
A symmetry-based formalism for array subtyping

A Shafarenko
Department of Computer Science

University of Hertfordshire, Hatfield, England
e-mail: a.shafarenko@herst.ac.uk

Abstract

This paper presents an array algebra based on the
concept of symmetry. The symmetries taken into ac-
count are translational, affine and polyhedral sym-
metry as well as access symmetry inherent in dis-
tributed arrays. The full set of data-parallel array
operations is represented in terms of 4 fundamen-
tal skeletons: Map, Juxtapose, Select and Concate-
nate which are strongly typed and overloaded for all
combinations of operand symmetries. A hierarchy
of three further skeletons are used as parameters to
Map in order to express reductions: commutative-
associative, associative but not commutative, and
neither associative nor commutative. Any user-
defined part of the computation is represented in
the form of scalar functions as skeleton parameters,
without any loss of generality. Successful type in-
ference in the presence of subtyping is enabled by a
homomorphism restriction imposed on all overload-
ings of the skeletons. As a result, we are able to infer
the most symmetric type of any well-formed term,
which is usually the cheapest one to compute.

1 Introduction

An important property of arrays is their uniformity.
An array in the narrow sense is a set of elements of
the same type distinguished by a multi-index, which
usually ranges over the Cartesian product of integer
intervals. The type uniformity of elements does not
imply any uniformity of the element values, or loca-
tions or the cost of accessing them. Arrays per se are
just type-uniform collections. This abstraction does
not always correspond to the concrete arrays used in
applications, where the properties (or values) of dif-
ferent elements are not entirely independent.

When an object is characterised by fewer parame-
ters than it has degrees of freedom, it is often associ-
ated with some form of symmetry. Spatial symmetry,
which is relevant to multidimensional arrays, mani-
fests itself in geometry: for example, a square is a
parallelogram with equal sides and is thus fully de-
fined by one parameter, a cube is a particular type
of prism, etc.Symmetry is gradeable: there can be
more or less symmetry in an object, which gives rise
to symmetry-based hierarchical classifications. For
instance, an elipsoid (three parameters) can be ax-
ially symmetric about x, y or z axis (two parame-
ters), or a sphere (one parameter), which is a subclass
of them all. Spatial symmetry can also be manifest
in properties other than shape, notably in array val-



ues which may depend on a combination of indices
rather than each of them individually. In particular,
users of APL[BPP88] are quite familiar with transla-
tional symmety of arrays, even though they may not
use this paricular term. Indeed, one can easily con-
struct array objects in APL which depend only on a
subset of their indices.

This paper will report the results of our effort to
take symmetry into account systematically through-
out an array formalism for data-parallel (and to some
extent, process-parallel) processing of arrays. It will
define and explore high-order operators that use such
symmetry. A type system with subtyping will be out-
lined, which is capable of determining the most sym-
metric type of an expression. This information can
be used by a compiler to derive the data distribution
and the execution schedule of an array-based code.

2 Restrictive subtyping

Since symmetry is usually gradable, there is always
a classification of objects in the increasing order
of symmetry (which can be partial to allow incom-
mensurable symmetry types). We must reflect this
classification in an inclusion relation on types(see
[Rey85]), also known as subtyping, which has to be
maintained by a type system throughout our formal-
ism. Also, the explicit account of symmetry that
has a complex Cartesian structure creates too many
symmetry-specific versions of each operator. It is
possible, however, to use overloading to reduce this
number, provided that the type system is able to dis-
ambiguate any operation to its specific type using the
context it occurs in. The following restriction is nec-
essary to avoid unpredictable result types:

Definition 2.1 (Homomorphism restriction) For an
overloaded operator L, overloadings L

�
1 � :: a1 � b1

and L
�
2 � :: a2 � b2 are said to satisfy the homomor-

phism restriction when either

1. a1 � a2 ��� , or

2. a1 � a2 � a0 ���� , in which case one of the pair
b1,b2 must be included in the other and the fol-
lowing equation must hold for any value of X of
type a0:

cb2 	 b1 
 L
�
2 � 
 ca0 	 a2 X ��� � L

�
1 � 
 ca0 	 a1 X ��


if b2 � b1, or

cb1 	 b2 
 L
�
1 � 
 ca0 	 a1 X ��� � L

�
2 � 
 ca0 	 a2 X ��


otherwise. (Here � denotes the greatest lower
bound of two elements and � is the only subtype
of all possible types.)

An operator is said to satisfy the homomorphism
restriction if all its overloadings do pairwise. For any
instance of the operator where more than one over-
loading is compatible with the type of the operand,
the one with the least result type is chosen. If in fact
a different one was intended, which has a senior re-
sult type, the context would expect that type of the
result. In this case the compiler should insert the ap-
propriate coercion automatically, which, due to the
homomorphism restriction, would have the same ef-
fect as the intended overloading.

For the Cartesian product of types, we introduce
a standard subsumption order whereby a junior tuple
must be junior in all components. Due to the stan-
dard subsumption we will always obtain type lattices
from products of linearly ordered, bounded subtypes.
We shall therefore always assume that we can deal
with individual components of the multitype sepa-
rately: while introducing a subtyping in one compo-
nent, exact matching of the other components can be
assumed without loss of generality.

As far as type constructors are concerned, µ-
recursion on array types is not allowed as it would
introduce nesting. This means that for any multitype



DIMENSION Q(IL,JL,KL),V(KL)
DIMENSION W(JL,IL)
...
DO I=1,IL
DO J=1,JL

DO K=1,KL
Q(I,J,K)=V(K)*W(J,I)

END DO
END DO

END DO

Figure 1: Example of a vectorisable loop nest

there is a non-array element type, or el-type compo-
nent, which, although not an array, can be as com-
plex and abstract as the type system can handle. In
particular, it can be a disjoint union or a µ-abstraction
if the subtyping logic can resolve the subtyping of
such types. It can also be an arrow type introduc-
ing an array of functions. In the last case, however,
another non-nesting restriction applies: each element
function must return a scalar. Otherwise applying the
array of functions to an argument would result in an
array of generally incongruent arrays, i.e. a nested
data structure. However, only the el-type has to be
restricted this way: indeed, if a function is not an ar-
ray element, its application can not produce a nested
array (see next section).

