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ABSTRACT

We report on the development of Mezcal-SRHD, a new adapteshmefinement, special relativistic hydro-
dynamics (SRHD) code, developed with the aim of studyingiigély relativistic flows in Gamma-Ray Burst
sources. The SRHD equations are solved using finite volumserwative solvers, with second order interpola-
tion in space and time. The correct implementation of therélgms is verified by one-dimensional (1D) shock
tube and multidimensional tests. The code is then applistuidy the propagation of 1D spherical impulsive
blast waves expanding in a stratified medium wittx r=% | bridging between the relativistic and Newtonian
phases (which are described by the Blandford-McKee and\BEalyior self-similar solutions, respectively),
as well as to a two-dimensional (2D) cylindrically symmeimpulsive jet propagating in a constant density
medium. It is shown that the deceleration to non-relafivispeeds in one-dimension occurs on scales signif-
icantly larger than the Sedov length. This transition isHfar delayed with respect to the Sedov length as the
degree of stratification of the ambient medium is increa3éus result, together with the scaling of position,
Lorentz factor and the shock velocity as a function of timd ahock radius, is explained here using a simple
analytical model based on energy conservation. The methed for calculating the afterglow radiation by
post-processing the results of the simulations is desgtiibdetail. The light curves computed using the results
of 1D numerical simulations during the relativistic stagerectly reproduce those calculated assuming the
self-similar Blandford-McKee solution for the evolutioftbe flow. The jet dynamics from our 2D simulations
and the resulting afterglow lightcurves, including theljetak, are in good agreement with those presented in
previous works. Finally, we show how the details of the dymamaritically depend on properly resolving the
structure of the relativistic flow.

Subject headingsgamma rays: bursts - hydrodynamics - methods: numericédtividy

1. INTRODUCTION in the radio, using very long base-line interferometrichtec
Gamma-Ray Bursts (GRBs) are the most electromagnetn'ques L(?r GRB 03?329 & = 0.1685 (Taylor et al. 2004,
ically luminous explosions in the Universe. Their non- 2005:Pihistrom etal. 2007). .
thermal and highly variable gamma-ray emission implies GRB activity manifests itself over a dynamical range of
that the emitting region must be ultra-relativistic — mov- =13 decades in radius (Gehrels, Ramirez-Ruiz &|[Fox 2009).
ing with a very large Lorentz factor, typically 100 and ~ 1he phenomena involvesitirent stages, which are usually
sometimes as high as 103, in order to avoid excessive modeled separately because of their complexity. Let us con-

pair production at the source (e.f.. Lithwick & Sari 2001: sider these stages in turn, working from the small scaldseto t
Granot, Cohen-Tanugi & do Couto % Sliva_2D08;_Abdo ét al. large scales.

[20094.b{ Ackermann etldl. 2010). AtfBaiently large dis-

tances from the source the GRB outflow decelerates as it 1.1. Jet Production and the Central Engine
drives a strong relativistic shock into the surrounding med GRBs divide into two classes according to their duration
(for reviews see, e.gl,_Pilan 200%a; Grahot 2007). Syn-and spectral hardnes5 (Kouveliotou €f al. 1993). Long dura-
chrotron emission from this long lived external shock paver tion GRBs (lasting: 2 s) are associated with Type Ic core col-
the GRB afterglow, which is observed in the X-rays, optical 0 lapse SNe, and thus to the death of massive smk etal
radio, typically over days to months after the prompt gamma-2003; [Hjorth et all.. 2003; Woosley & Bloorn 2006), while
ray emission. The peak frequency of the afterglow emissionthe nature of short duration GRB (lasting 2 s) pro-
shifts to lower energies as the afterglow shock decelelgtes genitors is still debated (Lee & Ramirez-Ruiz_2007; Nakar
sweeping up the external medium (Rees & Meszaros|1992)2007), the most popular model involving the binary merger
This picture of a decelerating relativistic expansion of th  of two compact stars| (Paczynski 1986; Eichler et al. 1989;
emitting region during the afterglow phase is supported by|Narayan, Paczynski, & Piran 1992).
direct measurements of the afterglow image size at latestime  In the collapsar model for long GRB5_(Woosley 1993), dur-

) _ _ ing the collapse of a massive Wolf-Rayet progenitor star a
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UniVF;fSS’i{;"?gl i’\‘/?v‘%%"ge;g ?s?gléller School of Physics & AstrononeyAviv where a jet is usually injected as an inner boundary condlitio

4 Centre for Astrophysics Research, University of Hertfains College at the center of a coIIap§|ng massive star, and bores its way
Lane, Hatfield, AL10 9AB, UK out of the progenitor star’'s envelope (MacFadyen & Woosley

®Instituto de Ciencias Nucleares, Universidad NacionaloAama de 1999; Zhang, Woosley & MacFadyen 2003). Some simula-
Meéxico, Ap. 70-543, 04510 D.F., México tions include a magnetic field (in an ideal magnetohydrody-


http://arxiv.org/abs/1111.6890v1
mailto:fabio@ucolick.org

2 F. De Colle et al.

namical framework) and recently added a general relativist glow stage are usually done separately from the earlieestag
framework (Mizuno et ll 2 ,b; Hawley & Krolik 2006; (of the jet formation, acceleration and collimation), iler to
lMQKmn_ej 12006; LN.ag.aIakJ_el_ﬁL_ZQOIZ.lQh_e_KhDALS_KO_)Lét al. simplify these challenging numerical computations, which
i_B_aLkmL&_aausﬂwwll) The alter- volve a very large dynamical range. The most common initial
natlve model for the central engine of long GRBs featur- conditions for simulations of the GRB jet during the aftexg|
ing the formation of a millisecond magnetar (i.e. a very stage are a conical wedge of half-opening adgteken out of
rapidly rotating highly magnetized neutron s M992 the spherical BMK solution (though in some cases a relativis
has also been studied numerically __(Komissarov & Barkov tic cold shell or blob is used instead). Since the angular siz
[2007;| Bucciantini et al. 2007, 2008, 2009). Binary merger of regions that are casually connected in the lateral daact
simulations of two neutron stars or a neutron star and ais ~ 1/I', such a BMK wedge should not evolve significantly
black hole were performed in the context of short GRBs while its Lorentz factor id” > -, suggesting that the sub-
(Lee & Ramirez-Ruiz 2002; Rossw Ramirez-Ruiz 2002; sequent evolution should be insensitive to the exact ctafice
[Rosswogl 2005; Faber etlal. 2006; hslin nka 12006;initial Lorentz factolg in the limit wherelg > 951
Rezzolla et all 2010). Recent general relativistic magneto  For an ultra-relativistic blast wave most of the energy i th
hydrodynamics (MHD) simulations show that a relativistic shocked (downstream) region is within a thin layer behired th
jet can naturally form in such a scenario, which may indeed shock transition, whose width is ~ 0.1R/T'? in the lab frame
power short GRBs__(Rezzolla etflal. 2011). Similar simulagion (i.e. the rest frame of the external or upstream medium, kvhic
of relativistic jet formation from accretion onto a blacklbo in our case is also that of the central source), which is hard t
are routinely performed also in the context of active gadact resolve properly for large initial Lorentz factors (seg.g.
nuclei or micro-quasars (e.g., Meier 2003; Krolik & Hawley |Granadl 2007). Therefore, most simulations Uisé, ~ 3 — 4
[2010). Diferent processes have been suggested to acceleratather than the ideal choice B§6y > 1, along with values
and collimate the jet: (i) thermal energy injected into tbe j  of 6§y that are not very small (usuallly = 0.2 andl’y ~ 20),
by annihilation of neutrinos and anti-neutrinos from anraec ~ despite the actual initial Lorentz factors at the onset ef th
tion disk (e.g.| Fryer & Woosléy 1998; Popham €t al. 1999; afterglow are estimated to be at least a few hundred (e.g.,
Bm&g&mtezﬂuu.&&aﬂeS_ZQO&_LMI al. _2004; |Lithwick & Sari[2001), while the vaIues afo inferred from
Lee & Ramirez-Ruiz 2006; Chen & Beloborodov 2007); (i) afterglow observations (e.q., Frail etlal. 2001) can be was lo
rotational energy extracted from the central black hole as~ 0.03- 0.05 (or a high ag 05)
through the Blandford-Znajekflect [(Blandford & Znajek ) _ _
1977;Meszaros & Reés 1997; Barkov & Komissarov 2008); 1.3 Afterglow Jet Simulations: Previous Work and Goals
(iii) rotational energy extracted from the accretion disk, Since afterglow emission is thought to be predominantly
coupled with a dynamically important magnetic field synchrotron radiation from the shocked external medium,
(Blandford & Paynel 1982 al._2003; LyndeniBell then accurately inferring the properties of the origind} re
12003; Uzdensky & MacF 06). ativistic outflow and the external medium from afterglow
. . observations requires an accurate modeling of the dynam-
1.2. Jet Expansion and Deceleration ics. The jet numerical simulations and calculations of the
Once the GRB outflow transfers most of its energy to corresponding afterglow emission_(Granot et al. 2001) have
the shocked external medium it becomes dynamically sub- recently been extended to well within the non-relativistic
dominant and the flow becomes insensitive to the ex-sta (e g.,_Zhang & MacFadyen 2009; van Eertenlet al.
act composition or initial radial structure of the original 1;_van Eerten & MacFadyen 2011).
outflow. At this stage a spherical flow approaches the FoIIowmg the dynamics from a highly ultra-relativistigtiial
Blandford & McK 6) self-similar solution (hereafter Lorentz factor [o > 20, for whichAg/Ry ~ 1074(T9/30)72)
BMK), losing memory of the initial conditions and retain- down to highly Newtonian velocities/(< 0.01c) requires a
ing memory only of the total energy. The complete evolution very large range of spatial scales, for which an adaptivehmes
of a spherical relativistic fireball, including the acceléon, refinement (AMR) code is necessary in order to properly cal-
coasting and deceleration phases, has been studied numergulate the multi-dimensional flow dynamlcsﬁt al.
cally bylKobayashi, Piran & Sarli (1999) by using one dimen- M) were the first to study this problem numerically by
sional (1D) spherical simulations. using multi-dimension numerical simulations and found tha
When a non-spherical relativistic outflow (or jet) decel- the GRB jet sideways expansion is slower than expected
erates, to zeroth order it locally resembles a section of thefrom analytical models. These results were later confirmed
spherical BMK solution characterized by the local value of by |Zhang & MacFadyenl (2009), who followed the evolu-
the energy per solid angle or isotropic equivalent kinetic e tion of the GRB jet up to the non-relativistic phase by run-
ergy, Exiso. Once the Lorentz factdr drops toegl, where ning high resolution two-dimensional (2D) simulationsmSi
6o is the initial half-opening angle of an initially uniform ulations using similar initial conditions were also run by
jet with sharp edges, the jet becomes causally connecteMeliani & Keppens|(2010) who found that the shock front be-
in the lateral direction and can in principal start spregdin comes unstable at high values of the Lorentz fadicg, 15,
sideways significantly. Simple analytic models argue that but the instabilities quickly decay when the jet deceletate
it should indeed quickly spread sideway$ (Rhbads 1997,T < 10.
ri, Piran & Halpern 1999), while numerical simula-  All the multi-dimensional numerical simulations of af-
tions show that the lateral spreading is much more modestterglow jets have so far assumed a uniform external
and the flow retains memory @§ for a long time, which for =~ medium, even though a stratified external medium is ex-
typical values offy in GRBs lasts up to the non-relativistic pected for the stellar wind of a massive star long GRB pro-

