) - sa*tp(sct:ect,3) 
  p(sct:ect,3)=sa*tp(sct:ect,2) + ca*tp(sct:ect,3) 
 END IF 
END DO 
 
!calculate which prism facet points to not rotate 
DO j1=1,nfsl 
 el(j1)=4*j1-3 
 el(j1+nfsl)=4*j1-2 
END DO 
 
!compare row numbers to the previous list 
!rotate coordinate rows that aren't in that list 
DO j1=1,pfe 
 flag=0 
 DO j2=1,2*nfsl 
  IF (j1==el(j2)) THEN 
   flag=1 
   EXIT 
  END IF 
 END DO 
 IF (flag==0) THEN 
  p(j1,2)=ca*tp(j1,2) - sa*tp(j1,3) 
  p(j1,3)=sa*tp(j1,2) + ca*tp(j1,3) 
 END IF 
END DO 
 
!shift the points back from the rotation axis 
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p(:,2)=p(:,2)+yval 
p(:,3)=p(:,3)+zval 
 
!rotate the boundary values array 
bv(:,1)=bv(:,1)-yval 
bv(:,2)=bv(:,2)-zval 
bvtmp=bv 
bv(:,1)=ca*bvtmp(:,1) - sa*bvtmp(:,2) 
bv(:,2)=sa*bvtmp(:,1) + ca*bvtmp(:,2) 
bv(:,1)=bv(:,1)+yval 
bv(:,2)=bv(:,2)+zval 
 
END SUBROUTINE 
 
 
!centre of gravity calculation 
!IN:- 
!szarr: number of rows in coordinate array 
!zs: z switch - 1 if the CoG is also required in z 
SUBROUTINE cog(arr, szarr, zs) 
IMPLICIT NONE 
REAL(8), DIMENSION(3) :: cogval 
INTEGER, INTENT(IN) :: szarr, zs !zs=1 if z cog also required 
REAL(8), DIMENSION(szarr,3), INTENT(INOUT) :: arr 
 
!find centre of gravity of these points 
cogval(1)=SUM(arr(1:szarr,1))/REAL(szarr) 
cogval(2)=SUM(arr(1:szarr,2))/REAL(szarr) 
IF (zs==1) THEN 
 cogval(3)=SUM(arr(1:szarr,3))/REAL(szarr) 
END IF 
 
!shift the array to the new zero value 
arr(:,1)=arr(:,1)-cogval(1) 
arr(:,2)=arr(:,2)-cogval(2) 
IF (zs==1) THEN 
 arr(:,3)=arr(:,3)-cogval(3) 
END IF 
 
END SUBROUTINE 
 
!calculate points for triangle-prism facet edge rotations & rotate 
SUBROUTINE tedgerotate(p, np, nfpfw, nfsl) 
IMPLICIT NONE 
 
REAL(8), PARAMETER :: pi=4.*ATAN(1.) 
INTEGER, INTENT(IN) :: np, nfpfw, nfsl 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
INTEGER, DIMENSION(:,:), ALLOCATABLE :: te, pfwe, rp 
INTEGER :: eval, j1, j2, npsl, srp, trp, ept, etfa, sz1t, v, szrp, im, s, epra, tpae, nr 
REAL(8) :: xr1, xr2, angle, ac, zz, p1, p2 
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REAL(8), DIMENSION(np,3) :: tp 
INTEGER, DIMENSION(:,:), ALLOCATABLE :: er 
 
!set value for 45 degree rotation 
angle=pi/4. 
 
!get points along prism facet width edges 
ALLOCATE(pfwe(12*nfpfw,2)) 
npsl=nfsl*4 
DO j1=1,6*nfpfw 
 pfwe(2*(j1-1)+1,1)=1+(j1-1)*npsl 
 pfwe(2*j1,1)=4+(j1-1)*npsl 
 pfwe(2*(j1-1)+1,2)=j1*npsl-2 
 pfwe(2*j1,2)=j1*npsl-1 
END DO 
 
!get rotation axes 
xr1=p(pfwe(1,1),1) 
xr2=p(pfwe(1,2),1) 
 
!get points connecting triangles with prism facets 
eval=nfpfw+1 
sz1t=3*(eval-1)**2 
ALLOCATE(te(3*eval-4,12)) 
ept=24*nfpfw*nfsl 
etfa=3*eval-6 !last coordinate row in a triangle pointing away from the main triangle point 
DO j2=1,12 
 DO j1=1,eval-2 
  te(j1,j2)=3*j1-2+ept 
 END DO 
 DO j1=1,eval-1 
  te(j1+eval-2,j2)=3*j1-2+etfa+ept 
  te(j1+2*eval-3,j2)=3*j1-1+etfa+ept 
 END DO 
 ept=ept+sz1t 
END DO 
 
!group together points to be rotated around the same axis 
szrp=18*eval-24+12*nfpfw 
ALLOCATE(rp(szrp,2))!3*(6*eval-8+6*nfpfw),2)) 
rp=0 
srp=2*nfpfw*6 
rp(1:srp,:)=pfwe 
trp=3*eval-4           !trp: # edge points per triangle 
        !srp: # edge points on each side of the strip 
DO j1=1,6 
 rp(srp+1+(j1-1)*trp:srp+j1*trp,1)=te(:,j1) 
 rp(srp+1+(j1-1)*trp:srp+j1*trp,2)=te(:,j1+6) 
END DO 
 
zz=0. 
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CALL ter(szrp, np, rp, p, xr1, xr2, zz, angle) 
 
DEALLOCATE(rp, te, pfwe) 
 
