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1 Introduction

1.1 Background

This paper concerns the relationship between the representation theory of simply-laced

quantum affine algebras on the one hand, and, on the other, the particle fusing rule origi-

nally given by Dorey in the context of affine Toda field theories.

Recall that Affine Toda Field Theories (ATFTs) are integrable quantum field theories

in 1+1 dimensions [Cor94]. Let g be any simply-laced simple Lie algebra, and I the set of

nodes of the Dynkin diagram of g. The (real coupling, purely elastic) ATFT associated to

the untwisted affine algebra ĝ has rank g species of particles, labelled by the nodes i ∈ I.

The root system data of g determine not only the masses of these particles, but also the

allowed fusings : if particles of species j ∈ I and i ∈ I can interact to form a particle of

species k̄ ∈ I one says there is a fusing j, i → k̄, and this process can occur only if the

rapidities θi, θj of the incoming particles are related by

θi − θj =
√
−1 θkji (1.1)

where θkji is a real angle, called the fusing angle. If there is a fusing j, i→ k̄ then there are

also fusings i, k → ̄ and k, j → ı̄, and the fusing angles obey

θkji + θjik + θikj = 2π. (1.2)

The problem of determining the masses, fusings and fusing angles for the ATFTs as-

sociated to all simple Lie algebras (simply-laced or not) was solved in [BCDS90]. It was

observed in that paper that the allowed fusings form a strict subset of the non-zero Clebsh-

Gordon coefficients for g, in the sense that if i, j → k̄ is a fusing then

Homg (Vi ⊗ Vj , Vk̄) ∼= Homg (Vi ⊗ Vj ⊗ Vk,C) 6= 0, (1.3)

where Vi is the ith fundamental representation of g. It is a strict subset because the

converse statement does not hold: the first counterexample is D5,
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where there is a non-trivial homomorphism V2 ⊗ V2 → V2 of d5 modules but no fusing

2, 2 → 2 in the ATFT. Soon after, this same “hole” in the allowed interactions was also

found in a different (and non-diagonal) scattering theory [Mac91], giving an indication of

a more general underlying structure.

Subsequently, Dorey gave a rule which encodes both the pattern of allowed fusings,

and the fusing angles, in an elegant geometrical fashion for all the simply-laced cases

[Dor91, Dor92b, Dor92a, FLO91, FO92].1 To state the rule, we introduce some standard

notation: let (αi)i∈I be a set of simple roots of g, (λi)i∈I the corresponding fundamental

weights, and aij the Cartan matrix:

αi · αj = aij , αi · λj = δij. (1.4)

Let W denote the Weyl group of g, generated by the reflections (si)i∈I in the simple roots.

It is always possible to write I as a disjoint union

I = I• ⊔ I◦ (1.5)

in such a way that (I•, I◦) is a two-colouring of the Dynkin diagram (as, for example, in

the case D5 above). Let then w ∈ W be the choice of Coxeter element given by2

w = w◦w•, w◦ =
∏

i∈I◦

si, w• =
∏

i∈I•

si, (1.6)

and write Γ = 〈w〉 for the cyclic subgroup of W generated by w, whose order h is the

Coxeter number of g.

Then the rule states that there is a fusing i, j → k̄ if and only if

0 ∈ Γλi + Γλj + Γλk; (1.7)

that is, if and only if there are integers p, q, r such that

0 = wpλi + wqλj + wrλk. (1.8)

Moreover, the fusing angles, θkij θ
i
jk and θjki are given by projecting this latter equation onto

the exp (±2πi/h) eigenplane of w, as discussed in [Dor91, Dor92b] and recalled in section

3 below. The original statement of the rule involved Coxeter orbits of roots, but it was

observed in [Bra92] that the statement above in terms of weights is equivalent, essentially

because (one can show that) φi := (1 − w−1)λi are a linearly independent collection of

roots. Writing the rule in terms of weights is suggestive, because of the following

1A generalization of the rule to non-simply laced cases was mentioned in [Dor93] and used in [CP96];
see also [Oot97, FKS00]. In the present work we shall focus exclusively on the simply laced cases but it
would be very interesting to try to prove analogous results for any simple Lie algebra.

2This choice will be convenient in what follows, but the rule itself is independent of the choice of Coxeter
element.
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Theorem 1.1 (PRV [PRRV67, Kum88, Mat89]) A necessary and sufficient condi-

tion for

Homg (Vi ⊗ Vj ⊗ Vk,C) 6= 0 (1.9)

is that

0 ∈ Wλi +Wλj +Wλk. (1.10)

Now clearly (1.7) implies (1.10), but not vice versa. So in light of this result, which connects

the Weyl-orbits of weights to invariants of g-representations, it is very natural to suppose

that the fusing rule (1.7) plays a similar role for representations of some larger (and hence

more restrictive) algebraic structure. In [Mac92], MacKay conjectured that this is indeed

the case and that the relevant algebra is the Yangian Y (g).

Recall that the universal envelope U(ĝ) of the untwisted affine algebra ĝ has a canonical

Drinfel’d-Jimbo deformation Uq(ĝ), called a quantum affine algebra, and that the Yangian

Y (g) is the rational degeneration of Uq(ĝ) [Dri85, Dri88]. Y (g) and Uq(ĝ) share essentially

the same representation theory [Var00]. There is a notion of the fundamental representa-

tions Vi,a of Uq(ĝ), where i ∈ I, and a ∈ C6=0 is an additional label which we will call the

rapidity; see e.g. [CP].3 The Vi,a are finite-dimensional and Vi ⊂ Vi,a.

In the classical cases, the following theorem was proved by Chari and Pressley, con-

firming the conjecture above. (In fact, [CP96] considered all the classical cases ABCD,

but we quote here only the result for the classical simply-laced cases AD.)

Theorem 1.2 ([CP96]) A necessary and sufficient condition for

HomUq(ĝ) (Vi,a ⊗ Vj,b ⊗ Vk,b,C) 6= 0 , (1.11)

for some rapidities a, b, c ∈ C6=0, is that

0 ∈ Γλi + Γλj + Γλk. (1.12)

1.2 Motivations and Outline

Despite the positive result above, it is fair to say that a satisfactory understanding of the

link between the fusing rule and the representation theory of simply-laced quantum affine

3We are of course using the word “rapidity” in two, a priori different, senses: for the kinematical label of
particles in ATFT and for the spectral parameter of representations of Uq(ĝ). The role of Uq(ĝ)-symmetry
in real- and imaginary-coupling affine Toda field theory is indeed rather subtle. See [TW99, SWK00] and
references therein.
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algebras is still missing. Most apparently, the proof in [CP96] was case-by-case and did

not include the exceptional cases E6, E7 and E8. More importantly, part of what makes

the rule (1.7) elegant is that it encodes not only the triples (i, j, k) for which fusing can

occur, but also the fusing angles, via the projection map mentioned above. This aspect

played no role in [CP96], where the required rapidities were determined without reference

to this projection map. One would like to understand why the rapidities emerge as they

do from the geometry of Coxeter orbits of roots and weights.

In the present paper we take a step in this direction, by relating the geometry of

Coxeter orbits to the q-characters of fundamental representations of Uq(ĝ). The notion

of q-characters, due to Frenkel and Reshetikhin [FR98], following [Kni95], is an impor-

tant development in the representation theory of quantum affine algebras. Here they will

allow us to give, in particular, a general proof that Dorey’s rule is a necessary condi-

tion for the existence of invariant maps, HomUq(ĝ) (Vi,a ⊗ Vj,b ⊗ Vk,c,C) 6= 0, and singlets,

HomUq(ĝ)(C, Vk,c ⊗ Vj,b ⊗ Vi,a) 6= 0.

