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Abstract. We propose a concept for a Shannon-type quantification of
information relevant to a decision unit or agent. The proposed measure is
operational, can — at least in principle — be calculated for a given system
and has an immediate interpretation as an information quantity. Its use
as a natural framework for the study of sensor evolution is discussed.

1 Introduction

1.1 Shannon Information and Semantics

Shannon’s seminal study of the transmission capacity of a (possibly noisy) chan-
nel introduced one of the most important notions of modern science, namely a
quantification of information and of information transmission capability. Shan-
non’s notion of entropy of a memory-less source has deep connections to the
notion of entropy known from physics and to a generalized principle of insuffi-
cient reason which can be extended to a Bayesian framework (Jaynes 1957a,b;
Reichl 1980).

One of the important steps taken by Shannon was to do away with the notion
of semantics when dealing with transmitted data. In the Shannon view, when a
sequence of symbols is transmitted, every symbol carries the same importance;
in particular, there is no additional structure on the set of symbols that can be
transmitted. Only their probability of occurrence plays a role in the Shannon
model.

The non-interpretation of symbols is one of the strengths of the Shannon
model and allows it to introduce a powerful and universal notion of information.
However, it has long been felt that, for the purposes of understanding the more
complex levels of information processing in natural and artificial computation,
and of better understanding natural and artificial language, a variant of Shan-
non’s information would be in place that would take into account the semantic
content of the symbol sequences transmitted.

As Shannon’s approach is not straightforward to generalize in this direction,
in the last decades approaches for a formal characterization or quantification of
semantics and relevance have been the topic of many discussions. It has been
attempted to treat this problem e.g. on the level of philosophy (for a concept of
relevance based upon a philosophy of human communication, see e.g. Sperber



and Wilson 1995), or on the level of conceptual foundations of mathematics (e.g.
predicate logic, see Bar-Hillel 1964). However, these approaches lack the inter-
pretability, the conceptual crispness and the universality of the original Shannon
approach. What is frequently sought is just a simple operational quantification
of “semantic” information, conceptually similar to Shannon’s information, but
differing in its treatment of semantics and, in particular, being able to quantify
relevance.

1.2 Adaptive Sensors, POMDPs and Relevant Information

A new incentive to develop a quantification of semantic, or as we will prefer to
say here, relevant information has been brought forward due to the efforts to
study adaptive and evolving sensors. The study of sensor evolution is a branch
of Artificial Life that lies at the focal point between models to understand bio-
logical sensors (Shaaban et al. 1998; Liese et al. 2000), to construct evolving
hardware (Lee et al. 1996; Lund et al. 1997) and between fundamental questions
concerning the capabilities of evolution regarding the adaptation to the environ-
ment (Pask 1959; Cariani 1993; Menczer and Belew 1994; Mark et al. 1998) or
the development of selective perception of environmental stimuli acting as trig-
gers for certain behavior patterns (von Uexkiill 1956a,b). It is no surprise that
this topic has obtained increased interest in recent work (Dautenhahn, Polani,
Uthmann 2001).

In the field of sensor evolution, one is interested in agents that adapt or
evolve to solve a certain task. This task can be e.g. maximizing survival time
or the number of offspring. For this purpose, the agents are expected to evolve
appropriate sensors. Such sensor optimization procedures can be driven by ex-
plicit sensor quality measures (Nilsson and Pelger 1994). Often, however, the
task is implicitly formulated and there is no a priori knowledge about which
sensor properties are going to be relevant for the agents to be able to solve it.

The question important in this context is now when sensors will evolve that
attempt to capture as much information about the agent environment as possible
and when the sensors will be limited to capture only a very restricted bandwidth
of information channels. This intuitively depends, among other factors, on what
amount of information in the environment is relevant for the agent. What we
are interested in is to give a precise quantification of this amount of information.

This view is also closely related to the study of partially observable Markovian
decision processes (POMDPs, Kaelbling et al. 1996), as also in those it is of
particular interest to quantify how much information from the environment is
needed to form an adequate decision.

These considerations show that quantifying relevant information is not an
abstract or exotic requirement, but promises to provide a central measure for
the quality of information processing in a system, which is an essential aspect in
the studies of Artificial Life systems.