!rotations on triangles 
tp=p 
im=1 !number of iterations each side of the edge 
ac=-pi/(4.*REAL(im+1)) 
DO j1=1,im 
 s=24*nfpfw*nfsl 
 v=6*(eval-1-j1) 
 ALLOCATE(te(v,12)) 
 te=0 
 DO j2=1,12 
  CALL tfr(s, eval, j1, v, te(:,j2)) 
  s=s+sz1t 
 END DO 
 ALLOCATE(rp(6*v,2)) 
 DO j2=1,6 
  rp(1+(j2-1)*v:j2*v,1)=te(:,j2) 
  rp(1+(j2-1)*v:j2*v,2)=te(:,j2+6) 
 END DO 
 angle=ac*REAL(im+1-j1) 
 p1=p(rp(1,1),3) 
 !rotate a row 
 CALL ter(6*v, np, rp, p, xr1, xr2, p1, angle) 
 !correct for y position 
 nr=3 
 ALLOCATE(er(nr,2)) 
 epra=24*nfpfw*nfsl 
 DO j2=2,j1 
  epra=epra+6*(eval-j2)+3 
 END DO 
 tpae=3*(eval-j1-1) 
 er(1,1)=epra+3 
 er(2,1)=epra+tpae+3 
 er(3,1)=epra+tpae+6*(eval-j1)-5 
 er(1,2)=epra+tpae-1 
 er(2,2)=epra+6*(eval-j1)-3 
 er(3,2)=epra+12*(eval-j1)-13 
 CALL yc(nr, er, np, p, tp, sz1t) 
 !DEALLOCATE(er) 
 !nr=6 
 !ALLOCATE(er(nr,2)) 
 !er(1,1)=epra 
 !er(1,2)=epra+tpae 
 !er(1,3)= 
 DEALLOCATE(rp, te, er) 
END DO 
 
!rotations on prism facets 
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ALLOCATE(pfwe(24*nfpfw,2)) 
ac=pi/(4.*REAL(im+1)) 
DO j1=1,im 
 pfwe=0 
 CALL pfr(nfpfw*6, nfsl, j1, 24*nfpfw, pfwe(:,1)) 
 CALL pfr(nfpfw*6, nfsl, nfsl-j1, 24*nfpfw, pfwe(:,2)) 
 angle=ac*REAL(im+1-j1) 
 p1=p(pfwe(1,1),1) 
 p2=p(pfwe(1,2),1) 
 CALL ter(24*nfpfw, np, pfwe, p, p1, p2, zz, angle) 
END DO 
DEALLOCATE(pfwe) 
 
END SUBROUTINE tedgerotate 
 
!get a prism facet row for the edge rotation 
SUBROUTINE pfr(nfsw, nfsl, dfe, szpfe, pfe) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: nfsw, nfsl, dfe, szpfe 
INTEGER, DIMENSION(szpfe), INTENT(OUT) :: pfe 
INTEGER :: plr, j1, j1plr 
         
plr=4*nfsl 
 
DO j1=1,nfsw 
 j1plr=(j1-1)*plr+4*(dfe-1) 
 pfe(j1)=j1plr+2 
 pfe(j1+nfsw)=j1plr+3 
 pfe(j1+2*nfsw)=j1plr+5 
 pfe(j1+3*nfsw)=j1plr+8 
END DO 
 
END SUBROUTINE 
 
!get a triangular facet row for the edge rotation 
SUBROUTINE tfr(s, eval, dfe, szte, te) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: eval, dfe, szte, s 
INTEGER, DIMENSION(szte), INTENT(OUT) :: te 
INTEGER :: j1, tj1, epra, df, tpae 
 
df=dfe-1 
tpae=3*eval-6-3*df !end of triangles pointing away in one row 
 
!determine where to start from 
epra=s 
DO j1=2,dfe 
 epra=epra+6*eval-9-6*(j1-2) 
END DO 
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!get rows along line 
DO j1=1,eval-2-df 
 tj1=3*j1 
 te(j1)=epra+tj1 
 te(j1+eval-2-df)=epra+tj1-1 
END DO 
DO j1=1,eval-1-df 
 te(j1+2*(eval-df)-4)=epra+tpae+3*j1 
END DO 
 
!move to the next row 
epra=epra+6*eval-9-6*df 
tpae=tpae-3 
 
DO j1=1,eval-3-df 
 te(j1+3*(eval-df)-5)=epra+3*j1-2 
END DO 
DO j1=1,eval-2-df 
 tj1=3*j1 
 te(j1+4*(eval-df)-8)=epra+tpae-2+tj1 
 te(j1+5*(eval-df)-10)=epra+tpae-1+tj1 
END DO 
 
END SUBROUTINE 
 
!perform edge rotations at triangle-prism facet boundary 
SUBROUTINE ter(nr, np, rp, p, xr1, xr2, zr, angle) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: nr, np 
INTEGER, DIMENSION(nr,2), INTENT(IN) :: rp 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
REAL(8), DIMENSION(np,3) :: tp 
REAL(8), INTENT(IN) :: angle, xr1, xr2, zr 
INTEGER :: j1 
REAL(8) :: sa, ca, zrr 
 
!set sin & cos 
sa=SIN(angle) 
ca=COS(angle) 
 
!rotate points with -ve x 
tp=p 
zrr=zr !for some reason zr changes in the 1st iteration of the loop 
tp(:,1)=tp(:,1)-xr1 
tp(:,3)=tp(:,3)-zrr 
DO j1=1,nr 
 IF (tp(rp(j1,1),3)>0.) THEN 
  p(rp(j1,1),3)=ca*tp(rp(j1,1),3) + sa*tp(rp(j1,1),1) + zrr 
  p(rp(j1,1),1)=-sa*tp(rp(j1,1),3) + ca*tp(rp(j1,1),1) + xr1 
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 ELSE 
  p(rp(j1,1),3)=tp(rp(j1,1),3) + ca*tp(rp(j1,1),3) + sa*tp(rp(j1,1),1) + zrr 
  p(rp(j1,1),1)=sa*tp(rp(j1,1),3) + ca*tp(rp(j1,1),1) + xr1 
 END IF 
END DO 
 
!rotate points with +ve x 
!white in vish 
tp(:,1)=p(:,1)-xr2 
tp(:,3)=p(:,3)-zrr 
DO j1=1,nr 
 IF (tp(rp(j1,2),3)>0.) THEN 
  p(rp(j1,2),1)=sa*tp(rp(j1,2),3) + ca*tp(rp(j1,2),1) + xr2 
  p(rp(j1,2),3)=ca*tp(rp(j1,2),3) - sa*tp(rp(j1,2),1) + zrr 
 ELSE 
  p(rp(j1,2),1)=-sa*tp(rp(j1,2),3) + ca*tp(rp(j1,2),1) + xr2 
  p(rp(j1,2),3)=tp(rp(j1,2),3) + ca*tp(rp(j1,2),3) - sa*tp(rp(j1,2),1) + zrr 
 END IF 
END DO 
 
END SUBROUTINE ter 
 
!correct y value for rotated triangle subfacet points 
!compare unrotated z with rotated z, and calculate new y 
SUBROUTINE yc(ner, er, np, p, tp, sz1t) 
IMPLICIT NONE 
 
REAL(8), PARAMETER :: pi=4.*ATAN(1.) 
INTEGER, INTENT(IN) :: np, ner, sz1t 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
REAL(8), DIMENSION(np,3), INTENT(IN) :: tp 
INTEGER, DIMENSION(ner, 2), INTENT(IN) :: er 
INTEGER :: j1, j2, s 
REAL(8) :: zgapn, zgapp, t60 
 
!calculate tan of 60 deg 
t60=TAN(pi/3.) 
 
s=0 
!calculate change in z 
DO j1=1,12 
 DO j2=1,ner 
  zgapn=p(er(j2,1)+s,3)-tp(er(j2,1)+s,3) 
  zgapp=p(er(j2,2)+s,3)-tp(er(j2,1)+s,3) 
  !calculate change in y 
        p(er(j2,1)+s,2)=p(er(j2,1)+s,2)-zgapn/t60 
        p(er(j2,2)+s,2)=p(er(j2,2)+s,2)+zgapp/t60 
 END DO 
    s=s+sz1t 
END DO 
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END SUBROUTINE yc 
 
 
!calculate points for pf-pf edge rotation & rotate 
SUBROUTINE pfedgerotate(p, np, nfpfw, nfsl, bv, itn) 
IMPLICIT NONE 
REAL(8), PARAMETER :: pi=4.*ATAN(1.) 
REAL(8) :: angle 
INTEGER, INTENT(IN) :: np, nfpfw, nfsl, itn 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
REAL(8), DIMENSION(6,2), INTENT(IN) :: bv 
REAL(8), DIMENSION(np,3) :: tp 
INTEGER, DIMENSION(:), ALLOCATABLE :: e 
INTEGER :: eval, epf, m, j1, j2, pfe, sz1t, fj1, im 
REAL(8) :: yval, zval, ac, yv 
 
tp=p 
 
!get points along prism facet length edges 
ALLOCATE(e(4*nfsl+4)) 
epf=4*nfsl*(itn*nfpfw-1) 
CALL ev(e, m, nfsl, epf) 
yv=p(e(1),2) 
!get points from triangles to rotate 
eval=nfpfw+1 
pfe=24*nfsl*nfpfw 
sz1t=3*(eval-1)**2 
e(m+1)=pfe+(itn-1)*sz1t+6*eval-10 
e(m+2)=pfe+itn*sz1t+3*eval-5 
e(m+3)=pfe+(itn+5)*sz1t+6*eval-10 
e(m+4)=pfe+(itn+6)*sz1t+3*eval-5 
!perform 30 degree rotation 
angle=-pi/6. 
CALL pfer(np, p, 4*nfsl+4, e, tp(e(1),2), bv(itn,2), angle) 
 
DEALLOCATE(e) 
ALLOCATE(e(4*nfsl+6)) 
 
!rotations on unrotated prism facet 
im=5 !iterations each side of the edge 
ac=-pi/(6.*REAL(im+1)) !angle change on each iteration 
DO j1=1,im 
 e=0 
 epf=4*nfsl*(itn*nfpfw-1-j1) 
 CALL ev(e, m, nfsl, epf) 
 CALL ev2a(e, 4*nfsl+6, m, pfe, itn, sz1t, eval, j1) 
 angle=ac*REAL(im+1-j1) 
 CALL pfer(np, p, 4*nfsl+6, e, tp(e(1),2), bv(itn,2), angle) 
END DO 
 
!rotations on rotated prism facet 
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ac=-ac 
DO j1=1,im 
 e=0 
 epf=4*nfsl*(itn*nfpfw+j1-1) 
 CALL ev(e, m, nfsl, epf) 
 CALL ev2b(e, 4*nfsl+6, m, pfe, itn, sz1t, eval, j1) 
 angle=ac*REAL(im+1-j1) 
 CALL pfer(np, p, 4*nfsl+6, e, tp(e(1),2), bv(itn,2), angle) 
END DO 
 
DEALLOCATE(e) 
 