The structure of this paper is as follows: in section 2 we recall the definition of Uq(ĝ),

and the necessary details of the theory of q-characters.

Then in section 3 we go on to prove our main result (theorem 3.1), which states that

Dorey’s rule provides a necessary and sufficient condition for the monomial 1 to occur in

the q-character of a three-fold tensor product of fundamental representations. We prove

this by first showing (lemma 3.2) that the latter statement can be rephrased as a statement

about the occurrence of quadratic monomials in the q-character of a single fundamental

representation. We then prove that such quadratic monomials are in a certain precise

correspondence with solutions to Dorey’s rule.

Indeed, it will emerge that in fact every monomial in the q-character can very naturally

be seen as specifying some identity among the Coxeter orbits of the fundamental weights

of g (proposition 3.3). The reverse direction however (going from identities to monomials)

is more subtle, and one must work harder to show (propositions 3.4 and 3.5) that it always

holds for identities of the form (1.7) above.

We conclude in section 4 by commenting on the relationship of our result to the theorem

1.2 above, and noting some open questions.

We assume, throughout this paper, that q ∈ C6=0 is not a root of unity.
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2 Quantum Affine Algebras and q-characters

The quantum affine algebra Uq(ĝ) is an associative algebra over C generated by

(x±
i,n)i∈I,n∈Z, (k±1

i )i∈I , (hi,n)i∈I,n∈Z6=0
, (2.1)

and central elements c±1/2. In this paper we study finite dimensional representations of

Uq(ĝ) when g is simply laced. As we recall below, for this purpose it actually suffices to

work with the quantum loop algebra Uq(Lg) = Uq(ĝ)/(c
±1/2 − 1). Following [Dri88], let us

arrange the generators into formal series

x±
i (u) :=

∑

n∈Z

x±
i,nu

−n (2.2)

φ±
i (u) =

∞∑

n=0

φ±
i,±nu

±n := k±1
i exp

(
±(q − q−1)

∞∑

m=1

hi,±mu
±m

)
, (2.3)

and set

δ(u) :=
∑

n∈Z

un. (2.4)

The defining relations of Uq(Lg) are then
[
φ±
i (u), φ

±
j (v)

]
=
[
φ±
i (u), φ

∓
j (v)

]
= 0 (2.5)

φ±
i (u) x

+
j (v) = qaij

1− q−aijuv

1− qaijuv
x+
j (v)φ

±
i (u) (2.6)

φ±
i (u) x

−
j (v) = q−aij

1− qaijuv

1− q−aijuv
x−
j (v)φ

±
i (u) (2.7)

[
x+
i (u), x

−
j (v)

]
=

δij
q − q−1

(
δ(v/u)φ+

i (1/v)− δ(u/v)φ−
i (1/u)

)
(2.8)

(
u− q±aijv

)
x±
i (u) x

±
j (v) =

(
q±aiju− v

)
x±
j (v) x

±
i (u) (2.9)

x±
i (u)x

±
i (v)x

±
j (w)− (q + q−1)x±

i (u)x
±
j (v)x

±
i (w)

+ x±
j (v)x

±
i (u)x

±
i (w) + (u↔ v) = 0 if aij = −1, (2.10)

where aij is the Cartan matrix of g. As we shall see, this presentation, which is a slightly

modified version of Drinfel’d’s current presentation [Dri88], is convenient because the φ±
i (u)

and x±
i (u) behave analogously to the usual Cartan generators and raising/lowering opera-

tors in the representation theory of finite-dimensional simple Lie algebras. From its origin

as a standard Drinfel’d-Jimbo deformation of U(ĝ), Uq(ĝ) admits a standard Hopf algebra

structure Uq(ĝ)
std
– see e.g. [CP]. No closed form is known for the standard coproduct in

the current presentation above. As we note in the conclusion, there does exist another

(twist-equivalent [EKP07]) Hopf algebra structure for Uq(ĝ) better suited to the current

presentation; for details see [Her05, Her07a, Gro01].
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2.1 Representations and Characters

A representation V of Uq(ĝ) is of type 1 if c±1/2 acts as the identity on V and V is the

direct sum of its Uq(g)-weight spaces,

V = ⊕λVλ where Vλ = {v ∈ V : ki ⊲ v = q〈αi,λ〉v} (2.11)

and λ in the weight lattice of g. We recall (see e.g. [CP] chapter 12.2B) that any finite-

dimensional irreducible representation of Uq(ĝ) can be obtained by twisting, by an automor-

phism of Uq(ĝ), a finite-dimensional type 1 representation. Thus it suffices for our purposes

to consider type 1 representations, and to regard them as representations of Uq(Lg).

Any type 1 representation V of Uq(ĝ) also furnishes a representation of Uq(g) (the latter

being the subalgebra generated by (x±
i,0)i∈I , (k

±
i )i∈I). Recall that the character χ(V ) of V

regarded as a Uq(g)-module is defined as

χ(V ) =
∑

λ

dim (Vλ) e
λ. (2.12)

If Rep(Uq(g)) is the category whose objects are finite-dimensional representations of Uq(g)

and whose morphisms are homomorphisms of Uq(g)-modules, then the Grothendieck ring

Rep(Uq(g)) is the ring generated by the isomorphism classes of objects in Rep(Uq(g))

subject to the relations [X ][Y ] = [X ⊗ Y ] and, for each exact sequence 0 → U → W →
V → 0 of Uq(g)-modules, [W ] = [U ] + [V ]. The character map χ is a homomorphism of

rings

χ : Rep(Uq(g)) −→ Z
[
y±1
i

]
i∈I

(2.13)

to the ring of polynomials in variables y±1
i = e±λi .

Let us pause to recall that Rep(Uq(g)), like Rep(U(g)), is a semisimple category: exact

sequences 0→ U →W → V → 0 exist precisely when W = U ⊕ V as Uq(g)-modules; and

thus the defining relations of Rep(Uq(g)) are in fact just [U ][V ] = [U ⊗ V ] and [U ] + [V ] =

[U ⊕ V ]. In contrast, representations of Uq(ĝ) can be reducible but not fully-reducible.

That is, it can happen that there is a short exact sequence 0 → U → W → V → 0 of

Uq(ĝ)-modules, so that U is a submodule of W , but that W is not the direct sum U ⊕ V

as a Uq(ĝ)-module. One says that W is indecomposable.

Now for any type 1 representation V of Uq(ĝ), the decomposition above into Uq(g)-

weight spaces may be further refined by decomposing V into Jordan subspaces of the

mutually commuting φ±
i,±r defined in (2.3), [FR98]:

V = ⊕γγγVγγγ , γγγ = (γ±
i,±r)i∈I,r∈N, γ±

i,±r ∈ C (2.14)

6



where

Vγγγ = {v ∈ V : ∃N ∈ N, ∀i ∈ I,
(
φ±
i (u)− γ±

i (u)
)N

⊲ v = 0} . (2.15)

If dim(Vγγγ) > 0, we shall refer to the corresponding formal series

∀i ∈ I , γ±
i (u) :=

∑

r∈N

γ±
i,±ru

±r (2.16)

as an l-weight of V . It is known [FR98] that for every finite-dimensional type 1 represen-

tation of Uq(ĝ), these l-weights are of the form

γ±
i (u) = qdegQi−degRi

Qi(uq
−1)Ri(uq)