transition time [(Granot et al. 2001; Granot & Konigl 2003; genitor (Chevalier & Liil 2000] Panaitescu & Kurhar 2000;
|Cannizzo et al. 2004; Zhang & MacFadyen 2009). [Ramirez-Ruiz et al. 2001, 2005). This was partly motivated

The numerical simulations of jet dynamics during the after- by the faster deceleration of the afterglow shock with ra-
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dius in a uniform external medium compared to a strati- wherep is the thermal pressuré= Sc is the flow velocity ¢
fied one, which reduces the required dynamical range ofbeing the speed of light), anflis the identity matrix. These
the simulations. Moreover, magnetic fields may alfec equations represent the conservation of rest rhass (1), mome

the jet dynamics (|n addltlon _tO_ theirffect on the after- tum m), and energﬂ:g). The conserved Variabsqﬂ-)
glow synchrotron radiation)._Mimica etlal. (2009, 2010)&av  correspond to the lab frame rest mass, momentum, and energy
used 1D simulations to study the deceleration of magnetized(excluding rest mass) densities, respectively. They dae

GRB ejecta propagating into a uniform ambient medium, to the primitive variablesy( v, p) by the following relations:
and showed that while the late evolution of strongly magne-

tized shells resembles that of hydrodynamic shells, the-mag D=pl, (4)
netization plays an important role into the onset of the for- S = DhIv, (5)
ward shock emission._Mimica & Giannids (2011) computed = Dh'& - p - D& 6)

the afterglow emission produced by a GRB ejecta deceler-
ating into a realistic external medium by running 1D spher- Wherel' = (1 — %)~2 is the Lorentz factorp is the proper
ical simulations. However, multi-dimensional simulaton rest mass density, arfdis the specific enthalpy. The SRHD
are necessary in order to fully capture the magnetic field System of equations is closed by the equation of state relat
dynamics, as for instance the generation of turbulence bying hto p andp. Note that by explicitly subtracting the rest
the magnetohydrodynamics Kelvin-Helmholtz_(Zhang ét al. mass in the definition of the lab frame energy density
[2009) or Richtmyer-Meshkov [ (Goodman & MacFadyen equation[(B), the non-relativistic hydrodynamic equadiare
[2008) instabilities, and the consequent magnetic field am-properly recovered whefi < 1.
plification (Inoue et dll 2011; Mizuno etlal. 2011). Actu- )
ally, [Granot, Komissarov & Spitkovsky (2011) have recently 2.2. Integration methods
shown that even in 1D one cannot realistically model the de- The SRHD equation§{1)4(3) form an hyperbolic system of
celeration stage separately from the acceleration statipe if ~equations and can be solved by using methods similar to those
outflow is initially highly magnetized and accelerates unde developed for classical non-relativistic gas dynamics o
its own magnetic pressure. Instead, a full simulation of the review see, e.gl, Torlo 2008). Without loss of generalitg, th
acceleration and deceleration is needed, requiring awegel  solution of the hyperbolic system of equations
dynamical range that is numerically challenging. ou

With the aim of addressing these questions, and perhaps —+v.f=o0, (7)
also possible applicability to earlier stages of the jetaiyits ot
(such as its acceleration or propagation within the prageni is given in 1D (the generalization to multi-dimensions is
star), we have developed a new AMR, relativistic hydrody- straightforward) by:
namic code. While the code developed is similar in several

. At
aspects to previous SRHD-AMR codes ( etal. UMt =un - —(Finjll/z2 - Fin_+11//22) , (8)
2002; _Anninos etal.[ 2005;] Zhang & M 009; AX

[Meliani et al.[ 20077{ Morsony et Al. 200
we consider it important to present a detailed, self-coti  volumeAX = X112 — Xi—1/2, Xi+1/2 are the positions of the
description of the hydrodynamic code as well as the match-interfaces between the celtsandx;.1, and

ing radiation code, along with detailed tests. The paper is 1 (X

organized as follows.§2 and §3 describe in detail, respec- u'=-— ui(t", x)dx, 9)
tively, the SRHD code and the radiation code used to cakulat AXi Ixi_ypo

the observed afterglow emission (by post-processing the ou 1 [

come of the SRHD simulation). Standard tests used to verify Flis = f(t, xi21/2)dt, (10)

the SRHD code are presented in the Appendix, while the cor- At Jy,

rect implementation of the radiation code is discussefin  are the volume average of the conservative variables aird the
§4 presents a detailed study of the propagation of a relativis time-averaged fluxes.

tic, purely hydrodynamic ejecta into a one-dimensionaitstr While equation [(B) represents an exact solution of the
ified medium as well in a multi-dimensional homogeneous corresponding partial fferential equation, an approxima-
medium together with the resulting lightcurves. Finaifig tion is introduced when the fluxes (equatiod 10) are com-
presents our conclusions. Simulations of the propagation o puted. Because an exact solver is in general very expen-
jets into a stratified medium and the inclusion of magnetized sive, in the current version of the code we have implemented

flows will be addressed in future work. the simple and computationallyfiient relativistic extension
(Schneider et al. 1993) of the HLL methad (Halten 1983).
_2: I\!UMERICAL CODE_ . It is well-known that the HLL method does not resolve
2.1. Relativistic Hydrodynamics equations properly the contact discontinuity, and it has an intrifsgh
The special relativistic hydrodynamics (SRHD) equations level of numerical diusivity, whilg for instance other meth-
in conservative form (e.dﬁA_nl 89) can be written as fol 0ds (e.g. the HLLC method, Mignone & Bddo 2005) prop-
lows: erly reconstructs the contact discontinuity, producingutes
oD with significantly lower dissipation. On the other hand fugi
5 tV-(DV)=0 (1)  more difusive, the HLL method is also more “robust”, very
rarely producing unphysical results such as negative press
§ V. (§\7+ I) -0 @) or imaginary Lorentz factors. In addition, a low dissipatio
ot Pe) = method may produce undesirablgeets, such as a “carbun-
or cle” artifact along the axis of propagation of strong shocks

stV @Y =0 () (see the discussion by Wang ef/al. 2008
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Second order accuracy in time and space are obtained by

employing a Runge-Kutta integrator and by a spatial recon-
struction of the primitive variableMHEj&Q?g), exdap

F. De Colle et al.

2.4. Equation of state
The equation of state relates the enthalpy to the pressure

shocks where the methods drops to first order (in space) byf%nr?nd*emng illngthf)case of a relativistic perfect gas itdake

a limiter. Different limiters are implemented, including the
“minmod” (being the most diusive), UMIST, Superbee and
the less dfusive “monotonized central flerence” limiter.

2.3. Extension to cylindrical and spherical coordinates

The extension to cylindrical and spherical coordinates is
treated very carefully in the code. For instance, in two-
dimensional(, 6) spherical coordinates, the equations read:

oU 10(0%F) 1 4(Gsing) S an
ot r2 o rsing 09

whereU, F, G, S can be easily derived from equatiof$ (1)-

@). We note that a simple cell-center discretization o$ thi

system of equations introduces large numerical errors whe
differencing. In particular, it does not preserve stationairy in

tial conditions to machine accuracy. As an example, if one
assumes static initial conditions, &p/dr = 0, p constant

andV = 0, these are preserved in the code if, e.g., the rela-

tion (easily derived from thé—component of the momentum
equation)
1 0d(psing) p cosd
rsing 96

r sing’ (12)

is held to machine accuracy. A simple centered discretinati
gives
1 Sin@lur]_/g - Sinej,l/z

sing;

Cosbj
sing; ’

(13)
Oj+1/2 — Oj-1/2
whereg; is evaluated at the center of the cell, whiley» at
the interface betweenfiiérent cells, and it does not preserve
the initial conditions.

A way to minimize numerical errors when fiérencing
equation[(Il), especially near coordinate singularitgelsy a
finite volume discretization (e.d., Falle 1991; Li & Li 2003)
that is by averaging the variables over the cell volume. Give
for instance the cell centered ih |) and with nodes located
at (i + 1/2, j + 1/2), the value of of the quantiti averaged
over the cell volume is given by

~ [ sinode [ Ar?dr
B [ singde [redr

With this definition, radial and polar derivatives are appro

(14)

imated by (takingh = 12CF) andA = _L_ 2Gsind) regpec.
tively):
19(r°F) _ 6i(r*F)
r2 ar  6i(r3/3)°
i i 2
1 94(Gsing) o(Gsind) 6(r</2) (15)

99 ~ —6(cosd) 5(r3/3)°

wheresi(f) = fii12 — fi_1/2, while the source terms are dis-
cretized by assuming (taking = % andA = &% regpec-
tively):

rsing

sing

1 6i(r?/2) cosd _ &(sind)

r - 6i(r3/3)° sind ~ —6(cosd)
It is easy to verify that, written in this form, equatidn112)

preserves static initial conditions to machine accuracy.