3 Translational symmetry

Fig 1 shows an example of a vectorisable loop nest as
it appears in Fortran. This example uses 3 arrays of
different ranks in a treble loop nest. Consequently,
some of the indexed variables will not depend on
some of the loop indices, for example V(K) is not
affected by I- or J-iterations and W(J,I) does not
change with iterations in K.

Definition 3.1 An m-orientation of a rank-R array A
is an array object that, if indexed with � i0 
 i1 
������ 
 ir � ,
where r equals the length of the mask � m � , selects
the element � j0 
 j1 
������ 
 jR � of the array A, with the in-
dices � j0 
 j1 
������ 
 jR � drawn from � i0 
 i1 
������ 
 ir � accord-
ing to the Boolean mask m in order. The number of
ones in a Boolean mask is called the character of the
mask and is denoted � m. For any valid orientation
of A, � m � R.

Note that orientation introduces translational sym-
metry in each result dimension corresponding to a
zero in the mask.

Using orientations instead of the original arrays
one can bring the example in fig 1 to a common
dimensionality and then drop the explicit iteration
space altogether:

Q=[001]V * [110]W’

where the prime denotes matrix transposition. The
notation here is syntactically similar to the “numbers
in brackets” of APL 2[BPP88].

In a complete data-parallel formalism, it should be
possible to apply a function to an array. Although we
can limit our analysis to a function of a single argu-
ment (and use currying), the function must have a
certain rank: since the rank is a component of the
multi-type, a function must have a static type signa-
ture in the rank component. If a function is applied
to an object of a rank higher than the one the func-
tion expects for the argument, this can only be inter-
preted as a data-parallel application of the function
in the extra dimensions.

Definition 3.2 An m-orientation of a function of a
rank-r argument is a function that accepts an array
argument of a higher rank R � � m ��� r. It uses a sub-
set of the argument indices, according to the mask m,
with the rest of the indices appended to the index list
of the function result.



Note that array of scalar functions of arrays is as far
as the type construction may proceed without intro-
ducing nesting in the model, which raises the ques-
tion of what exactly gets orientated if orientation is
applied to such an array. Is it the array itself or the ar-
guments of all the functions that it has as elements?
In fact, the former takes place while the latter can
only be achieved by mapping the orientation opera-
tor onto the array, see section 7.

Although any valid orientation must use an ex-
plicit constant mask with the character equal to the
rank, a function symbol can be overloaded to rep-
resent a member of a family of functions with dif-
ferent argument ranks. For example, denote as sum
the function that computes the sum of the elements
of its argument. There is a family of such func-
tions, parametrised with the argument rank (this is
the only way to introduce sum with a definite type
signature). For example, the type system should
have no difficulty in determining that the sum in
([011]sum) B is two-dimensional, so this ex-
pression evaluates to a vector vi � ∑ j � k Bi jk.

The fact that an array object has an additional spa-
tial symmetry is very important in distributed paral-
lel computing. It enables the compiler to map the
array elements in such a way that series of identical
values need not be distributed but can, if necessary,
be obtained by broadcasting. It is of benefit therefore
to make the information about orientation a compo-
nent of the multitype by replacing the rank by a rank
mask, which indicates by 1’s the object axes along
which the elements change and by 0’s those ones that
have translational symmetry. For example, if orien-
tation 01 is applied to a vector, that vector becomes
a matrix each row of which is a replica of the origi-
nal vector. Obviously, the rank proper is equal to the
length of the rank mask. Wherever symmetry is not
important we shall continue to use numerical rank in-
stead of the mask, assuming that any valid rank mask
is acceptable.

The type inclusion relation for types of transla-
tional symmetry follows from the fact that the lack of
symmetry along an axis is a more general case than
its presence, taking into account that symmetries as-
sociated with different axes are independent.

Definition 3.3 Let two objects x and y have differ-
ent rank masks ρ 
 x � �� ρ 
 y � , with the actual ranks
being the same: � ρ 
 x � � � � ρ 
 y � � � r. Then the type
inclusion relation ρ 
 x � � ρ 
 y � is defined by the par-
tial order 
 � i : 1 � � r � ρ 
 x � i � ρ 
 y � i, according to the
standard subsumption.

The list of object dimensions, also called the array
shape, is not (can not be made) part of the multitype
if geometric operations on arrays are are allowed; it
is therefore part of the object value. It is represented
as the shape vector s : Nr� , where N � � N ��� ∞ � ,
which at all times must satisfy the condition (the
double arrow denotes implication):


 � i : 1 � � r � 
 ρ 
 x � i � 1 �
	 
 si � ∞ � 

that is, all nonreplicated dimensions must be finite.

The orientation symbol used above for array ori-
entation (a mask in square brackets) has the follow-
ing “rank-mask signature”:


 � a : � a � � � m ��� m1 � � mn � : � ai � � � b j � 

where

b j �
�

aω 
 m � j � 
 ifm j � 1
0 
 otherwise

�

Here ω 
 m 
 j � � ∑ j
k � 1 mk.

Rank masks of different lengths (i.e. correspond-
ing to different dimensionalities) are incommensu-
rable. One can, however, drop some, or all, of the
translationally symmetric axes using the projection
operator �m whose application to any sequence � ai �



results in the sequence of elements � a ji � correspond-
ing to the ones in mask m, in the same order. If
the projection operator is applied to an array, it ef-
fectively prefixes the sequence of indices to that ar-
ray. Such an application is legal only if � a � � � m � and


 � i : 1 � � � m � � 
 mi � 0 � 	 
 ai � 0 � , which means that
the discarded indices have no effect on the element
value.

It is convenient to define the action of orientation
� m � on a bit sequence, too, in addition to its effect
on arrays: we shall assume that � m � v for any bit se-
quence v denotes the result of replacing all 1’s in the
mask by the members of v, in order. For example,
� 10110 � 101 � 10010 and � 10110 � 010 � 00100. This
form of orientation will be required later in the anal-
ysis of affine symmetry.

For any array A and mask m,

�m � m � A � A 

provided the orientation is valid.

Finally, we join all rank lattices together at the
bottom, by making every scalar type a member of
all ranks since this only introduces unambiguous up-
grading coercions.

4 Individual access symmetry

Abstract parallelism of data can be described as the
lack of interference between different elements of a
nonscalar assignment so that the hardware may per-
form all elemental assignments at once. In prac-
tice, however, a distributed implementation would
perform DP assignment in a certain order to min-
imise the communication and scheduling costs. In
the simplest case of a rectangular processor array,
data objects participating in the same DP operation
will be co-mapped onto the array with a certain block
size. Although scheduling of different blocks may

be totally independent, within a block computing is
strictly sequential.

To separate out objects with different symmetries
the model requires an a priori access cost, which
is an asymptotic (N

�
1, with N being the object

size) measure that guides the user in the choice of
the correct access type. For the purposes of classi-
fication, the machine is modelled as a single array
processor that retrieves arrays as wholes from shared
memory into its internal storage and then performs
operations. The cost estimates ignore local storage
access overheads.

Definition 4.1 The a priori access cost is a triplet


 cτ 
 cα 
 cρ � , where cτ is the cost of total access, i.e.
retrieval of all items of the arrangement, but not nec-
essarily in order; cα is the maximum cost of affine
access, i.e. an arrangement of array elements with
the indices forming an arithmetic progression, and
cρ is the maximum cost of random access.

Now we are in a position to introduce access sub-
types, initially for a single dimension of an array,
by giving upper bounds to the corresponding access
costs.

Subtype cτ cα cρ
locator O 
 N � O 
 N � O 
 N �
collector O 
 1 � O 
 log N � O 
 logN �
sequencer O 
 1 � O 
 1 � O 
 logN �
director O 
 1 � O 
 1 � O 
 1 �
replicator 0 0 0

The intuition for a locator object is a localised ar-
rangement of indexed items. Since no distribution
across a parallel system is assumed, all the access
costs are proportional to the number of elements. A
collector is the simplest possible DP arrangement.
The intuition behind it is that the object is well-
distributed but not structured in any way. It should
be possible to access all of it in unit time, but any



given processor may receive an arbitrary subset of
the indices. Such an arrangement is quite acceptable
for operations such as reductions as long as those
are based on a commutative, associative operation.
Putting a collector into a given order will necessitate
sorting, hence a higher cost of affine and random ac-
cess.Sequencer is the most frequent access type. Its
main purpose is to define array structures with local-
ity, i.e. the ability to be shifted and/or decimated in
place at negligible cost. Asymptotically the cost of
any linearly ordered selection of elements is of or-
der unity, which reflects the fact that only a small
number of elements need to be exchanged between
processors at a relative cost of O 
 1 � N � vanishing as
N � ∞. Arbitrary indexing, however, violates lo-
cality and hence still requires at least a parallel sort,
which is reflected in the respective cost component.
Director is obviously the least restricted access to an
array distributed across a parallel processing system.
Note that at present this is also the only intuition of
cost the user of Fortran-90[For91] can be expected
to have, as it is the one corresponding to the random-
access model of Fortran and the natural meaning of
synchronous data-parallelism.

The above definitions also define the chain of type
inclusions replicator � director � sequencer �
collector

�
locator, which is a linear order on types.

Definition 4.2 The access type of a multidimen-
sional object is the Cartesian product of per-axis
types.

The type inclusion relation between multidimen-
sional access types is one of partial order: a subtype
has to be junior in all dimensions of a supertype. Ob-
jects of different ranks have incommensurable access
types. All access types with a common rank form a
lattice.

The cost intuition based on the above hierarchy
may suggest that one should use types that cost the

least. This is not the case. The real objective is
to maximise the access type consistent with a given
usage of the object, as that reduces the importance
of efficient data access. For example, if a piece of
program does not require random access to a non-
scalar object and only uses regular selections from
it, the object should have the type sequencer. This
would prompt a compiler to choose the block distri-
bution mode. On the other hand, the type “director”
may cause a pseudo-random distribution with a large
communication cost.

5 Collective access symmetry

The previous section introduced access classification
for a single nonscalar object. In real applications, a
few nonscalar objects participate in an expression,
with the data dependencies causing strong correla-
tions between their patterns of access. For example,
the most frequent occurrence of a matrix X could be
as an operand to an element-wise operator that adds
it to another matrix Y . Although each matrix may
be implemented as an ss-type object which ensures a
low access cost of O 
 1 � , the executing agent would
have to “zip” the elements of X and Y with matching
indices since arithmetic operations can only be per-
formed having both operands in the same place. In
our simplified costing model, the cost expectancy of
the zipping is at least logN since one of the operands
has to be recast to be co-located with the other.

Considering a set of objects participating in a DP
computation, one can introduce the relationship of
alignment between individual axes belonging to dif-
ferent objects. The axes that are not aligned by the
computation remain independent. This leads to the
introduction of a joint alignment space (JAS), which
can be treated as a pseudo-object having no content
or shape, but which has a certain rank (i.e., the num-
ber of axes) and a definite access type. Then each



real object is assumed to be aligned with the JAS in
each of its dimensions. Those dimensions acquire
the access type associated with the corresponding
axes of the JAS.