Qi(uq)Ri(uq−1)
, (2.17)

where the right hand side is to be treated as a formal series in positive (negative) integer

powers of u for γ+
i (u) (respectively γ−

i (u)), and Qi and Ri are polynomials with constant

term 1. These latter may be written as

Qi(u) =
∏

a∈C6=0

(1− ua)qi,a , Ri(u) =
∏

a∈C6=0

(1− ua)ri,a , (2.18)

and this allows one to assign to γγγ a monomial

mγγγ =
∏

i∈I,a∈C6=0

Y
qi,a−ri,a
i,a (2.19)

in variables (Yi,a)i∈I;a∈C6=0
. The q-character map χq [FR98] is the injective homomorphism

of rings

χq : Rep(Uq(ĝ)) −→ Z
[
Y ±1
i,a

]
i∈I,a∈C6=0

(2.20)

defined by4

χq(V ) =
∑

γγγ

dim (Vγγγ)mγγγ . (2.21)

The Y ±1
i,a are to be thought of as the quantum-affine analogues of the usual variables

y±1
j = e±λj appearing in character polynomials. In particular, one associates Y ±1

i,a with the

classical weight ±λi. An algorithm for computing q-characters of Uq(ĝ)-modules directly

from the root-system data of g was proposed in [FR98, FM01]. It has been proven to work

for all fundamental representations [FM01], which is all that we shall require in the present

paper, although it is known not to work in general [HL09, NN08]. In [Nak04], Nakajima

deduced an algorithm for computing the q-character of any irreducible representation, and

4Note that the original definition of χq [FR98] was in terms of the universal R-matrix of Uq(ĝ), which
makes its close relationship to the transfer matrix of physics more evident. But the above definition, c.f.
e.g. [CH], is more directly suited for our purposes.
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formulas for the q-characters of fundamental representations were given in [Nak03a, Nak06];

see also [CM06].

We now turn to summarizing the properties of q-characters that we shall need. A

monomial in Z
[
Y ±1
i,a

]
i∈I; a∈C6=0

is said to be i-dominant if and only if it contains no Y −1
i,a ’s.

It is said to be dominant if and only if it is i-dominant for all i ∈ I. Antidominant

monomials are similarly defined to be those not containing Yi,a’s.

2.2 Uq(ŝl2) characters

We first summarize the situation for Uq(ŝl2) characters. In this case the Dynkin diagram

has one node, I = {1}, and we write Y ±1
1,a = Y ±1

a . The fundamental representations Va of

Uq(ŝl2) have dimension two and are labelled by the rapidity a ∈ C6=0. Their q-characters

are

χq(Va) = Ya

(
1 + A−1

aq

)
= Ya + Y −1

aq2 , (2.22)

where one defines

Aa = YaqYaq−1. (2.23)

The tensor product Vb ⊗ Vc of two fundamental representations is irreducible whenever

b/c /∈ {q−2, q+2}. When b = aq and c = aq−1 for some a ∈ C6=0, there is an exact sequence

of Uq(ŝl2)-modules ([CP91], and with their choice of coproduct)

0→W (2)
a → Vaq ⊗ Vaq−1 → C→ 0 (2.24)

where W
(2)
a is a 3-dimensional irreducible submodule and C ∼= (Vaq ⊗ Vaq−1)

/
W

(2)
a is the

1-dimensional module. If instead b = aq−1 and c = aq, one has the same exact sequence

but with arrows reversed:

0→ C→ Vaq−1 ⊗ Vaq →W (2)
a → 0. (2.25)

In either case, there is more than one dominant monomial in the q-character:

χq(Vaq−1 ⊗ Vaq) = χq(Vaq ⊗ Vaq−1) = χq(Vaq−1)χq(Vaq) (2.26)

=
(
Yaq−1 + Y −1

aq

) (
Yaq + Y −1

aq3

)

= 1 +
(
Yaq−1Yaq + Yaq−1Y −1

aq3 + Y −1
aq Y −1

aq3

)
.

In the final line the quantity in brackets is χq(W
(2)
a ). More generally, for each r ∈ Z≥1 and

a ∈ C6=0 there is an irreducible submodule

W (r)
a ⊂ Vaqr−1 ⊗ Vaqr−3 ⊗ · · · ⊗ Vaq−r+1 (2.27)

8



called the r-th Kirillov-Reshetikhin module of Uq(ŝl2). It has dimension r + 1 and q-

character5

χq(W
(r)
a ) = (Yaq−r+1Yaq−r+3 . . . Yaqr−1)

(
1 +

r−1∑

t=0

A−1
aqrA

−1
aqr−2 . . . A

−1
aqr−2t

)
(2.28)

= Yaq−r+1Yaq−r+3 . . . Yaqr−3Yaqr−1

+ Yaq−r+1Yaq−r+3 . . . Yaqr−3 Y −1
aqr+1

. . .

+ Yaq−r+1 Y −1
aq−r+5 . . . Y

−1
aqr−1Y

−1
aqr+1

+ Y −1
aq−r+3Y

−1
aq−r+5 . . . Y

−1
aqr−1Y

−1
aqr+1.

W
(r)
a is completely characterised by the set of rapidities Sr(a) = {aq−r+1, aq−r+3, . . . , aqr−1}

appearing in its dominant monomial, which we shall refer to as a segment of length r centred

on a. Two such segments are said to be in special position if their union is itself a segment

and neither of them contains the other. We say aq−r+1 is the leftmost element of Sr(a),

aqr−1 the rightmost. More generally we say that aqk is to the right (left) of aql iff k > l

(resp. k < l).

Presented with any dominant monomialm+ =
∏

s Yas one can reconstruct the unique ir-

reducible Uq(ŝl2)-module V (m+) such thatm+ is the highest weight monomial in χq(V (m+)).

First split the factors Yas into a product of segments no two of which are in special position:

say

m+ =
∏

t∈T

(
Yatq−rt+1Yatq−rt+3 . . . Yatqrt−1

)
, (2.29)

for some index set T ; then

V (m+) ∼=
⊗

t∈T

W (rt)
at , (2.30)

which can be shown to be irreducible and, up to isomorphism, independent of the ordering

of the tensor factors.

Finally, there is an important caveat: reducible modules certainly have more than one

dominant monomial, as in e.g. (2.26), but irreducible modules can also have multiple

dominant monomials. This happens precisely when they fail to be regular, in the termi-

nology of [FR98]. Consider m+ = Y 2
aq−1Yaq to see the problem. Note that the resulting

q-character contains the (dominant) monomial Yaq−1 but not the monomial Y −1
aq . Thus,

in computing q-characters, one cannot treat all dominant monomials as though they were

highest monomials. For that reason we shall need the following

5W
(r)
a is the pull-back of the usual spin r/2 representation of Uq(sl2) by the evaluation homomorphism

eva : Uq(ŝl2)→ Uq(sl2). See e.g [CP91].
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Proposition 2.1 Let V be a simple finite dimensional Uq(ŝl2)-module of type 1. Suppose

that for some a ∈ C6=0 and n > 0, χq(V ) includes a dominant monomial m such that Y n
a

is a factor6of m and Yaq2 is not. Then, either

i) χq(V ) includes the monomials mA−p
aq , 1 ≤ p ≤ n; or

ii) there exists a k > 0 such that χq(V ) includes the monomial mAaqk .

Proof. Let T be an index set such that V can be written as in (2.30) above, with the

Srt(at) in pairwise general position and rt > 0 for all t ∈ T . By hypothesis there exist

(mt)t∈T such that mt is a monomial of χq(W
(rt)
at ) for each t ∈ T and

m =
∏

t∈T

mt . (2.31)

Let T ′ = {t ∈ T : a ∈ Srt(at)}. Note that Y −1
aq2 is a factor of mt only if mt ∈ T ′. T ′ is the

disjoint union of the following three subsets:

T ′
1 = {t ∈ T ′ : mt is dominant and has both Ya and Yaq2 as factors},

T ′
2 = {t ∈ T ′ : mt is dominant and has rightmost factor Ya},

T ′
3 = {t ∈ T ′ : mt is not dominant}.