2 Quantification Approaches

To quantify the relevance of information or, alternatively, the amount of seman-
tics or relevance in a given data channel, it has become clear that the semantics
has to be brought in by recipient of the data (Wittgenstein 1958; Nehaniv 1999).
Nehaniv considers the meaning to arise from the “decoding” of information by
given agents. An agent is here seen as an automaton where equivalent states with
respect to the behavior of the agent or with respect to to its goals are collapsed
into a single state (see e.g. Crutchfield 1994). In this model, the external data
influence the agent automaton (for instance, to attain certain goal states).

A framework for the modeling of strategies to achieve goals is provided by
decision theory (Bertsekas 1976) which also underlies the theory of Markovian
Decision Problems (Sutton and Barto 1998). In the context of decision theory, a
theory of information value has been developed (Howard 1966; Poh and Horvitz
1996). A utility function is a suitably normalized measure that quantifies the
reward obtained by taking a certain action in a given state. Solving the decision
problem means finding that action that gives the highest expected reward. If the
exact state is not perfectly known to the decision system, the attained reward
will typically drop below that of the fully informed decision system. In general,
given a piece of information (e.g. in form of a random variable that is correlated
with the true state variable of the system), it will be possible to attain a higher
expected utility than without it. The difference between the two attained values
is the information value of the variable according to information value theory.
Note that this quantifies the value of the information which, in turn, is measured
in the units the utility function is given in, be it monetary value, fitness, score
or other.

For a quantified notion of relevant information in the vein of the Shannon
sense, however, different properties would be desirable. In particular, one would
like to have is a measure that is able to be interpreted in a sense similar to the
classical Shannon information; loosely speaking, its value should be expressed in
bits, the “universal unit of information” and not in the arbitrary units of some
utility measure.

Nehaniv (1999) grounds the meaning of Shannon-type information in the use-
fulness of signals detected by sensors and of actuators manipulating the world
and producing signals. This usefulness is there put into the context of fitness
(e.g. reproductive success) or also to more short-term goals like homeostasis.
In particular, Nehaniv considers this concept in relation to sensor and actuator
evolution; as example, he discusses the trade-off of cost and benefit versus the
signal length for information transmission evolved for the signaling behavior by
squids. In addition, different meanings and, thus, different degrees of informa-
tivity can arise for different observers in the same signal channel, even in the
same context, depending on the respective goals perceived (von Uexkiill 1956b;
Nehaniv et al. 1999).

Like Nehaniv, we will relate the amount of relevant information present in a
channel to the usefulness to the agent that can be derived from its knowledge. To
do so, we here formalize the concept of usefulness via the framework of decision



theory. In addition, we develop a formalism that allows to model the actuator
channel as a random variable and to compute the mutual information between
sensor and actuator channel which then will serve as measure for the amount of
relevant information.

3 A Measure for Relevant Information

First, we introduce some notation. We will denote random variables by uppercase
letters (e.g. X), the values they can assume by lowercase letters (e.g. ), the set
of these values by calligraphic letters (e.g. X). The probability that a random
variable X assumes a value z € X will be denoted by P(X = z) or, for simplicity
by p(x) by abuse of notation. Likewise, we will write p(y|z) instead of P(Y =
y|X = z) for the conditional probability for ¥ assuming the value y, given that
X assumes the value z.

To keep the mathematics simple, we will always assume the random variables
assume a finite number of (therefore discrete) values. The entropy of a random
variable X is defined as

H(X)= - p(x)logp(z) (1)
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where for convenience we assume the binary logarithm. The conditional entropy
H(Y|X) of a random variable Y given X is defined as

H(Y|X):=)_ pa)H(Y|X = z) (2)
TEX
== 5" p(x) 3 plyle) log plyla) - 3)
TEX yeY

To construct a measure for the relevant information present in a random vari-
able X, Tishby et al. (1999); Kaski and Sinkkonen (2000) assume the existence
of some relevance indicator variable Y that is jointly distributed with X. Then
they define the relevant information in X via the mutual information

I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X]Y) (4)

between the variables X and Y. The mutual information quantifies (in a Shannon
sense) how many bits of uncertainty about Y can be resolved by knowing X.
In their work, the relevance indicator variable has to be given a priori, e.g. by
appropriate labeling of training samples for X or by human intervention. The
relevance is determined by Y. In other words, the model is to determine how
many relevant information (about Y) can be extracted from knowing X.

We introduce now our notion of relevant information by instantiating the rel-
evance indicator variable Y from the models of Tishby et al.; Kaski and Sinkko-
nen with a specific, decision-theoretic model (Polani et al. 2001), grounding, as
Nehaniv (1999), the relevance of an action in its utility to the agent.



