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� Introduction

Automatic Di�erentiation �AD� is a set of techniques for transforming a program
that calculates numerical values of a function� into a program which calculates
numerical values for derivatives of that function with about the same accuracy
and e�ciency as the function values themselves�

The derivatives sought may be �rst order �the gradient of a target function�
or the Jacobian of a set of constraints�� higher order �Hessian times direction
vector or a truncated Taylor series�� or nested �calculating rx F �x� f�x�� f ��x��
for given f and F ��

Many non	linear optimization techniques exploit gradient and curvature in	
formation about the target and constraint functions being calculated� Deriva	
tives also play a key role in sensitivity analysis �model validation�� inverse prob	
lems �data assimilation� and simulation �design parameter choice��

These derivatives can be estimated using divided di�erences� but such es	
timates are prone to truncation error when the di�erencing intervals are nu	
merically large� and to round	o� error when they are small� In addition� the
run	time requirements of a divided di�erence approach are often unacceptably






high� particularly for problems with a large number �thousands� of independent
variables�

The manual development of code for evaluating analytic derivatives of a
function is a tedious and error	prone activity� Of course� symbol manipulation
programs can di�erentiate individual equations� but the code for evaluating a
function of interest typically has a non	trivial control �ow� involving conditional
statements� loops� and subroutine calls� as well as data structures which may be
updated many times during the evaluation process� Particularly if the underly	
ing program is subject to continual structural change� it is generally desirable
to automate� at least in part� the process of transforming it into a program
that calculates derivative values� and this was the initial motivation for the
development of AD�

The basic process of AD is to take the text of a program �called the un	
derlying program� which calculates a numerical value� and to transform it into
the text of a program �called the transformed program� which calculates the
desired derivative values� The transformed program carries out these derivative
calculations by repeated use of the chain rule from elementary calculus� but
applied to �oating point numerical values rather than to symbolic expressions�

The transformation process may be carried out by a compiler	like tool� or
by operator overloading� Tools using the latter approach are simpler to build�
but produce code which is less e�cient to run�

The compiler	like transformation of a pre	existing program is not the whole
story of AD however� The e�cient transformation of programs which include
the solution of complicated sub	problems often bene�ts from user insight into
the problem structure� and conversely the conceptual framework imposed by
AD often gives users insight into more e�cient ways of coding the underlying
program� Consequently the term AD has stretched to cover the user	driven
transformation of abstract algorithms� as well as the automatic transformation
of concrete programs�

In this paper we give a rapid review of the basic techniques of AD� followed
by a quick tour of a few extensions and examples with which we have been
personally involved and which we consider interesting from the standpoint of
non	linear optimization� This paper does not attempt to give a history of AD
�see ����� nor does it give a complete account of the foundations of AD �a full
account from a mathematical point of view is given in the excellent book by
Griewank �
���� Neither do we attempt to make a systematic survey of prior or
current work in the �eld �such as that in the blue and green books �
��� ����� nor
of the many tools which are available�� A great deal of work which we regard
as central to the discipline is not mentioned at all in this paper� for reasons of
space� Nevertheless� we hope to impart a �avour of AD� to give the reader some
idea of what goes on inside an AD tool� and to develop an initial insight into
the e�ect which certain lines of research in AD may eventually have upon what

�See for example www�mcs�anl�gov�Projects�autodiff�AD Tools





such tools can accomplish for optimization�
The rest of this paper is organized as follows� In the �rst part of the pa	

per we develop the two basic building blocks of AD� the forward and reverse
accumulation modes� The forward mode is set out in the next section� and the
reverse mode in section �� following the introduction of the ancillary notion of
a Wengert list in Section �� The reverse mode can be implemented directly by
overloading� but the more e�cient program transformation approach requires
the adjoint program construction techniques set out in Section �� Section � also
introduces the important concepts of checkpointing and preaccumulation�

The second part of the paper outlines some extensions of the basic techniques
of AD� Section � introduces some of the issues raised for AD by function approx	
imation techniques such as discretization and iterative solution of subproblems�
The case of implicit equation solution is considered in more detail in Section
�� Section � deals with the use of the reverse mode to obtain automatic error
estimates� and Section � considers the extension of AD to second and higher
derivatives�

The �nal part of the paper begins in Section 
� with a discussion of the
di�erences between the overloading and code translation approaches to AD im	
plementation� This is followed by two examples� which are used to illustrate
the earlier theory and to provide a concrete setting for some of the discussion�
a discrete	time optimal control problem in Section 

 and a constrained non	
linear optimization with exact penalty function in Section 
� Some re�ections
upon the future impact of AD	related research are set out in the �nal Section�

� Forward Accumulation

Suppose that we have an underlying program �or a subroutine� f � which takes
n independent variables xi as inputs� and produces m dependent variables yi
as outputs� and that we wish to obtain numerical values for the Jacobian J �
f � � ��yi��xj � given particular values for the xi�

The forward accumulation technique associates with each �oating point pro	
gram variable v a vector �v of �oating point derivative values� Conceptually
the simplest� Cartesian� case is when each dot	vector �v contains one component
for each independent variable xi and component i contains the corresponding
derivative �v��xi so that

�v � rx v�

More generally� the number r of vector components may di�er from the number
of independent variables� and component i may contain an arbitrary directional
derivative� or tangent vector� of the form pi �rx v corresponding to the tangent
direction given by the n�vector pi�

In the cartesian case� we initialize the dot	vector �xi corresponding to the
independent variable xi by setting �xi �� ei� the i	th cartesian unit vector� We
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write this loosely as � �x� �� In� More generally� we initialize �xi to the i�th row
of the tangent direction bundle P � �p�n�r�

Each operation which assigns a value to a �oating point variable must be
augmented by an operation to assign correct �oating point values to the corre	
sponding dot	vector� for example the operation

v� �� v� � sin�v��

must be augmented by the assignment

�v� �� v� � cos�v�� � �v� � �v� � sin�v���

It is straightforward to see how to modify the underlying program so that
it calculates the dot	vector values directly itself� We can use an operator	
overloading approach� or we can systematically transform the source code� The
source translation approach requires a greater initial investment in development�
but has certain advantages from the viewpoint of e�ciency� which we discuss
further in x
� below�

In an overloading approach� the pair �v� �v� can be combined into a new
user	de�ned data type called a doublet� Appropriate overloaded operations cor	
responding to the usual �oating point operations can be de�ned to manipulate
the dot	values in accordance with the chain rule� All active �oating point pro	
gram variables� can be re	declared to be of this doublet type� The derivative
operations and storage management will automatically occur even though the
text of the evaluation program is unchanged�

In a source	translation approach the lines of code which declare and manip	
ulate storage space and values for active program variables v can be augmented
by code to declare and manipulate storage space and values for �v in tandem��

If suitable processors are available� the components of �v can be calculated in
parallel� If the structure of the problem is such that the �v are sparse� then they
can be implemented as sparse vectors� If the number of non	zero components is
large� then it will usually be more e�cient to evaluate them in batches�� with
the underlying function evaluation repeated for each batch�

�A program variable is active if it both depends upon an independent variable� and in�u�
ences the value of a dependent variable� for some possible control �ow of the program�

�It is prudent to place the assignment to �v before that for v in the transformed code� since
the variable v on the left�hand side of an assignment statement may also appear on the right�
and the old value of v rather than the new is required to evaluate �v� In most modern computer
languages parameter passing mechanisms� array index calculations� and pointer manipulation
make it di�cult to determine at compile time whether two variables are the same�

�The batch size is chosen so that the overhead of repeating the function evaluation� amor�
tized over the size of the batch� just balances the thrashing caused by the growth of the
working set with the batch size�

�



� Wengert Lists

In order to describe the reverse accumulation technique� we need to untangle the
relationship between a mathematical variable and a program variable� In this
section we describe for this purpose an abstraction called a Wengert list ����
We can think of a Wengert list as a trace of a particular run of a program� with
speci�c values for the inputs� The only statements which occur in the Wengert
list are assignment statements to non	overwritable variables called Wengert vari	
ables� The Wengert list abstracts away from all control	�ow considerations� all
loops are unrolled� all procedure calls are inlined� and all conditional statements
are replaced by the taken branch� Consequently� the Wengert list may be many
times longer than the text of the program to which it corresponds�

The Wengert list also abstracts away from all considerations of storage man	
agement� Each assignment statement in the Wengert list has a di�erent variable
on the left	hand side� Thus a single program variable may correspond to many
di�erent Wengert variables� one Wengert variable for each occasion upon which
a value is assigned to the program variable� The Wengert list can be considered
as a straight	line program for evaluating y from x without overwriting any vari	
able after it has been initialized� Alternatively� a Wengert list can be viewed as
an unordered set of mathematical equations expressing functional dependencies
between Wengert variables and which could be di�erentiated symbolically�� The
length of the Wengert list� and hence the number of Wengert variables for which
storage is required� is proportional to the run	time of the underlying program�

In general� a Wengert list has the following form�

for i from 
 upto n do
vi �� xi

enddo
for i from n � 
 upto N do

vi �� fi�v�i�� � � � � v�ini
�

enddo
for i from N � 
 upto N � m do

yi�N �� vi�m
enddo
f�y�� � � � � ym� � f�x�� � � � � xn�g

where for each i � n� ni is the arity of fi and �i is a map from f
� � � � � nig
into f
� � � � � i� 
g�

In this formulation� we allow the functions fi to be arbitrary di�erentiable
scalar	valued functions� However we could� by introducing additional Wengert
variables� ensure that the functions fi were all of a certain simple form� for
example we could allow only unary operations �operations on single arguments�

�The Wengert list can also be viewed as a linearization of the computational graph�
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together with binary addition�� Alternatively� we could allow more general
vector	 or matrix	valued functions for fi�

In what follows� we frequently write down derivative expressions such as
�yj��vi� This is a slight abuse of notation� since each intermediate variable vi
depends functionally upon the input variables xi� Purists who wish to avoid any
ambiguity about whether a variable is dependent or independent can replace the
assignment vi �� fi�v�i�� � � � � v�ini

� by the identity vi � fi�v�i�� � � � � v�ini
� � ui

where the ui are additional independent variables with value zero� and consider
�yj��ui when we write �yj��vi�

� Reverse Accumulation

The reverse accumulation technique associates with each �oating point program
variable v a vector �v of �oating point derivative values��

Conceptually� the simplest case is when each of these bar	vectors contains
one component for each dependent variable� and component i contains the cor	
responding derivative �yi��v� so that

�v � Dv y�

More generally� the number s of vector components may di�er from the num	
ber of dependent variables� and component i may contain an arbitrary adjoint
derivative� or co	tangent vector� of the form qi � Dv y� corresponding to the
co	tangent direction given by the m�vector qi�

Each operation which assigns a value to a �oating point variable must be
augmented by an operation to assign correct �oating point values to the corre	
sponding bar	vectors� according to the chain rule� for example the operation

v� �� v� � sin�v��

corresponds to the assignments

�v� �� �v� � sin�v��� �v� �� �v� � v� � cos�v���

In contrast with the forward case� the bar	vectors �vi cannot be calculated in the
same sequence as the variable values vi� but must be evaluated in the opposite
�or reverse� order�

In the simplest case� we initialize the bar	vector �yi corresponding to the
dependent variable yi by setting �yi �� eTi � the i	th cartesian unit vector� We
write this loosely as ��y� �� Im� More generally� we initialize �yi to the i�th
column of the co	tangent direction bundle Q � �q�s�m�

�Multiplication by a constant and squaring are unary operations� and binary multiplication
can be de�ned by a � b 	 
�� � ��a b�� � �a� b���� To avoid cancellation error� the operands
can be dynamically scaled by opposite powers of two� which cancel in the derivative formulae�

�Formally� �v is a column vector and �v is a row vector�
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In this section we explain how to reverse accumulate the adjoint variables �v
for programs expressed in the form of a Wengert list� In x� which follows� we
extend these techniques to more general programs with variable assignment and
control �ow� Examination of the Wengert list yields the following algorithm for
computing the adjoint variables�

for i from 
 upto n do
vi �� xi
�vi �� ���

enddo
for i from n � 
 upto N do

vi �� fi�v�i�� � � � � v�ini
�

�vi �� ���
enddo
for i from N � 
 upto N � m do

yi�N �� vi�m
�vi�m �� �yi�N

enddo
for i from N downto n � 
 do

for j from 
 to ni do
�v�ij �� �v�ij � �vi � �Djfi��v�i�� � � � � v�ini

�
enddo

enddo
for i from n downto 
 do

�xi �� �vi
enddo
f��xT� � � � � � �xTn � � Qf ��x�� � � � � xn�g

The adjoint variables are incremented rather than simply assigned because
although a Wengert variable can be written only once� it can be read several
times� At each point at which it enters the subsequent calculation it can a�ect
the dependent variables� and the relevant adjoint value is the sum of all such
e�ects�

Of particular interest is the case m � 
 where there is only one dependent
variable� Programs which calculate a single scalar	valued objective or target

function arise in unconstrained problems or when constraints are incorporated
using penalty or barrier functions� In this case the �vi are scalars� and it is
clear that reverse mode AD allows the entire gradient vector to be extracted�
to the same level of precision as the function� for about the cost of three func	
tion evaluations� regardless of the number of independent variables� This fact�
which deserves to be more widely known than it appears to be� follows from the
consideration that the computational cost of evaluating Dfi for elementary fi
is generally no greater than that of evaluating fi itself�

�



In the case where overloading is used� it is a relatively simple matter to mod	
ify the underlying program so that it builds its own Wengert list of elementary
�oating point operations� with each overloaded operation appending the next
list item to a data structure as a side	e�ect� The reverse pass over this list can
then be invoked by calling a separate routine� The Jacobian values of Djfi can
be saved on a stack on the way forward� and used in reverse order on the way
back� Alternatively� the values of the program variables can be saved whenever
they are overwritten� and the restored values used to calculate the Djfi on the
way back�

The high storage requirement of such a naive approach to reverse mode
AD is prohibitive for large problems� However� for many small to medium size
problems the relatively cheap cost of secondary storage� the e�ciency of virtual
memory� and the fact that access to the Wengert list can be made essentially
serial� means that the naive implementation approach is viable�

However it is also possible �and more e�cient in both run	time and storage
space� see x
� below� to implement the reverse method by transforming the
underlying program into an adjoint program with the �opposite� control �ow�
and we consider how to do this in the next section� This transformation enables
the more subtle analysis of the trade	o�s between storing results that will be
needed later and recomputing them� which is required by larger problems� The
judicious use of recomputation usually allows reverse mode AD to be done with
a storage requirement that is only a small factor larger than that required by the
underlying program� Furthermore� the recomputations can generally be done
in parallel in such a way that the overall runtime is not increased� We consider
this issue further in the next section� and give an example in x

�

� Adjoint Program Construction

In this section we sketch how to transform code so as to enable the calculation
of adjoint values� We have no space here to describe the informatics involved� so
we simply set out the transformation process as if it were being done by hand�
The initial task of AD is to automate this process of program transformation�
by the development of compiler	like tools and appropriate operating system
interfaces� We assume that the underlying program has been augmented to
save partial derivative values or overwritten variable values on the way forward�
and consider the structure of the program� called the adjoint program� required
to carry out the reverse pass�

Variables and assignment statements� The adjoint program declares and
manipulates adjoint program variables� which may be vectors or scalars� Exactly
one adjoint program variable �v is required for each program variable v in the
underlying program� This follows from the observation that� if two Wengert
variables correspond to successive values of the same program variable on the
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way forward� then their adjoints can share the same storage on the way back�
a program variable value which has been overwritten can no longer in�uence
the dependent variable values and so has adjoint value zero� while a program
variable value which has not yet been assigned corresponds to an adjoint value
which will not be used again and so can be discarded�

Hence� to the program assignment statement� �vi �� fi�v�i�� � � � � v�ini
��

corresponds the adjoint code�

�t �� �vi
�vi �� ���
for j from 
 to ni do

�v�ij �� �v�ij � �t � �Djfi��v�i�� � � � � v�ini
�

enddo

Here �t is a �temporary� adjoint variable� introduced to allow for the fact
that in the underlying program� in contrast to the Wengert list� the variable vi
on the left	hand side of an assignment statement may also appear on the right��

An alternative to saving partial derivative values on the way forward is to
calculate them on the reverse pass	� This requires some of the overwritten
values of program variables to be saved on the way forward so that they can
be restored at the corresponding point on the reverse pass� Speci�cally� if the
overwritten value appears as an argument to a non	a�ne function fi then it must
be saved� Sometimes we can avoid the need to store and restore �oating point
program variable values by inverting the calculation which produced them ��
but roundo� makes this di�cult in general�
� Alternatively� we can re	calculate
the overwritten program variable values from checkpoints as described below in
x����

Sequence of statements� The statements in the adjoint program consist of
the adjoints of the statements in the underlying program� but in reverse order�
so that the adjoint of �S��S��S�� is � �S�� �S�� �S�� We have already seen how
to adjoin assignment statements� We indicate below how to adjoin statements
a�ecting control �ow�

�It is prudent to do this in all cases since� as mentioned before� parameter passing mech�
anisms� array index calculations� and pointer manipulation make it di�cult to determine at
compile time whether two variables are the same�

	Whichever alternative is adopted� access to the archived values is serial and predictable�
so high latency secondary storage can be used provided the burst bandwidth is su�ciently
high�
�
Although it is worth noting that if wi�� 	 fi�wi� for all i where w is the state vector�

and if gi is an approximate inverse of fi��� then the transformation �fi de�ned by wi�� 	

fi�wi�wi���gi�wi� approximates fi to the same degree and �fi�� has exact inverse �gi given
by wi�� 	 gi�wi�  wi�� � fi�wi��
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Procedure and function calls The adjoint of a procedure call is a call
to the adjoint procedure� The adjoint procedure �P contains the adjoints of the
statements in the underlying procedure P � in the reverse order� Out parameters
become in parameters and in parameters become in	out� Functions can be
treated as procedures with an additional out	parameter�

When there is a need to trade storage space against recomputation� proce	
dure boundaries provide a natural point at which to do so� According to the
orthodox view� in a well	designed program the number of times variables are
updated across procedure	call boundaries� either as global variables or as pa	
rameters� is low relative to the number of program variable updates which occur
within the procedure� This allows space to be saved using pre�accumulation or
checkpointing�

Preaccumulation� Pre	accumulation involves treating the entire procedure
as a �possibly vector	valued� elementary operation fi and storing the partial
derivative f �i on the stack instead of storing partial derivative values for the
complete set of internal operations� This Jacobian f �i can be evaluated at the
time when fi is called� by a recursive application of forward or reverse mode
AD to the procedure��� This leads to a substantial space saving when the space
occupied by f �i is small relative to the number of internal operations of the
procedure fi�

Although extra multiplications are required to incorporate f �i on the outer
reverse pass� the total operation count may be actually reduced� depending
upon the number of procedure inputs and outputs ni and mi relative to n and
m ���� Similar considerations apply to the exploitation of structural sparsity�
In a parallel processing environment� preaccumulation can shorten the elapsed
time of a calculation even when m � 
� because the pre	accumulation of f �i can
be done in parallel and hence moved o� the critical path of the calculation ����

Checkpointing� A checkpoint is a complete record of the program state at a
particular point of execution��� Incremental checkpointing across a procedure
boundary is a matter of noting what changes are made to the environment by
the procedure via parameters and global variables� in such a way that these
changes can be quickly undone and reapplied �toggled� to a previously recorded

��From the linear algebra viewpoint� the Wengert list expresses the Jacobian as a product
of large� sparse matrices� one for each fi� Forward and reverse accumulation correspond to
multiplying these sparse matrices from left to right� or from right to left� There is a huge
body of recent interesting work on the optimal order in which to interlock forward and reverse
accumulation steps to optimize the operation count� which we do not have space to touch on
here� A good conceptual overview of the issues is given by Griewank and Reese ����� See also
�����
��A checkpoint includes the program counter and a snapshot of the procedure calling history

�runtime stack�� as well as the program variable values�
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checkpoint��� When a checkpoint has been taken at the entry point of a proce	
dure call� then the complete internal record of variable values overwritten by the
procedure can be discarded and the storage saved� since these values can now
be recomputed from the checkpoint� According to orthodoxy� in a well	designed
program an incremental checkpoint across a procedure call boundary should re	
quire only a small proportion of the space occupied by the entire program state�
On a reverse pass� the adjoint procedure �P begins by toggling the program
state from the exit state to the entry state using the incremental checkpoint�
then calls the augmented version of the underlying procedure P to re	create
the internal record before proceeding with reverse accumulation� In the paral	
lel processing case this re	creation process for P can be moved o� the critical
path by allowing it to be started su�ciently early to be ready when required�
Finally� in the case of nested procedure calls� subroutines P�� P�� etc called by
P need not be re	evaluated when P is re	evaluated� provided the incremental
checkpoint for Pi is available� evaluation of Pi can be replaced by a state toggle
from the entry to the exit state�

These two techniques of preaccumulation and checkpointing can be com	
bined� For further details see ����

Conditional statements and loops� The adjoint of the conditional state	
ment �if c then S� else S� endif� is the statement �if c then �S� else �S� endif�� If
either of the statements S
 or S could a�ect the value of the condition c� then
the value of c can be pushed on a stack on the way forward� and popped on the
way back� just like the partial derivative values or overwritten program variable
values�

The adjoint of a loop is also a loop� In case of a for loop� the adjoint is
a for loop in reverse order� In case of a while loop� the adjoint loop performs
the adjoint of the loop body the same number of times as on the way forward�
We can can either determine a precondition to identify the �rst iteration of the
forward loop� which is the last iteration of the backward loop �
�� Chapter 
��
or we can store the number of iterations that was actually performed� analogous
to the if statement���

Where loop iterations are independent� they can be done in the same order
as on the way forward and array subscripts can be calculated in the same way as
on the way forward� Otherwise the array index calculations must be reversed�
sometimes this is possible� since roundo� is not an issue� but in the worst case
the index values have to be stored in sequence on the way forward and restored
on the reverse pass� just like overwritten �oating point variables�

��For example a �fork� can be used to take an incremental checkpoint if the operating
system uses a lazy copy�on�write scheme for the virtual memory pages in the process runtime
stack�
��Often the sequence of values to be stored exhibits a regular pattern� in which case standard

data compression techniques such as Hu�man encoding can be applied to reduce the space
required�







Loop iterations also form good boundaries at which to consider checkpointing
and preaccumulation� Loops which perform temporal evolution or some other
form of in	place state space update �such as ODE evolution or Optimal Control�
are particularly good candidates for checkpointing �for example see x

 below��

Loops to perform array operations can be regarded as single steps and re	
placed by the corresponding adjoint step� For example the matrix operation
X �� Y �Z corresponds to the adjoint operations �Y �� �Y �Z� �X� �Z �� �Z� �X�Y �
where we adopt the convention that adjoint matrix components are of transpose
shape relative to the underlying matrix�

Loops which perform equation solving are of particular interest� since in
general we do not need to record the process by which the solution was found
�see x� below��

Input and output� For reads and writes to a sequential �le� called say �foo��
the adjoint operations are straightforward� and similar to those for variable
assignment� The adjoint to �read �v� foo�� is �write ��v� foobar�� �v �� ���� and
the adjoint to �write �v� foo�� is �read ��t� foobar�� �v �� �v � �t �� For random
access �les the situation is a little more fraught� see �
�� for a good account of
what is involved�

In the parallel processing case similar considerations apply to Inter	Processor
Communication� sends can be regarded as writes and receives as reads���

� Approximating Di�erentiable Functions

A question which we often need to consider explicitly is �if we calculate an
approximation fn to a function f�� when do we want the derivative of fn and
when do we need an approximation to the derivative of f��� This is an im	
portant question� because the fact that fn approximates f� does not imply
that f �n approximates f �

�
to the same order� or even in the limit� This is par	

ticularly apparent when piecewise	de�ned functions are glued together using
if	statements��� For example the code

if x � ��� then y �� � else y �� �
� cos�x���x endif

will give the derivative value �y��x � ��� for x � ��� instead of the presum	
ably intended value of ���� For forward or reverse mode AD to work correctly
in this case the programmer could have written�

if x � ��� then y �� x� else y �� �
� cos�x���x endif

��Actually there is an interesting dualism between trying to �nd the optimal decomposition
of a program into parallel parts to minimize runtime and IPC� and the optimal checkpointing
schedule to minimize the overwrite stack and incremental checkpoint sizes�
��In contrast with di�erencing� an AD tool can produce a warning when an intermediate

variable v is too close to a cut value� by looking at �v in the light of the given tolerance for x
or at �v in the light of the required tolerance for y� cf x��






A similar problem occurs when using a while loop� di�erent numbers of iter	
ations give di�erent branches of a piecewise function� Di�erentiate an iterative
approximation v �� ��x� v� and the derivatives �v may not converge� or may lag
behind the convergence of v� For example� suppose the starting value for v is
exactly right� then the while loop is skipped and we have �v � �� The situa	
tion with reverse accumulation is even more problematic if we take the naive
approach of di�erentiating the approximation function which we coded without
having considered at the time when we coded it the requirement that it also
approximate the derivative �
���

Clearly the derivatives must be incorporated into the stopping criterion in
some way� A lot is now known about how to do this� but in many cases it is
better to construct an iterative approximation to the derivative of the function
to which the underlying iterative approximation is converging� rather than to
di�erentiate the underlying approximation function directly� We consider this
issue further in the next section� but point out that methods suitable for an
interval	valued approach appear to have some potential to reconcile these two
agendas���

Another source of inaccuracy is introduced by discretizing a continuous prob	
lem� In this case� it is usually best to di�erentiate the discretization used� since
veri�cation of descent criteria �eg Wolfe conditions� and the introduction of de	
vices to enforce global convergence of Newton	like methods should be applied to
the numerical values actually being calculated��� However this policy requires
the discretization to be suitable for derivatives as well as for function values�
which is a non	trivial additional constraint upon the modelling process�

� Iteration and Equation Solving

Many computations y �� f�x� include as a subproblem the solution of implicit
equations� of the form 	�u� v� � � where u� v are p� and q�vectors of knowns
and unknowns respectively and 	 is a well	behaved q�vector valued map� In
the linear case� these subproblems take the form of solving Av � b for v where
A and b are functions of x�

The underlying program contains code for solving these implicit equations�
and it would be possible to treat this solver code as a black	box� and to apply
AD to it mechanistically� In some cases� as we saw in the previous section�
this will not produce the derivative values which are required� in other cases it
will produce correct� but very ine�cient� derivative code� It is usually advanta	
geous for the AD translation process to identify explicitly the equations being

��Consider the properties of an algorithm which produces a joint enclosure for the true and
approximation function values�
��Convergence under dynamic re�nement of the discretization typically relies upon an un�

stated compactness result� Again� consideration of enclosure properties suggests that interval
methods have some potential here in the context of AD�
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solved� and to provide or invoke a solution code for the corresponding derivative
equations which exploits shared values between the two equation solutions�

For example� if Av � b then A �v � �b � �Av for each tangent direction�
Similarly� the adjoint operations corresponding to solving Av � b for v are
�b �� �b � z� �A �� �A� vz where z is the solution to zA � �v for the corresponding
co	tangent direction�	� If the underlying program forms an LU	decomposition
of A in order to solve the original equations� then this can be exploited to obtain
�v from v� or �A��b from �v� at a much lower cost than simply applying AD to the
equation solver� typically the operation count becomes of order q� rather than
q�� which in many cases means that the derivatives e�ectively become free �
���

For the non	linear case of solving 	�u� v� � � for v� an iterative scheme
v �� ��u� v� will generally be used� Now �v must satisfy �
� the linear equa	
tions 	�v �v � �	�u �u� Similarly ��� the adjoint operation corresponding to solving
	�u� v� � � is �u �� �u � z	�u where z is the solution to the linear equations
z	�v � �v� We could use AD to form the matrices 	�u� 	

�

v explicitly but if� for
example� Newton s method is used as the iterative scheme � for solving the
underlying nonlinear equations� then the relevant matrices will already have
been formed and factorized� Conversely� explicit formation of the derivatives
produces information that can be used to improve the solution of the underly	
ing equations� possibly at the next trial point of the function under evaluation�
Similar remarks apply to preconditioning�

	 Automatic Error Analysis

It is useful to know when a function value has converged as accurately as round	
ing error will allow� Consider again the Wengert list of x�� with the items in
the form vi �� fi�v�i�� � � � � v�ini

� � ui� Suppose that the fi instead of being
�oating point operations are actually smooth operations on in�nite precision
real numbers� and that the ui rather than being zero are the errors introduced
by round	o� and normalization� Then the di�erence y � !y between the calcu	
lated value of y and the true value !y is to �rst order equal to

PN

i�n�� ui�vi� If
the errors ui are statistically independent and from symmetric distributions�
and we have a priori or a posteriori error bounds juij 
 "i then the Euclidean

norm ky� !yk� is almost certainly bounded by �
qPN

i�n�� "�
i k�vik��� see ��� x
��

Similarly� the use of interval analysis and the L�	norm gives a validated error
bound which is asymptotically tight �op cit��

Optimization algorithms almost always evaluate target functions more than
once in regions where the exact target value is critical� Where an iterative

