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Abstract

In animals, humans and robots, imitative behaviors are very useful for acting,

learning and communicating. Implementing imitation in autonomous robots is still

a challenge and one of the main problems is to make them choose when and who to

imitate.

We start from minimalist architectures, following a bottom-up approach, to pro-

gressively complete them. Based on imitation processes in nature, many architec-

tures have been developed and implemented to increase quality (essentially in terms

of reproducing actions with accuracy) of imitation in robotics. Nevertheless, au-

tonomous robots need architectures where imitative behavior is well integrated with

the other behaviors like seeking for stability, exploration or exploitation. Moreover,

whether to express imitative behaviors or not should also depend on the history of

interactions (positive or negative) between robots and their interactive partners.

In this thesis, we show with real robots how low-level imitation can emerge

from other essential behaviors and how affect can modulate the way they are ex-

hibited. On top of proposing a novel vision of imitation, we show how agents can

autonomously switch between these behaviors depending on affective bonds they

have developed. Moreover, with simple architectures, we are able to reproduce be-

haviors observed in nature, and we present a new way to tackle the issue of learning

at different time scales in continuous time and space without discretization.
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Chapter 1

Introduction

Robotics is promised to play a great role in our everyday life, actually more and

more studies are done to design robots as our everyday companions (Dautenhahn,

Woods, Kaouri, Walters, Koay and Werry 2005) and enterprises like Sony with

its famous dog robot AIBO already propose companion robots for broad public

(Kaplan 2005). Although artificial intelligence and robotics are not new disciplines,

robots still have to be designed or programmed in order to perform well in precise

environments and scenarios. It is probably utopia to imagine architectures allowing

robots to perfectly adapt and behave to any kind of situation and in many cases

we cannot even evaluate what a perfect behavior is. Actually, the uncertainty or

unpredictability of the real world forbids omniscience and a behavior can be good or

bad depending on unaccessible elements (e.g. behavior of another unknown agent).

Nevertheless, when we observe nature and especially human intelligence, we can

only be impressed by the huge capacity of adaptation of human and animals in

very different contexts. Therefore, it should be possible to improve capability of

artificial intelligence and improve autonomy of robots. Autonomous robots should

9



Introduction

adapt their behaviors to their environment with the minimum need of external inter-

vention or supervision. Moreover for designing robots as generic as possible acting

in open-ended environments, designers should avoid planning a-priori all the situ-

ations robots may encounter. They should base development of robotic behaviors

on dynamical interactions of robots and their environment. Strong influences of the

environment on development and emergence of behaviors allow these behaviors to

be diverse and adapted to the environment even though they were not explicitly

encoded. The study of emerging robotic properties not explicitly encoded is called

“epigenetic robotics” and according to (Zlatev and Balkenius 2001) the goal of epige-

netic robotics is to understand, and model, the role of development in the emergence

of increasingly complex cognitive structures from physical and social interaction.

1.1 Motivation and Goals

The goal of our research1 is not only to provide technical solutions but also to un-

derstand and to model processes observed in nature. On the one hand, observing

nature and producing biologically plausible models could inform the design of ef-

ficient minimal architectures. These architectures can then be implemented and

applied in order to solve engineering problems. On the other hand, these archi-

tectures are powerful tools to help us understand how the brain solves cognitive

problems and robots are very useful for this (Guillot and Meyer 2001). We aim to

explain the maximum number of phenomena with the minimum amount of complex-

ity or assumptions in the models. In this context, we use a “bottom-up” approach,

1This thesis presents the work I have carried out under the supervision of Lola Cañamero,
but for style reasons I use the term “we” although the work presented here is only my original
contribution.
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which advocates incrementing the complexity of the architectures step by step. We

try to make each step as simple as possible taking advantage of emergent proper-

ties which issue from the dynamics (Steels 1994). Our structures are based on the

Perception-Action (Per-Ac) model (Gaussier and Zrehen 1995) where there is not

explicit representation of the world (Brooks 1991).

Other studies (Calinon and Billard 2007, Fellous and Arbib 2005, Alissandrakis,

Nehaniv, Dautenhahn and Saunders 2005, Dautenhahn and Nehaniv 2002, Billard

2000) have shown that imitation can help make robots more autonomous. One of the

big issues in imitation for autonomous robots is to modulate the imitative behaviors

and answer the questions of when and who to imitate (Dautenhahn and Nehaniv

2002). For other issues, especially for action selection, researchers have proposed the

use of emotion to modulate behaviors (Fellous and Arbib 2005, Avila-Garćıa and

Cañamero 2004, Cañamero 2001, Cañamero 1997). Moreover, it has been observed

that there are strong correlations between emotion, affect and imitation (Heyes

2001, Hatfield, Cacioppo and Rapson 1994).