We assume a decision system with (for simplicity of exposition) finite state
and action spaces. Our key assumption is that for a given state x, there ex-
ists a set V*(x) of equivalently optimal actions Y*(z) := {yi; ...yi:} €V =
{y1...yr}, where ) is the set of possible actions. At this point we make no
assumptions about the model that selects the optimal actions; one could, for
instance, imagine the optimal actions to be maximizing the expectation value
of some suitable utility function. Given that state x, we define a conditional
probability p(y|z) of selecting an action y by p(y|z) := 1/|V*(z)| if y € Y*(z),
else setting p(y|z) := 0, where |.| denotes the number of elements in a set. In
other words, given a state z, then the conditional probability p(y|z) that an
optimal action y will be selected arises from the principle of insufficient reason
(or mazimum entropy, Jaynes 1957a,b) if several optimal actions exist. We call
p(y|z) the action selection model.

Let now p(z) be the probability that the system is in state x; denote the
respective random variable by X. Define now the random variable Y* in such
a way that it is jointly distributed with X via p(z,y) = p(y|z)p(z), where the
p(y|z) is the action selection model given above. Then Y* denotes a random
variable modeling the selection of an optimal action. Then, using Y* as relevance
indicator variable, we define in the sense of Tishby et al.; Kaski and Sinkkonen
the relevant information in X for the decision system by the mutual information
I(X;Y™) between the state variable X and the action selection variable Y™*.

4 Some Simple Examples

In this section, some very simple prototypical examples are given that illustrate
how the notion of relevant information operates. For this purpose, a couple
of instructive constellations are investigated. We generally consider a simple
scenario where the decision maker can assume 8 possible states  and can select
between 8 possible actions y in each state z. Given a set Y*(z) of optimal actions
for state x, the action selection model from Sec. 3 becomes

plylz) = PY* =y | X =2) = ﬁ L., (5)

where I, is the characteristic function of Y*(x) which is 1 for y € Y*(x) and
0 else.

Consider first the situation in Fig. 1(a). The vertical axis denotes the state
of the (decision making) agent, the horizontal axis the possible actions. A given
state x defines a row, in which darkened squares indicate the action selection
model. In the example of Fig. 1(a), for each distinct state there is a unique
distinct optimal action to take. One obtains p(y|z) = d, r(,) with a suitably
chosen function f. It is easy to see that, in this case, H(Y*|X) = 0 since the
optimal action variable Y* is perfectly determined by knowing the value of X.
The relevant information becomes I[(X;Y*) = H(Y*) — H(Y*|X) = H(Y*) =
H(X) (the last equation holds because f is injective, i.e. f(z') # f(z") for
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Fig. 1. Illustration of the operation of relevant information. The darkened squares
indicate the optimal actions y for a state . The depth of the shading represents the
value p(y|z) of the action selection model, where black denotes a value of 1.

x' # z'"). Thus, full information about the state X is relevant since each state x
requires its individual optimal response.

In Figure 1(b), this is different. It is still possible to consider the (unique)
optimal action as function y = f(x) of the present state z, but f is no longer
injective. The relevant information is still given by H(Y™*), but now H(Y™*) <
H(X). For equiprobabilistic X, one obtains I(X;Y*) = H(Y™*)—0 bit = 1 bit as
relevant information. The full uncertainty of the present state is H(X) = 3 bit.
This means that to find a relevant action, the current state has to be determined
only to the precision of 1 bit and not to its full precision of 3 bit.

Fig. 1(c) somewhat reminds of Fig. 1(a), but now for each state z, there is
a selection of four different actions that are equivalently optimal. In this case,
the action selection model becomes p(y|z) = 1/4 for an action y that is optimal
for z and p(y|z) = 0 else. Easy calculation shows that the relevant information
becomes I(X;Y*) = H(Y*) — H(Y*|X) = 3 bit — 2 bit = 1 bit, assuming X is
equiprobabilistic. This fits with intuition, as one has more freedom to select an
action and less specific state information is required to decide which actions to
take. Thus, less relevant information is therefore attributed to the system.

5 Discussion

Above definition of relevant information is natural in many senses. It has an
immediate interpretation as an information quantity of Shannon type. Via the
decision mechanism it addresses and incorporates the subjectivity of relevance
(i-e. it takes into account the question “relevant for what purpose?”). When there
is no available choice in actions, i.e. always the same unique action is optimal,
the relevant information vanishes. In this case, it is of no value knowing the state
of the system.