(16)

he K3(1/@)
K2(1/0) °

where® = p/(pc?), andK; is thei-order of the modified
Bessel functions of the second kind.

As the evaluation of the enthalpy from equation (17) is com-
putationally expensive (see e.g. Falle & Komissdrov 1996),
simplified relations have been used, the simplest beingthe
law equation of state (EOS)

17)

h=1+ ®

0. (18)

with a constant value of the adiabatic indefxed and equal

o 4/3 or 5/3, valid only in the limit of ultra-relativistic or

sub-relativistic fluids, respectively.
Mignone & Bodo (2005) proposed the EOS (see also
0+ -

Mathews 1971)
[ 4
2, "
5 ® +9,

roximating equatidn{17) within 2%,
48) inequality

5

2

which in addition to a
also satisfies the Tau

(h-@)(h-40) <1,

in accordance with relativistic kinetic theory.

More recently] Ryu et al[ (20D6) proposed a simpler and
better approximation to the Synge EOS (accurate to within
0.5%), which also satisfies the Taub inequality (equdfidn 20
given by

3

h (19)

(20)

602 +40 + 1
30+2

The implementation of these EOS is straightforward, and un-
less stated otherwise, in this paper we use the one derived by

Ryu et al. [(2006).

2.5. Converting conserved to primitive variables

The increased level of complexity in solving the SRHD
equations when compared to the corresponding non-
relativistic hydrodynamics equations arises mainly frdma t

lack of simple closed expressions relating conserves (D)
and primitive @, V, p) variables. This requires the primitive
variables to be computed from the conserved variables by a
non-linear iteration.

Among others, Noble et al| (2006) studied several algo-
rithms to convert conserved to primitive variables for thee
of ay-law EOS.[Ryu et al. 6), for the EOS defined in
equation [(2I1), applied a Newton-Raphson method to an 8-
th order equation dependent @h |Mignone & McKinney
(2007), for the case of relativistic MHD with a general equa-
tion of state, derived an equation fédf = Dph, and evaluate
W by a Newton-Raphson iterative scheme, with the deriva-
tive dW/dp given by using thermodynamics relations. Here,
we present a dlierent implementation. Taking advantage of
the existence of a relation between the specific enthaimyd
0 = p/(pc?), we solve the system of equationH{4-6) as a func-
tion of ® by using a standard Newton-Raphson method, and
we then determine the other variables.

h=2 (21)
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First, squaring the momentum equati@y (= DhI'vk) we other tree-AMR codes (e.g. Berger & Oliger 1084; Khokhlov

get: 1998). Furthermore, there are no ghost cells in any of the
2 S? blocks. Although the use of pointers causes a small mem-
=1+ D2h2 (22) ory overload (corresponding to 4 integers per cell in 3 dimen

sions), that is largely compensated by the fact that, dulegto t

with h = h(®). From the definition of specific enthalpy it g5 'piock size, the grid covers only regions théieetively

follows thath > 1. Therefore, equatiofi(R2) leads to the fol- |\ to be refined.

lowing inequality (e.g. Schneider et al. 1993) At every timestep, all blocks are swept, and they are re-
g2 finedcoarsened if a user defined criterion is fulfilled. Typi-
1<I?<1+ Dz (23) cally, this criterion is based on the first or second denreatif
some variable, but more complex criteria can be easily imple
By using the relatiorp = DOc?/T", we can then derive from  mented. Once a list of blocks flagged for refinement has been

the definition of energy density (excluding rest mass,i.e. formed, the grid is checked for consistency. As the code main
DhI'c? — p — Dc?) the following identity tains a maximum ratio of 2 in the size of neighbor cells, all
® - coarser neighbors of blocks are flagged for refinement. When
f(®) =h@O)I(®)- ——-1-—=0. (24) a block is refined, 2m new blocks are created, and the parent
r(®) Bl block is eliminated. To avoid excessive memory fragmenta-
Equations[(Z2R) and_(24) are then used, together with a staniion, the block lists are periodically reordered.
dard Newton-Raphson method, to determ@hewith d f/d® Coarsening is allowed only when thé&i® neighbor blocks
given by (previously produced by refining the same parent block) are
, 5 marked for derefinement during the same timestep. We use
di(e) _m (1 _er:- 1) 1 (25) zeroth-order interpolation when refining, and we integtiage
de r h 172 r’ conserved variables over the volume when coarsening, fol-

lowing the strategy presented by Li & i (2003).
To evolve the hyperbolic equations, the code employs a

timestep common to all grid levels. While the use of a global
. : ; timestep may potentially produce an important computation
termined both analytically or numerlcally. In the case & th overload (as large of 50%, depending on the problem, see e.g.
Ryu et al. 2006) EOS (equatibn2hy,= 4 - 6/(30 + 2)%, ) with respect to using a local timestep,
We also note thad f(©)/d® > O for every value oB (for e ¢4 time step method can represent an important bottle
the EOS considered here). Therefore,fe® — o) > 0,a  pocy for parallelization, as blocks onfidirent levels must to
solution for the equatiori(®) = 0 exists iff(® = 0) <0, ¢ ayolved sequentially (and not in parallel). The fluxes are
which implies the relation computed by locating the neighbor blocks, and considering
D?+S2 < (D +1/c?)?, (26) the cells sharing the same faces. When two blocks with dif-

) . ) ) ferent levels of refinement share the same fabe; 2 fluxes
must hold in order to allow a solution with physically aceept  are computed between th&1 cells located on the higher
able values of andp (thatis, real values df > 1andp > 0).  |evel block and the cell part of the block at the lower level of

As we have shown, this method can be easily applied to anyrefinement. The fluxes are then added to the conserved vari-
equation of state of the forim= h(®). Furthermore, the guess  gples of the cells sharing the common boundary.
used by the Newton-Raphson method (NRM) is provided by  The Mezcal code is parallelized by using Message Pass-
simply assuming® = 0. In this case, setting a tolerance of ing Interphase(MPI) library. The communication time is
10" into the Newton-Raphson solver, the method convergesminimized by scheduling it in parallel with the calculatiof
typically within ~ 5 iterations. In very rare cases when the the fluxes. This is done by first computing the fluxes between
NRM fails to converge, a bisection method is used instead. blocks located in each process, and then, once the commu-
) i nication phase is completed, computing the rest of the fluxes
2.6. Adaptive mesh refinement (between blocks “inside” each process and ghost blocks). Th
We have implemented the SRHD equations in the frame-load balancing is achieved by ordering the blocks by a space-
work of the adaptive mesh refinement code Mezcal. In thefilling curve 4), dividing the total number of tec
code, a basic Cartesian grid is built at the beginning of the between the dierent processes, and moving blocks between
simulation, and it is refined based on the initial conditiand unbalanced processes. In the code, the Morton and the Hilber
the subsequent evolution of the flow. The uniform version of space-filling curves (Sagan 1994) are implemented. The load
the code has been used in the past to simulate MHD jets (e.g.balancing is typically applied everyl0 timestep, and repre-
5, 2006; De Colle etlal. 2008). sents an overload 6f1% of the total computational time. The
In the Mezcal code, the computational grid is divided in parallel scaling of the AMR code is under evaluation and will
“octs” (or blocks) of 2¢m cells, wherengin, is the number of ~ be presented elsewhere.
d|men$|ons of the problem. Each block has a series of point- 3. CALCULATION OF THE EMITTED RADIATION FROM A
ers to its vertexes, and each vertex has pointers to the octs HYDRODYNAMIC SIMULATION
sharing that particular vertex. In this way, neighbor obtstl _ .
along the axes and the diagonal direction) can be easily lo- 3.1. Calculation of the observed flux density
cated in the grid, facilitating the computation of the MHD  Here we provide a detailed derivation of the procedure
solver (that, in staggered mesh methods, is based on determi required to calculate the radiation emitted from a relativi
ing electric fields at the cell vertexes). At a given time,feac tic source, following Granot & Ramirez-Ruiz (2010), which
position on the grid is covered by only one cell, i.e. thee ar is based on previous work (Granot, Piran & Sari_1999a,b;

no pointers between “parent” and “sibling” usually present  [Granot & Konigll200B{ Kumar & Granlot 2003).

where the relatiod” = —h’(I'> — 1)/(hI') has been used (de-
rived from equatiod 22), antl = dh/d®. The derivative
dh/d® depends on the particular EOS used, and can be de
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Fic. 1.— The contribution of a volume elemethi’ to the flux observed by a
distant observer idF, (fig) = 1, (A) c0SfsqdQsq =~ |, (A) dQsq, Wheredsq is the
angle Qetween the direction opposite to that at which theotiet is pointing
(Ag = Z in the figure) and the local direction from a small emittingios
within the source (of volumeV) to the detector. Since the observer is far

away, the direction of emission in the observer frame is atmparallel to the
z-axis.

The geometry of the problem is shown in Figlite 1. We de-
note withdsq the angle subtended by the directigyof the ob-
server (perpendicular to theftrential areal A at the detec-
tor, and opposite to the direction at which the detector istpo
ing) and the local direction from the relevant (contributing)
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wheret; is the coordinate time at the source’s cosmological
frame,

Ao

V = (1+2T(1-h-B)v, t0b3=(1+z)(tz—n—cr), (28)

andtyps = O corresponds to a photon emitted at the origin
(P = 0)att, = 0. Sinced*x = dt,dV, = dt,dS,ds, =
dt,dS, ds(v,/v) = dt,dV'/T(1-f-B) and 4jr,dV' =dL, =
An(dE'/dQ’dv'dt) is the diferential of the isotropic equiva-
lent spectral luminosity in the comoving frame, equat[on) (2
can be rewritten as

_ tobs %

1+z

N

f-r
——— [ dt, 6 |t; — —
4nd5(z)f ‘ ( c

du,

glcrery

There are two main approaches to calculgtérom the re-

Fotops ) = 02

(29)

part of the source to the observer. In practice almost alwayssults of a numerical simulation. The first one relies on numer
s < 1, as the source size is much smaller than the distancdcally calculatingl, along diferent lines of sight (i.e. trajec-

from the source to the observer, so that@&gs 1. We also
definedQsq = d¢sqd coshsq as the diferential solid angle sub-

tories or world lines of photons that reach the observer, an
then computingiF, = 1,dS,/d2. This was applied both in

tended by the contributing portion of the source as viewed by analytical (Granot, Piran & Sari 1999b; Granot & Sari 2002)
the observer. Our aim is to calculate the observed flux dgnsit and in_numerical [(Salmonson ef al. 2006; van Eertenlet al.