�	We follow the convention that the elements of �A have the transpose form to A� If pairs
of �oating point real variables are being interpreted as �oating point complex numbers� then
the adjoint values are conjugated as well as transposed� y 	 f�v� and �y 	 ���  i��� implies
�v 	 f ��v�� since �vre  i�vim 	 �yre��vre  i�yre��vim 	 �yre��vre � i�yim��vre 	 �y���v
by the Cauchy�Riemann equations�
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solution is being used for a subproblem� therefore� it is natural to ask� when is
the solution accurate enough to enable the routine evaluating the outer function
to make a correct decision� and conversely how should the solution from the
previous outer evaluation be used to initialize the subproblem solution� and
how accurate will the resulting derivatives be�

Reverse accumulation provides some assistance with questions of this type
���� Suppose that v is an approximate solution to 	�u� v� � � and the exact
solution is !v� and let the corresponding values for the dependent variables be
y� !y� Set w �� 	�u� v�� then !y � y�zw�O�kwk�� provided z is chosen to satisfy
k�v � z	vk 
 kwk� and in this case �u is accurate to order kwk� In the linear
case Av � b� w � Av � b� giving !y � y � zw to order kwk� provided z satis�es
kzA� �vk � kwk�


 Higher Derivatives�

We can apply �rst order forward or reverse mode AD repeatedly� to obtain higher
order derivative values�
� For example� applying the forward mode twice gives
matrices #v with �#y� � P T f ��P � In the case of a single independent variable� we
can generalize this to calculate truncated Taylor series in a particular direction�
These are potentially very useful when performing line	searches� When n � 

we can interpolate Taylor series to obtain derivatives of arbitrary order ���� for
example

��

�x��x�
�
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We can also obtain second derivative information by combining the forward
and reverse modes� In outline� we take the program y �� f�x�� transform it
using reverse mode to give the adjoint program �x �� �yf ��x�� and then transform
this using the forward mode to give the program ��x �� ��yf ��x� � �yf ���x� �x� If we
set �y � Im� �x � In� ��y � �nm then this gives ��x � f ���x�� However� sometimes
it is useful to set other initial values for quantities such as ��y� for example if a
projected Hessian is required� or as in the example of x

 below�

This approach of applying forward to reverse is particularly e�cient in the
case m � 
 of a single target variable� in which case we obtain a complete
Hessian H � f �� at a cost of about �n evaluations of f � or a projected Hessian
at even lower cost� If we are using a Truncated Newton or Conjugate Gra	
dient algorithm� or some form of gradient descent algorithm with a variable
momentum term� then it is very useful to be able to evaluate terms like Hp at
a computational cost which is independent of n�

�
We can regard initialized tangent or co�tangent components in di�erentiated code as
being additional independent variables in their own right� Subsequent code di�erentiation is
simpli�ed by use of identities such as �vj��vi 	 � �vj�� �vi 	 ��vi���vj ���vj��vi 	 ��vi��vj � etc�


�



Applying reverse mode to forward di�erentiated code produces the same
calculation� and hence the same result� as applying forward to reverse� All that
happens is that the dots change places on the barred variables��� so that ��v
corresponds to �v and �v corresponds to ��v�

Reverse di�erentiation of reverse di�erentiated code can always be replaced
by forward di�erentiation of the original forward code� There is therefore never
any need to adjoin adjoint code� For example� suppose we want to di�erentiate
the scalar function y �� F �g�v�� where g � f � and v is a function of x� Evaluate
y �� f�v�� set �y �� 
�� and reverse gives �v � f ��v�� Set w �� �v and evaluation
of y �� F �w� is straightforward� But how do we obtain �y��x�

Setting �y �� 
�� and reversing F gives �w �� F ��w�� Instead of adjoining
w �� �v by setting ��v �� �w� which would require us to adjoin the adjoint code for
g to get the value for �x� we set �v �� �w and then forward and reverse through
f gives �v �� ��v from which we can obtain �x as usual� This is the numerically
correct assignment� since ��v � f ���v� �v � �wf ���v� � F ��f ��v��f ���v��

We can also �x tangent or co	tangent directions to be derivatives of other
functions� for example if y �� f�x� then setting �x �� �x and repeating the
evaluation of y and �x gives the quantity ��x � Hg where H � f ���x�� g � f ��x��
Accurate quantities of this type are useful in many gradient descent algorithms�
including Truncated Newton�

�� Overloading and Program Transformation

The overloading approach is quick to implement� but su�ers from a number
of disadvantages� Most compilers implement expressions containing overloaded
operators exactly as they are written� without performing any compile	time
optimization on the expression� For example� the assignment

y �� a � sin�a � x � � � b � x � c� � b � cos�a � x � � � b � x � c�

contains the shared subexpression a � x � � � b � x � c� which need only be
evaluated once� and which would be more e�ciently evaluated as �a � x � b� �
x� c� Consequently an overloaded doublet implementation will be considerably
less e�cient than the optimized underlying �oating point implementation� even
before the costs of the extra �oating point operations are taken into account��

��Conceptually di�erent sets of dots and bars are used� corresponding to di�erent tangent
and co�tangent variables� Strictly we should use a tensor derivative notation for repeated
di�erentiation�
��There are good reasons for this literal�minded compilation� Overloaded operators may

have complex side�e�ects involving global state� and in any case cannot generally be assumed
to have the same semantics as their built�in counterparts� For example� matrix multiplication
is not commutative� octonian multiplication is not associative� intervals do not satisfy the
distributive law� and common subexpressions involving random oracles must be recomputed
for each occurrence� Most overloaded operator languages give the user no way to tell the
compiler which optimizing transformations are safe�
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Nevertheless� there is no better way to understand AD than to implement
a baby AD tool using operator overloading and for many small to medium size
problems such a tool is adequate�

Transforming the underlying program to a new source program� rather than
augmenting it using overloaded operators� allows the compiler to perform op	
timization on the derivative calculations as well as upon the underlying calcu	
lations� For example� when adjoining the assignment to y� the derivatives of
sin and cos are already available� and the derivative of the argument can be
obtained by adding the two available quantities a � x and a � x � b�

With a language translation approach� a great deal more can also be done
to automate the dependency analysis required to determine which variables are
active� although when array indices or pointers are manipulated in a complex
way at run time� the translator must make a conservative assumption� or rely
upon user	inserted directives� Deferring choices until run time almost inevitably
produces code which runs more slowly than when the decision can be made at
compile time�

The output from the translator is input to an optimizing compiler� so there is
generally no need for the code to be particularly e�cient� rather� the translator
must produce code which it is easy for the compiler to analyse and optimize�
This requirement is certainly compatible with making the transformed code
intelligible to humans� and users have become accustomed to being able to
write source code in a form that is intelligible to them� and to rely upon the
compiler to re	arrange it into a form which is e�cient before producing object
code�

�� Pantojas Algorithm and Checkpointing

In this section� we show how Automatic Di�erentiation can be combined with
Pantoja s algorithm and a checkpointing technique in such a way as to allow
accurate evaluation of the Newton direction for a discrete time optimal control
problem at an extremely low computational cost ���� The purpose of this ex	
ample is to show the combined use of forward and reverse mode AD to produce
Hessian information� and to illustrate how checkpointing can be combined with
parallel processing to reduce the run	time storage requirement to something
feasible�

Consider the following discrete	time optimal control problem� choose inde	
pendent control variables xi � Rp so as to minimize the scalar target function

y � F �vN � where vi�� � fi�xi� vi� for � � i 
 N

and v
 is some �xed constant� Each fi is a smooth map from Rp � Rq � Rq

and F is a smooth map from the state space Rq to R� the states vi may include
running totals of cost functions which are composed into y by F �
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Starting with stored values for xi � � � i 
 N � we seek the Newton direction�
ie vectors ti � Rp such that

N��X
j�


�
��y

�xi�xj

�
tj �

�y

�xi
� � for � � i 
 N

Pantoja �
� gives an algorithm for calculating the Newton direction exactly�
However his algorithm involves the solution of linear equations with coe�cients
given by recursive identities such as�

Ai �
�
f �v�i

	T
Di��

�
f �v�i

	
� �vi��

�
f ��vv�i

	
Bi �

�
f �x�i

	T
Di��

�
f �v�i

	
� �vi��

�
f ��xv�i

	
Ci �

�
f �x�i

	T
Di��

�
f �x�i

	
� �vi��

�
f ��xx�i

	
Di � Ai �BT

i C
��

i Bi �vi � �vi��
�
f �x�i

	
which in turn requires the accurate evaluation of terms containing second deriva	
tives of fi� Fortunately AD can be applied to the original code for evaluating F
in such a way that the values ��x � ��yf ��x� � �yf ���x� �x are exactly the quantities
required ���� A primary bene�t of AD here is the elimination of the labour of
forming and di�erentiating adjoint equations by hand� however the total �op	
cost of the AD	form of the algorithm is of the same order as ��p�q� evaluations
of the target function y� regardless of the number of timesteps N �

Algorithm �Pantoja with AD�
�
� For i from 
 upto N � calculate and store vi�
�� Evaluate aN � �vN � F ��vN �� DN � �F ���vN �� as described in x� above�
��� For each i from N � 
 down to � calculate q�vectors �vi� ai and a q � q

matrix Di as follows�
���
� De�ne dot	vectors of length p � q by�

�xi

�vi

�
�

�
Ip O

O Iq

�

���� Evaluate vi�� � fi�xi� vi� using forward mode AD� so that

� �vi��� � �f �x�i f
�

v�i��

����� Set �vi�� to the value supplied by the previous iteration and set

� ��vi��� �� �Di��f
�

x�i Di��f
�

v�i��
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����� Apply the forward mode of AD to the forward calculation vi�� ��
fi�xi� vi� and then to the adjoint calculation ��xi �vi� �� �vi��f

�

i�xi� vi�� giving the
matrix �

��xi

��vi

�
�

�
Ci Bi

BT
i Ai

�

����� Row reduce this to obtain�
I C��

i Bi

O Ai �BT
i C

��

i Bi

�
�

�
I Ei

O Di

�

and at the same time calculate the vectors

ai � ai��


�f �v�i� � �f �x�i�Ei

�
� cTi � �ai���f

�

x�i�C
��

i �

Now �vi� ai� Di are available for the next iteration�
����� Store the values �vi��� �xi� Ei� ci�
��� For each i from � up to N � 
 calculate ti � Rp� si�� � Rq by

s
 � �� ti � ci �Eisi� si�� �
�
f �x�i

	
ti �

�
f �v�i

	
si

Now ti is the Newton direction�
STOP
Many other solution techniques which use state	control feedback can be im	

plemented as simple modi�cations of this algorithm� For example di�erential
dynamic programming �DDP� replaces the vectors ai by �vi in the calculation
for ci� AD in principle allows algorithms of this form� combined with the tech	
niques for di�erentiating implicit equation solutions� to be applied to Di�erential
Equations�

Reducing the storage requirement� By using the state values vi as check	
points� we can reduce the storage requirement of the reverse mode to that
required for a single timestep fi together with one checkpoint per timestep�
Each checkpoint requires storage for the state vector vi together with the values
�vi��� �xi� Ei� ci�

However� a much more e�cient use of checkpoint storage than this is possible�
For example� suppose that N is a million� If we store values for xi� �xi� Di

whenever i is a multiple of a thousand� then we can re	compute the values of
Ei� ci etc when we need them� in groups of a thousand at a time� This doubles
the total computational e�ort required but reduces the storage requirement from
a million full checkpoints to a thousand primary plus a thousand additional
checkpoints�

This line of argument can be developed further� with a third level of check	
point we require three times the computational cost� but storage for only three
hundred checkpoints� With six levels these numbers are � and ��� and with
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� � log�N levels of checkpoint we require just log�N times the computational
e�ort together with storage for log�N checkpoints� For this example the storage
requirement for reverse accumulation is therefore less than the storage already
required to hold the values of the control variables�

In fact� by spacing the checkpoints irregularly we can halve these require	
ments �
��� If we have several processors available� we can use them to re	
calculate the various levels of checkpoint in parallel with the main algorithm so
that the required values are ready just in time� It is instructive to work out in
detail the schedule for doing this in such a way that the overall runtime does
not increase as the storage requirement reduces ���

�� Fletchers Ideal Penalty Function

�
In this section we show how AD can be used to evaluate and di�erentiate

a parameter	free form of a penalty function introduced by Fletcher �
�� The
purpose of this example is to illustrate the di�erentiation of functions which
combine nested subproblem solution with the calculation of gradients of other
functions�

Consider the constrained optimization problem� optimize f�x� subject to
k�x� � � where f� k are smooth maps Rn � R and Rn � Rq respectively� Set
g � f �� N � k� to be the function gradient and constraint normals� and de�ne
��x�� ��x� � Rq by the equations

NNT� � Ng� NNT� � k�

Now de�ne �x� � Rn by  � NT� and F � Rn � R by

F �x� � f�x� �x�� �

qX
i��

�i�x�ki�x� �x�� �





qX
i��

�i �x��

Under mild conditions we have ��� that �i� if x� is a constrained local minimum
of f subject to k � � then x� is an unconstrained local minimum of F and
conversely �ii� if x� is an unconstrained local minimum of F satisfying k � �
then x� is a constrained local minimum of f � It follows that if x� is a constrained
minimum of f subject to k � � then there is a neighbourhood of x� in which
x� is the only unconstrained local minimum of F � and minimizing F in this
neighbourhood will �nd x��

The penalty function F also has the desirable property that near a mini	
mum point the penalty function has the same curvature as the Lagrangian of
the target function in directions tangent to the constraint manifold� and unit
positive curvature in directions normal to the constraint manifold� Thus F has
numerical conditioning similar to that of the target function f and constraints
k from which F is constructed�
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We can evaluate F as follows� Solve the equation NNT� � k for � using AD
to evaluate NNT � For example� we could set y �� k�x�� �y �� �Iq � and reverse to
get �x � NT � Then set  �� NT�� Similarly � is the solution of NNT� � Ng�
where reverse accumulation gives g� Now it is a simple matter to compute the
value of F �

We can use AD to obtain the gradient and directional Hessians of F � and
these can be used by optimization software to �nd a local minimum point x� of
F which corresponds to the solution of the original constrained problem� For
example� the adjoint of the step �solve NNT� � k for �� is �solve �NNT � ��
for � then set �k �� �k � �� �N �� �N � � � ���N�T �� and the adjoint of the step
N �� �xT is to set �x �� �N then go forward and reverse through the calculation
of k and set �x �� �x � ��x�

If q is large we may prefer an iterative method of solving the linear equations
for n and � such as Conjugate Gradient� which in turn requires evaluation
of vectors such as NNTp� Reverse accumulation also allows automatic error
estimates to be made for the e�ect of truncating a subproblem solution upon
the calculated function value as described in x� above� This allows us to solve the
equations for � and � with just su�cient accuracy to ensure that the calculated
value of F �x� is correct to the required accuracy �speci�ed in advance� at each
iteration step of the optimization algorithm� We can even apply AD to the
implicit equations de�ning x� so as to perform an automatic error analysis or
to determine sensitivities of the solution�

�� Future Directions

Several themes for future developments emerge from this� AD has largely
achieved its initial agenda of producing fast� accurate derivative code without
the costly and error	prone intervention of well	intentioned humans� An analogy
can be drawn with the experiences gained by automating the process of trans	
lating computer programs from high	level language descriptions into machine
code� and from this perspective the future of AD is increasing bound up with
the process of compiler	writing and language translation generally� More and
more scienti�c compilers will contain AD algorithms� or at least hooks to allow
AD algorithms to be invoked during the compilation process� A great deal of
research still remains to be done in this area� particularly in the case of paral	
lelizing compilers� but increasingly the task of AD in this context is to formulate
the program transformation problem in terms which enable it to be solved by
existing and emerging compiler	generator tools�

Although a great number of AD users are content simply to apply AD to
their existing code� this is not the end of the story� At the opposite extreme
from the legacy	code user are those doing research into non	linear optimization
algorithms� Taking �for brevity of exposition� a somewhat combative stance� we
could assert that many optimization algorithms were initially designed upon the






implicit assumption that gradient information was� by its nature� expensive and
inaccurate relative to the function evaluation� Second derivative information
was likely to be even worse� and any algorithm which required third or higher
order derivative information was not viable� The current state of AD implies
that even quite mild forms of this position are no longer tenable�

While many traditional algorithms work extremely well even in very large
dimensions when given accurate derivatives��� the contribution of AD to algo	
rithm design remains open� Certainly the ability of reverse accumulation to give
complete� accurate gradient and directional Hessian vectors at a cost of a few
function evaluations� regardless of the problem dimension� in�uences the choice
of algorithm and the globalization strategy for problems in very large dimension�
and we identify this as one context in which AD is likely to develop further from
a theoretical point of view� The interaction between AD and Interval Analysis
is another interesting arena for future development�

Many by	products produced during reverse accumulation are of a type which
could naturally be exploited during the optimization process by an algorithm
with knowledge of the target function s structure� and conversely explicit rep	
resentation of such structure would in many cases allow an AD tool to operate
more e�ectively� In particular� when equation solution is a sub	problem� there
is a bene�t to coding the equations being solved as well as the code to solve
them� even if the solution code never evaluates the equations� in order to allow
the residuals and their derivatives to be used by the AD tool� Likewise there is
a bene�t to signaling explicitly to an AD tool the accuracy to which derivatives
are required� and the use to which they will subsequently be put�

Perhaps the most ambitious way forward for the next few years is the de	
velopment of AD as a conceptual tool to allow users to capture and express
their insights into the nature and structure of the algorithms which their pro	
grams instantiate� and to develop new ways of representing these algorithms
beyond those o�ered by current programming languages� in such a way that
these insights can be automatically exploited by the environment in which their
programs run�
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