The only language feature that is required to intro-
duce alignment is therefore a declaration of access
type synonyms via an explicit JAS. For example, the
following is a definition (in some syntax) of 4 objects
using the JAS atmo with three axis (ellipses denote
irrelevant components of type):

syntype atmo=(s,s,d) in

Elevation: ac-
cess=(atmo.1, atmo.2) ...

DurationOfWinter: ac-
cess=atmo.2 ...

Temperature: ac-
cess=(atmo.1,atmo.2,atmo.3) ...

GravityForce: ac-
cess=atmo.3 ...

<... body of the block...>

end_syntype

Here objects Elevation and Temperature
are aligned in the first two dimensions, the sec-
ond axis of Temperature is aligned with the
axis of DurationOfWinter and the second axis
of Elevation, etc. In addition atmo.1,2 are
equivalent to sequencer and atmo.3 is a synonym
of director.

6 Data-parallel skeletons

In order for the hierarchy defined above to be useful,
the operators acting on arrays should be given ac-
cess types. That means that although without access
types, any operator can be applied to any array (all

the other type components permitting), as soon as a
lattice of access types is introduced in every rank,
an operator must be set at some node of this lattice
that corresponds to its principal access type. If the
operand(s) fall short of the principal type, appropri-
ate coercions are inserted by the type system. Out
of the set of possible overloadings, the one with the
least type compatible with the types of the operands
is used.

In the framework of the skeleton approach[Col89],
the DP operators can be regarded as instances of a
few high-order functions that depend on functional
parameters. Let us denote as rx the type of an array
which has rank r and el-type x. When a superscript
follows a type variable, as in xn, this denotes a prod-
uct type, i.e. the type of all n-tuples of objects of
type x. When we use both preceding and succeeding
superscripts, this can be either an array of tuples or a
tuple of arrays. To avoid any ambiguity, parentheses
should be used in all such cases. Finally, wherever
the access component of type must be specified, it
will be denoted by a preceding subscript, so 2

slt de-
notes the type of any 2d array with el-type t whose
access types in the first and second dimensions are s
and l, respectively. Note that sl in this example is, in
fact, the Cartesian product of per-axis types (see def.
4.2), which makes it legal to use power notation, e.g.
c3 � ccc.

7 Map.

This is the fundamental skeleton of DP computing.
It applies a pure function to an array element-wise
and has the following type signature:


 � r � 0 
 a 
 b � 
 0a � 0b � � ra � rb 

which introduces overloading in rank. For any func-
tion f , Map f is indifferent to the access type of the



argument: the access part of the signature is there-
fore fully decoupled from the rest and is given by


 � r � 0 
 x � lr � 
 � � x � x 

where l is the locator access type and 
 � is the access
type of a scalar.

A generic Map skeleton must also allow the func-
tion argument to accept arrays of any rank not ex-
ceeding the rank of the second argument of the Map.
Therefore, a family of skeletons � Mapm � is required,
which is parametrised by an orientation mask m, with
the following signature:


 � k � � m � ; � a 
 b � 
�� ma � 0b � � ka � k � � mb �
Now let us define the (still disjoint) access type

signature of Mapm:


 � y : 
 �my � � x � 
 x � 
 ��� � y � 
 �my � 

where the bar above m is the standard denotation of
bit compliment, and the hat over the mask denotes
the projection operator defined earlier. Note that the
first argument, a function returning a scalar, is anti-
monotonic in the access type of its argument.

The above access type signature assumes an im-
portant principle of locality: wherever a function ap-
plication is element-wise along an axis of its argu-
ment, it conserves the access type of that axis. The
justification of the locality principle is that it costs
the same to obtain a value or any scalar function of it
from memory.

Observe that according to the signature, the
operand axes unaffected by the function application
carry their access types through to the result, and
therefore the result array becomes aligned with the
operand automatically.

The functional parameter can be any function
taking rank � m into rank 0 (this guarantees non-
nesting). However, three important cases below

structure the functional parameter further, down to
the level of scalar user-defined functions, which can
be regarded as operator-parameters, and hence be
treated algebraically.

Computation. This is a case of applying the func-
tional parameter to the nonscalar argument to com-
pute a new array. If the rank of the functional param-
eter argument is 0 then it defines an ordinary unary
operator, such as 
�� � ; if the rank is 1 or higher, the
meaning of the Map is one of a reduction. Consider
the following subskeletons:

Γl : 
 � a 
 b � 0 
 a � b � a � � 0a � 1
l b � 0a 


Γs : 
 � a � 0 
 a � a � a � � 0a � 1
s a � 0a 


Γc : 
 � a 
 r � 0 
 a � a � a � � 0a � r
cr a � 0a �

The reader familiar with high-order functions will
easily recognise the foldr type signature of Γs,
which has the meaning of a reduction with any as-
sociative (but not necessarily commutative) operator
typed 
 a � b � a � and its identity value typed a.
Due to noncommutativity, the access signature re-
quires type sequencer for the last argument. If the
reduction operator is commutative as well, Γc should
be used instead, generally with an increase in par-
allelism. Γc is polymorphic in the rank of the last
argument as its semantics is not sensitive to the array
structure: indeed it uses the array argument as a bag.
Now, for example, the sum operator can be defined
thus:

���	�
m A � Mapm 
 Γc 
 
 � 0 � A

where 0 is overloaded consistently with the plus. Fi-
nally Γl describes the most general reduction process
that goes sequentially from index 0 to the maximum
index, and which does not require its first argument
to have any algebraic properties whatsoever.



Selection. This is a case of using the nonscalar
argument of Map to provide some location infor-
mation that the functional parameter can use to se-
lect a specific element from another array: such a
function can always be represented as λx � 
 ΞS f 
 x ��� ,
with some numerical function f , some array S and
the constant Ξ being the element selection function
which returns the element of its first argument se-
lected using the second argument as an index tuple.