If there is a t ∈ T ′
3 such that Y −1

a is not a factor of mt then the leftmost factor Y −1 in mt is

Y −1
aq2ℓ

for some ℓ > 0. In that case mtAaq2ℓ−1 appears in χq(W
(rt)
at ), c.f. (2.28), and ii) holds.

It remains to consider the case that Y −1
a is a factor of every mt, t ∈ T ′

3. By definition

of T ′, Y −1
aq2 is then also a factor of every mt, t ∈ T ′

3. Suppose for a contradiction that there

existed a t ∈ T such that mt is dominant with leftmost factor Yaq2. Since by assumption

the total power of Yaq2 in m is zero, that would require |T ′
1| < |T ′

3|; but also, by definition

of general position, that |T ′
2| = 0 and hence |T ′

1| − |T ′
3| ≥ n > 0, a contradiction. Therefore

there is no such t ∈ T and so in fact, by counting powers of Yaq2 in m, |T ′
1| = |T ′

3|.
Consequently the power of Ya in

∏
t∈T ′

1
⊔T ′

3
mt is zero. It follows that |T ′

2| ≥ n and hence

that i) holds.

2.3 Uq(ĝ) characters

Returning to the general case, we let Vi,a, i ∈ I, a ∈ C6=0 denote the i-th fundamental

representation of Uq(ĝ) at rapidity a. (See e.g. [CP].) It may be shown [FR98, FM01] that

6For every b ∈ C6=0, k ∈ Z6=0, we say that Y k
b is a factor of m =

∏
c∈C6=0

Y uc
c iff either ub ≥ k > 0 or

ub ≤ k < 0.

10



χq(Vi,a) contains the highest weight monomial Yi,a and that, if we define

Ai,a = Yi,aq−1Yi,aq

∏

〈j,i〉

Y −1
j,a , (2.32)

where the product
∏

〈j,i〉 is over the nodes j of the Dynkin diagram that neighbour i,7 then

every monomial in χq(Vi,a) is of the form

Yi,aA
−1
j1,a1

. . . A−1
jn,an

(2.34)

for some finite collection of n ≥ 0 pairs (jk, ak) ∈ I × C6=0. For each j ∈ I, let Uq(ŝl2
(j)) ⊂

Uq(ĝ) be the subalgebra generated by x±
j (u), φ

±
j (u). Let χ

(j)
q be the q-character map of

Uq(ŝl2
(j)) and

βj : Z
[
Y ±1
i,a

]
i∈I;a∈C6=0

→ Z
[
Y ±1
j,a

]
a∈C6=0

(2.35)

the ring homomorphism which sets to one all the Y ±1
k,a with k 6= j. Then every Uq(ĝ)-

module V is also a Uq(ŝl2
(j))-module, and χ

(j)
q (V ) = βj ◦χq(V ). In fact, more is true: there

exists [FM01] an injective ring homomorphism

τj : Z
[
Y ±1
i,a

]
i∈I;a∈C6=0

→ Z
[
Y ±1
j,a

]
a∈C6=0

⊗ Z
[
Z±1

k,b

]
k 6=j;b∈C6=0

(2.36)

refining βj , where Z±1
i,a are certain new formal variables, and

τj(χq(Vi,a)) =
∑

p

χ(j)
q (Vp)⊗Np , (2.37)

where the Vp are Uq(ŝl2
(j))-modules and the Np are monomials in (Z±1

k,b )k 6=j,b∈C6=0
. Further-

more, in the diagram

Z
[
Y ±1
i,a

]
i∈I;a∈C6=0

Z
[
Y ±1
j,a

]
a∈C6=0

⊗ Z
[
Z±1

k,b

]
k 6=j;b∈C6=0

Z
[
Y ±1
i,a

]
i∈I;a∈C6=0

Z
[
Y ±1
j,a

]
a∈C6=0

⊗ Z
[
Z±1

k,b

]
k 6=j;b∈C6=0

τj

τj

(2.38)

let the right vertical arrow be multiplication by βj(A
−1
j,c )⊗ 1; then the diagram commutes

if and only if the left vertical arrow is multiplication by A−1
j,c .

7That is
∏

〈j,i〉 =
∏

j:Iji=1 where

Iij = 2δij − aij =

{
1 if i, j are neighbouring nodes on the Dynkin diagram

0 otherwise
(2.33)

is the incidence matrix.

11



Consequently, if one has found a term m+ ⊗ Np in the r.h.s of (2.37), and one knows

that m+ is the highest weight monomial of χ
(j)
q (Vp), then one can construct all the re-

maining monomials in χ
(j)
q (Vp) ⊗ Np (as discussed in the previous subsection) and hence

their (unique) preimages in χq(Vi,a). Frenkel and Mukhin gave an algorithm for com-

puting the q-character with a given highest monomial [FM01], by repeatedly completing

Uq(ŝl2)-characters in this way. They proved that it works for any q-character with a unique

dominant monomial (and so in particular for the q-characters of fundamental representa-

tions).

The specific instance of this sort of reasoning which we will require, in proposition 3.5,

is the following, which follows immediately from the existence and property (2.38) of τj

together with proposition 2.1 above.

Proposition 2.2 Let j ∈ I, a ∈ C6=0 and n > 0. Suppose m is a j-dominant monomial in

χq(Vi,a) such that Y n
a is a factor of βj(m) and Yaq2 is not. Then, either

i) χq(Vi,a) includes the monomials mA−p
j,aq, 1 ≤ p ≤ n; or

ii) there exists a k > 0 such that χq(Vi,a) includes the monomial mAj,aqk .

Also, in proposition 3.3 below, we will need the following consequence of the Frenkel-

Mukhin algorithm.

Theorem 2.3 ([FM01]) Every monomial m′ 6= Yi,a in χq(Vi,a) is of the form mA−1
j,aqr+1

for some j ∈ I and some r ∈ Z, where m is a monomial in χq(Vi,a) having Yj,aqr as a

factor.

Equivalently but more intuitively, every monomial apart from the highest one is obtained

from some (at least one) other monomial by a “lowering step” consisting of a replacement

of the form

Yj,aqr 7→ Yj,aqrA
−1
j,aqr+1 = Y −1

j,aqr+2

∏

〈k,j〉

Yk,aqr+1. (2.39)

The q-characters of any fundamental representation Vi,a thus has the structure of a con-

nected directed graph, whose nodes are the monomials and whose edges are labelled by

factors A−1
i,a . (An example is shown in figure 2.)

Finally, in the proof of lemma 3.2, we will need the following results from [FM01].

We shall say that a monomial m has compact support of length n and base d if m ∈
Z[Y ±1

l,dqr ]l∈I,0≤r≤n. Combining lemma 6.1 and 6.13 of [FM01], we have

12



Lemma 2.4 All the monomials in χq(Vl,d), where l ∈ I and d ∈ C6=0, have compact support

of length h and base d.

Moreover, a monomial

m =
∏

(l,r)∈I×N0

Y
pl,r
l,dqr , pl,r ∈ Z (2.40)

having compact support of length n and base d is said to be right negative (resp. left

positive) if, in addition, there exists a (k, s) ∈ I × N0 such that pk,s < 0 (resp. pk,s > 0)

and for each (l, r) ∈ I × N0 such that pl,r > 0 (resp. pl,r < 0), r < s (resp. r > s).