F, = dE/dAdvdt, which is the energy per unit area, frequency
and time in the directiong normal tod A. From the definition

of the angular distance to the sourci(z), wherez is the
cosmological redshift, we haw#Qgsy = dSL/df\, wheredS,

is the diferential area in the plane of the sky (normalnjo ~

[2010) calculations. Its main advantages are thanit ca
properly handle the optically thick regime, where the radia
tive transfer equation is solved (analytically or numetga
along each line of sight, and that it provides the observed
image of the source (i.el, on the plane of the sky) as a

sustained by the source. The angular distance to the saurce iby-product, since it is used when calculatifg. Its main

related to the luminosity distance; (), by da = (1 + 2)~2dy.
The diferential contribution to the flux can be written as
dF,(fg) = 1,(A) coSsqdQsy ~ 1,(A) dQsq = IVdSL/df\. Here

disadvantage for numerical simulations is that it requres
cessing many dierent “snapshots” of the simulation results,
corresponding to diierent lab frame times, for calculating

I,(M) = dE/dAdQdvdtis the specific intensity (the energy per each value of,, as it requires integration along the trajecto-

unit area, time and frequency of radiation directed within a ries (or world-lines) of photons that reach the observer Th

small solid angledQ, which is centered on the directio),”  second approach, we adopt here, avoids thiscdity, and

and should be evaluated at the location of the observer. was already used in several previous studies (Granor et al.
For an optically thin sourcé,, = [ j,,ds, wherej,, 12001,/ 2002} Granot & Konigl 2003; Kumar & Granot 2003;

dE,/dV,dQ,dv,dt, is the emitted energy per unit volume, INakar & Granot 2007; Zhang & MacFadyen 2009). In this

solid angle, frequency and time, whitks, is the diferen-
tial path length along the trajectory of a photon that reache
the observer at the timigps whenF, is measured (the sub-

approach the range of observed timigs, is divided into a
finite number ;) of time bins of widthAte,s; centered on

topsi (fOr i = 1,..,Ny). That is, thei®™ bin corresponds to

script z here denotes quantities measured in the cosmolog-topsi — Atonsi/2 < tobs < tobsi + Atonsi/2, and there are no

ical frame of the source). Sinck/v®, j,/v?> and ds/v
are Lorentz invarian icki & Li 79), we have
l, = (v/v2)?l,, = L+ 272 [j,ds. ThereforedF, (i) =
1,dS,/dZ = j,,dV,(1 + 2)/d?, wheredV, = dS,ds is the
volume element in the source cosmological frame.
v, = [TA - A -,Bﬁ)]*2 j., is measured in the source (cosmo-
logical) frame, whilej’, is measured in the (comoving) rest
frame of the emitting material, which expands at a veloity
in the source frame. Altogether, this gifes

. _(1+Z)f 4 N7 tops
Fy (tobs N) = dE(Z) d*xd(t; c 1+2

I
r2(1-n-ge2’
(27)

1+2

F, (tobsi, M) =
ovs! d2(2) Atopsi

1 Alobsi +Alobsi /2
S,
Atopsi —Atobsi /2

overlaps or gaps, so thbsi + Atopsi/2 = tobsi+1 — Atobsi+1/2

for 1 <i < Ny — 1. For many physical systems (such as the
ones we simulate) it is convenient to choose logarithmycall
spaced bins, with a constafitysi/tobsi- |If the time bins are

Here Suficiently densely spaced, such that the second time deriva-

tive (with respect tdgps) of F, is correspondingly small, then
F,(towsi, N) can be approximated by its average value within

theit time bin,
fAtobsi +Alopsi /2
Atopsi —Atobsi /2

Now given thats[ f(x — Xo)] = d(X — Xo)/If"(Xo)l when f(x)
has a single root at;, we obtain

1
Atobsi

F, (tobsi, N) = dtobsFy (tobs M) . (30)

tobs n
1+z °

dtobsfs(
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_ 2(1 +2)? fd“x H ( Alos | lobsi DT ) J"V/A ; (31)
df (2) Atopsi 21+2 |1+z ¢ |/r2(1-n-f)?
1 At AP i’
" d2(2)Mobszi L (D Atobszi C |/T2(1-n-p)2
|
whereH(x) is the Heaviside step function atds; = tops/(1+ calculate its local (comoving) emissivity/, (under appropri-
2). ate assumptions) and use equation (31) in order to caldtdate

The results of a simulation that models the dynamics of contribution to the observed flux densiBy,. The proper way
a physical system are naturally given at a finite numbgr (  of doing this is to calculate the fractiofyx of its 4-volume

of time stepst¢;, wherej = 1....ny), i.e. “snapshots” of Ay that falls within each observer time bin centeredagg,
the dynamics. At each snapshot the values of the hydrody-

namic variables are provided at a finite number of points, resulting in the following discretized version of equat{gd),
each at the center of a computational cell, which represents

a finite three dimensional volum&V® (generally diferent ) .

from that of other cells for an AMR code). For this rea- ¢ 4 - (1+2 Z AV I ik

son, we assign to each snapshot timea finite time interval: s df(z)AtobSi X ! ik rzk(1 - 'Ejk)z ’
(3tLl_tZ2)/2 < tz < (tll+tl2)/2 andAtLl = tzg—tzl for j = 1, ’ ! (32)

(tj-141)/2 <t < () +{zj41)/28NdAL § = (tj41-12j-1)/2  \yhere the subscriptjk” indicates that the relevant quanti-
for2<j<m—1,andGn-1+1tn)/2 <t <(Bln—tn-1)/2  {es are evaluated at the appropriate cell, centered,dm &
andAtzn = tzn — tzn-1 for j = ni. Suficiently dense and -,y Since the order of the summation is not important, it
well distributed snapshot times are key to the flux calcula- g ch more convenient to evaluate the contributions df eac
tions. Thus, the simulation provides a finite number of 4- 4p ce|l according to the order at which it is stored. Sincs it i
dimensional space-time cells, which together cover thefini 4t ajways convenient and may cost additional computakiona
simulated 4-volume (the time and three d|men§r|]0nal volume ime tq calculate all of the cdkcientsfij, one might further
covered by the simulatidj l'he 4-vo|urr13e of thé™ 3D cell simplify equation [[(3R) by attributing all of the contribati

of the j" snapshot time IAV( )= AthAVj(k)' Giventhe phys-  from any given 4D cell to a single observer time interval-cor
ical conditions in each such 4D space-time cell we can thenresponding to that of the cell’'s center:

(4) i o

1 2AV' i torei -1 Atopei

AR = 2 — Ty | <
d:(2 AtobSI I2(1-A-Fj)? 1+z 2(1+2)
1+2) AVR I A-Fic|  Atopsz

= ( 2+ Z) Ik for tobszi — tLj + I < Zobszi . (33)
di(2) Alobszi 2 (1 - - Bji)? 2
|
Finally, one could simplify things even further by assunémg 3.2. Calculation of the observed image

isotropic emission in the fluid (comoving) rest frame, arehth
i, () = dE’/dV'dQ’dv’dt’ can be replaced bly!, /47 where

. = dE'/dV'dv'dt’. We currently make this simplifying
assumption.

The observed image can be calculated by dividing the plane
of the sky (i.e. the plane normal tg into bins or 2D “pix-
els” and assigning the contributiaxF, j from each compu-
; . . . . . tational 4D cell to the appropriate pixels (or pixel), where
For 2D jet simulations, which assume an axisymmetric o conyersion from flux to specific intensity (which is rel-
flow, the jet symmetry axis is theaxis and it is convenient g an¢ for the image calculation) is done by using the refatio
to choose thecaxis along thenz plane, so thah‘may be  gr '_'| 4s, /d2, so that the intensity contribution to th
easily erre%sed in terms of the viewing anglgs (where pixel Whose area iaS,  would be
Cosgobs =N-Z y

~ Aka(ﬁ)
1,
Thus, in sphericalr(é, ¢) or cylindrical @z p, ¢) coordinates ) 1+ Z)—ZAVIKE) j:/,jk

(with 8, = 0), we have
A - P=r(SiN0 coSg SiNfops + COSH COSHops) =

ASLiAobsi T2 (1- A Bj)?

= p COS¢ SiNGobs + ZCOSHops » (35) C@+2AVE g
. = . . = . 37
fi- 5= (B, SiNG + By COSH) COSP SiNBops + AS | | Atopszi rZa- A-Bik)? G0
+ (Br cost) — By Sinf) COSHops (36)

) The assignment of the contnbutlon to the appropriate pixel
=Py COS¢ SINbops + 5z COSops - requires a parameterization of the plane of the sky. For this
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purpose we use a rotated reference frame denoted by a twidThe local emissivityP,, is taken to be a broken power-law,

dle, wherey™= y and thezaxis points to the observer (in the ’ 110 \1/3 r ey ,
direction ofri), /) Y SVm=Ve
)?2 XCOS@obS— Zslngobs = (V//V(/:)l/3 V/ < V:: < Vltn N
=r(SINO COSp COSHhs — COSH SiNbgps) = P
B : — = (' [vi)&-P)/2 Vi<V <V,
=0 COSp COSHops — ZSiNGops (38) P o
ARG Ve <V <V,
¥ =y=rsindsing = psing, 0= +/%+¥2, (39
y=y ¢ =psing Y ¥2, (39) (V//V;n)(l—p)/Z(V//Vé)—l/z V' > max(/y, vL) .

. L (42)
tang = y_ singsing _ with the following flux normalization and break frequencies

_ psing (40) Pl max= 08807 (37— | 7 g (e€) e, (43)

" p COS¢ COSHops — ZSiNBops )
For an axisymmetric flow the image is invariantes"—y or Vi = 3Vr ( P- 2) Qe el/zeg(ef)5/2(ng)‘2 . (44)
equivalently (09, — —4, i-e. I, (tobs A % 9) = Iy(tabs A, X, =) 8 \p-1) mgc®®
and |, (tops N, 0, #) = |, (tobs N, 0, —¢).° A 2D simulation 2
(whether in spherical or cylindrical coordinates) prow@D V= 272n qerrzlec(eBe,),g/z (E) . (45)
snapshots of the dynamics, and each 2D computational cell 128 o t

(not counting the time dimension) needs to be transformedg|ectron cooling is treated in an approximate manner, by as-
into one or more 3D cells. For the special case of an ob- syming that everywhere the electrons have cooled at their cu
server along the jet (or flow) symmetry axis, correspondingt rent local cooling rate over the dynamical time, which is in
fobs = 0, the contribution to the observed emission (i.el,to  turn approximated a,, ~ t/I, so that the expression in
or F,) becomes .|ndependen_t of which in this case is equal equation[[@b) is simply derived from

to ¢, so that the image has circular symmetryl{fecomes in-
dependent o) and a single bin iy becomes sfticient for ~ 3mec  3mecl ,  30:B'y2
the calculation. Fobys > O, however, one needs to artifi- ~ 7¢~ drresety  doresel, Ve = Teme
cially produce a large number of binsgneach corresponding n )

to a 3D cell, which together represent a single 2D computa-A more proper treatment of the electron cooling would re-
tional region. The choice of binning should be done wisely, quire following each fluid element from the point where it
such that the Doppler factor does not vary by a large factor Crosses the s_hock and the electrons are ac_celerateo!, &nd sol
between neighboring bins (in order to calculate the observe ing the equation for the subsequent evolution of their energ
radiation accurate|y enough) and the bin size should not bedlstrlbutlon, accoun_tlng for their radiative |OS_S€S andbdtic

too coarse (as to cause excessive graininess in the caldulat 9ains or losses. This has been done analytically for the BMK
images or lightcurves), while having a reasonable number ofself-similar solution [(Granot & Sati 2002) and numerically
bins (in order for the computational time not to be too large, using a 1D Lagrangian POdb_CNﬁkéL&_QthQLZOO7i- It has
especially for high-resolution simulations). Please rtht  &lso been implemented in an Eulerian cade (van Eerten et al.
since the contribution to the flux is invariantgo— —¢, itis ~ 12010,2011), in a somewhat approximate fashion due to the
enough to choose values in the range ® < = and give each  difficulty in accurately tracking the electron energy distri-
resu|ting 3D or 4D cell a double Weight when Ca|cu|aﬂﬁg bution in each fluid element. TheftBrences between our

(46)

(sinceg, < ¢ < ¢, also representseg, < ¢ < —¢1). treatment of the electron cooling and the results presented
o (Granot & Sari 2002) are shown in detail in the Appendix.
3.3. Synchrotron radiation It is also possible to use an even simpler emission model

The main purpose of the current radiation calculations is to that ignores electron cooling altogether by assuming;, <
check the fect of the dynamics on the afterglow lightcurves. ¢ in the broken power-laws of equatidn {42). In this paper
Because of this, we intentionally use a very simple model €lectron cooling is always implemented in our calculations
for the radiation mechanism (followirig Granot, Piran & Sari In an accompanying paper (De Colle et al. 2011), however, in
[19994), which features synchrotron emission and ignokes in SOmMe cases we also use an even simpler emission model that
verse Compton scattering or itsfects on the synchrotron ignores electron cooling altogether,

emission through the additional electron cooling that it p’ VIRV <V,

causes. It also ignores self-absorption, and the local-emis : L (47)

sion spectrum is approximated by a broken power-law. The Pv’,max (y'/y;n)(l—P)/Z Vo>V

magnetic field is assumed to hold e_veryvghere a fraatioof 4. APPLICATION: EVOLUTION OF A RELATIVISTIC IMPULSIVE

;[)he proper internal energy densig, i.e. B“/8r = eg€’. Just . - BLAST WAVE

ehind the shock all electrons are assumed to be accelerated

into a power-law energy distribution, In this section, we use our AMRadiation code to study

p-2\ e the evolution of impulsive relativistic blast waves botfoime-
N(ye) « yo” for ye>ym= (—) . (41 dimension (1D) — a spherical blast wave propagating into

p—1/) ngmec either a uniform or a stratified medium, bridging from the

8 This can also be seen from equatibnl(36), where the depemdemg Ble.mdford'MCKee to t.he Se.dOV'Taylor (ST) S.elf'SIm”ar. SO-
is only through cog, which is invariant tap — —¢ that according to equa- lutions — and In two d_|men3|0ns_ (2D) — an axi-symmetric jet
tion (39) corresponds tp=> —§ or ¢ — —d. propagating into a uniform medium.
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4.1. Self similar solution

(65/2)Eiso ~ 2 x 10°X(0/0.2)°Eiso 53 €rg, where we have used

[Blandford & McKee [(1976) studied the self-similar propa- @ fiducial value ofEis, = 10°*Esos3 erg, typical for long du-

gation of an ultra-relativistic spherical impulsive blagive
in a medium with a density

pi(r) = Aar < (48)

They showed that an appropriate choice of the similarity

variable is

¥ =1+2(4-Kr(1- ) | (49)

wherer andR are the radial position (in polar coordinates)

of the fluid element and of the shock front respectively;is
the Lorentz factor of the shock front, which as that of thedflui

(and all of the velocities) here is measured in the rest frame@nd the shock velocity given by, = dR/dt oc t

ration GRBs. Whether it is more appropriate to &ser Ejso

in equation[(5b6) for such a jet, i.e. at which distance from th

origin it becomes Newtonian, is a non-trivial question, evhi

is addressed in an accompanying paper (De Colle/let all 2011).
In the non-relativistic limit, the self-similar behaviof the

blast wave is described by the Sedov-Taylor (SEdov11959;

Taylor [1950) self-similar solution, with the position ofeth

shock wave given by

21160
° ] , (57)

akEis
R~ | 2T
R

(3-K/(6K)

of the upstream medium ahead of the shock, and it is relatedAPProximated expressions for the post-shock density,-pres

to the the Lorentz factor of the shocked fluid just behind th
shock front byI'(y = 1) = I'sp/ V2. [Blandford & McKek

(1976) showed that the position of the shock front is given by

R:ct(l— ;] , (50)
2(4- k)1"§h
and its Lorentz factor can be written as
> (17-4KE (51)

ST Brp(R)C5t3

where p(R) = AR X is the density of the ambient (un-
shocked) medium at the position of the shock front, &d
is the energy in the blast wave.

e sure and velocity profiles in the ST regime are given, e.g., by
(2000). As there are not analytical solutions for the

scaling of density, pressure and velocity in the post-shieek
gion, it is not possible to find a simple analytical expressio
for ax. Based on the simulations presentedid), we find

@/ =1.151.04,0.78fork = 0, 1, 2 respectively.

4.2. Initial conditions

In this paper, we perform a series of 1D (wkh= 0,1, 2)
and 2D (withk = 0) simulations of the propagation of impul-
sive blast waves, including the transition from the relatie
to the non-relativistic phase. All simulations employ sghe
cal (polar) coordinates, and using the HLL method &&8&)
for the flux calculation. The multi-dimensional simulation

The lab frame time corresponding to a given Lorentz factor for the casek = 1,2 are presented in an upcoming paper
of the shock front is therefore (see equatidns (48) (50) and(De Colle et all 2011).

(1)) given by

_R_1[a7-4ETE 52)
T C | 8rACT?,

The post-shock Lorentz fact®l, proper rest-mass density
p, and pressure, are given by

1 -1/2

F = %FSW N (53)
o= 23/2 pk(R)rsh,(—(l(Hk)/ [2(4-K1 | (54)
p= 2RI (T /01, (55)

The relativistic blast wave typically begins to slow down

when it sweeps up an amount of mass with a rest-mass en
ergy of order of the kinetic energy of the blast wave. That

corresponds to a distance (Sedov length) of
(3— KE/EY

4 A C? ]

where the jet energi is the energy (excluding rest energy)

Lsz

: (56)

in the flow. For a non-spherical flow, or a jet, to zeroth
order E in equations[(51) and_(52) can be replaced by the
local value of the isotropic equivalent energy in the flow,

Eiso = 4n(dE/dQ), as long as it does not vary significantly

The initial conditions of the problem depend on the values
of the following parameters: the isotropic energy of thesbla
wave, Eiso, the initial Lorentz factor of the jet shock front,
Isho, the density profile of the external medium (that is, the
values ofk and of the normalization factoky) and the jet
initial half-opening anglefy (in the 2D case). In all the sim-
ulations, the initial profiles of density, pressure and Inbze
factor (radial velocity) in the post-shock region are setrir
the BMK self-similar solutions, given by equatiofsl(58H)5
We initialize the density of the ambient medium (in the case
k = 0) asAg = po = NoMp = 1.67 x 10-2* g cn3, and the
pressure ap = npoc?, with n = 1071%. The value of; does
not afect the outcome of the simulation as long as the Mach
number remains large, i.eéM ~ 7Y?vgp/c > 1. As the sim-
ulation continues to evolve well into the Newtonian regime,
this condition corresponds t@, > 3 (/10719)Y2 km s,

In a first set of simulations, we study the deceleration of
mildly relativistic impulsive blast waves bridging fromeh
BMK to the ST self-similar solution. In the cage= 0, the
initial conditions are similar to those used[by van Eerteallet
(2010). To determine the density profile in the cases, 2,
we fix the Sedov length (equatibnl56)lagk) = Ls(k = 0):

over an angular scale of the order of the inverse of the lo-fgre

cal value of the Lorentz factor of the fluid just behind the

shock. In particular, for a double-sided conical wedge dff ha
opening angledy taken out of the BMK solution (or a uni-
form sharp-edged jet), which we later use as the initial cond
tions of our 2D simulations, we hae = (1 — cosfo)Eiso ~

_ 1/(3-K) 1/3
L = |B-KE I S (58)
A A C? A AgC?
and derive an expression f8g asAx = AOL'§(3— k)/3. There-
3-k(r\*
pP= AOT (L_s) . (59)

