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Summary. Motivated by problems in metrology, we consider a numerical evalua-
tion program y = f(x) as a model for a measurement process. We use a probability
density function to represent the uncertainties in the inputs x and examine some of
the consequences of using Automatic Differentiation to propagate these uncertain-
ties to the outputs y. We show how to use a combination of Taylor series propagation
and interval partitioning to obtain confidence intervals and ellipsoids based on un-
biased estimators for means and covariances of the outputs, even in the case where
f is sharply non-linear, and even when the level of confidence required makes the
use of Monte Carlo techniques computationally problematic.
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1.1 Introduction

Often we have a program which calculates the numerical values y = f(x) of
some outputs y from the values of the inputs x. For many applications the
values of the inputs are not known with certainty. This may be because of
a deficit in our knowledge, corresponding perhaps to indeterminacies in the
measurement process, or it may be because the input values are themselves
representatives of a population with a non-zero variance. These possibilities
correspond naturally to the Bayesian and frequentist viewpoints respectively?.

The evaluations of such uncertainties in variable values are referred to
respectively as Type B and Type A evaluations of uncertainty in Clauses 2.3.3
and 3.3.5 of the enormously influential methodology for uncertainty evaluation

3 As tool-writers we hope to design our product in such a way as to satisfy both
camps that we have performed the correct calculation, and thus to escape in-
volvement in the discussions of the interpretation and significance of the result.
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set out in the “Guide to the Expression of Uncertainty in Measurement” [8],
published by ISO and popularly known as the GUM.

We often wish to model the uncertainty in the values of the independent
variables (inputs z) and to obtain corresponding estimates of the uncertainties
in the values of the dependent variables (outputs y).

Interval analysis is one technique which may be used to do this. However
in many applications, certainty is either not to be had, or comes at too high a
price. For example, the value of a variable drawn from a normal distribution
N (p,0) is theoretically unbounded, but in practice the confidence interval

[4— 50,1+ 50]

will almost certainly suffice?. In other cases, certainty is not desired: for many
applications in metrology, mean-centred 95% confidence intervals for the out-
puts are the information of primary interest.

Direct application of interval analysis to confidence intervals is not straight-
forward. Input value uncertainties are often correlated as a result of the pro-
cesses used to obtain them, and we frequently desire to exploit correlation
information about output uncertainties. In this paper we use a probability
density function (pdf), as in the GUM, to model the input uncertainties, and
we examine some of the consequences of using Automatic Differentiation (AD)
to propagate these uncertainties to the outputs.

The rest of this paper is organized as follows: in the next section we look
at the case where f is linear, corresponding to Clause 8 of the GUM, and in-
troduce the use of multivariate truncated Taylor series. In Sect. 3 we compare
and contrast this approach with conventional interval analysis. In Sect. 4 we
extend our Taylor series approach to cope with moderate non-linearities in
f and show how to obtain unbiased estimators for uncertainty parameters in
this case. Implementation issues are considered in Sect. 5. This section also
considers how to truncate and partition distributions in order to cope with
poles and other artifacts of severe non-linearity. In Sect. 6 we show how AD
can be used to validate hypotheses about output distributions, and to con-
struct confidence intervals at various levels of probability under a hierarchy
of such assumptions. The final section includes some prospects for the future.

1.2 Linear Models

Many approaches to uncertainty modelling assume that the evaluated func-
tion f (known in the GUM as the model of a measurement) is linear, or very

4 There always comes a point where events within the model become sufficiently
unlikely, relative to significant events deliberately ignored by the model, that
they can also prudently be disregarded. The majority of metrological analyses,
for example, do not consider the effect of the measuring apparatus being struck
by a very small meteor at the crucial moment.
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nearly linear, at least over sufficiently long intervals surrounding the antici-
pated values for the inputs®.

Under this assumption, the straightforward approach is to represent all
the program variables v; as multivariate first order Taylor series, so that the
variable

v = (v(o), oM ,v(”)) represents  v®) + oM ¢ 4+ 0™,

where the (; are independent random variables with zero mean and unit vari-
ance, so that

E(¢) =0; E(G¢) = 6ij
where E denotes expectation.