Therefore, we want to answer the scientific question of when and who robots

should imitate in order to increase their autonomy, especially autonomy of express-

ing the right behaviors at the right moment. We use biologically plausible architec-

tures which help to understand the role of affect in different behaviors, in animals

or humans (especially children). Within our epigenetic robotic approach we first

present a way to increase synchronization in robotics and how a notion affect can

be modeled using a learning process at different time scales. This notion of affect

allows us to modulate the expression of behaviors such as seeking for stability, ex-

ploration or exploitation. Then we show that appropriate imitative behaviors can

emerge from modulation by affect of other behaviors. Finally we present how we

11



Introduction

can extend this work for more general learning problems.

1.2 Overview of the Thesis

Chapter 2 . In this first chapter we develop the problem of imitation, affect and

robotics in order to set the background of our work. We also set important

notions that we use throughout the thesis.

Chapter 3 . We propose an architecture to improve synchronization and reactivity

during imitation for tasks where robots have to follow a target. We apply it

on a real robot and present the results.

Chapter 4 . We present a simple way to model affect and we describe our architec-

ture allowing robots to generate behaviors similar to those observed in nature.

We present the result of its implementation on a real robot. This architecture

allows us to simulate affective bonds and to set the core of our work.

Chapter 5 . Based on the work done in the previous chapter, we proposed a

coherent integrated robotic architecture generating behaviors of seeking for

stability, exploration and exploitation. Affect is used to balance these multiple

behaviors and we show that low-level imitation can be an emergent property

of this architecture. We present the result of a real-world implementation of

this architecture.

Chapter 6 . We improve the architecture, in order to make robots able to handle

more complex environments. We also show the result of a partial implemen-

tation.
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Chapter 7 . We discuss the limitations of our work and propose solutions—that

we have not implemented—to overcome them.

Chapter 8 . We summarize the dissertation and present new perspectives our work

has raised.

Appendix A contains a glossary of some of the terms used throughout this dis-

sertation, appendix B presents the publications based on the work of this thesis,

and appendix appendix:software presents the programming framework that we have

developed in order to control the robots.

We also include a CD-ROM with the sources of our programming framework and

several videos that we will refer to throughout the dissertation.

1.3 Contribution to Knowledge

1. Our main contribution is our novel view of low-level imitation being an emer-

gent property of simple architectures providing behaviors of seeking for sta-

bility, exploration and exploitation. Moreover, the imitative behavior is mod-

ulated by affect allowing agents to only imitate other beneficial agents and

avoiding interactions with noxious agents.

2. Another important point is the introduction of the notion of “desired sensa-

tions” and their use in the context of remembering rewards or punishments

without needing to discretize the world. The learning process is about to re-

member which are the situations corresponding to events like ”best rewards”,

”best familiarity”, ”worst rewards”, etc., and not the evaluation of expected

rewards for each situation (or each kind of situation) as it is often the case.

13
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3. Moreover, the possibility to learn simultaneously many “desired sensations”

at different time scales and for different balances of the importance of reward,

punishment and familiarity, leads to architectures where behaviors of robots

can be smoothly modulated. Robots could therefore focus on reaching rewards,

focus on avoiding punishments or try to reach familiar situations solely with

a modulation.

4. We propose models of natural phenomena such as the imprinting phenomenon

or exploration and imitation modulated by affect. Even if we are missing data

to really argue that these phenomena are modeled as we propose, we can at

least say that it is a possibility and that these phenomena do not necessarily

need complex or high-level processes.

5. As secondary contribution, we have developed a new programming framework

that is useful in developing robotic architectures using a bottom-up approach

in open ended environment. It is very important with this approach for the

designer to be able to monitor everything that happens in the architecture in

order to be able to take advantage of unexpected events.

Our work allows to build better learning systems in robots, especially when the

time between actions and rewards is not constant. It also allows to improve human-

robot interactions through imitation and adaptation of behaviors with the interactive

partners. Finally it helps to understand the development of affective bonds and im-

itative behaviors in animals and humans. The contribution to knowledge presented

throughout this thesis has been published in, or submitted to, relevant conferences

and journals. See Appendix B.
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Chapter 2

Imitation, Affect and Robotics

The question of whether a computer can think is no more interesting

than the question of whether a submarine can swim. — Edsger Dijkstra

(1972).