We further assumeg;s, = 10°2 ergs, corresponding to a Se-
dov length ofLs = 1.17 x 10'® cm, and a Lorentz factor of



10 F. De Colle et al.

the shock of"sho = 10. To properly cover the deceleration to
non-relativistic speeds (especially for the ckse 2), we use
a large spherical box of radial sizg = 3 x 10?° cm (corre-
sponding to a size of 256Ls). The simulation is stopped at
tin = 500 yrs.
In the casek = 0, the simulations begins & = 1.19 x
10" s, with a jet shock located &, = 3.56 x 107 cm.
The casek = 1 corresponds to an initial time and jet
shock radius given byi/ty = Ri/Ry = 0.53. The case
k = 2, corresponding to a steady spherically symmetric
wind, hasty/tg = Ry/Ry = 0.074. The values assumed
for the spherical wind can be compared with those ob-
served for Wolf-Rayet stars, which winds have large mass-
loss rates oM ~ 107 — 10* Myyr~t and velocitiess, =
1000- 2500 km s? (e.g.,[Chiosi & Maedér 1986), giving
nw(r) =~ 0.45( /108 cm)2(My,/3 x 1075 Mg yr—2) (v /2 x
10°kms™) cm3, which is very similar to the one used in
the simulations. P
The AMR code uses a basic grid of 1000 cells with a maxi-

mum of 18 levels of refinement Corresponding to a maximum Fic. 2.— Adaptive grid structure for the initial condition ofehtwo-
’ dimensional simulation of a relativistic blast wave. Theebtolor indicates

. " > ; :
resolution OfArmir] =23x 10 cm. Ina Umfo_rm grid code,  the post-shock region, while the green area represent thieatfunshocked)
the same resolution would be achieved by usiBx 10 cells. medium.

In a second set of simulations, we test the radiation code
by running simulations of highly relativistic decelerajiblast
waves (limited to the cask = 0) both in 1D and 2D. In 10t
these simulations, we assume an isotropic enerdyiQf =
10°3 ergs, corresponding to a Sedov lengthLgf= 2.51 x
10'8 cm, and a Lorentz factor dfsno = V2 x 20. The sim-
ulations begins af = 1.277x 10" s, with the shock initially .
located aRy = 3.83x 10' cm, and ends af, = 150 yrs. To ki3
properly study its lateral expansion, an initial openinglan
of p = 0.2 rad (in the 2D case) is assumed for the jet.

The spherical box has a radial sizelgf= 1.1 x 10*° cm
and angular size (in the 2D simulatio) = 7/2. The AMR .
code uses a basic grid of 100 cells along the radial direction '
both in 1D and 2D, and 4 cells along théirection in the 2D
simulations. We run a series of simulations varying the maxi
mum number of refinement levels. The lowest resolution sim-
ulation uses 10 maximum levels, while the highest employs
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18 levels of refinement in 1D and 15 in 2D, correspondingto  * 07
a maximum resolution oArmin = 2.1 x 10! cm in 1D and rfem]
Al min = 6.7 % 102 cm, Afmin = 2.4x 107° rad (along andé) Fic. 3.— Density profiles normalized to the Lorentz factor anel lthcal

in 2D. The structure of the grid at the beginning of the simu- value of the ambient medium density. The curves shown in fipeupanel
lation is shown in Figurl2 for the 2D run. In a uniform grid ¢e 2} 2RERee™) 00, 02 SIS i o™ 61 days. The bottom
code, the same resolution would be achieved by employingpanel k = 2) includes also the profile 4 = 20.3 days. The horizontal red
5.2x 10 cells in 1D, and~ 10 cells in 2D. line indicateso/pk(r)T = 4.
To keep approximately constant the resolution of the rela-
tivistic thin shell A « t4*, the maximum number of levels . L L )
of refinementNeveis is decreasing with timé (Graflot 2007) as the transition from relativistic to non-relativistic reges (see, .
Nievels = Max[7, Nieveiso — (4 — K) log(t/to)/ log(2)]. We re-  €.g./Beloborodov & Uhfn 2006; van Eerten ef al. 2010). Fig-
fine our adaptive mesh based on rest mass density and energy/€[3 shows that in fagi/ox(R)I" ~ 4 at diferent times and
gradients. The 1D simulations run in at most a few hours on for different values ok. The drop of the density profile in
a normal workstation, while the 2D simulations need a few the post-shock region approximately follows the BMK self-
days on~ 100 processors. similar solution, and is therefore less steep with lalgéee
equatiomB4). This figure also shows that the deceleration pr
. . . . N cess is slower for a more stratified medium.
4.3 One-dlmensmnql 5|mulat|on§ _of trans-_relatlwstlc blast Figure[3 shows the evolution of the shock front radius
waves propagating in a stratified mediuml0, 1, 2) for different density stratifications. Both the ultra-relativisti
During its deceleration, the shock front is typically re- (with Re, ~ ct) and the non-relativisticR oc t2/5-4) analyt-

solved with 3-4 cells (Figurigl 3), as is the case for most mod-ical self-similar solutions are properly recovered by thme-s
ern Eulerian shock capturing schemes. The normalized labulations. As shown e.g. hy van Eerten et al. (2010) for the
frame density behind the shock, given from the relativistic casek = 0, the transition from relativistic to non-relativistic
Rankine-Hugoniot conditions for strong shockgpk(R)I" = phase happens on scales much larger thanf for instance
(y + 1/T)/(y - 1), remains approximately constant during we estimate from Figufd 4 the time it takes for the relatiwist




GRB Dynamics and Afterglow Radiation from AMR-SRHD Simirais 11

80

= T
< 14 levels
ol ’/ Y 16 levels —==-- 1
60 I = N\ 18 levels |
v 20 levels —-—--
% 50
E w|
)
30 |
i ‘.
20 | )
\
10 | “
0 . . ]
0.9999 0.99995 1 1.00005 1.0001
60 i i ' :
14 :evels
" 16 levels ——-- |
” 18 levels e
20 levels —-=-=
("r' 40 |
L ' ' 5' 30
w0’ 10° 10° < 2
10%7 N t [days] N
10% 10° 10* e 1 N
t [days] 1

L L
0.999 0.9995 1 1.0005 1.001 1.0015

Fic. 4.— Position of the shock front for the three cases= 0, 1,2 MR
Sl

(up to bottom) along with the ultra-relativistidR§, = ct) and the Sedov-

1/(5-k) ; Fic. 5.— Number density profile (in the lab frame) fofférent resolutions
Taylor = (aEisot? regimes. The Sedov-Taylor curves as- 1G y profile ( ) 2
Y ﬁs;k) (ak S0 /Ak) ) reg _ y for the casek = 0 at the beginning of the simulation £ 148 days ,upper
sumea; =115104,0.78 fork = 0,1, 2 respectively. The gray curves  panel) and = 156 days (bottom panel).

are computed from a semi-analytical approximation baseehengy conser-
vation (see the text for a detailed description).

blast wave to slow down to non-relativistic speeds based onlf for instance we definéwr as the time where the asymp-
the intersection between the relativistic and non-reigtiiy ~ totic BMK solution %quk)the ST power laws are equal (i.e.
self-similar curves, we obtain values ef 0.9 x 10° days, ~ C/Ls = [4ma/(3-K)] ), we gett ~ 2.1tyr ~ 9x10° days
1.2 x 10° days and Z7 x 10° days fork = 0, 1, 2 respectively. (K= 0),t ~ 3tyr ~ 3.4 yrs k = 1) andt ~ 6tyg ~ 7.5 yrs
These values are much larger than those computed by usin k = 2). At this time the blast wave is nonetheless still mildly
the Sedov length (Piran 2006)k ~ Lnr/C = 450 days. elatlwsuc (B = 0.51,0.56,0.63) and the ST solution is not
This result, together with the scaling of position, Lorentz Valid. If on the other hand we assume that the ST solu-
factor and the shock velocity as a function of time and shock tion becomes valid at a fixed (somehow arbitrary) speed of
radius, can be easily understood by a simple analyticatargu ¥/€¢ < 1/3, we gett ~ 3.6ing ~ 1.6 x 10° days k = 0),
ment involving the conservation of energy. In fact, the gger ¢ ~ 7tnr ~ 8.6 yrs k = 1) andt ~ 48ing ~ 59 yrs k = 2)

is given in the ultra-relativistic regime by (Figurel3). o
Equation [[6B), when rewritten in the fordR/dt = g(R),
E= 8 ACCRKT282 (60) admits a complex solutioh = f(R) in terms of Appell hy-
17 -4k pergeometric functions. The time dependence of the shock
and in the non-relativistic limit by positionR = R(t) has been therefore more easily derived by
numerical integrating equation (63), and it approximales t
E_ (5- k)zAkszg_k 61) position of the shock computed from the numerical simula-
T day tion within a maximum dierence of 1, 2, 5% (fok = 0, 1,2
respectively).