Usually we will take ¢; from either the normal distribution N(0,1) or from
the student-t distribution with the appropriate number of degrees of freedom
for the number of measurements involved. Other distributions including the
uniform and the logarithmic distribution are also possible and are considered
in what follows.

1.2.1 Uncorrelated Inputs

In the simplest case, where the uncertainties in the input values to the calcu-
lation are uncorrelated, we initialize the input variables x; by setting

vi=2® +allc
where

2V = Elz;]  and (x(i))Q =V [2i] = E [(zi — E[zi])’]

T K2

are the mean and variance respectively of z;.

1.2.2 Correlated Inputs

In the more general case where the input uncertainties are correlated, we set
0 )
J

where xgj ) = ri; are chosen so that R = [r;;] is the lower triangular decompo-

sition of the input covariance matrix

V = RR" = Cov[ry,...,7,].

5 The GUM makes this assumption explicitly [8, Clause G.6.1] as a basis for the
uncertainty budgeting (evaluation and expression) procedure set out in Clause 8
of the GUM.
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(0)

In this case we have E[z;] = z; ~ and

Covariance (z;,2;) = E [(x; — E[z;])(z; — Elxz;])]
=B |3 22V Z:ci’“ O E )
k.t

_ } : (k) Z
xT; Jc TikTjk = Vij

since by independence E[CkC(] = Ope.

1.2.3 Single Output

Automatic Differentiation [2, 6, 11] can be used to propagate the numerical
coefficients of the Taylor terms through the calculation y = f(x). If the main-
stream GUM assumptions [13] of a linear function model are satisfied, then
to the required degree of approximation we will have

=y 4 Zy(j)Cj 7
J
with the mean and variance of y being given by
N 2
Byl =y and V[ = (y)
J

respectively. In the case where the (; are normal, the pdf for y is also normal,
and the calculated value for V[y] can be used directly to construct the required
confidence interval centred upon y(®).

1.2.4 Multiple Outputs

For a linear model with several outputs AD gives
=y + Zy G s

SO
Ely) =4,  Cov(y:,y;) Zy

These Values can be used to construct the required confidence ellipsoid; the

values y effectlvely give the covariance of the outputs in a factored form
which in the normal case can be used to construct the ellipsoid directly.
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1.3 Contrast with Interval Analysis

This section describes a simple linear example, intended to illuminate some
differences between the approach taken in this paper and that of conventional
interval analysis.

Consider the case where the uncertainties in the inputs x; and x, are
modelled by independent (uncorrelated) normal distributions with zero mean
and variances 1.0 and 0.01, respectively, and suppose y; = 1 + x2.

Clearly taking 97.5% confidence intervals for 1 and 25 and applying inter-
val analysis will give a 95% confidence interval [—2.47, +2.47] for y;, but not
an optimal one. For example taking a 96% confidence interval for 1 and a 99%
confidence interval for x5 will give the tighter 95% interval I = [—2.31,+2.31]
for y1. However the variances of the independent inputs add to 1.01, which is
therefore the variance of y;, so our approach directly gives y; € [-1.97,+1.97]
with 95%.

(2.47,2.02)

area 4.03

04

‘6,
he

Fig. 1.1. The rectangle J

Now suppose ys = x1 — T2. The square I x I is a 95% confidence box for
y = (y1,y2) with area 21.3, although the corresponding square with half-side
1.97 is not. However, in Fig. 1.1, the thin rectangle J aligned at 45 degrees to
the axes,
J={(y1,92) : ly1 + 92| <449, [y — ya| < 0.45},

is a 95% confidence box and has the much smaller area 4.03.
The optimal 95% ellipsoid F, given by the method of the previous section,

E={(y1,y2) : (y1 +y2)* +100(y1 — y2)* < 23.96}

has an area of just under 3.77.

Even in the exactly linear case, if rigorous bounds are sought for the output
confidence intervals, then there are benefits to using the approach described
here in conjunction with conventional interval analysis, rather than relying
upon a naive use of the latter.

