Joint optimisation for object class segmentation and dense stereo reconstruction

Ladicky, L., Sturgess, P., Russell, C., Sengupta, S., Bastanlar, Yalin, Clocksin, William and Torr, P.H.S. (2012) Joint optimisation for object class segmentation and dense stereo reconstruction. International Journal of Computer Vision, 100 (2). pp. 122-133. ISSN 0920-5691
Copy

The problems of dense stereo reconstruction and object class segmentation can both be formulated as Random Field labeling problems, in which every pixel in the image is assigned a label corresponding to either its disparity, or an object class such as road or building. While these two problems are mutually informative, no attempt has been made to jointly optimize their labelings. In this work we provide a flexible framework configured via cross-validation that unifies the two problems and demonstrate that, by resolving ambiguities, which would be present in real world data if the two problems were considered separately, joint optimization of the two problems substantially improves performance. To evaluate our method, we augment the Leuven data set (http://cms.brookes.ac.uk/research/visiongroup/files/Leuven.zip), which is a stereo video shot from a car driving around the streets of Leuven, with 70 hand labeled object class and disparity maps. We hope that the release of these annotations will stimulate further work in the challenging domain of street-view analysis. Complete source code is publicly available (http://cms.brookes.ac.uk/staff/Philip-Torr/ale.htm).

visibility_off picture_as_pdf

picture_as_pdf
W_Clocksin_torr_stereo10.pdf
lock
Restricted to Repository staff only

Request Copy

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads