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Abstract. We introduce organization information, an information-the-
oretic characterization for the phenomenon of self-organization. This no-
tion, which requires the specification of an observer, is discussed in the
paradigmatic context of the Self-Organizing Map and its behaviour is
compared to that of other information-theoretic measures. We show that
it is sensitive to the presence and absence of “self-organization” (in the
intuitive sense) in cases where conventional measures fail.

1 Introduction

Shalizi [21] tracks back the first use of the notion of “self-organizing systems”
to Ashby [2]. The bottom-up cybernetic approach of early artificial intelligence
[25, 14] devoted considerable interest and attention to the area of self-organizing
systems; many of the questions and methods considered relevant today have
been appropriately identified almost half a century ago [e.g. 26].

The notion of self-organization, together with the related notion of emer-
gence, are of central importance in the sciences of complexity and Artificial Life!.
These phenomena form the backbone of those types of dynamics that lead to
climbing the ladder of complexity which, as it is believed, lies ultimately behind
the appearance of life-like phenomena, studied in Artificial Life. Notwithstand-
ing the importance and frequent use of these notions in the relevant literature, a
both precise and useful mathematical definition remains elusive. While there is a
high degree of intuitive consensus on what type of phenomena should be called
“self-organizing” or “emergent”, the prevailing strategy of characterization is
along the line of “I know it when I see it”. For a given system, the presence
of self-organization or emergence is typically determined by explicit inspection.
The present paper will concentrate on the discussion of how to characterize
self-organization.

Specialized formal literature often does not go beyond pragmatic charac-
terizations; e.g. Jetschke [10] defines a system as undergoing a self-organizing
transition if the symmetry group of its dynamics changes to a less symmetri-
cal one (e.g. a subgroup of the original symmetry group), typically occurring at

! To avoid possible misunderstandings, though they often co-occur and are mentioned
together, the present paper construes “self-organization” and “emergence” to be two
distinctly different phenomena, but intricately intervowen, see also Sec. 4.



Fig. 1. An example for the training process for a Self-Organizing Map. The probability
distribution used for generating the training samples is the equidistribution on the unit
square [0, 1]> C R%. The sequence of plots shows the SOM weights X; where two weights
X; and X are connected by a line if they belong to units ¢ and j neighbouring each
other in the grid at training steps 0, 10, 100, 1000.

phase transitions [19]. This view relates self-organization to phase transitions.
However, there are several reasons to approach the definition of self-organization
in a different way. The typical complex, living or artificial life system is not in
thermodynamic equilibrium [see also 17]. One possible extension of the formal-
ism is towards nonequilibrium thermodynamics, identifying phase transitions by
order parameters. These are quantities that characterize the “deviation” of the
system in a more “organized” state in the sense of Jetschke from the system in
a less organized state, measured by absence or presence of symmetries. Order
parameters have to be constructed by explicit inspection of the system since a
generic approach is not available. Also, in Alife systems, one can not expect the
a priori existence of any symmetry to act as indicators for self-organization.

2 Self-Organization

To discuss approaches to quantify self-organization, it is useful to introduce a
paradigmatic system. We choose a system which is not among the typical Alife
systems, but exemplifies the principles we need to develop. These principles
are, however, not restricted to that model and generalize immediately to any
stochastic dynamic system and will be applied to Alife systems in future. Here,
our paradigm system is Kohonen’s Self-Organizing Map (SOM) [11, 20, 12].
For lack of space, we do not go into details about the SOM dynamics and
give only give a brief outline. A SOM is a set of units ¢ each of which carries
a weight X; € R™. The units 4 are located on the nodes of a (typically square)
grid. The SOM is now being trained with samples V' drawn from a probability
distribution on R", during which the weights X, reorganize in such a fashion
that, if possible, neighbouring features in R™ are represented by weights w; and
w; belonging to units ¢ and j which are neighbours in the grid and vice versa.
Figure 1 shows a typical training process for a SOM. The “self-organization”
property is reflected by the fact that during the training the SOM representa-
tion changes from an “unorganized” to the “organized” final state. This “self-
organization” property is immediately evident to a human observer, but far from
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Fig. 2. Schematic representations of the evolution of probability distribution during
the SOM training. The set of random initial configurations covers a larger proportion
of the state space. During training the dynamics separates into distinct paths each
concentrating along one of the eight probable organized solutions.

obvious to quantify [5, 24, 6, 15]. Many SOM organization measures are system-
specific and therefore inadequate as universal notions of self-organization.

To alleviate this problem, Spitzner and Polani [22] attempted to apply Haken’s
synergetics formalism [7] to the SOM. This formalism only requires a dynam-
ical system structure. They converted the stochastic SOM training rule to its
Kushner-Clark deterministic continuous counterpart [13] and applied the syner-
getics formalism to it. Unfortunately, the synergetics formalism has to be applied
close to fixed points of the system under which conditions it turns out to be in-
sensitive to SOM self-organization. However, the view as a dynamical system
proves fertile and opens up a selection of possible alternative characterization
approaches. Figure 2 shows schematically the evolution of the state probability
distribution during SOM training for the example from Fig. 1. The initial state
is a random configuration of an entire vector (X, Xs, ..., X) of initial random
weights X; € [0,1]%, k = 1,2,...,k covering large parts of state space. During
training, the SOM will stabilize itself along one of the 8 organized “square” solu-
tions (rightmost plot in Fig. 1), concentrating the state probability distribution
around one of the 8 organized solutions. This phenomenology will serve as a
basis for the following discussions.