Function Ξ must be polymorphic in its array ar-
gument (source) since it does not use the contents
of individual elements. There is no need to distin-
guish different rank versions either, since the rank of
the first argument determines the rest of the signature
unambiguously. The resulting signature is as follows

Ξ : 
 � r � 0 
 A � rA � intr � 0A

It is tempting to express the whole variety of selec-
tions via Ξ overloadings. This however is not possi-
ble due to their insensitivity to the access type of the
nonscalar index since only a scalar element of it is
used at any given time. The only access type Ξ can
assume is this:

Ξ : dr � 
 � � 
 �

which demands direct access to the array argument
along all axes. Since there are many element se-
lections that are more complex than that, and at the
same time are satisfied with more basic access to the
array, such a primitive is unsatisfactory. We shall
discuss selections as a separate skeleton in section 9.

Concluding this section, it should be noted that
user-defined functions for Map need not be non-
scalar, since a nonscalar functional parameter can al-
ways be expressed in terms of one of the constant
skeletons Γ.

8 Juxtapose.

The purpose of this skeleton is to penetrate the array
structure of each of its two arguments down to the
individual elements and then collect the pairs of ele-
ments with the same multi-index into a new array of
the conforming shape.

The type signature is as follows:


 � a 
 b � ra � rb � r 
 a 
 b � 

and the result rank mask m is the bitwise “or” of the
rank masks of the arguments: m � ma � mb.

Here we need to decide how to deal with the shape
attributes of the arguments and result. On the one
hand, the intuition of shape has always been close to
that of a type attribute, i.e. one would rather require
the exact congruence of the operand index spaces.
On the other hand, any attempt to make the shape a
type attribute (see, for example, [HM93]) fails as the
use of any reasonably comprehensive array formal-
ism renders shape conformity undecidable. Conse-
quently, the shape of an array has to be part of its run
time value. Instead of exact conformity, we are fol-
lowing the example of f-code [MSS93]: every extent
of the result is the smaller of the respective extents
of the operands. Similar to exact conformity of the
operands, this “intersection” rule can be applied to a
group of objects in any order.

The access type signature for juxtaposition is quite
intricate. There are four principal overloadings for
every pair of corresponding axes:

1. Aligned types. Any access type is acceptable,
since using the access mechanism of either of
the operands the system will locate both ele-
ments of the result pair at once. The result is
aligned with the operand axes.

2. Unaligned types; the senior type is l. If the other
argument is a locator as well, the result can be



aligned with either of the arguments at the same
cost. Moreover, aligning the result with a differ-
ent index space is not a priori cheaper. There-
fore there is no natural choice of alignment for
the case and the juxtaposition of two unaligned
locator axes is undefined. Consequently the
type system will assume two locator arrays to
be aligned if it encounters their juxtaposition.
If the other argument is not a locator, the sys-
tem will perform a poll to gather the elements
of the other axis and align them with the locator
dimension. The result type is locator.

3. Unaligned types; the senior type is c. Since a
collector has no intrinsic order, it can not be jux-
taposed with another collector axis other than
by sorting both in the same order, which is es-
sentially the coercion of both operands to an
aligned sequencer type. Such an action is sim-
ilar to a downgrading coercion and so ought to
be explicit. The same applies to juxtaposing a
collector with a sequencer except that the se-
quencer argument need not be sorted. However,
if the other argument is a director or replicator,
the juxtaposition is valid. The result type is col-
lector in either case, and the result alignment is
with the collector operand.

4. Unaligned types; the senior type is junior to c.
The result access type is the senior of the argu-
ment types and the result axis is aligned with
that of the senior type argument if the types are
different. If the types arre the same, the result
has the same access type and is aligned with
neither of the arguments, since different por-
tions of the object could be aligned either way
to reduce the cost.

Note that juxtaposition can be generalised to any
n objects by applying the rules repeatedly and then

flattening the result el-type tuple:


�
 ����� 
 a1 
 a2 ��
 a3 ��
������ 
 an ��� � � 
 a1 
 a2 
������ 
 an � �
We shall denote such a juxtaposition by double
square brackets:

� � A1 
 A2 
������ 
 An � �

9 Select.

There are two reasons for treating selections sepa-
rately from the Map skeleton. Firstly, as was men-
tioned in section 7, they are sensitive to the access
type of the array source. Secondly, a more complex
subtyping structure is required for the nonscalar in-
dex argument, which combines the already encoun-
tered translational with yet another, affine, symme-
try, which occurs in integer objects.

The type signature of the Select skeleton is as fol-
lows:

Sel :: 
 � r
 d 
 x � rx � 
 d I � r � dx 

where dI is some rank-d index type defined below,
which we shall assume to be a subtype of d int. (Re-
member that the notation tn is used for the nth power
of type t in the Cartesian product sense, i.e. the type
of n-tuples of type-x components.)

9.1 Affine integer type.

In this section we shall use the translational symme-
try notation introduced in the end of section 3.

Definition 9.1 The purely affine type dA is the type
of all d-dimensional, integer arrays v whose ele-
ments satisfy the following formula

vi1i2 � � � id �
d

∑
k � 1

a
�
k � ik 
 b



with some integer a
�
k � and b. (The superscript is in

brackets to avoid any confusion with Cartesian pow-
ers of types)

For example, the vector 
 3 
 5 
 7 � is of type 1A, with

a
�
1 � � 2 and b � 3, while the matrix

�
2 20
5 23 � is of

type 2A with a
�
1 � � 18, a

�
2 � � 3 and b � 2. If an ar-

ray is purely affine, the implementation should only
store the coefficients of the affine form since the el-
ement values can always be re-evaluated from them.
Since the number of coefficients required in all cases
is very small, the affine dimensions assume the ac-
cess type replicator.