Lemma 2.5 For all i ∈ I, a ∈ C6=0, in the q-character χq(Vi,a)

i) every monomial except for the highest weight monomial, Yi,a, is right negative, and

ii) every monomial except for the lowest weight monomial, Y −1
ı̄,aqh

, is left positive.

Proof. Part i) is lemma 6.5 in [FM01]. Proposition 6.18 in [FM01] states (in the

simply-laced case) that χq(Vı̄,aq−h) and χq(Vi,a) are related by exchanging Y ±1
j,aqn ↔ Y ∓1

j,aq−n,

for all j ∈ I, n ∈ {0, 1, . . . , h}. This map sends right-negative monomials to left-positive

monomials (and vice versa). So part i) for χq(Vı̄,aq−h) implies part ii) for χq(Vi,a).

Corollary 2.6 Let i ∈ I and a ∈ C6=0. The monomial 1 does not occur in χq(Vi,a).

Proof. The monomial 1 is not right negative and 1 6= Yi,a. Thus, by lemma 2.5, it cannot

appear in χq(Vi,a).

3 Coxeter orbits and q-characters

In this section we relate the geometry of the Coxeter orbits of g-weights to the structure of

q-characters of fundamental representations. Recalling our notations for the roots, weights

and Coxeter element of g from the introduction, let us begin by noting the following

identities. Write λi = λ•
i (λ◦

i ) when i ∈ I• (respectively I◦). Then

w•λ
•
i = λ•

i − αi = −λ•
i +

∑

〈j,i〉

λ◦
j , w•λ

◦
i = λ◦

i (3.1)

and likewise with ◦ ↔ •. Thus
(
1 + w±1

)
λ

◦
•
i =

∑

〈j,i〉

λ
•
◦
j . (3.2)

13



We also define

P =
2

h

∑

n∈Z/hZ

cos

(
2πn

h

)
wn, (3.3)

which is the orthogonal (with respect to the Killing form 〈·, ·〉) projector from the weight

lattice of g to the exp (±2πi/h)-eigenplane of w.8 Let θ be the map which returns the

signed angle between the projections of two given vectors in weight space into this plane,

i.e. the map defined by

cos θ(µ, ρ) =
〈Pµ, Pρ〉√

〈Pµ, Pµ〉〈Pρ, Pρ〉
; im(θ) = (−π, π] (3.4)

and, to fix the orientation, θ(µ, wµ) = +2π/h. To fix a direction in the plane, let λ be any

vector in weight space such that Pλ 6= 0. Our main result is then

Theorem 3.1 Let i1, i2, i3 ∈ I and a1, a2, a3 ∈ C6=0. The following are equivalent:

i) the q-character

χq (Vi1,a1 ⊗ Vi2,a2 ⊗ Vi3,a3) (3.5)

includes the monomial 1

ii) there exist n1, n2, n3 ∈ Z and a ∈ C6=0 such that

wn1λi1 + wn2λi2 + wn3λi3 = 0 (3.6)

and

ak = aq
h
π
θ(λ,wnkλik), k = 1, 2, 3. (3.7)

Let us illustrate this with an example in the case of E6, for which the Coxeter number

is h = 12. We label the nodes of the Dynkin diagram as in [BCDS90]:

l̄ h H h̄ l

L

(This labelling is related to the masses of the corresponding particles, H/heavy or L/light),

in the Toda theory.) Among the solutions to the fusing rule (tabulated in [BCDS90]) is

w−2λl̄ + λL + w5λh = 0 (3.8)

8Recall that the exponents of g are by definition those integers s ∈ Z/hZ for which exp (2πis/h) is an
eigenvalue of w, and that s = ±1 are always exponents.

14



w0λ•

w0λ◦

w1λ•

w1λ◦w2λ•

w2λ◦

w−1λ•w−1λ◦

w−2λ•

w3λ◦ w0λ•

w1λ•w2λ•

w−1λ•w−2λ•

w3λ•

w0λ◦

w1λ◦

w2λ◦

w−1λ◦

w−2λ◦

w3λ◦

Figure 1: Picture of the e±2πi/h-eigenplane of w, for h = 5 (left) and h = 6 (right) showing
the directions (though not the lengths) of the projected Coxeter orbits of fundamental
weights. Here λ• (λ◦) denotes any λi such that i ∈ I• (respectively I◦).

whose P -projection may be pictured as follows.

λL

w−2λ̄l

w5λh

(3.9)

So the theorem asserts, in particular, that 1 occurs in the q-character

χq

(
V̄l,aq−5 ⊗ VL,a ⊗ Vh,aq10

)
. (3.10)

Proof of Theorem 3.1. We first express ii) in a less symmetric but more convenient

form. The reference vector λ serves purely to make manifest the symmetry under permu-

tations of {1, 2, 3}. It follows from (3.6) that, by using this symmetry if necessary, we can

assume

− π < θ(λi1, w
n2λi2) ≤ 0 < θ(λi1 , w

n3λi3) ≤ π. (3.11)

Then, by the freedom in the choice of a, we can assume that λ = λi1 and n1 = 0. Let us

also pick the two-colouring I = I• ⊔ I◦ such that i1 ∈ I•. Given that −λı̄2 is in the Coxeter
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orbit of λi2,
9 we can introduce an n ∈ Z such that wn2λi2 = −wnλı̄2 . Let us also write

m := n3. Then (3.11 ) becomes

0 < θ(λi1, w
nλı̄2) ≤ π, 0 < θ(λi1 , w

mλi3) ≤ π. (3.12)

Thus the solution ii) has been brought to the form

λi1 − wnλı̄2 + wmλi3 = 0 (3.13)

where, on examining figure 1, one sees that (3.12) is equivalent to the following conditions

on n,m (modulo h),

0 < n ≤
{
⌊h
2
⌋ ı̄2 ∈ I•

⌊h+1
2
⌋ ı̄2 ∈ I◦

0 < m ≤
{
⌊h
2
⌋ i3 ∈ I•

⌊h+1
2
⌋ i3 ∈ I◦,

(3.14)

and that the angles in (3.7) are given by

a1 = a, a2 = aqr−h, a3 = aqs (3.15)

where

r =

{
2n ı̄2 ∈ I•

2n− 1 ı̄2 ∈ I◦
s =

{
2m i3 ∈ I•

2m− 1 i3 ∈ I◦.
(3.16)

It is also clear that (3.6) implies in particular that

r < s, (3.17)

for if not, the images of the three vectors wn1λ1, w
n2λ2, w

n3λ3 would lie strictly inside some

half-plane and certainly could not sum to zero.

The remainder of the proof, which occupies the rest of this section, is structured as

follows: Lemma 3.2 will re-express i) as a statement about the occurrence of quadratic

monomials in χq(Vi,a). Then i) ⇒ ii) will be an immediate corollary of proposition 3.3,

while ii) ⇒ i) is the content of propositions 3.4 and 3.5.