As the energy has a common scaling in relation with the
other physical parametergR), differing only in the constant
of proportionality, a simple interpolation between the tino-
its is given by

While Figured B andl4 clearly show the validity of our
implementation for mildly-relativistic and non-relatstic
speeds, reproducing the correct BMK self-similar scaling d
ing the early stages of the simulation, wher 10, is much

8r 5 — k)2 more challenging.
E = R*6T*Ac? 17 4kﬂ2 4 ™ ) 1-p9] (62) Figure® shows the initial density profile (for the chse 0)
k in the region around the position of the shock. A very large

This equation can be easily written as function of velocity number of levels of refinement must be used to properly ini-
as: tialize the density, pressure and Lorentz factor in the post

2 shock region. For instance (Figlire 5, upper panel), thalnit

= steep density profile is recovered with errors less than 10%

1+ cnr(R/Ls)** + VI1 — enr(R/Ls)* ]2 + dcr(R/Lg>* only by using resolutions correspondingal8 levels of re-

2(3-K) (5-K)2(3-K) : . finement. - .

wherecr = 75 andcyr = ot This expression ap- While the BMK self-similar solution represents an exact so-
proximately gives the dependencef{or I') on the shock lution of the SRHD equations in the ultra-relativistic limi
position, for every choice of the blast wave energy and den-the particular discretization employed may not be the ex-
sity stratification. For instance, & ~ Ls, equation[(6B8) act (numerical) solution of the discretized equations. As a
givesvs, ~ 0.83,0.85,0.89c (oru = I8 ~ 1.46,1.64,1.99) consequence, the relaxation towards the numerical saolutio
for k = 0,1,2 respectively. At this radius (and time) the passes through the development (see Figlre 5, bottom panel)
shock is therefore still relativistic, and the ST solutismbt of a spurious numerical “precursor” propagating in front of
valid. The exact determination &fr depends, however, on the BMK shock if insuficient resolution is used. While the
the definition of the transition between the relativisticl dine size of the precursor shock drop@eetively with resolution,

non-relativistic flow (e.g. Ramirez-Ruiz & MacFadyen 2010) it also produces a quick drop in the maximum Lorentz fac-

2
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t [days] . .
) ) ) ) Fic. 7.— Light curves (at 191¥17 Hz from up to bottom) from simula-
Fi. 6.— Maximum Lorentz factor in the post-shock region (meesun tions at diferent resolution, either including (right panels) or natlimling
the lab frame) as a function of time. The simulations (vkitk: 0) start at (left panels) the contribution from the synthetic lightoairemitted from a
t ~ 147 days with a Lorentz factor of 20. The curves shown comedyio Blandford-McKee self-similar blast wave with Lorentz facbetween 200

the expected BMK self-similar solution, 14, 16, 18 levelseffnement with and 20. The synthetic light curve (labeled BMK in the Figiee)itted from
a fixed maximum level of refinement, and results of the Zhang & ~adyen a Lorentz factor between 1 and 20 (or between 1 and 200) isshlson in

(2009) two-dimensional simulations. For 14 levels of refieat we show the left (right) panels of the figure.
two curves, either with (a) or without (b) decreasing the imasn level of
refinement with time. Each label on tleaxis corresponds to the time when

the maximum resolution drops by a factor of two, so that fetance the sim- For f = 1/2, this givesag = 0.07890.103 0.147 anday =
ulation with initially 14 levels of refinement drops to 13 & after 175 days, 0.190,0.3050.750 fork = 0,1, 2
12 after 209 days, and . ’ : R : PR
after 5 days, and so on One can then similarly express the numerical resolution in
terms of a paramet&es,

tor behind the shock (due to the spreading of the inifial Al min = a{%& , (66)
peak, see Figufd 6). The Lorentz factor eventually congerge Ifh(Ro)

i[ot_the cor:jec;gll\/lK 'lsoluftlonf_al“ ~ 1t0 alt:_thlemEI}aersgelst reio- whereArnin is the smallest resolution element in the radial
ution used (18 levels of refinement). Fig alS0 SNOWS iraction. Previous 2D jet numerical simulations with sim-

the dfect of decreasing the maximum level of resolution ;. . - _ Granot et &1.[(200
during the evolution of the simulation (Granot etlal. 2001; llar initial conditions useck = 0. In . 1

: the initial resolution was rather podges = 0.69, while in
Zhang & MacFad _m De Calle e Ia_I._Zbll). As can be Zhang & MacFadyen (2009) it was significantly improved,
appreciated from Figuig 6, the decrease in the resolutien pr aes = 0.12. Here we us@es = 0.014 fork = 0, which

duces a slower convergence to the BMK solution. The time . :
: . represents an order of magnitude improvementkod and
evolution of I' from [Zhang & MacFadyen_(2009), included  5'e'haven, .. = 0.022 and 87, respectively.

'(;1. Figure[6 IIS _sm;la;_r to our low rezplutlon (14.|eV$IT) onte- Figure[T shows that the light curve, computed by post-
imensional simulation, corresponding approximately® t . ,cessing the results of the simulations with our radatio

resolution achievable in multi-dimensional simulatiofihe ;
e . code, converges quickly except fops < 0.5 days, where
noise in the_Zhang & MacFadyeh (2009) curve is due to a part of the flux, which should be generated from regions with

larger temporal sampling. A proper treatment ofthe tingault - _ 20, is shifted to a lowet,,s That can be in part com-

relativistic post-shock region would require a larger teson pensated by adding the contribution coming from the jet de-

or alternatively a much lessftlisive method as e.g. high or- ; ; P
der (coupled to high resolution) or Lagrangian-Euleriatime celerating with 20< I' < 200, computed by mapping in the

— " radiation code a BMK self-similar solution. As shown in Fig-
ods (e.g. Kobayashi. Piran & Sari 1999). . urel7 (right), the sum of the synthetic flux with 20C < 200
The specific numerical resolution required is determined by

the relevant structure one needs to resolve. The hardest t(imd the flux computed from the results of the simulation with
; X S : o < T < 20 produces a valley (shallower for increasing res-
resolve, in our case, is the initial BMK shelt) at the initial TSR b y 9

; ; ) ) olutions) forteps ~ 1 day. This artificial feature is due to
time (o) or radius Ry). Its efective width does not have & o |axation from the initial conditions to the numericalsol
unique definition, but it can be parameterized as

tion, and gradually disappears as the resolution is ineckas

Ro A comparison between the lightcurve computed from the 1D
Ao = am . (64) simulation (withk = 0) and the semi-analytical calculations
sh from|Granot & Safil(2002) is shown in the Appendix.
where the numerical fact@arcan be evaluated using the BMK ) ) ) i
self similar solutior?. DefiningAg as the width of the region 4.4. Two dimensional simulations for0
behind the shock that contains a fractibof the total energy Figure[8 shows snapshots representing the early evolution-
(E) or rest massN]l), respectively, results in ary stages of the jet density. During the relativistic phase
(1-f)y—1 3(4-K) 4_k there is only modest lateral expansion. As portions of the
=7 = gg= , ay=—-. (65) jet expand laterally, a rarefaction front moves towards the
2(4-K) 17-4k 3-k jet axis. The strong shear present at the contact discontinu

9 Note that if one useB(Ro,y = 1) instead offxi(Ro) in equation [BK) ity drives shearing instabilities that have however a rgigle
then the value of the numerical dieienta would be smaller by a factor of ~ €ffeCt on the shock dynamics and afterglow radiation com-

2. ing from the jet. At the jet break time = t;g ~ 8.7 yr,
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Fic. 8.— Lab-frame density stratification snapshots of the 2Butation at 147 days (left), 256 days (center), 372 day$i{gnel).

the lateral expansion becomes more vigorous, and at later ‘ ‘ ‘ PRy ypu—
stages (on times> tyr) the jet slowly converges to a spher- — 1
ical shape. Although it is not possible to make a quantita-
tive comparison, our results qualitatively resemble thoke
Zhang & MacFadyen (2009, see their Figure 2 for a direct
comparison), as well as those lof Granot etlal. (2001).

While theoretical arguments (Gruzinov 2000; Wang ét al.
[2002) seems to indicate that the shock front should be stable
to linear perturbations for either a uniform or a wind den-
sity profile of the ambient medium, recent simulations by

iani [(2010) observe the development of insta-
bilities in the shock front. The development of similar gst
bilities is also observed by De Colle ef al. (2011) relative t
the case of a stratified medium with= 2, while it is not
observed in the simulations presented in this paper (despit
using the same HLL Riemann solver|las Meliani & Keppens
2010 and similar initial conditions), consistently withethe-

sults by Zhang & MacFadygen (2009). Thefdrent results in

the simulation seems to imply a numerical origin for the in-
stabilities observed by Meliani & Keppens (2010), although
further investigation is needed to better understand tbb-pr
lem.

The afterglow light curves computed from our 2D jet sim-
ulation assume that the observer is located along the jet sym
metry axis fobs = 0). To facilitate comparison with the results . ‘ ‘
ofZhang & MacFadyen (2009), we choose the same param- w! o eyl w0 10!
eters for the afterglow calculationz = ¢ = 0.1,z = 1 and o
p = 2.5, in addition to the same values for the parametersto Fi. 9.— Afterglow emission at 21315 Hz from the 2D simu-
determine the hydrodynamicBi{, = 10°3 erg,Next = 1 cni3 lation compared with a 2D wedge (bottom panel) and the resutm
andé = 0.2 rad). Zhang & MacFadyer (20D9) (upper panel).

As in the 1D case, the afterglow emission (Figure 9) shows
a shallow valley at < 1 day, due to a lack of resolu-

tion into the region immediately behind the high relatidst \yith the same (initial) isotropic energy, indicating thitié
shock. Figuré (bottom panel) shows a comparison with agjgeways expansion takes place before the jet break, ieagre
2D “wedge” (computed by using a 1D simulation mapped on ment with previous analytical (e.dﬂﬁéﬂ%% and nu-
a wedge witly < 0.2; the finite resolution of this 1D simula-  merical {Granot et al. 2001) results. After the jet breaketim
tion is afecting the lightcurves at the earliest times as shown poyever, the flux from the 2D simulation becomes lower than
in Figure[9). Before the jet break time, the 2D light curve ha¢ for the corresponding wedge, and th@edence between
from the simulation is very similar to that from a 2D wedge e two gradually increases with time, as the lateral spread

Fy [mJy]

Fy [mJy]
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We have studied for the first time the deceleration of rel-
ativistic impulsive blast-waves in one dimension propagat
ing in a stratified medium and find that the deceleration to
non-relativistic speeds happen on scatgg from a few (for
k = 0) to several times larger than the Sedov lengthTak-
ing Ryr as the radius wherBsr(t) = ct gives the expres-
sion Rur/Ls = [4rak/(3 — )]G, which illustrates how
R\r/Ls increases with the degree of stratification of the am-
bient medium where the shock is propagating. These results
have been described in detail using a simple semi-analytica
formula, derived from energy conservation, which gives the
correct scaling of the position and velocity of the shock as a

1610 ‘ ‘ ‘ ‘ function of time.
1010 1012 101 10 The results obtained by the radiation code were validated
v [Hz] by a comparison with semi-analytical results, and with ¢hos

Fic. 10.— Spectra atops = 0.1, 1, 10,100 1000 days (black, red, green, Obtained in previous numerical works. We have also shown

blue, purple) that while the resolution is a key factor to properly recaher
correct dynamical evolution of the system (with some of the
parameters not yet converging, e.g. the shock Lorentzrgcto

ing of the jet gradually increases during the relativistiape ~ when the contribution from the radiation produced by the jet

and then more rapidly during the Newtonian phase (until at pefore the onset of the simulation (in our case2Ds/ V2 <
very late times spherical symmetry is approached). Our cal-200) is included in the calculation, the resulting light eir
culated afterglow emission and spectra agree very well with hecomes much less sensitive to the exact resolution.