An array may not have a purely affine type, with
some of the dimensions still being purely affine. The
importance of partially affine access to arrays has
been acknowledged in a recent publication [LCB00],
where several supercomputer applications with par-
tial affinity were analysed. In our theory the most
general case is described by the following expres-
sion:

vj �
n

∑
k � 1

a
�
k �

p ik



bp 


where p � �mj, ik � � �mj � k , for some mask m, and all
the coefficients are of the same rank � m � � m � � n.

Definition 9.2 The index type dI is a type of a d-
dimensional, integer array, all elements of which sat-
isfy the above formula with some mask m, � m � �
d and rank-l coefficients (where l � � m) a

�
k � and

b. The general index type is fully defined by two
Boolean masks:

τ � � m � � � m�
k � 1

ρ 
 a
�
k � ��� � ρ 
 b � 


which indicates by 1’s which dimensions have trans-
lational symmetry, and

α � m 


ci � j� �
bi j 	 ci a ji 	 c j� � � �

ci ai 	 b j 	 c c j� � � �
ai 	 c b j 	 c� �

c

Figure 2: 2d affine type classification.

showing which dimensions have affine symmetry.

The data constructor ϒ for the general index type
is parametrised with the mask α and accepts as the
argument an 
 l 
 1 � -tuple (where l � � α) of affine-
form coefficients of equal rank:

ϒα � a
�
1 � : e1 
 a

�
2 � : e2 
������ 
 a

�
l � : el 
 b � 


where the integer scalars e1 � � el define the dimensions
of the result along the affine axes (The rest of the
shape is determined by the minimum of the respec-
tive dimensions of the affine form coefficients, since,
in effect, this is a case of juxtaposition).

Now we are well-equipped to define affine subtyp-
ing on type nint. For a single dimension the type
inclusion relation is as follows:

ts � as � ns 

where “ts” stands for translational symmetry, “as”
for affine symmetry and “ns” for no symmetry. As
before, a multidimensional subtype must be junior
or equal to a supertype in all dimensions. We exem-
plify the type lattice in fig 2, where the case d � 2
is displayed. Every formula placed at a node of the
lattice defines the structure of all 2d integer array ob-
jects having the corresponding subtype, with the in-
dices i and j ranging over their first and second di-
mensions and the coefficients a, b and c determining



the value of respective 
 i 
 j � -elements of it. For ex-
ample, if object A has the affine type defined by the
structural formula a ji



b j , this means that the values

of its elements at any given time satisfy the condition


�� a j 
 b j
�

i 
 j � Ai � j � a ji



b j , with some integer coef-
ficients a and b. This is a case of affine symmetry
in dimension i and no symmetry in dimension j. For
all the subtypes, the number of indices to a, b and c
and their relations to the first and the second index of
array A are static1 and form the type of the affine ob-
ject. It should be clear now in what sense the affine
type defined, for example, by the structure ai



c is a

subtype of the one defined by ai



b j



c: the former
is an instance of the latter with b statically known
to be equal to zero. Similarly, type ai



b j



c is an

instance of bi j



ci for which bi is statically known
not to depend on i and for which ci is known to be a
linear function of i, namely ai



c with some (new)

a and c. One can also say that the former type is a
subtype of the latter since it has affine symmetry in
dimension i, whereas the latter type has no symmetry
in that dimension, with the type of other dimension
being the same. Incidentally, the fact that the tem-
plate b j



ci (as distinct from bi j



ci) does not exist

is explained by the disjunctive structure of τ: since
the presence of ci makes the i � axis nonsymmetric
already, it would not matter if bi did not depend on i.

The top element of the lattice in each rank rep-
resents an ordinary array in that rank, whereas the
bottom element of the lattice is always a replicated
integer scalar. The lattice contains orientated purely-
affine types of all dimensions less than or equal to
that of the top element, as well as general index types
with partial affine symmetry.

The access type of an axis of affine symmetry is
replicator, as, obviously, any virtual processor is in
a position to compute any element of an arithmetic

1this information follows from the rank masks of the respec-
tive arrays

progression immediately given its step and starting
values.

What is the intention of affine integer types? They
compactify the variety of selection primitives which
would otherwise have to be different functions. For
example, slicing a diagonal off a matrix A requires a
separate primitive in the standard paradigm, whereas
it is in fact general indexing in the form A 
 Xi 
 Yi � ,
where X and Y are statically known to be arith-
metic progressions with some starting and step val-
ues. What if Y is an arbitrary integer vector? Can we
still usefully exploit the fact that X remains a linear
sequence? The answer is negative for the standard
paradigm, as it would introduce yet another primi-
tive (curved diagonal?). However, all that is really
required is proper subtyping of index objects so that
the variety of selections available to the programmer
may include all possible affine symmetries rather
than some particular cases that appear “practically
important” at present. In the next section we shall
propose a single primitive that in our type system
can be overloaded for all ranks and affine types of in-
dex so that the compiler may statically know which
affine version of selection is used. The type lattice
of affine types will enable it to approximate the ver-
sions that it is not profitable to implement separately
if the exploitation of the respective symmetry in the
target architecture is impossible.