2.1 Context

To survive in different environments, autonomous agents—animals, robots or actors

of a simulation, see (Steels 1995)—must act, learn and communicate, and imitation

(in its wide definition) is very useful to achieve these tasks (Bakker and Kuniyoshi

1996).

• Acting can be initiated merely by being in the appropriate context (local

enhancement) or by focusing on the appropriate stimulus (stimulus enhance-

ment) (Zentall and Akins 2001) thanks to the presence of another agent. The

actions of the other agent can also be a means to focus attention and attention

is an important issue in autonomous robotics (Arkin 1998, pp 276–279).
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• Learning is a complex process which can be performed by trial-error or by

imitating agents with more knowledge. This second solution is widely used

to improve the learning of robots (Billard and Mataric 2001, Billard 2000,

Hayes and Demiris 1994) and can even be used as a programming method

(Alissandrakis et al. 2005, Kuniyoshi 1994) but it is also suggested to be an

important phenomenon in the development of infants (Rochat 2002, Užgiris

1999).

• Communication seems to be rooted in imitation and synchronization processes

(Nadel, Revel, Andry and Gaussier 2004, Kozima and Zlatev 2000, Nadel,

Guérini, Pezé and Rivet 1999, Trevarthen, T. and Fiamenghi 1999, Billard,

Dautenhahn and Hayes 1998). It can also be enhanced through emotion linked

with imitation (Kugiumutzakis, Kokkinaki, Makrodimitraki and Vitalaki 2005,

Heyes 2001, Hatfield et al. 1994).

Therefore imitation is a very important phenomenon for autonomous robots but

also in the understanding of biological processes like the relation between imita-

tion, affect and development of attachment bonds (Heyes 2001, Trevarthen et al.

1999, Hatfield et al. 1994). It is difficult to use a unique definition of imitation as nu-

merous definitions of imitation have been proposed by authors such as (Dautenhahn

and Nehaniv 2002, Mitchell 1987, Thorpe 1963)—see also (Breazeal and Scassellati

2002b, Dautenhahn and Nehaniv 2002, Galef 1998, Bakker and Kuniyoshi 1996)

for reviews—and among the problems raised by imitation, five questions (the “Big

Five”) seem fundamental: what, how, who and when to imitate, and what makes a

successful imitation (Dautenhahn and Nehaniv 2002). In (Breazeal and Scassellati

2002a), the authors raise again the question of when and what to imitate and they
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also ask how a robot can map observed actions onto behavioral responses. The

problem of the mapping and what to imitate is known as the “correspondence prob-

lem” where states of the system (objects or environment), actions or goals have to

be considered for imitation (Alissandrakis, Nehaniv and Dautenhahn 2007, Nehaniv

and Dautenhahn 2002). This is especially a problem when agents have dissimilar

bodies or are in different contexts—for example manipulating different objects or

using different effectors where exact copy cannot be done.

2.2 Imitation

In this context, the main question we raise is how to make robots more autonomous

in imitation, especially in the process of deciding when to imitate. The question

of improving the quality (essentially in terms of reproducing relevant actions with

accuracy) of robots’ imitation skills is very important and has been well studied

(Saunders, Nehaniv, Dautenhahn and Alissandrakis 2007, Saunders 2006, Calinon

and Billard 2005, Alissandrakis et al. 2005, Gaussier, Moga, Banquet and Quoy

1998) however, for autonomy it is also very important that robots can decide by

themselves when to imitate the right behavior in the appropriate context.

Among the many definitions of imitation, we can extract a few important points.

Novelty Early in 1898 imitation is seen as “Learning to do an act from seeing done”

(Thorndike 1898), novelty is also important for Thorpe who defines imitation

as “the copying of a novel or otherwise improbable act or utterance, or some

act for which there is no instinctive tendency” (Thorpe 1963).

Intention Thorndike defined that an imitated behavior needs to be understood for
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true imitation (Thorndike 1911) and in the definition of Mitchell (Mitchell

1987) the copy has to be designed to be similar to the model for imitation.

Contagion Behaviors can be unconsciously elicited by actions of others (Heyes

2001) (yawning for example), or can be facilitated, inhibited or retarded be-

cause of others (Zentall and Akins 2001).