Lemma 3.2 The q-character

χq (Vi,a ⊗ Vj,b ⊗ Vk,c) = χq(Vj,b)χq(Vi,a)χq(Vk,c) (3.18)

can include the monomial 1 only if b = aqr−h and c = aqs for some r, s ∈ Z. Suppose,

without loss of generality, that s ≥ 0 ≥ r − h. (If not, rearrange the factors.) Then the

monomial 1 is present if and only if χq(Vi,a) contains the quadratic monomial

Ȳ,bqhY
−1
k,c . (3.19)

9By definition λı̄ is the fundamental weight in the Weyl orbit of −λi. It is given by λı̄ = −w0λi where
w0 is the longest element of the Weyl group, which may be written w0 = w•w◦ . . .︸ ︷︷ ︸

h

= w◦w• . . .︸ ︷︷ ︸
h

. Then since

w◦λ
•
i = λ•

i and w•λ
◦
i = λ◦

i , one has w0λ
•
i = w⌊ h

2
⌋λ•

i and w0λ
◦
i = w⌊ h+1

2
⌋λ◦

i .
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Proof. Assume that there exist monomials

mj in χq(Vj,b), mi in χq(Vi,a), mk in χq(Vk,c) (3.20)

such that

1 = mjmimk . (3.21)

It follows from corollary 2.6 that mi, mj , and mk differ from 1. Thus, eq. (3.21) can only

hold by virtue of a complete cross-cancellation of all the factors of the three monomials.

Since by lemma 2.3, mi, mj and mk each have compact support of length h and respective

bases a, b and c, such cross-cancellation can occur only if b = aqr−h and c = aqs for some

r, s ∈ Z, thus proving the first part of the lemma.

As for the second part, we first prove that one of the three monomials has to be the

highest weight monomial of the q-character where it appears while another one has to be the

lowest weight monomial of the q-character where it appears. Suppose for a contradiction

that all three monomials were right negative. Since the product of two right negative

monomials is obviously right negative, it would follow that mjmimk is right negative and

therefore not equal to 1, a contradiction. Suppose similarly that they were all left positive:

then mjmimk would be left positive, a contradiction. By lemma 2.5, the only monomial

in the q-character of a fundamental representation that is not right negative (resp. left

positive) is its highest weight monomial (resp. its lowest weight monomial).

Now it follows that the only solution to (3.21) that is also compatible with the assump-

tion that

r − h ≤ 0 ≤ s (3.22)

is mj = Y −1
̄,aqr , mi = Ȳ,aqrY

−1
k,aqs and mk = Yk,aqs. Indeed, we know that one of the three

monomials, mi, mj or mk, has to be the quadratic monomial obtained by multiplying

the inverses of the other two, namely the one which is the highest weight monomial of

its q-character and the one which is the lowest. By lemma 2.5, this quadratic monomial

should be both right negative and left positive. Assuming that (3.22) holds thus implies

mj 6= Y −1
i,a Yk̄,aqs+h and mk 6= Y −1

j,aqr−hYı̄,aqh. Furthermore, by lemma 2.3, assuming that

(3.22) holds also implies that mj 6= Yı̄,aqhY
−1
k,aqs and mk 6= Ȳ,aqrY

−1
i,a since mj and mk,

as monomials in χq(Vj,aqr−h) and χq(Vk,aqs) respectively, should have compact supports

of length h and respective bases aqr−h and aqs. Therefore, it is clear that the quadratic

monomial ismi. Finally, lemma 2.3 implies thatmi, as a monomial of χq(Vi,a), has compact

support of length h and base a and hence that mi 6= Y −1
j,aqr−hYk̄,aqs+h.

Proposition 3.3 For any given i ∈ I, choose a two-colouring of the Dynkin diagram of g
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Y1,aq0

Y2,aq1Y
−1
1,aq2

Y3,aq2Y4,aq2Y
−1
2,aq3

Y3,aq2Y
−1
4,aq4 Y4,aq2Y

−1
3,aq4

Y2,aq3Y
−1
3,aq4Y

−1
4,aq4

Y1,aq4Y
−1
2,aq5

Y −1
1,aq6

11

22

43 33

33 43

24

15

λ1

wλ2 − wλ1

wλ3 + wλ4 − w2λ2

wλ3 − w2λ4 wλ4 − w2λ3

w2λ2 − w2λ3 − w2λ4

w2λ1 − w3λ2

−w3λ1

=

=

= =

= =

=

=

2
1

3

4

Figure 2: Proposition 3.3 illustrated for the representation V1,a of Uq(d̂4). On the left is the
graph of the character χq(V1,a); the edge label in denotes multiplication by A−1

i,aqn. On the
right are the corresponding identities involving the Coxeter orbits of fundamental weights.
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such that i ∈ I•. Then q-character χq (Vi,a) contains the monomial

Yj1,aqr1 . . . Yju,aqruY
−1
k1,aqs1

. . . Y −1
kv,aqsv

(3.23)

only if

λi = wn1λj1 + · · ·+ wnuλju − wm1λk1 − · · · − wmvλkv (3.24)

where

rx =

{
2nx jx ∈ I•

2nx − 1 jx ∈ I◦
sx =

{
2mx kx ∈ I•

2mx − 1 kx ∈ I◦
. (3.25)

Proof. We must show that each monomial in χq(Vi,a) is associated with an identity of

the form (3.24) in the fashion specified. This is certainly true of the highest monomial,

which is associated with the trivial identity:

Yi,a ←→ λi = λi. (3.26)

We know that all monomials in χq(Vi,a) are of the form (2.34). So suppose that, for some

integer k ≥ 0, we have successfully demonstrated the required identity for all monomials

in χq(Vi,a) that are k lowering steps, in the sense of (2.39), from Yi,a. Let m
′ ∈ χq(Vi,a) be

any monomial k + 1 steps away from Yi,a. By theorem 2.3, we have that m′ = mA−1
j,aqr+1,

for some monomial m ∈ χq(Vi,a) that is k lowering steps from Yi,a and that has as a factor

Yj,aqr . By supposition, the identity to which m is associated thus contains a summand

+wnλj , where n and r are related as in (3.25). We associate the lowering operation (2.39)

in the direction of the simple root αj with one of the following re-writings of λj, to be

chosen according to the colour of the node j ∈ I:

λ•
j

=7→ w
∑

〈k,j〉

λ◦
k − wλ•

j (3.27)

λ◦
j

=7→
∑

〈k,j〉

λ•
k − wλ◦

j . (3.28)

That these are identities follows from (3.2). It is straightforward to check that they

produce precisely the terms required for the resulting identity to be that associated to

m′ = mA−1
j,aqr+1 as the proposition requires. This completes the inductive step, and the

result follows by induction on k.

An example is shown in figure 2. Now, in particular, the quadratic monomials required

in lemma 3.2 correspond to identities of the form

λi = wnλ̄ − wmλk. (3.29)
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Figure 3: The bipartite graph Î in the case g = d5.

This completes the proof of the i) ⇒ ii) part of theorem 3.1. It remains to prove the

converse. In view of the preceding proposition, it is clear that what underpins this whole

approach is the similarity between the definition

Ai,a = Yi,aq−1Yi,aq

∏

〈j,i〉

Y −1
j,a (3.30)

and the identities

0 = λ•
i + wλ•

i − w
∑

〈j,i〉

λ◦
j , 0 = λ◦

i + wλ◦
i −

∑

〈j,i〉

λ•
j . (3.31)

In trying to pass from a solution to the fusing rule to a monomial in the q-character, the

first problem is thus to express the solution explicitly in terms of these identities.

We begin by introducing some useful scaffolding. By a slight abuse of notation, let I

be the Dynkin diagram of g, and consider the product graph Î = I × {0, 1, 2, . . .}. The

two-colouring of I extends to a two-colouring Î = Î◦ ⊔ Î• of the infinite graph. We picture

Î as a vertical stack of copies of I, and will refer to each copy of I as a row and to the set

of nodes (j, 0), (j, 1), . . . for any fixed j ∈ I as a column. (Figure 3 illustrates an example.)