9.2 Sel skeleton.

This function takes as many other arguments as the
rank of the first one, the source. The reason they
are not juxtaposed (as one would expect the indices
to the same element selection operation to be) is be-
cause we do not wish to coerce the nonscalar index
tuple to a single affine type. Such a coercion would
cause a loss of type information and, as a result, may
lead to excessive generalisation. Nevertheless, as far
as the result contents are concerned, these can be de-



fined element-wise as follows:


 Sel Z X0 X1 ����� Xn � k � 
 Map 
 ΞZ � � � X0 
 X1 
������ 
 Xn � � � k
for any valid multi-index k.2

However, function Sel, unlike Map, can use the
information about affine symmetries of the indices as
well as the source argument access type to choose the
most efficient particular selection. This is achieved
by overloading Sel for any combination of τ and α
of each index argument. If we restrict ourselves to
a maximum of 3 dimensions, in the worst case Sel
should receive three index objects, each being 3-
dimensional at most; we have therefore 3 � 3 � 9
per-axis affine types, each being one of � ns 
 as 
 ts �
in every dimension of the juxtaposition space, and
a total of 39 affine overloadings of Sel. This num-
ber, though large, is finite, and can easily be reduced
in any specific implementation since firstly, the indi-
vidual indices are all acting in the same way so that
an implementation could have a regular method of
generating selection overloadings, and secondly, the
affine lattice provides type approximations for any
lesser system of overloadings should the full set turn
out to be impractical.

The access type requirements for the source of the
Sel function are very easy to establish. Indeed, if the
index corresponding to an axis of the source has an
affine dimension, the axis type can be as high as se-
quencer. This is because the implementation can al-
ways decompose the selection across the affine axis
so that it becomes a set of regular SLICE-like oper-
ations which do not require more than the sequencer
access type. Otherwise the source axis is required
to be a director. Sel is obviously polymorphic in the
access type of all indices.

How is the access type of the result defined? Gen-
erally speaking, the selection operation creates an

2This is not how Sel should be implemented, see section 7;
we only use Ξ to define the value of the result

object entirely different from the source one: it may
have a different rank and may contain an arbitrary
subset of the source elements in each dimension,
possibly with repetitions. One can not apply the prin-
ciple of locality to the result of a selection since the
operation itself is essentially nonlocal and so every
dimension of the result is associated with n collinear
axes of the indices (n being the rank of the source),
each having its own access type. A solution exists,
however, which is as follows.

Denote as � wk � the access type tuple of
� � X0 
 X1 
������ 
 Xn � � . For any k, consider the following
cases:

1. wk is senior to type replicator. The respective
result axis has the same type and alignment.

2. wk is of type replicator. If the kth axis of each of
the X0 
 X1 
������ 
 Xn is translationally symmetric,
so is the result axis, and it has the same type
and alignment. Else if all but one axis are such,
with the remaining axis of an Xm being affine,
then the result axis is aligned with the mth axis
of the source. Otherwise, same as case 1.

In the general case the result of selection is aligned
with the selection index to provide control over the
result access type. However, when a purely affine
selection is performed in any of the dimensions, it is
possible to leave the resulting layers of the source in
place, at a much smaller cost. The second case of the
rule takes care of that additional symmetry.

How does Sel act on an affine integer object as
the source? If this were not defined specifically, then
the type system would have to upgrade the source to
the general integer type, which would cause unnec-
essary expansion of the affine form into an array of
values. However, even if a specific overloading for
affine types is defined, such an expansion may still
be necessary if the selection index does not agree
in symmetry with the source. A result axis will be



affine only if all the selection indices are affine or
translationally symmetric in that dimension and pro-
vided that those axes that are affine belong to the in-
dices that correspond to affine/translationally sym-
metric axes of the source. A result axis will be trans-
lationally symmetric if for every index axis collinear
with it, that axis itself, or the object axis correspond-
ing to the index that the axis belongs to, or both,
are translationally symmetric. Otherwise the result
axis is not symmetric. Formally, if τs

i and αs
i are the

masks of the affine symmetry of the source, τr
i and αr

i

the respective masks of the result, and τ
�
k �

i and α
�
k �

i of
the kth index object,

τr
i �

d�
k � 1

τs
k � τ

�
k �

i

αr
i �

d�
k � 1

τ
�
k �

i ��� α � k �i � 
 τs
k � αs

k ��� �

It should be noted that the power of Sel surpasses
all known non-nested DP selections so that they can
be expressed via it straight away. Here are some ex-
amples:

1. A SLICE of a vector V is given by

SelV 
 ϒ1 � k : l 
 m � � 

where m is the start, k is the increment, and l is
the new horizontal dimension.

2. The transposition of a matrix R:

Sel R 
 ϒ10 � � 1 � 1 : dim2 
 R ��
 � 1 � 0 � �

 ϒ01 � � 1 � 1 : dim1 
 R ��
 � 1 � 0 � � 


which clearly shows the 1d-affine, 1d-
translational symmetry of the operation. Here
and below we use the notation dimk for the kth
dimension of an array.

10 Affine Boolean and Polyhedron
Types

The power of affine type can be applied to non-
scalar Boolean objects that are often used to mark
up computational domains. Most DP programming
languages have a WHERE construct specifying a
Boolean guard for a DP loop. When the element of
the guard corresponding to the current multi-index is
true, the computation proceeds, otherwise no action
is taken for this iteration. It is often the case that
the true elements of the guard are enclosed in some
linear set, such as a half-space bordering on a hyper-
plane, a convex polyhedron or a union of polihedra.
If the guard is defined by a formula, a compiler can
attempt to analyse it. Projections of the guard can
then be made to guide local computations in each
of the virtual processors. However, if the guard is
a stored object, its origin (whether linear or not) is
generally lost and so conservative assumptions have
to be about it (i.e. no symmetry). In this section we
shall attempt to offer an alternative by introducing
the following types.

Definition 10.1 An array is said to be of affine
Boolean type if it can be represented at any time as
the result of the element-wise comparison I � 0, with
some purely affine integer I.

An affine Boolean object represents a part of a
multidimensional parallelepiped (or the whole space
if the object is infinite) bounded by an arbitrary hy-
perplane. The other part of the object is represented
as � I � 1 � 0, hence the greater-or-equal comparison
is sufficient for both parts.