The method of this paper can be used to construct a sensible hypothesis for
the rigorous approach to verify. The benefit of using the approach described
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here to “precondition” the hypothesis for rigorous validation is even more
pronounced in the case of correlated inputs or, as we now discuss, non-linear
evaluation functions f.

1.4 Non-linear Models

The assumption of linearity of f over the relevant confidence interval is fre-
quently not justified. In other cases, (approximate) linearity is an hypothesis
which we wish to use our model to confirm, rather than a matter of blind faith.
In these cases, a non-linear model of the effects of evaluating the function f
is required.

In the case where the function model is significantly non-linear, the ygo)
are generally biased estimators for the y;. In other words, we can no longer
assume Ely;] = ygo). Indeed, in the non-linear case the outputs may not even
be monotone functions of the inputs over the intervals in question, nor need
the ygo) be maximum likelihood estimators for the y; even in the smooth
monotone case®.

Although maximum likelihood estimators are appropriate for Bayesian in-
ferences such as data assimilation, for many purposes we also require unbiased
estimates of quantities associated with the outputs. In particular if we wish
to construct confidence intervals (or ellipsoids) from a pdf model for y then
we would like to have unbiased estimates for the relevant moment coefficients
in order to construct percentile points of the cumulative output pdf.

Such unbiased estimators can be approximated accurately by using AD to

propagate higher order Taylor terms.

1.4.1 Higher Order Program Variables

We can redefine the program variables to represent a pyramid of coefficients
corresponding to a higher order truncated multivariate Taylor series, so that
the variable
0 j ik ikt
vi = (07, (0 )o<j<ns (07 o<j<nan, (07 )o<jcrcrsn)
represents the truncated Taylor series
0 j ik ke
v + sz@Cj + ZUEJ ¢+ Z et
J i<k J<k<e

Initializing the input variables to be first order Taylor series as before, and
using forward AD for general truncated multivariate Taylor series, we obtain

J i<k J<k<e

6 Although in the smooth monotone case, if p and ¢ = p/f' are the pdf for = and
y respectively, then at the maximum likelihood value for y we have p’ = ¢ - f”.
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1.4.2 Taking Expectations
In general by independence of the (; we have
E[GFGiG] =BG E[G] - B[] forj <k <t

and we can usually evaluate terms such as F [Cf ] from our knowledge of the
distribution from which the ¢ are drawn. For example for ¢ in N (0, 1) we have

E[¢*) = (2p — 1)E[¢XP~V], E[(* =0 forp>0,

and corresponding moments can be pre-calculated for other initial distribu-
tions.

1.4.3 Unbiased Output Mean

Using these reductions, we see for example that an unbiased estimator of y is

Ely) = y® + 3y 4 ;401 4 K ;) 0539)
j

+ Z yUIkk) 4 5¢h order terms |
i<k
where Sj is the skew E[C?], and Kj is the kurtosis E[(}]. In the usual case

where the (; are symmetric, all S; and all fifth order terms are zero, and the
estimator is therefore accurate to order five. If (; is normal then K; = 3.

1.4.4 Unbiased Output Variance

Unbiased estimators for other quantities can be obtained by taking expecta-
tions of other variables. For example, an unbiased estimator for the variance
of y is

Viyl=E [(y - Ely)?]

=E [[D vV¢G+y9(G 1)+ ) oG+ D yIIGGG
J i<k J<k<t
= Z(y(j))2 +25,yDy) 4 (K; — 1) (y99)2 4 2K,y y539)
J
+ 37 (UN)? 4 2y @y oy iRy ® 4

i<k
where (; has skew S; and kurtosis K ;. When ¢ is normal, S; = 0 and K; = 3.
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1.4.5 Unbiased Output Covariances

Similarly in the case of more than one output, the covariances correspond to
inner products:

Cov[yp,yq] = E[(yp - E[yp])(yq - E[qu

— Zyz(;j)yéj) 4 Sj(yl()jj)yéj) 4 yz(]j)yéjj))
J

(G — 1)y 4 I, (y0)ya0) 4 i)