Due to space limitations, the formalization of the exposition is restricted
to a minimum. Consider a random variable X assuming values z € X, X
the set of possible values for X. For simplicity, assume that X" is finite. De-
fine the entropy of X by H(X) := =3 _, p(z)logp(z), the conditional en-
tropy of Y as H(Y|X) := Y} _,plx)H(Y|X = z) with H(Y|X = z) :=
— > yey P(y|z)log p(y|z) for = € X. The joint entropy of X and Y is the entropy
of the random variable (X,Y’). The mutual information of random variables X
andYis I(X;Y):=HY)-HY|X)=H(X)+H(Y)-H(X,Y). A generaliza-
tion is the intrinsic information: for random variables X1, ..., X}, the intrinsic
information is I(X1;...;Xy) := v, H(X;) — H(X1,...,X}). This notion is
also known e.g. as integration in [23]. Similar to the mutual information, it is a
measure for the degree of dependence between the different Xj;.
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Fig. 3. Estimated entropy and information quantities for the SOM training process.
For details see text (marginal entropies and organization information will be introduced
in Secs. 3 and 3.)

We apply these notions to the discussion from Sec. 2. To obtain quantitative
statements, we run 10000 SOM training runs of 10000 training steps each, using a
SOM with units on a grid of 4 x4 (as opposed to the 10 x 10 SOM used in Fig. 1).
The entries for the total state vector variable S = (X711, X1,2,...,X4,3,X4,4) €
R2x4x4 (the 2 appears because weights are two-dimensional) are boxed into 4
possible values in each component. Via frequency statistics we compute empirical
estimates for the different entropies. Starting with a SOM with random initial
weight vectors, one aspect of the self-organization is the concentration of the
probability distribution around the organized configurations during training. If
the complete state configuration of the SOM at time ¢ is given by S then
quantify this process by the information gain H(S#=0) — H(S(t=tsna)). The
information gain is related to Ashby’s redundancy measure of self-organization
(Hupax — H(S=tma)))) /H o where Hppay is the maximum possible entropy of
the system [9]. In our case, the initial entropy of S is given by H(S(®=9) =
4 x 4log, 4% = 64 bit since there are 4 x 4 units, the weight of each can be in one
of the 4° quantization boxes® The final entropy is H (S(*=tsna1)) = 3 bit matching
well the empirical values from Fig. 3, reflecting the logarithm of the 8 organized
states.

The information gain only takes into account the probabilities at the be-
ginning and the end of the training. It fails to detect the symmetry-breaking
whereby the initial probability distribution splits into subprobabilities as in

% The initial value of = 13.3 bit for the entropy in Fig. 3 at t = 0 is a strong underesti-
mate, since the equidistribution in the high-dimensional state space is undersampled
by the 10000 runs used. Only at ¢ = 2000 — 3000 the probability distributions suf-
ficiently concentrate for the empirical estimate of the entropies to become more
accurate.
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Fig. 4. Prediction entropy for the training process. For 1000 individual training runs,
the single-step prediction entropy H(S¢+|S(t)) has been calculated for S(t) at dif-
ferent ¢. For a given instance s(t) of a state, 1000 individual single step probes were
performed, obtaining the single-step prediction entropy for H(S®**V|s(t)). These were
then averaged over all 1000 training runs.

Fig. 2. This split cannot be easily detected on the information-theoretic level
unless trajectory history is brought into consideration®. If the system, after en-
tering one of the subprobabilities regions, remains there with high probability,
these can be considered stochastic attractor regions. This restriction can be
detected by the prediction entropy H(S+1)|S(t)) which, for advanced ¢ one ex-
pects to be smaller for systems with a history component than for systems whose
history is quickly lost (e.g. for a system which jumps from branch to branch).
Fig. 4 shows how the prediction entropy drops during training. The prediction
entropy reflects the “freezing” of history. The bump at ¢ = 3000 is due to the
fact that in the initial part of the training process, the SOM contracts strongly,
reducing the entropy, before beginning to spread its weights over R = [0, 1]2.

The prediction entropy is not yet sufficient to capture the whole essence of
self-organization in the SOM and thus to be a promising candidate for general
measures of self-organization. To see that, let us carry out a thought experiment.
Modify the SOM training as to cause the SOM to always freeze in the same
configuration at the end of the training. For the argument it is irrelevant whether
this configuration is “organized” or a fixed random state s* € [0, 1]>***4. Neither
information gain nor prediction entropy are able to distinguish it from a training
process generating the split probability distribution in Fig. 2.