The storage mechanism for this object is very
compact as only the coefficients of the affine form
(i.e., the value of I) are stored. Affine Boolean is
a subtype of the Boolean array type. If the element
values are required by a context expecting a general



Boolean object, they can be generated “on the fly”
without referencing the shared memory. On the other
hand, when an affine Boolean is used as a guard, a
compiler may incorporate the affine form computa-
tion with the body of the loop directly.

The access type of an affine Boolean object is
replicator for obvious reasons.

Definition 10.2 An object is said to be of polyhe-
dron type if it can be represented at any time as an
elementwise disjunctive form (i.e. the disjunction of
conjunctive groups) of affine Boolean objects.

The geometric meaning of the conjunction of two
Boolean objects is the intersection of the true-value
sets. When the operands are affine Boolean, the in-
tersection of the half-spaces they represent is taken.
For finite arrays, multiple conjunctions will result in
a convex polyhedron, hence the name of the type.
Similarly, a disjunction would deliver the union of
the operands. Therefore the most general geometric
interpretation of this type is the union of polyhedra.

If a d-dimensional object is of polyhedron type, it
is represented as a d



2-dimensional array. Dimen-

sion 1 is associated with the conjunctive terms and
dimension 2 with group disjunctions. Both of them
are infinite. The rest of the dimensions may or may
not be infinite. They represent the actual indices of
the array. The access type of all dimensions is repli-
cator (similarly to the affine form coefficients, there
should not be too many members of the disjunctive
form).

When a polyhedral object is initialised, assign-
ments in the form P 
 k 
 m � : � Ikm � 0 are made with
purely affine integerIkm representing the hyperplane
k in the convex component m. A hyperplane can then
be modified, (or removed, by assigning P 
 k 
 m � �
true). A convex component is activated by placing
a hyperplane in it; more hyperplanes can be added,
repmoved or modified at any time. The whole con-
vex component m can be wiped out by assigning

P 
 k 
 m � � f alse with any value of k. A moment’s
thought is enough to see that these rules are not artifi-
cial but ones following directly from the definition of
the polyhedral type and from the inclusion of scalars
in all rank latices. Thus an elegant mechanism of
managing polyhedral domains is offered directly by
the type system, without extending the language with
appropriate commands.

Naturally, in implementation no assignment to ele-
ments of infinite axes ever takes place. Instead an ap-
propriate reference structure is maintained whereby
hyperplanes and convex components are linked and
unlinked under the control of the right-hand-side ex-
pressions. However, to the user it all looks like ordi-
nary assignments of array elements.

The type inclusion rules for Booleans is as fol-
lows. Two objects of polyhedron type are commen-
surable if and only if they are polyhedral in the same
axes, in which case type inclusion is defined by the
types associated with the rest of the axes. Any poly-
hedron is a subtype of the same rank Boolean.

Given these typing rules, the operations �
(union/disjunction), � (intersection/conjunction) and
not (invertion/negation) are closed in polyhedra.

11 Concatenate.

The DP version of concatenation differs from the or-
dinary variety in two ways. Firstly, objects to be con-
catenated may have axes orthogonal to the axis of
concatenation, which have to be brought to a com-
mon type, and secondly, there are access type con-
straints on the argument axes that participate in con-
catenation.

The respective dimensions of the arguments that
are orthogonal to the concatenation axis must be jux-
taposed and so the attributes of the result in this sub-
space are determined by the juxtaposition. This re-
quirement follows from the fact that any layer of the



result object that is orthogonal to the juxtaposition
axis must be of the same type, and that juxtaposi-
tion is indeed the process of bringing collinear axes
to a common access type. Without loss of general-
ity, we can now limit our analysis to the case of 1d
arguments to concatenation.

First consider the el-type. One can concatenate
objects coercible to a single el-type, with the opera-
tion of concatenation not changing the rank:

Cat :: 
 � a 
 b � a � b � 
 a � b � 

where the symbol � denotes the least upper bound of
two lattice elements. Types a and b must belong to
the same type lattice.

As far as the access type is concerned, concate-
nation applies to type sequencer and above as it it-
self requires a relatively weak access mechanism and
destroys the regularity of direct access distribution.
The natural choice of alignment is with the first ar-
gument, since this allows one to build chains of con-
catenated objects assuming that the operation of con-
catenation is left-associative. The reason why the
replicator overloading is not supported is because it
is mainly used for translationally or affinely symmet-
ric axes, which would lose this type of symmetry af-
ter concatenation. The access type signature is there-
fore as follows:

Cat :: 
 � x � s 
 y � x � x � y � x

12 Conclusions

A type system based on analysis of symmetries in-
herent in distributed DP computing has been intro-
duced and the fundamental DP skeletons have been
typed accordingly. It has been shown how the vari-
ety of all non-nested DP primitives can be reduced
to instances of Map, � � � � , Sel and Cat with only
scalar functional parameters. While these skeletal

constructs are not to be offered at the user level, they
could provide a formal basis for optimisations in an
array language compiler.



References

[BPP88] J A Brown, S Pakin, and R P Polivka. APL2 at a glance. Prentice Hall, Englewood Cliffs, N.J.
07632, 1988.

[Col89] M I Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman, 1989.

[For91] Fortran 90 Standard, 1991.

[HM93] G Hains and L M R Mullin. Parallel functional programming with arrays. The Computer Journal,
36(3):238–245, 1993.

[LCB00] A L Lain, D R Chakrabarti, and P Banerjee. Compiler and run-time support for exploiting reg-
ularity withing irregular applications. IEEE Transactions on Parallel and Distributed Systems,
11(2):119–135, February 2000.

[MSS93] V B Muchnick, A V Shafarenko, and C D Sutton. F-code and its implementation: a portable
software platform for data parallelism. The Computer Journal, 36(8):712–721, 1993.

[Rey85] John C Reynolds. Three approaches to type structure. In Mathematical Foundations of Software
Development. LNCS vol 185., pages 97–138. Springer-Verlag, 1985.