END SUBROUTINE pfedgerotate 
 
!vertices from the triangle to rotate (left side) 
SUBROUTINE ev2a(e, ne, m, pfe, itn, sz1t, eval, dfe) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: ne, m, pfe, itn, sz1t, eval, dfe 
INTEGER, DIMENSION(ne), INTENT(INOUT) :: e 
INTEGER :: l 
 
l=(dfe-1)*3 
 
e(m+1)=pfe+(itn-1)*sz1t+3*eval-8-l 
e(m+2)=pfe+(itn-1)*sz1t+6*eval-11-l 
e(m+3)=pfe+(itn-1)*sz1t+6*eval-13-l 
e(m+4)=pfe+(itn+5)*sz1t+3*eval-8-l 
e(m+5)=pfe+(itn+5)*sz1t+6*eval-11-l 
e(m+6)=pfe+(itn+5)*sz1t+6*eval-13-l 
 
END SUBROUTINE ev2a 
 
!vertices from the triangle to rotate (right side) 
SUBROUTINE ev2b(e, ne, m, pfe, itn, sz1t, eval, dfe) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: ne, m, pfe, itn, sz1t, eval, dfe 
INTEGER, DIMENSION(ne), INTENT(INOUT) :: e 
INTEGER :: l 
 
l=(dfe-1)*3 
 
e(m+1)=pfe+itn*sz1t+1+l 
e(m+2)=pfe+itn*sz1t+3*eval-4+l 
e(m+3)=pfe+itn*sz1t+3*eval-2+l 
e(m+4)=pfe+(itn+6)*sz1t+1+l 
e(m+5)=pfe+(itn+6)*sz1t+3*eval-4+l 
e(m+6)=pfe+(itn+6)*sz1t+3*eval-2+l 
 
END SUBROUTINE ev2b 
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!get row numbers of edge values along the prism facet 
SUBROUTINE ev(e, m, nfsl, epf) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: nfsl, epf 
INTEGER, INTENT(OUT) :: m 
INTEGER, DIMENSION(4*nfsl+6), INTENT(OUT) :: e 
INTEGER :: fj1, j1 
 
m=0 
DO j1=1,nfsl 
    fj1=4*j1+epf 
 e(m+1)=fj1 
 e(m+2)=fj1-1 
 m=m+2 
END DO 
DO j1=1,nfsl 
    fj1=4*j1+epf+4*nfsl 
 e(m+1)=fj1-3 
 e(m+2)=fj1-2 
 m=m+2 
END DO 
END SUBROUTINE 
 
!perform a pf-pf edge rotation 
SUBROUTINE pfer(np, p, nr, r, yval, zval, angle) 
IMPLICIT NONE 
 
INTEGER, INTENT(IN) :: np, nr 
REAL(8), INTENT(IN) :: yval, zval, angle 
REAL(8), DIMENSION(np,3), INTENT(INOUT) :: p 
INTEGER, DIMENSION(nr) :: r 
REAL(8), DIMENSION(np,3) :: tp 
REAL(8) :: ca, sa 
 
ca=COS(angle) 
sa=SIN(angle) 
p(:,2)=p(:,2)-yval 
p(:,3)=p(:,3)-zval 
tp=p 
 
!perform the rotation 
p(r(:),2)=ca*tp(r(:),2) - sa*tp(r(:),3) 
p(r(:),3)=sa*tp(r(:),2) + ca*tp(r(:),3) 
 
!shift the points back from the rotation axis 
p(:,2)=p(:,2)+yval 
p(:,3)=p(:,3)+zval 
 
END SUBROUTINE 
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9.4 join.m 
%Join all facets together using interpolation 
 
%output file name 
out='fcc.crystal'; 
 
%read in crystal 
'Read in data' 
% data=dlmread('fc-comp.crystal'); 
data=dlmread('fc.crystal'); 
nf=data(1,1);                       %number of facets 
nv=data(2:nf+1,1);                  %number of vertices for each facet 
xyzp=data(nf+2:size(data(:,1)),:);  %vertices coordinates 
np=size(xyzp,1);                    %total number of vertices 
 
%read in input values 
vals=dlmread('mlvals.in'); 
hlen=vals(1);                       %hexagon radius x6 
nfhl=vals(2);                       %number of facets along prism facet width 
pflen=vals(3);                      %prism facet length 
nfsl=vals(4);                       %number of facets along prism facet length 
clen=vals(5);                       %correlation length 
stdev=vals(6);                      %standard deviation 
offset=vals(7);                     %offset to avoid  
 
%calculate various things 
nfsw=6*nfhl; 
nl=nfsl+1; 
nw=nfsw+1; 
npfw=nfhl+1; 
npf=nfsl*nfsw; 
L=2.*hlen; 
K=pi/L; 
swidth=6.*hlen; 
ntp=6*(npfw^2-npfw); 
np1pf=npf*2/3; 
szfc=nl*nw+ntp; 
lstep=pflen/nfsl; 
wstep=swidth/(6*nfhl); 
loffset=(offset+1)*lstep; 
woffset=(offset+1)*wstep; 
eval=1+nfhl;                    %number of vertices along hexagon radius 
pfe=4*nfsw*nfsl;                %last vertice describing a prism facet 
sz1t=(np-pfe)/12;               %number of vertices in one triangle 
npe=3*(eval-2);                 %number of vertices along the triangle edge 
etpa=3*(eval-2);                %number of vertices on subtriangles pointing away from the end of the 
main triangle 
ygap=xyzp(4,2)-xyzp(1,2);       %distance in y between adjacent vertices 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
%!  Join first & last prism facets  ! 
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%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
'Join prism facets' 
 
%get edge unroughened y, z values 
yv=xyzp(1,2); 
zv=0; 
 
%calculate row values of points on the join between pf1 & pf6 
pfedge=zeros(2*nfsl,2); 
sp=4*nfsl*(nfsw-1); 
for j1=1:nfsl 
    pfedge(j1,1)=4*j1-3; 
    pfedge(j1,2)=sp+4*j1; 
    pfedge(nfsl+j1,1)=4*j1-2; 
    pfedge(nfsl+j1,2)=sp+4*j1-1; 
end %for 
 