+ 37 YRR gDy RR) 4y Gk G) (iR R) 4 Rk
j<k

1.4.6 Adjoint Expectations

Expectations of the adjoints T; = dy/0x; can also be interpreted directly as
sensitivities of parameters of the output uncertainties with respect to parame-
ters of the input uncertainties. In the case of a single output y and uncorrelated
inputs z;, and writing p(z) and o(z) respectively for the mean and standard
deviation of the distribution modelling the uncertainty corresponding to the
program variable z, we have for example that

B@) = gh . BGm) = 252,
E(yz;) — E(y)E(z;) _ do(y) E(y(izi) — E(y)E(Gx;) _ do(y)
o(y) op(x;)’ o(y) do(x;)’

and so on.

1.5 Implementation with Automatic Differentiation

All the expressions which we have considered, including those for unbiased
estimators, can be evaluated automatically by an appropriately enhanced AD
tool. It is straightforward to add intrinsics to an AD tool to specify the mo-
ments of the ¢;. Independent variables can be defined to be of type Normal,
Student(n), Uniform etc. A new operator E is defined which evaluates the
expectation of a program variable. Further intrinsic functions can be defined
in terms of E, such as

Cov (x,y) = E((x-Ex))*(y-E(y))

K(x) = E((x-E(x))*%*4)

Bias (x) = termO(x) - E(x)

etc.
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Reverse AD can be used instead of forward to calculate the multivariate Taylor
series coefficients. This makes the accumulation process more efficient, but
requires slightly more care in the definitions of the intrinsics: the terms of each
series must be assembled into a variant data type, prior to being combined
into the expression to which the intrinsic is applied.

Similar remarks apply to the use of interpolation schemes such as those
of Bischof et al.”[1] or Neidinger [14]. In the case of symmetric distributions
the majority of cross-terms do not contribute to expectations, and so need
not be computed: in particular, as remarked earlier, a fourth order estimate
is automatically accurate to fifth order in this case.

1.5.1 Convergence and Singularities

The order of Taylor series actually required for a given level of accuracy de-
pends on the non-linearity of f. As an extreme example, if

y=expx? with x=¢eN(0,1)

then the expectation of y is unbounded. Of course, using a truncated distribu-
tion for x will give a correct confidence interval for y even in this case: for this
example we could restrict ¢ to the range [—5, 5], with appropriate changes to
the distribution moments. However it is useful that the AD-based model can
signal automatically any potentially catastrophic non-linearity of f.

Singularities in f corresponding to plausible values of the input variables
can also be dealt with by truncation, but similar difficulties can arise from
imaginary poles of f. For example, the smooth function

Y with z = ¢ € N(0,1)

T 1+22

has finite expectation, but the poles at i and —i mean that the Taylor series
in ¢ for y has only unit radius of convergence. In such cases the simplistic
approach of taking expectations term by term and summing produces a di-
vergent series, even though the expectation of the infinite sum may be finite.
This underlines the remark made by Louis Rall during his 2004 talk in
Chicago, that AD is not really a local operation. We describe the function f
as almost-linear, relative to a given input uncertainty pdf and a desired level
of confidence for the outputs, when all poles of f are sufficiently distant from
the mean, and the radius of convergence about the mean is sufficiently large,
to allow the use of a single truncated distribution upon each of the ;.
However in the example of 1/(1 + z?), truncation sufficient to ensure con-
vergence would rule out altogether the possibility of obtaining a 95% confi-
dence interval. Harley Flanders (personal communication) proposes the use of

7 Andreas Griewank (personal communication) points out that this would allow a
fifth order estimator of n output variable values y to be obtained at a cost of
order n? /2 univariate fourth-order Taylor expansions, which is about one third
of the cost of computing the full order four tensor.
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a partitioning approach to provide a general solution for cases like this, and
we describe one such approach below.