Zhang & MacFadyeri (2009) (Figuié 9, upper panel and Fig-  |n an upcoming paper, we will extend the results of the sim-
ure [10) both in the flux before and after the jet break. ulations presented here to include multi-dimensional &mu
tions in a stratified medium. The study of the contribution of

_ 5 CONCLUSIONS ) o the magnetic field on the jet dynamics and afterglow radiatio
In this paper, we have presented a detailed description ofjs |eft for future works.

the new state-of-the-art adaptive mesh refinement, redtitiv

hydrodynamics code Mezcal-SRHD and of the radiation code

used to compute the synchrotron emission from the output of

the hydrodynamics simulation. The proper implementation This research was supported by the David and Lucille
of the SRHD algorithm has been verified by running stan- Packard Foundation (ERR and FDC), the NSF (ERR) (AST-
dard one- and multi-dimensional tests which are presented i 0847563), the ERC advanced research grant “GRBs” and a
the Appendix. The code has been applied to the study of theDGAPA postdoctoral grant from UNAM (DLC). We thank
propagation of ultra-relativistic impulsive blast wavexthbin Weiqun Zhang to share with us data from his 2D simulations
one and two-dimensional spherical coordinates. (used in Figuréle).

F, [mJy]

APPENDIX

EVALUATING THE APPROXIMATIONS USED IN THE ELECTRON COOLING-REQUENCY ESTIMATION

A comparison between the lightcurve computed by mappindpénradiation code a blast wave described by a BMK self-
similar solution and the semi-analytical calculationstii@ranot & Sati[(2002) is shown in Figure A1. Whar
(2002) obtained smooth spectral breaks, for simplicity we here their broken power-law prescription (without syotrion
self-absorption). In that work the afterglow emission friita BMK solution is calculated for an exact local synchrotspectral
emissivity while analytically calculating the electroneegy distribution everywhere by following its evolutiorofn the shock
front (where it is assumed to be a pure power-law) due to ti@diand and adiabatic cooling. The light curve computeddigg

a simplified emission model (equatibnl 47) that neglectstelaacooling altogether is an very good agreement with th@ZGS
semi-analytical results (see FigurelAl). The light curvenpated by using an approximated electron cooling presénég t
breaks at low frequencies (corresponding to the transition v. < v, with the scalingF, o« tY/6 — v < vy, < ve with F,, o t1/?

— vm < v < ve With F,, oc t30P/4 5y < ye < v with F, o t2-3P/4) and two breaks at high frequencies (corresponding to
V< ve < ymWith F, o Y8 — ye < v < v with F,, o t™Y4 = v < vy < v with F,, o t?-3P/4) " As can be noticed in Figure
[AT] our estimation of the cooling break frequengyassuming that the electrons cool at their current localiagahte over the
dynamical time (see equations 42) underestimate the gpbitguency determined by GS02. For instance, an increageah

a factor of 4 produces a better agreement with the GS02 se@itfure[Al, right panel). It is worthwhile to stress thahile

the mapped BMK light curve and the GS02 results are appkcably for (highly) relativistic flows, the light curve comiaa
from the numerical simulations is valid during all the decation of the flow to non-relativistic speeds. Finally, vedioe that at

v < 10° Hz, self-absorption dominates and the light curves contpwith our simple prescription are inaccurate.

NUMERICAL TESTS
We present in this section a series of one-dimensional stutigls and multi-dimensional tests.
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Fic. Al.— Comparison between light curves (aA#/1%1517 Hz) computed from a Blandford-McKee self-similar blast wavith Lorentz factor between
600 and 1, and the semi-analytical results from (Granot & Ea02). Left panel Simple emission model excluding electron cooling (equrd@ 7). Center
Light curve computed by using an approximated emission irfodéhe electron cooling (equatiobsl4Bight The same as the center panel, but with a cooling
frequency four times larger.

One-dimensional shock tubes

Shock tube tests are used as standard tests as they are gimmpf@ement and the exact analytical solution is known. The
tests were performed using a grid with sizecx < 1, with an initial discontinuity ak = 0.5. Here and in the following, we
refer to the leftright hand side of the discontinuity with thefixes, ,r. In all the tests, we use a grid with 50 cells at the lowest
level, with 4 levels of refinement, corresponding to #ieetive resolution of 400 cells. We also make high resolutiors of the
same tests, employing 400 cells at the lowest level, withvél$eof refinement, corresponding to dfieetive resolution of 3200
cells. The Courant number if fixed equal to 0.8 in all testshwifinal integration time of = 0.4. The politropic index is fixed
equal to 43 in the first shock tube test angB5n all others tests. As described in the following, in aé tests the exact solution
is properly recovered.

The first test consist of a low-relativistic flow with a lefagt given byp. = 1,p. = 1, v, = 0.9, corresponding to a Lorentz
factor of ' ~ 2.3, and a right state given Ipr = 10, pr = 1, Vg = 0. The evolution of this shock tube consists of two shocks
and a stationary contact discontinuity. Small oscillasicsimilar to those observed by previous authors (e.qg. l-8essano et al.
2004; Wang et al. 2008), are present in the post-shock region

The second shock tube consists of a low-relativistic flowhvaitleft state given by, = 10,p. = 1, v = —0.6 and a right
state given bypr = 20, pr = 10,vg = 0.5. In this test, two rarefaction wave are produced, togettitr a left moving contact
discontinuity. Both rarefaction waves are properly recedewhile the contact discontinuity is smeared ovelO cells.

The last two tests are taken from Do 998), and referdstlwave explosions. The third shock tube consists of ofta lef
state given withp, = 40/3, p. = 10, and a right state given lpg = 1076, pg = 1, while in the last test the left state is given by
pL = 1000,0. = 1, and the a right state is given Ipg = 0.01,p0r = 1, The large pressure gradient produces a mildly relaitvist
shock (test 3) and a highly relativistic shock (test 4) with 6. As can be seen in Figuke B1, the solution consists in both
cases of a strong shock moving to the right and a rarefactamM@wnoving to the left. No oscillations are present in thetsoh.
The shock is resolved within 4 cells, while the contact discontinuity is smeared oveesavcells. That is expected, due to
the intrinsic ditusive properties of the HLL schemes. In the second blast weselem, the size of the thin dense shell in the
post-shock region consists of ondy4 cells with the resolution employed. As a consequence Xaetealue of the density is not
recovered at low resolution. However, this region is prbpessolved in the high resolution run.

Multi-dimensional tests
Relativistic 2D Riemann problem

This test has been studied in the non-relativistic case by & hkiul (1998), and extended to the SRHD case by
IDel Zzanna & Bucciantini [(2002). It has been widely used rélgeas a test for multi-dimensional SRHD codes (e.g.
ILucas-Serrano et Al. 2004; Wang € al. 2008). The computtapmain (at = 0) is divided in four regions:

(0, Vxs Wy, P)NE = (0.1,0,0,0.01) if  x>05y>05
(o, Vi Wy, PV = (0.1,0.99,0,1) if x<05y>05

(o, Vo Wy, P°W=(05,0,0,1) if x>05y<05
(0:Vx Wy, P°F=(0.1,0,099,1) if x<05y<05

We use a uniform grid with 40&@ 400 cells, an adiabatic equation of state with consjart 5/3, and outflows boundary
conditions. The simulations endstat 4. To better resolve the contact discontinuity, a more casgve MC limiter is used
here. The results are shown in Figlird B3. The initial disicmities across the four regions of the grid produce statigigontact
discontinuity (with jumps in transverse velocities) bedrn&SW-NW and SE-SW, and shocks between NE-NW and SE-SW. These
shocks produce an elongated jet-like structure on the di@gd hese features, together with the curved shock in thee})ign,
are qualitatively similar to those obtained by previousats.
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Fic. B1.— One-dimensional shock tube problems:at0.4. The variables shown are: density, velocity and presdure.initial discontinuity was set at= 0.5,
the Courant number is equal to 0.8, with a maximum resolutioh00 cells (points) and 3200 cells (lines). The panelsespond to first (upper left), second
(upper right), third (bottom left) and fourth (bottom rigishock tube tests (see the text for a detailed descriptidheohitial conditions).

0.2 0.4 0.6 0.8

Fic. B2.— Logarithm of the density for the Relativistic 2D Rienmgproblem at = 0.4. Thirty equally spaced contours are plotted in the Figure.
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Fic. B3.— Logarithm of the density for the Emery step problerh-at4.26. Thirty equally spaced contours are plotted in the Figure

Emery step

The “Emery step” test has become a standard test both forelativistic and relativistic hydrodynamics codes, antbibsists
of a wind moving through a tunnel. Our initial conditions sidy follow those by Lucas-Serrano et al. (2004). A relaticiflow
moves initially horizontally with velocityy, = 0.99%, corresponding to a Lorentz factorBf 7. The density is initially fixed at
p = 1.4 everywhere, with a pressure pf= 1/9 and an adiabatic index ¢f= 7/4, corresponding to a Newtonian Mach number
of M = 3. The size of the tunnelis & x < 3and 0< y < 1. A step is located in the region defined ky> 0.6,y < 0.2.
Inflow boundary conditions (with the same values used tdfdltunnel initially) are fixed at the left boundary. Outflowunalary
conditions are fixed at the right boundary, while reflectioghdary conditions are fixed at the upper, lower and step dnigs.
We use a uniform grid with 248 80 cells, with the HLL method coupled to the MC limiter.

Figure[B3 shows the density stratificatiort at 4.26. As the relativistic flow collides with the step, a revesheck is formed.
This shock front is reflected from the upper boundary formargtationary Mach stem. The results of this tests are sirtdlar

those of Lucas-Serrano et al. (2004).
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