% %calculate row values of other points to be interpolated for 
% pfev=zeros(2*nfsl); 
% for j1=1:2 
%     epf=(4*nfsl)*(j1-1); 
%     e=ev(nfsl,epf); 
%     m=4*nfsl; 
%     e=ev2a(e, m, pfe, sz1t, eval, j1); 
% end %for 
% for j1=1:2 
%     epf=pfe-(4*nfsl)*(j1+1); 
%     e=ev(nfsl,epf); 
%     m=4*nfsl; 
%     e=ev2b(e, m, pfe, sz1t, eval, j1); 
% end %for 
 
%end points - x,y,z positions & row values 
cp=zeros(2,1); 
cp(1)=1; 
cp(2)=4*nfsl-2; 
 
%define the two prism facets 
ppf1=xyzp(1:pfe/6,:); 
ppf6=xyzp(5*pfe/6+1:pfe,:); 
 
%exclude points to be interpolated for 
ppf1e=zeros(pfe/6-2*nfsl,3); 
ppf6e=zeros(pfe/6-2*nfsl,3); 
m1=0; 
m2=0; 
for j1=1:pfe/6 
    flag1=0; 
    flag2=0; 
   for j2=1:2*nfsl 



119 
 

       if (pfedge(j2,1)==j1) 
           flag1=1; 
       end %if 
       if (pfedge(j2,2)-5*pfe/6==j1) 
           flag2=1; 
       end %if 
   end %for 
   if (flag1==0) 
       m1=m1+1; 
        ppf1e(m1,:)=ppf1(j1,:); 
   end %if 
   if (flag2==0) 
       m2=m2+1; 
       ppf6e(m2,:)=ppf6(j1,:); 
   end %if 
end %for 
 
%get unique x,y,z points for the two prism facets 
ppf1eu=unique(ppf1e, 'rows'); 
ppf6eu=unique(ppf6e, 'rows'); 
 
%rotate prism facet 6 
yrv=xyzp(1,2); 
ca=cos(-pi/3); 
sa=sin(-pi/3); 
ppf6eu(:,2)=ppf6eu(:,2)-yrv; 
tppf6eu=ppf6eu; 
ppf6eu(:,2)=ca*tppf6eu(:,2) - sa*tppf6eu(:,3); 
ppf6eu(:,3)=sa*tppf6eu(:,2) + ca*tppf6eu(:,3); 
ppf6eu(:,2)=ppf6eu(:,2)+yrv; 
 
%create interpolation object 
pf=unique(vertcat(ppf1eu, ppf6eu), 'rows'); 
pftsi=TriScatteredInterp(pf(:,1),pf(:,2),pf(:,3), 'natural'); 
 
%interpolate for pf1's edge points 
xyzp(pfedge(:,1),3)=pftsi(xyzp(pfedge(:,1),1), xyzp(pfedge(:,1),2)); 
 
%half-rotate the edge points 
xyzp=pfer(xyzp, pfedge(:,1), yrv, 0, pi/6); 
 
%perform rotations on pf1 
im=5; 
ac=pi/(6*im+6); 
for j1=1:im 
    angle=ac*(im+1-j1); 
    epf=(4*nfsl)*(j1-1); 
    e=ev(nfsl,epf); 
    m=4*nfsl; 
    e=ev2a(e, m, pfe, sz1t, eval, j1); 
    xyzp=pfer(xyzp, e, xyzp(e(1),2), zv, angle); 
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end %for 
 
%perform rotations on pf6 
ac=-ac; 
dz=ygap*cos(pi/3); 
dy=ygap*sin(pi/3); 
yval=yv; 
zval=zv; 
for j1=1:im 
    yval=yval-dy; 
    zval=zval-dz; 
    angle=ac*(im+1-j1); 
    epf=pfe-(4*nfsl)*(j1+1); 
    e=ev(nfsl,epf); 
    m=4*nfsl; 
    e=ev2b(e, m, pfe, sz1t, eval, j1); 
    xyzp=pfer(xyzp, e, yval, zval, angle); 
end %for 
 
%apply edge changes to pf6 
xyzp(pfedge(:,2),:)=xyzp(pfedge(:,1),:); 
 
%!!!!!!!!!!!!!!!!!!!!!!!!! 
%!  Join triangle edges  ! 
%!!!!!!!!!!!!!!!!!!!!!!!!! 
'Create basal facets' 
 
%save a copy of the data points 
xyzpold=xyzp; 
 
%calculate row values of points on triangle edges 
hnte=36*eval-60;%24*(eval-2); 
te=zeros(hnte,2); 
m=0; 
for j1=1:12 
    eva=eval; 
    epr=(j1-1)*sz1t;    %identity of last vertice in previous row 
    for j2=1:eval-1 
        if (j2 ~= 1) 
            epr=epr+6*(eval-j2)+3; 
            eva=eva-1; 
        end %if 
        etpa=3*eva-6; 
        %edge points, triangles pointing away 
        if (eva~=2) 
            m=m+1; 
            te(m,1)=epr+3; 
            te(m,2)=epr+etpa-1; 
        end %if 
        if (j2 ~= 1) 
            %1st & 3rd edge points, triangles pointing towards 
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            m=m+1; 
            te(m,1)=epr+etpa+1; 
            te(m,2)=epr+etpa+3*eva-4; 
        end %if 
        %2nd & 4th edge points, triangles pointing towards 
        m=m+1; 
        te(m,1)=epr+etpa+3; 
        te(m,2)=epr+etpa+3*eva-3; 
    end %for 
end %for 
 