3 This problem is also reflected by Ashby’s redundancy measure; that measure has
the further problem that changed restrictions of the system induce a modification of
Hma,x-



3 Organization via Observers

This seems to indicate that self-organization cannot be defined via the intrinsic
dynamics of the system and that one needs to assume additional structure for
the system. Here, this additional structure will be an observer. The observer
concept plays a role in obtaining entropies for physical systems [1]. It has been
emphasized in the past that the observer concept may be of central importance
to characterize self-organization or emergence [4, 8]. In [3, 18] the concept of
emergence is being defined via observatory structures. Their approach uses the
language of category theory and provides a highly general meta-mathematical
framework to formulate the phenomenon of emergence. The generality of that
approach, however, makes it harder to construct the pertinent notions and to
evaluate them in a concrete system. It was felt that the less, but still sufficiently
general information-theoretic perspective would be more directly applicable to
practical purposes. Also, information theory offers a chance to provide intrinsic
notions which do not require the introduction of additional structural language
and which, at some point, might be derived as consequence directly from the
system dynamics itself, which emphatically is not the case with the notions
from [3, 18]. Here, we now combine the information-theoretic approach with the
observer concept to characterize self-organization.

A (perfect) observer of a (random) variable S is a collection Sy, Ss, ..., Sk of
random variables allowing full reconstruction of S, i.e. for which H(S|S1, S2,. .., Sk)
vanishes. Let the (observed) organization information be the intrinsic informa-
tion I(St;...;Sk). Call a system self-organizing if the (observed) organization in-
formation increase is positive during the progress of its dynamics. I(Si;...;Sk)
quantifies the dependency between the observer variables. In some respect it is
related to Ashby’s redundancy measure, however taking into account only the
“effectively used” state space.

For the SOM, a natural choice for an observer is to set Si,S2,...,Sk to
X1, Xo,..., Xy of the k£ individual SOM units. Consider three cases: First, a
modified dynamics that lets the training begin with a random state S*=% and
end with a random state S(=tmna1) independent from S(=% but with the same
distribution. In this case, both the information gain and the organization infor-
mation will vanish for start and end state. Both will correctly identify this system
as not self-organizing. Assuming random sampling in each step, the prediction
entropy will always yield the full entropy H(S(=2)) of the initial state with no
decrease indicating an attractor; using the quantization from the example from
Sec. 2 and Fig. 3 gives a prediction entropy of 64 bit. In the second case, let
the dynamics start the SOM training with a random state and end up with a
unique final state, as in the last example of Sec. 2. The information gain will be
H(S(®=%) — 0bit (64bit in our above model). However, the organization infor-
mation for both S(=9 and §{t=tmma) vanishes, as in the unique final state all
the entropies vanish. Such a system with a single attractor point will not be re-
garded as self-organizing by the organization information. This is plausible since
such a dynamics is doing nothing else than “freezing” the system Finally, use the
original SOM dynamics. The information gain is 64 bit —3 bit = 61 bit, large, but



smaller than for the case of a unique final state, since there are 8 ordered final
states. Thus, from the “information gain” point of view, the standard dynamics
is less “self-organizing” than that freezing into a a unique state. The organiza-
tion information ), H (SZ-(tZO)) — H(S(=9) vanishes in the random initial state
S(#=0) ‘however, since the individual (marginal) entropies H (Sgtzo)),i =1,...,k
are log 4> = 4bit each and the total entropy is H(S(*=%) = 64 bit. Summarizing,
while the information gain “sees” only the attractor structure of the dynamics
and can not distinguish between a structureless point attractor and a rich at-
tractor landscape inducing organization in its systems, and while the prediction
entropy can only quantify the “historicity” of a state class, the organization
information measure is able to identify just the organizational aspect of the
development of the dynamics. Final remarks on the plots: due to the underesti-
mation of H(S(*=9)) in the simulation runs — see footnote 2 — the value for the
organization information does not seem to vanish for ¢ = 0 in Fig. 3. Thus, one
has to keep in mind that the value of the organization information begins with
value 0 bit at ¢ = 0, growing to the point where the plot becomes more accurate
after ¢  2000.

The question how the notion of organization information depends on a given
observer is still under research. At the present point a transformation formula
that trans the organization information of a fine-grained observer to that of a
coarse-grained observer is known. It can not be given here due to space limita-
tions.

4 Summary and Current Work

We have introduced a notion of organization information to quantify a process of
self-organization. It is defined for a given stochastic dynamical system for which
an observer is specified. The properties of this measure have been compared with
other information-theoretic measures and discussed using the Self-Organizing
Map as scenario. The notion is, however, general and in its application not
limited to the SOM. It is natural and appears to be versatile and sensitive to
precisely the relevant self-organization processes.

On a practical level, it is envisaged to improve the numerical calculation
of the quantities involved and to apply the notion to other systems of interest
to validate its power. On a methodological level, the study of the influence of
generalized observer change as well as the existence of “canonical”, i.e. natural
observers is of particular interest. This interest is fueled by strong indications
that it is possible to define natural observers via recently introduced information-
theoretic notions of emergence [16]. If that proves feasible, this would lead not
only to an intrinsic characterization of self-organization (requiring no externally
given observers), but also clarify some of the deep structural relations between
the notions of self-organization and emergence.
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