1.5.2 The Partition Approach to Expectations

The partition approach to evaluating expectations works as follows. Partition
the distribution for the ¢; into boxes B; = [], I;; in such a way that only
finite boxes have non-negligible probability. By refining if necessary, ensure
that the distance from the centre (c; ;); of each finite box to any pole of f
is large compared to the length of the corresponding radius of the box. For
each non-negligible box Bj;, recalculate the Taylor coefficients for y in terms
of powers of & = (; — ¢; 5.

Now, using the independence of the &;, and our prior knowledge of the
values of the integrals of the £¥ with respect to the pdf for each element of
the partition, apply the expectation operator to each box separately and then
sum the results. This gives the correct result even for functions which are not
almost-linear. Provided standard partitions are used, integrals for the £¥ over
I; ;j can be pre-calculated and stored in tabular form.

The use of interval methods for optimization requires a similar form of
partitioning to that advocated here. Greater accuracy can be obtained by
using more Taylor terms or by allowing the partition to be refined.

1.6 Validation of Uncertainty Models

Numerical values of bias terms can be used to determine the validity of the
GUM assumptions or to validate the non-linear model being used to construct
the confidence intervals for the outputs. This can be done either as an alter-
native or as a supplement to Monte Carlo Simulation [4, 9]. In the case where
a non-linear multistage model is being used, higher order terms of the first
stage outputs can be used directly to initialize the second stage inputs.

The generalized output values from an AD-based tool of this type can be
used to construct many different confidence intervals, depending not only on
the level of confidence required but also on the strength of the assumptions
made by the uncertainty model.

1.6.1 Single Output
For a single output variable y, let I;(y) be the interval defined by

I(y) = [Ely] —s-0(y), Ely] +s-0(y)], where o(y) = E[(y — Ely])?].

Then I,45(y) is a 95% confidence interval for y without any assumptions
whatsoever on the distribution of y, by Chebyshev’s inequality.
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However if the kurtosis of y is known to be less than 4.0, an assumption
which can be verified by using AD to compute the relevant expectation®, then
taking s = 3.0 gives a 95% confidence interval for y. This is because, setting

and letting p denote the pdf of z, we have that
st P(lz] > 5) < /z4p(z) dz ,

so under the single assumption that the kurtosis is less than 4.0, which we
can verify numerically by checking that E(z*) < 4.0, setting s = 3.0 gives
P(y ¢ Iso(y)) <0.05, and s = 4.48 gives a 99% confidence interval for y.

1.6.2 The Hyperbolic Cosine Transform

More ambitiously, we have
coshst - P(|z] > s) < /coshtz ‘p(z)dz

and for z normal the value of the integral is exp %tQ. Setting t = s and validat-
ing, for a particular value of s and a ‘nearly normal’ z, the single verifiable®

assumption that

1
E(coshsz) < 1.5 exp (552>

gives
1
P(|z] > s) <3 exp (—§s2> )

and so on.

Estimates of this form are particularly useful for relatively high values of
s, corresponding to a requirement for high levels of confidence for which the
use of Monte Carlo Methods is problematic. For example setting s = 4.0 with
the hyperbolic cosine hypothesis gives a 99.9% confidence interval with no
further assumptions about the distribution of z.

If more assumptions are made about the moments of y, then tighter con-
fidence intervals can be constructed. If the uncertainly in y is known (or
assumed) to be normal then s can be reduced to 1.96 for 95%, 2.58 for 99%,
and 3.29 for 99.9%, and similarly for other distributions.

8 Naive use of GUM simply assumes inter alia that the kurtosis of y is exactly 3.0
if the (; are normal.

 From an implementation point of view, it is important to ensure that the Taylor
series developed for cosh contains no odd terms, rather than being defined in
terms of exp.
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1.6.3 Multiple Outputs

Similar observations to the single output case hold for the case of n > 1
outputs. If
Cov(y) = E ((y — E()(y — E(y))") = RR"

is the AD-calculated covariance for the outputs, then we can define

z=R'(y—E))

for the calculated values of R. Certainly (for example)
s'n? - P(|]z| > sv/n) < /z4p(z) dz = E ((z*)?) ,

and we can calculate the value of E ((2?)?) /n?. Under the GUM assumptions,
we have E ((2?)?) /n? ~ 1+ 2/n, so we can attempt to verify the hypothesis
that this value is less than 3.0 (say). In this case, we have

P (|z| > sv/n) <3.0/s* ,

and so on.