%calculate row values of points within the triangle to be interpolated for 
d=2; 
q=0; 
szintp=12*(6*2*d*(eval-d-2)+3*d^2-6*d);   %number of main triangles*vals per point*points per 
row*n rows 
intripts=zeros(szintp,1); 
for j3=1:12 
    er=(j3-1)*sz1t; 
    for j1=1:eval-2-d 
        epr=er; 
        etpu=er+3*(eval-j1)-3; 
        er=er+6*(eval-j1)-3; 
        for j2=1:d 
            tj2=3*j2; 
            if (j1~=1) 
                intripts(q+12)=epr+tj2-2; 
                intripts(q+11)=etpu+tj2-1; 
                intripts(q+10)=etpu+tj2+1; 
                intripts(q+9)=etpu-tj2+1; 
                intripts(q+8)=er-tj2-1; 
                intripts(q+7)=er-tj2+1; 
            end %if 
            intripts(q+6)=epr+tj2+3; 
            intripts(q+5)=etpu+tj2+3; 
            intripts(q+4)=epr+tj2-1; 
            intripts(q+3)=er-tj2; 
            intripts(q+2)=etpu-tj2-1; 
            intripts(q+1)=etpu-tj2+3; 
            if(j1==1) 
                q=q+6; 
            else 
                q=q+12; 
            end %if 
        end %for 
    end %for 
    ect=sz1t*j3; 
    intripts(q+1)=ect-5; 
    intripts(q+2)=ect-7; 
    intripts(q+3)=ect-11; 
    intripts(q+4)=ect-15; 
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    intripts(q+5)=ect-21; 
    intripts(q+6)=ect-25; 
    intripts(q+7)=ect-14; 
    intripts(q+8)=ect-16; 
    intripts(q+9)=ect-23; 
    intripts(q+10)=ect-17; 
    intripts(q+11)=ect-19; 
    intripts(q+12)=ect-26; 
    q=q+12; 
end %for 
 
%define the 2 hexagons 
h1=xyzp(pfe+1:pfe+6*sz1t,:); 
h2=xyzp(pfe+6*sz1t+1:np,:); 
 
%create arrays for the two hexagons 
%exclude triangle edges and other points to be interpolated for 
h1e=zeros(6*(sz1t-6*eval+11),3); %6*sz1t-24*(eval-1) 
h2e=zeros(6*(sz1t-6*eval+11),3); 
m1=0; 
%1st hexagon 
for j1=1:6*sz1t%loop through the 1st 6 triangles 
    flag1=0; 
    for j2=1:hnte/2%12*(eval-1)%loop through the edges of the 1st 6 triangles 
        if ((te(j2,1)==j1) || (te(j2,2)==j1))%if j1 is an edge point, flag it to not be saved 
            flag1=1; 
            break 
        end %if 
    end %for 
    for j2=1:szintp/2 
        if(intripts(j2)==j1) 
            flag1=1; 
            break 
        end %if 
    end %for 
    if (flag1==0) 
        m1=m1+1; 
        h1e(m1,:)=h1(j1,:); 
    end %if 
end %for 
%2nd hexagon 
m1=0; 
for j1=6*sz1t+1:12*sz1t 
    flag1=0; 
    for j2=hnte/2+1:hnte%12*(eval-1)+1:24*(eval-1)%loop through the edges of the 1st 6 triangles 
        if ((te(j2,1)==j1) || (te(j2,2)==j1))%if j1 is an edge point, flag it to not be saved 
            flag1=1; 
            break 
        end %if 
    end %for 
    for j2=szintp/2+1:szintp 
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        if(intripts(j2)==j1) 
            flag1=1; 
            break 
        end %if 
    end %for 
    if (flag1==0) 
        m1=m1+1; 
        h2e(m1,:)=h2(j1-6*sz1t,:); 
    end %if 
end %for 
 
%get unique points for each hexagon 
h1eu=unique(h1e, 'rows'); 
h2eu=unique(h2e, 'rows'); 
 
%create interpolation objects 
tsih1=TriScatteredInterp(h1eu(:,2),h1eu(:,3),h1eu(:,1), 'natural'); 
tsih2=TriScatteredInterp(h2eu(:,2),h2eu(:,3),h2eu(:,1), 'natural'); 
 
%make te & intripts applicable to the whole crystal 
te=te+pfe; 
intripts=intripts+pfe; 
 
%create array of hexagon centre points 
npe1=npe+1; 
temh1=vertcat(te(npe1,1),te(2*npe1,1),te(3*npe1,1),te(4*npe1,1),te(5*npe1,1),te(6*npe1,1)); 
temh2=vertcat(te(7*npe1,1),te(8*npe1,1),te(9*npe1,1),te(10*npe1,1),te(11*npe1,1),te(12*npe1,1))
; 
 
%interpolate for the centre point 
xyzp(temh1(:),1)=tsih1(xyzp(temh1(1),2),xyzp(temh1(1),3)); 
xyzp(temh2(:),1)=tsih2(xyzp(temh2(1),2),xyzp(temh2(1),3)); 
 
%create array of edge points, not including the hexagon centres 
te1=vertcat(te(1:npe,:),te(npe+2:2*npe+1,:),te(2*npe+3:3*npe+2,:),te(3*npe+4:4*npe+3,:),te(4*npe
+5:5*npe+4,:),te(5*npe+6:6*npe+5,:)); 
te2=vertcat(te(6*npe+7:7*npe+6,:),te(7*npe+8:8*npe+7,:),te(8*npe+9:9*npe+8,:),te(9*npe+10:10*
npe+9,:),te(10*npe+11:11*npe+10,:),te(11*npe+12:12*npe+11,:)); 
 