The same holds if there is no correlation between the state and the possible
actions that can be chosen, e.g. if the action selection model p(y|z) is identical for
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Fig. 2. Relevant information and information acquisition via a sensoric channel. See
text for details.

all z. This fits intuition that, if, by knowing X, the choice of Y* is not affected,
there is no relevant information in X with respect to Y*.

The potential of the approach lies in the fact that, given an action selection
model, it does not only provide a very natural quantification of the amount of
relevant information given a certain state, but it allows also the study of the
effect of incomplete state information. For illustration, assume the (true) state
variable X of the agent to be perceived by the agent not directly, but through a
sensorial channel which is modeled by a random variable X, obtained from X via
some probabilistic mapping p(Z|z), analogously to the scenario of Tishby et al.’s
information bottleneck method (Fig. 2). For the selection of an action, the total
amount of relevant information is given by I(X;Y™*). However, the “useful” infor-
mation available to the agent via the sensoric state variable X is only I(X;Y™).
Elementary information theory allows to show that I(X;Y™*) < I(X;Y™). The
relevant information I(X;Y™) therefore serves to gauge the maximum amount
of useful information that the sensorial channel can possibly extract from the
present state of the agent.

A paradigmatic instance of such a scenario is the adaption or evolution of
sensors. In this context, I(X;Y*) as compared to I(X;Y*) provides a measure
for the usefulness of a sensory variable for an agent to solve the task at hand. If
I(X;Y™) is already small (which can e.g. be the case even for large state spaces
if the set of optimal actions is small) then even a simple and thus cheap sensor
may capture most of the relevant information in the environment and this amout
can instantly be quantified by I(X;Y*). The trade-off between the bandwidth
of the sensor channel and the overall relevant information can be used to fine-
tune the necessary resources. Here, the information bottleneck framework by
Tishby et al. (1999) provides powerful tools for theoretical studies of the setting.
In addition, we emphasize that the concept of relevant information developed
here is immediately applicable to the study of POMDPs (Kaelbling et al. 1996).
POMDPs, in turn, we believe to have deep and intricate connections to the field
of sensor evolution whose exploration is still to be undertaken.



6 Summary and Future Work

A framework for the quantification of relevant information has been presented.
Combining decision- and information-theoretic aspects, the concept incorporates
many properties that are intuitively expected from such a quantity. It quantifies
relevance with respect to a given agent or decision system, it yields a measure
for the usefulness of sensors or about an agent’s state of knowledge with respect
to a POMDP. The concept introduces an operational notion of a Shannon-type
quantification of relevant information that can, in principle, always be computed.

We intend to apply the notion of relevant information that has been intro-
duced here on framework level to a couple of sensor evolution scenarios in the
near future. Abstracted sensor evolution models can be easily interpreted in
the terms developed in the present paper. They provides a suitable framework
to better understand the mechanisms that govern sensor evolution and to pur-
sue methods of improving it that may be generalizable to hardware. Jung et al.
(2001b) developed a simple but instructive sensor evolution model in whose anal-
ysis our present concept of relevant information was used (Jung et al. 2001a).

On a conceptual level, there are several interesting aspects by which we plan
to extend our model. First, the notion of relevant information can be strength-
ened to quantify the minimum required information about the system state X
to choose a right action Y™*. This view slightly changes the method how the
action selection model is constructed and the consequences of this (slightly more
complicated) modification are to be explored.

A second important aspect is the fact that often there may be few exactly
optimal actions, but a large selection of suboptimal actions which lead almost to
the same reward as the optimal one. Thirdly, it is in general not easy to identify
precisely the optimal action to take in a given state. The decision system will
usually have only a limited model about which action may be the best.

Interestingly, the last two problems can be solved at once by attacking them
simultaneously. One can regard the decision system or agent as an estimator for
the optimal action to take. The estimator, e.g. being based on some learning
or evolution system, will be trained by experimental data. It will typically give
imperfect estimations about which actions are optimal, depending on the history
of its training. The action selection model p(y|z) then reflects this imperfection.
As optimal and suboptimal rewards converge, by virtue of the continuity of the
estimator will cause also the action model to converge in a way that is consistent
with the specialized definition from Sec. 3. The imperfect model V* for the action
to be taken is then be regarded as an imperfect “sensor” for the best possible
action, in analogy to the sensor part. A forthcoming paper will develop this
generalization of the model in detail.
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