The black nodes of Î are those of the form (i, 2n), i ∈ I• and (i, 2n − 1), i ∈ I◦. We

associate to each black node a factor Y in the obvious way:

(i, r) ∈ Î• 7→ Yi,aqr . (3.32)

20



We also associate to each black node (i, r) a term Yi,r of the form wnλi, defined as follows:

Yi∈I•,2n := wnλ•
i , Yi∈I◦,2n−1 := wnλ◦

i . (3.33)

The white nodes of Î are those of the form (i, 2n), i ∈ I◦ and (i, 2n − 1), i ∈ I•. We

associate to each white node (i, r) the factor Ai,aqr , and also an identity A among the

terms wnλi at the neighbouring black nodes:

0 = Ai∈I◦,2n := wn


λ◦

i + wλ◦
i −

∑

〈j,i〉

λ•
j


 (3.34)

0 = Ai∈I•,2n−1 := wn−1


λ•

i + wλ•
i − w

∑

〈j,i〉

λ◦
j


 ; (3.35)

that is, simply,

Ai,r := Yi,r−1 + Yi,r+1 −
∑

〈j,i〉

Yj,r. (3.36)

Let c and g be integer-valued functions defined on the black and white nodes respectively

c : Î• → Z; (i, n) 7→ cni , (3.37)

g : Î◦ → Z; (i, n) 7→ gni . (3.38)

One may then ask: when does the coefficient of a term Yi,n, with n > 0, vanish in the

expression

E (c, g) :=
∑

(j,r)∈Î•

crjYj,r −
∑

(j,r)∈Î◦

grjAj,r ? (3.39)

Or, equivalently, when is the factor Yi,aqn absent from the monomial

m(c, g) :=


 ∏

(j,r)∈Î•

(Yj,aqr)
crj




 ∏

(j,r)∈Î◦

(Aj,aqr)
−grj


 ? (3.40)

It is clear that the answer is: if and only if

gn−1
i + gn+1

i −
∑

〈j,i〉

gnj = cni . (3.41)

Let us regard c as a fixed source term. Then it is possible to satisfy (3.41) at every black

node (i, n) with n > 0 by choosing an appropriate g. Assume that sufficiently far down the

graph the source vanishes, i.e. that there is an N such that cni = 0 for all n > N . Then,

furthermore, the solution is unique if we specify also that gni = 0 for all n > N , because

the equation (3.41) at each row n fixes uniquely the gn−1
i in the row above.
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Proposition 3.4 Choose the two-colouring of I such that i1 ∈ I•. Suppose that we have

a solution to the fusing equation (3.6), written, as in (3.13), in the form

λi1 − wnλı̄2 + wmλi3 = 0, (3.42)

with n,m ∈ Z subject to (3.14). Then there exists a unique g : Î◦ → Z such that

Yı̄2,aqrY
−1
i3,aqs

= Yi1,a

∏

(j,t)∈Î◦

(Aj,aqt)
−gtj , (3.43)

where r, s ∈ Z are as in (3.16), and such that, for some N ∈ N, gni = 0 for all n > N .

Proof. Let c be the source function that vanishes everywhere except

c0i1 = +1, crı̄2 = −1, csi3 = +1. (3.44)

Note that then (3.42) is E (c, 0) = 0. Consider solving (3.41) for g in the manner given

above. The resulting expression E (c, g) has by construction no terms Yi,n with n > 0.

So it can only be a linear combination of the Yi,0 = λ•
i and 10

Yi,−1 = λ◦
i . But of course

E (c, g) = 0 identically, since all we have done is to add various re-writings of zero (the A’s)

to an expression (3.42) which was zero to begin with. Therefore, since the λi are linearly

independent, the identity E (c, g) = 0 must be trivial, in the sense that the expression

on the right-hand side of (3.39) consists entirely of cancelling pairs of terms and vanishes

without appealing to properties of the Coxeter element. Consequently, we have also that

m(c, g) = 1, which, on rearranging, is (3.43) as required.

The right-hand side of (3.43) is of the right form to be a monomial in χq(Vi1,a), c.f.

(2.34), but we are by no means done. A priori, it is perhaps not even clear from the

procedure above that the gni need all be non-negative: indeed, although we stated the

proposition for identities involving three terms, the obvious generalization to arbitrary

identities of the form (3.24) is valid, but the resulting gni are not all non-negative in

general. Nonetheless,

Proposition 3.5 Under the assumptions of the preceding proposition, the monomial

Yı̄2,aqrY
−1
i3,aqs

(3.45)

of (3.43) occurs in χq(Vi1,a).

Proof. First consider the following iterative procedure which generates a finite sequence

m′
0, m

′
1, . . . , m

′
h−1 of monomials in χq(Vi1,a). We set m′

0 = Yi1,a. Roughly speaking, the idea

10For this proof only, we consider working on I × {−1, 0, 1 . . .}
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λ2 − wλ1 + w4λ1 = 0 λ2 − w2λ3 + w3λ3 = 0

Figure 4: Two copies of Î in the case g = d5, showing the solutions to the problem (3.41)
for the source functions c associated, as in proposition 3.4, to the identities shown. ⊕
denotes a node at which g = +1; elsewhere g = 0.

is to lower fully in all black directions to obtain m′
1, then lower fully in all white directions

to obtain m′
2, and so on. More precisely, suppose that for some even p ≥ 0 we have found

an m′
p in χq(Vi1,a) of the form

m′
p =

(
∏

i∈I•

Y bi
i,aqp

)(
∏

i∈I◦

Y bi
i,aqp+1

)−1

(3.46)

for some non-negative integers bi, i ∈ I. Certainly (c.f. 2.34)

m′
p = Yi1,a

∏

(j,t)∈Î◦

(Aj,aqt)
−g′tj (3.47)

for some g′tj ≥ 0 with, in view of (3.46), g′tj = 0 ∀ t > p. Thus for all k > 0 and i ∈ I,

m′
pAi,aqp+k is not of the form (2.34) and so cannot be in χq(Vi1,a). Proposition 2.2 thus

guarantees that m′
pA

−bi
i,aqp+1 is in χq(Vi1,a), for i ∈ I•. By similar reasoning for each black

direction in turn, we have that χq(Vi1,a) contains

m′
p+1 = m′

p

∏

i∈I•

A−bi
i,aqp+1 . (3.48)

It too is of the form (3.46), but with p odd and the roles of black and white exchanged.

With the obvious colour swaps, we then iterate.
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As stated, the iteration proceeds until we arrive at the lowest monomial m′
h−1 = Y −1

ı̄1,aqh

of χq(Vi1,a).
11 The key observation is that, for all p ≤ h − 1, the g′tj of (3.47) solve the

problem (3.41) in rows 1, 2 . . . , p−1, for the source function c′ defined to be zero everywhere

except for c′0i1 = +1, and the initial conditions g′0i = 0 ∀i ∈ I.

Note that for all p ≤ h − 1 the g′tj of (3.47) are non-negative in rows 1, 2, . . . , p − 1;

this is clear from their character-theoretic construction, and is a fact about the solution to

(3.41) for the source c′ and initial conditions g′0i = 0 ∀i ∈ I that is not otherwise manifest.