%interpolate for the points in the hexagon on one side of each triangle 
xyzp(te1(:,1),1)=tsih1(xyzp(te1(:,1),2),xyzp(te1(:,1),3)); 
xyzp(te2(:,1),1)=tsih2(xyzp(te2(:,1),2),xyzp(te2(:,1),3)); 
 
%join the triangles together 
xyzp(te1(1:npe,2),:)=xyzp(te1(npe+1:2*npe,1),:); 
xyzp(te1(npe+1:2*npe,2),:)=xyzp(te1(2*npe+1:3*npe,1),:); 
xyzp(te1(2*npe+1:3*npe,2),:)=xyzp(te1(3*npe+1:4*npe,1),:); 
xyzp(te1(3*npe+1:4*npe,2),:)=xyzp(te1(4*npe+1:5*npe,1),:); 
xyzp(te1(4*npe+1:5*npe,2),:)=xyzp(te1(5*npe+1:6*npe,1),:); 
xyzp(te1(5*npe+1:6*npe,2),:)=xyzp(te1(1:npe,1),:); 
xyzp(te2(1:npe,2),:)=xyzp(te2(npe+1:2*npe,1),:); 
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xyzp(te2(npe+1:2*npe,2),:)=xyzp(te2(2*npe+1:3*npe,1),:); 
xyzp(te2(2*npe+1:3*npe,2),:)=xyzp(te2(3*npe+1:4*npe,1),:); 
xyzp(te2(3*npe+1:4*npe,2),:)=xyzp(te2(4*npe+1:5*npe,1),:); 
xyzp(te2(4*npe+1:5*npe,2),:)=xyzp(te2(5*npe+1:6*npe,1),:); 
xyzp(te2(5*npe+1:6*npe,2),:)=xyzp(te2(1:npe,1),:); 
 
%interpolate for the points within the triangles 
xyzp(intripts(1:szintp/2),1)=tsih1(xyzp(intripts(1:szintp/2),2),xyzp(intripts(1:szintp/2),3)); 
xyzp(intripts(szintp/2+1:szintp),1)=tsih2(xyzp(intripts(szintp/2+1:szintp),2),xyzp(intripts(szintp/2+1:s
zintp),3)); 
 
%deal with NaNs 
%coded for the composite crystal - NOT general! 
a=find(isnan(xyzp(:,1))); 
if (size(a,1)>0) 
    xyzp(a(1:3),1)=sum(xyzpold(a(1:3),1))/3; 
    xyzp(a(1:3),2)=sum(xyzpold(a(1:3),2))/3; 
    xyzp(a(1:3),3)=sum(xyzpold(a(1:3),3))/3; 
    xyzp(a(4:6),1)=sum(xyzpold(a(4:6),1))/3; 
    xyzp(a(4:6),2)=sum(xyzpold(a(4:6),2))/3; 
    xyzp(a(4:6),3)=sum(xyzpold(a(4:6),3))/3; 
end %if 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
%!  Corners of joined prism facets  ! 
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
'Deal with corners of pf1 & pf6' 
 
%define prism facet corners 
cp1(1)=1; 
cp1(2)=sp+4; 
cp2(1)=4*nfsl-2; 
cp2(2)=sp+4*nfsl-1; 
 
%define triangle corners 
t=zeros(4,1); 
t(1)=pfe+npe+1; 
t(2)=pfe+5*sz1t+npe+3*eval-4; 
t(3)=pfe+6*sz1t+npe+1; 
t(4)=pfe+11*sz1t+npe+3*eval-4; 
 
% xyzp(cp1(:),:) 
% xyzp(t(1:2),:) 
%  
% xyzp(cp2(:),:) 
% xyzp(t(3:4),:) 
%  
% xyzp(cp2(1),1) 
% xyzp(t(4),1) 
 
%calculate means 
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xyzp(cp1(1),:)=(xyzp(t(1),:)+xyzp(t(2),:))/2;   %xyzp(cp1(1),:)+xyzp(cp1(2),:)+ 
xyzp(cp2(1),:)=(xyzp(t(3),:)+xyzp(t(4),:))/2;   %xyzp(cp2(1),:)+xyzp(cp2(2),:)+ 
 
%apply to the other corner points 
xyzp(cp1(2),:)=xyzp(cp1(1),:); 
xyzp(cp2(2),:)=xyzp(cp2(1),:); 
xyzp(t(1),:)=xyzp(cp1(1),:); 
xyzp(t(2),:)=xyzp(cp1(1),:); 
xyzp(t(3),:)=xyzp(cp2(1),:); 
xyzp(t(4),:)=xyzp(cp2(1),:); 
 
%!!!!!!!!!!!!!!!!!!!!!!!!! 
%!  Save output crystal  ! 
%!!!!!!!!!!!!!!!!!!!!!!!!! 
'Create output file' 
 
%reverse normals of prism subfacets 
xyzpo=xyzp; 
m=0; 
for j1=1:pfe/4 
    xyzp(m+2,:)=xyzpo(m+4,:); 
    xyzp(m+4,:)=xyzpo(m+2,:); 
    m=m+4; 
end %for 
%reverse normals of hex polygons at -ve x 
for j1=1:6*sz1t/3 
    xyzp(m+2,:)=xyzpo(m+3,:); 
    xyzp(m+3,:)=xyzpo(m+2,:); 
    m=m+3; 
end %for 
 
%centre of gravity 
xcog=sum(xyzp(:,1))/np; 
ycog=sum(xyzp(:,2))/np; 
zcog=sum(xyzp(:,3))/np; 
xyzp(:,1)=xyzp(:,1)-xcog; 
xyzp(:,2)=xyzp(:,2)-ycog; 
xyzp(:,3)=xyzp(:,3)-zcog; 
 