1.7 Way Ahead

We have shown how to use AD to propagate Taylor series corresponding to
uncertainty distributions through functions modelling measurements. A novel
point is that the use of AD allows assumptions about the output moments to
be validated!? before a confidence interval at a given level of significance is
built. This could be extended to Laurent series. Future work may also include
the incorporation of rounding errors and errors arising from the inexact solu-
tion of intrinsic equations, using the methods of Iri [3, 7, 10]. A very desirable
feature would be the incorporation of interval methods to provide rigorous
bounds on the errors in the calculated expectation values. The systematic use
of partitioning could also allow automatic validation of control flow changes
(such as if statements) via partitions of confidence intervals on intermediate
values of program variables.

10 We recommend using AD to validate the assumption that the kurtosis is less than
some given value, preferably an hypothesized value significantly larger than the
calculated one. This is different from using the calculated value to construct the
confidence interval. It is the former procedure which we are recommending here.



1 Automatic Propagation of Uncertainties 13

References

10.

11.

12.

13.

14.

. Christian Bischof et al, 1993, Structured Second- and Higher-Order Derivatives

through Univariate Taylor Series, Optimization Methods and Software, 2, 211—
232.

. Bruce Christianson, 1992, Reverse Accumulation and Accurate Rounding Er-

ror Estimates for Taylor Series Coefficients, Optimization Methods and Soft-
ware, 1(1), 81-94.

Bruce Christianson, 1998, Reverse Accumulation and Implicit Functions, Op-
timization Methods and Software, 9(4), 307-322.

. M.G. Cox, M.P. Dainton and P.M.Harris, 2001, Uncertainty and Statistical

Modelling, Software Support for Metrology Best Practice Guide No. 6, HMSO,
ISSN 1471-4124.

M.G. Cox and P.M.Harris, 2004, Uncertainty Evaluation, Technical Report,
National Physical Laboratory, Teddington UK.

Andreas Griewank, David Juedes and Jean Utke, 1996, Algorithm 755; ADOL-
C: A package for the automatic differentiation of algorithms written in
C/C++, ACM TOMS, 22(2), 133-167.

. Masao Iri, 1991, History of Automatic Differentiation and Rounding Error

Estimation, pp 3-16 in Andreas Griewank and George Corliss (Editors), 1991,
Automatic Differentiation of Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania.

International Organisation for Standardisation, 1995, Guide to the Expression
of Uncertainty in Measurement, 2nd edition, Geneva, ISBN 9267-10188-9.
International Organisation for Standardisation, 2004, Guide to the Expres-
sion of Uncertainty in Measurement, Supplement 1: Numerical Methods for
the Propagation of Probability Distributions, Draft Technical Report, Joint
Committee for Guides in Metrology.

Keiko Kabaya and Masao Iri, 1987, Sum of Uniformly Distributed Random
Variables and a Family of Nonanalytic C'°°~-Functions, Japan Journal of Ap-
plied Mathematics, 4(1), 1-22.

Gershom Kedem, 1980, Automatic Differentiation of Computer Programs,
ACM TOMS, 6, 150-165.

Koichi Kubota and Masao Iri, 1991, Estimates of Rounding Errors with Fast
Automatic Differentiation and Interval Analysis, Journal of Information Pro-
cessing, 14(4), 508-515.

Ignacio Lira, 2002, Evaluating the Measurement Uncertainty: Fundamentals
and Practical Guidance, Institute of Physics Publishing, Bristol.

Richard Neidinger, 2005, Directions for Computing Truncated Multivari-
ate Taylor Series, Math Comp, 74(249), 321-340. See www.ams.org/mcom/
2005-74-249/home . html