Now let g and c be the functions of the proof of proposition 3.4. Since

∀n < r, cni = c′ni (3.49)

and because each gni is determined by the values of c and g in rows above (when we think

of solving from row 0 downwards), we have

∀n ≤ r, gni = g′ni . (3.50)

In particular, the gni are non-negative for all n ≤ r. On the other hand, by imagining

turning the diagram upside-down and applying the same argument starting from the +1

source in row s, we conclude also that the gni are non-negative for all n ≥ r. Therefore all

the gni are non-negative. (Note that this trick would not work if c were non-zero at more

than three nodes.) Furthermore, again thinking of solving from row 0 downwards,

c′rı̄2 = crı̄2 + 1 =⇒ g′r+1
ı̄2

= gr+1
ı̄2

+ 1 > 0. (3.51)

This relation is crucial, because if we are to obtain the desired quadratic monomial (3.43),

we must modify the procedure on reaching row r: we set m1 = m′
1, . . . , mr = m′

r, but then

rather than lowering mr completely in the direction ı̄2, we want to preserve one factor of

Yı̄2,aqr – and the above inequality guarantees that there is at least one such factor. That

is, if

mr =

(
∏

i∈I•

Y bi
i,aqr

)(
∏

i∈I◦

Y bi
i,aqr+1

)−1

, (3.52)

supposing in what follows, for the sake of definiteness, that ı̄2 ∈ I•, then we are guaranteed

that bı̄2 ≥ 1. Setting n = bı̄2 , p = bı̄2 − 1 in proposition 2.2 we deduce that

mr+1 := mrA
−bı̄2+1

ı̄2,aqr+1

∏

i∈I•\{ı̄2}

A−bi
i,aqr+1 = Yi1,a

∏

(j,v)∈Î◦:t≤r+1

(Aj,aqt)
−gtj (3.53)

11This sequence of “lowering steps” is of the general type mentioned in [Her07b], remark 2.16. Note that
this particular sequence picks out a route through the graph of χq(Vi1,a), from the highest to the lowest

monomial, that avoids non-trivial Uq(ŝl2) Kirillov-Reshetikhin modules, in the sense that at each lowering

step the relevant Uq(ŝl2)-character is that of an (irreducible) tensor product of fundamental representations
at coincident rapidity. It is also interesting to note that the monomialsm′

0,m
′
1, . . . ,m

′
h−1 have the property

that the sequence of their classical weights is a permutation of the Coxeter orbit of the highest weight λi1 .
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is a monomial in χq(Vi1,a). We would then like to continue to apply the above alternating

black/white lowering procedure in subsequent rows, preserving the prefactor Yı̄2,aqr at each

step. Once more we shall argue that this is possible by a finite recursion. Consider a white

lowering step: suppose that for some odd p with s > p ≥ r + 1 we have shown that

mp := Yi1,a

∏

(j,t)∈Î◦:t≤p

(Aj,aqt)
−gtj = Yı̄2,aqr

(
∏

i∈I◦

Y
b′i
i,aqp

)(
∏

i∈I•

Y
b′i
i,aqp+1

)−1

(3.54)

is a monomial in χq(Vi1,a), for certain b′i ∈ Z, i ∈ I. To begin the recursion, this is certainly

true for p = r + 1, as in (3.53). Now observe that in fact, for all i ∈ I◦, b
′
i = gp+1

i (this is

clear when thinking of solving for g row-by-row from row 0 downwards) and that these are

non-negative as noted above. Thus we can lower in all white directions as before and find

that

mp+1 := mp

∏

(j,p+1)∈Î◦

(Aj,aqp+1)−gp+1

j (3.55)

is also a monomial in χq(Vi1,a). This completes the white inductive step. For the black

step, lowering in the directions I• \ {ı̄2} works in exactly the same way. It remains only to

check that the lowering step in the direction ı̄2 is also valid: but this is clear because mp+1

is an ı̄2-dominant monomial and βı̄2(mp+1) = Yı̄2,aqrY
n
ı̄2,aqp+1 with n = gp+2

ı̄2 ≥ 0, which is

still of the correct form to apply proposition 2.2. Iterating, we have that every monomial

in the sequence

Yi1,a

∏

(j,v)∈Î◦:t≤p

(Aj,aqt)
−gtj for p = 1, 2, . . . , s (3.56)

is in χq(Vi1,a). Finally then, at row s, we indeed arrive at

Yi1,a

∏

(j,t)∈Î◦

(Aj,aqt)
−gtj = Yı̄2,aqrY

−1
i3,aqs

, (3.57)

which is the required monomial.

4 Outlook

It is an immediate corollary of our main result, theorem 3.1, that Dorey’s rule provides a

necessary condition for HomUq(ĝ) (Vi,a ⊗ Vj,b ⊗ Vk,c,C) 6= 0. We have not, however, given

a general proof here of sufficiency; and it may be that such a proof would require more

knowledge about the structure of fundamental Uq(ĝ)-modules than their q-characters alone

provide. The correct statement should be the following. Under the conditions of theorem

3.1, the ordered triple of vectors (wn1λi1 , w
n2λi2 , w

n3λi3) can be said to be either cyclic
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or acyclic according to the order in which their projections occur in the oriented s = 1

eigenplane of w, c.f. (3.4). In the example following the theorem, (w−2λ̄l, λL, w
5λh) is

cyclic, for instance. It should be that, in the cyclic case, HomUq(ĝ)(C, Vi1,a1⊗Vi2,a2⊗Vi3,a3) 6=
0 and HomUq(ĝ)(Vi3,a3 ⊗ Vi2,a2 ⊗ Vi1,a1 ,C) 6= 0. (For the a- and d-series, one may verify that

this statement indeed unpacks to give theorems 6.1 and 7.1 of [CP96]. There the proof

proceeds by induction on the rank, and relies on specific properties of these root systems.)

Now, as mentioned in section 2, there is a “current” Hopf algebra structure on Uq(ĝ),

originally due to Drinfel’d. It restricts, over the quantum loop algebra, to the following

relations:

∆(φ±
i (u)) = φ±

i (u)⊗ φ±
i (u) (4.1)

∆(x+
i (u)) = 1⊗ x+

i (u) + x+
i (u)⊗ φ−

i (1/u) (4.2)

∆(x−
i (u)) = x−

i (u)⊗ 1 + φ+
i (1/u)⊗ x−

i (u) (4.3)

S(φ±
i (u)) = φ±

i (u)
−1 (4.4)

S(x+
i (u)) = −x+

i (u)φ
−
i (1/u) S(x−

i (u)) = −φ+
i (1/u)x

−
i (u) (4.5)

ǫ(φ±
i (u)) = 1 ǫ(x±

i (u)) = 0, (4.6)

where ∆ is the coproduct, S the antipode and ǫ the counit. This Hopf algebra structure

is twist-equivalent to the standard one in a sense given in [EKP07]; note that the infinite

sums on the right of the coproducts above require careful interpretation [Her05, Her07a,

Gro01]. With respect to this “current” Hopf algebra structure, it is clear that the singlet

state in Vi1,a1 ⊗ Vi2,a2 ⊗ Vi3,a3 must be of the form |Y −1
ı̄1,a1qh

〉 ⊗
∣∣Yı̄1,a1qhY

−1
i3,a3

〉
⊗ |Yi3,a3〉

– where the first and last tensor factors are the lowest and highest weight vectors of the

respective representations, and the middle factor is an eigenvector of φ±
i (u) with l-weight

corresponding to the monomial shown.

Finally, let us remark that it would be interesting to investigate whether generalizations

of our results exist for representations other than the fundamental ones (as was suggested

in [EKMY05] based on the structure of local charges in certain integrable sigma models).

The natural candidates are the Kirillov-Reshetikhin modules W
(k)
i,a , which can be thought

of as the “minimal affinizations” [CP95] of the highest weight representations Vkλi
of g and

for which the Frenkel-Mukhin algorithm is known to work [Nak03b, Her06]. The form of

our arguments suggests that such generalizations may be possible, perhaps using the braid

group actions of [Bec94, Cha02] to lift the periodicity of the Coxeter element.
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