% %split squares into triangles 
% nfold=nf; 
% nvold=nv; 
% pfeold=pfe; 
% xyzpold=xyzp; 
% nf=nf+pfe/4; 
% nv=zeros(nf,1); 
% nv(:)=3; 
% pfe=3*pfeold/2; 
% xyzp=zeros(3*nf,3); 
% m=0; 
% n=0; 
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% for j1=1:pfeold/4;   %split the squares 
%     xyzp(m+1,:)=xyzpold(n+1,:); 
%     xyzp(m+2,:)=xyzpold(n+2,:); 
%     xyzp(m+3,:)=xyzpold(n+3,:); 
%     xyzp(m+4,:)=xyzpold(n+1,:); 
%     xyzp(m+5,:)=xyzpold(n+3,:); 
%     xyzp(m+6,:)=xyzpold(n+4,:); 
%     m=m+6; 
%     n=n+4; 
% end %for 
% xyzp(pfe+1:3*nf,:)=xyzpold(pfeold+1:pfeold+12*sz1t,:); %re-add hexagon subfacets 
 
%output the finished crystal 
dlmwrite(out, nf, 'precision', '%6d') 
dlmwrite(out, nv, '-append') 
dlmwrite(out, xyzp, '-append', 'precision', '%16.15f', 'delimiter', ' ') 
 
% profile report 
% profile off 
 
 
 
%ev.m 
function [ e ] = ev( nfsl, epf ) 
%get row numbers of edge values along the prism facet 
 
e=zeros(4*nfsl+6,1); 
 
m=0; 
for j1=1:nfsl 
    fj1=4*j1+epf; 
 e(m+1)=fj1; 
 e(m+2)=fj1-1; 
 m=m+2; 
end %for 
for j1=1:nfsl 
    fj1=4*j1+epf+4*nfsl; 
 e(m+1)=fj1-3; 
 e(m+2)=fj1-2; 
 m=m+2; 
end %for 
 
end 
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%ev2a.m 
function [ e ] = ev2a( e, m, pfe, sz1t, eval, dfe ) 
%vertices from the triangle (left side) 
 
l=(dfe-1)*3; 
 
e(m+1)=pfe+l+1; 
e(m+2)=pfe+l+3*eval-4; 
e(m+3)=pfe+l+3*eval-2; 
e(m+4)=pfe+6*sz1t+l+1; 
e(m+5)=pfe+6*sz1t+l+3*eval-4; 
e(m+6)=pfe+6*sz1t+l+3*eval-2; 
 
end 
 
 
%ev2b.m 
function [ e ] = ev2b( e, m, pfe, sz1t, eval, dfe ) 
%vertices from the triangle (right side) 
 
l=(dfe-1)*3; 
 
e(m+1)=pfe+5*sz1t-l+3*eval-8; 
e(m+2)=pfe+5*sz1t-l+6*eval-11; 
e(m+3)=pfe+5*sz1t-l+6*eval-13; 
e(m+4)=pfe+11*sz1t-l+3*eval-8; 
e(m+5)=pfe+11*sz1t-l+6*eval-11; 
e(m+6)=pfe+11*sz1t-l+6*eval-13; 
 
end 
 
 
%pfer.m 
function [ p ] = pfer( p, r, yv, zv, angle ) 
%perform a prism facet edge rotation 
 
ca=cos(angle); 
sa=sin(angle); 
p(:,2)=p(:,2)-yv; 
p(:,3)=p(:,3)-zv; 
tp=p; 
 
%perform the rotation 
p(r(:),2)=ca*tp(r(:),2) - sa*tp(r(:),3); 
p(r(:),3)=sa*tp(r(:),2) + ca*tp(r(:),3); 
 
%shift the points back from the rotation axis 
p(:,2)=p(:,2)+yv; 
p(:,3)=p(:,3)+zv; 
 
end 
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9.5 srfh.m 
 
%plot a crystal file with any geometry 
 
close all 
 
%read in data 
data=dlmread('fcc.crystal'); 
nfacets=data(1,1); 
nvert=data(2:nfacets+1,1); 
xyzp=data(nfacets+2:size(data(:,1)),:); 
 
%move xyz points to zero position 
xyzp(:,1)=xyzp(:,1)-mean(xyzp(:,1)); 
xyzp(:,2)=xyzp(:,2)-mean(xyzp(:,2)); 
xyzp(:,3)=xyzp(:,3)-mean(xyzp(:,3)); 
 
%plot the first facet 
pts=zeros(nvert(1)+1,3); 
for j2=1:nvert(1) 
    if (j2==1) 
        pts(1,:)=xyzp(1,:); 
        pts(nvert(1)+1,:)=xyzp(1,:); 
    else 
        pts(j2,:)=xyzp(j2,:); 
    end %if 
end %for 
figure 
plot3(pts(:,1),pts(:,2),pts(:,3),'k'); 
hold on 
 
%plot the rest 
m=nvert(1);%+sum(nvert(2:2799)); 
for j1=2:size(nvert) 
% for j1=2800:3072%3073:3328%size(nvert) 
    pts=zeros(nvert(j1)+1,3);   %+1 to join the start & end points 
    for j2=1:nvert(j1) 
        m=m+1; 
        if (j2==1) 
            pts(1,:)=xyzp(m,:); 
            pts(nvert(j1)+1,:)=xyzp(m,:); 
        else 
            pts(j2,:)=xyzp(m,:); 
        end %if 
    end %for 
    plot3(pts(:,1),pts(:,2),pts(:,3),'k'); 
end %for 
 
hold off 
 
%set the axes limits 
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axval=6; 
axis([-axval axval -axval axval -axval axval]) 
 
%label the axes 
xlabel('X (\mum)','FontSize',10) 
ylabel('Y (\mum)','FontSize',10) 
zlabel('Z (\mum)','FontSize',10) 