In animals and even in humans, it is difficult to evaluate what is really intentional

and in behavior-based AI with low-level or reactive control systems (Brooks 1991)

we cannot define what “understand” means in robotics. We do not argue in this

thesis that we model “true imitation” and we will refer to “low-level imitation” for

actions similar to the actions of another agent and induced by this other agent—i.e.

actions which would not occur without the other agent. In our context, the context

of autonomous agents, a successful imitation would be an imitation which increases

the success of the agent—in its survival, learning or realization of specific tasks. We

mainly focus on the question of when to imitate (i.e. in which context) and especially

how to integrate, coordinate imitative behaviors with other behaviors (learning,

exploring, exploiting situations, etc.). For this purpose, we want to study the role

of affect in imitation as affect seems to have a strong effect on imitation and may be

useful in modulating imitation (Kugiumutzakis et al. 2005, Heyes 2001, Hatfield et

al. 1994). The quality of imitation is not considered as a critical point here and we

will only use simple or low-level imitation, although we will care about the quality

of the synchronization because, as we will see, synchronization is an essential issue

in our problem.
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2.3 Affect

In the first sentence of his thesis (Avila-Garćıa 2006), Avila-Garćıa warns us about

the risk to use the word “emotion”: It is exceptionally dangerous to use the term

emotion in a scientific environment, for many prejudices arise with its mere mention.

We have essentially the same issue with “affect” and this is mainly due to the fact

that there is no clear definition and affect has a wide vague definition. Actually,

affect is often used in literature treating emotions, imitation or robotics (Arbib

and Fellous 2004, Heyes 2001, Velasquez 1999, Blaney 1986), nevertheless it is not

defined. One could wonder why we should use words or notions if they do not apply

to reality; we will never be able to say that robots feel emotions or have affect.

Actually our architectures are only equations and probably—and it is euphemism—

do not feel emotions or have affects.

We need principles helping us to modulate imitation and we need a clear func-

tional definition of them to work with. However, similar principles have already been

studied in psychology, especially the relation between affect, emotion and imitation

(Kugiumutzakis et al. 2005, Heyes 2001, Hatfield et al. 1994) therefore, even though

in robotics we only need mathematical definitions, we use psychological terms in

order to have intuitive notions of what we are talking about and to make analo-

gies. One of the notions that we will need is the notion expressing the fact that

an agent evaluates its situation and in function of this evaluation will change its

behavior, especially imitative behavior. Following the proposals of (Arbib and Fel-

lous 2004, Likhachev and Arkin 2000, Dunn 1977) we use the notion of comfort to

represent this evaluation and we propose a working definition of comfort :

comfort: global evaluation of the “goodness” of a situation based on the evaluation
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of exogenous factors (affect) and endogenous factors (well-being).

The definition of affect in the Oxford American dictionary is: emotion or desire,

especially as influencing behavior or action. And emotion is an instinctive or intu-

itive feeling as distinguished from reasoning or knowledge. Therefore we propose a

functional definition of affect:

Affect: immediate subjective (based on exogenous factors, external stimuli) evalu-

ation of a situation (expectancy of well-being) without direct or logical expla-

nation.

We use affect to describe the exogenous component of comfort as it is described in

(Likhachev and Arkin 2000, Dunn 1977) and in Chap. 5 we make precise how we

use and compute this definition in robotics. The endogenous component of comfort

is “well-being” which represents satisfaction of the primary needs (Avila-Garćıa

2006, Likhachev and Arkin 2000, Kahneman, Diener and Schwarz 1999, Dunn 1977)

and we make precise our robotics use of this notion in Chap. 4. We therefore present

the working definition of well-being.

Well-being : endogenous (from internal factors) component of comfort given by

measuring the satisfaction of the primary needs.

2.4 Robotic Approach

Studies in psychology and neuroscience tend to show that action and perception

are encoded at the same level (Matarić 2002, Vogt 2002, Prinz 1997, Decety 1996).

These observations converge to the ideomotor theory originally proposed by William

James (1980) explaining that voluntary actions are in fact the result of the “will”
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of sensory feedback or sensory consequences rather than the “will” of performing

actions themselves. An extension of this theory has been used to explain imitation

(Prinz 2005) using the fact that perceptions and action are tightly coupled in the

brain. Observing the consequences of an action can raise the “will” of obtaining the

same perception and therefore producing the corresponding action producing imi-

tation of the initial action. We can see a successful implementation in robots of the

extended theory of imitation in (Saunders 2006). The extended ideomotor theory

uses notions of ideas or wills requiring cognitive functions of high level and does not

help in solving the problem of autonomy in order to decide whether an agent should

have the “will” to imitate or not. Nevertheless, the principle is very interesting and

it can be used at a lower level in case of simpler imitative behaviors called “low-level

imitation”. In low-level cases, the process is more related to sensory-motor associa-

tions than perceptual-motor associations. The difference may be subtle, however in

the bottom-up approach to robotics, perception implies a higher level of treatment

than sensations. We detail this difference in the coming subsection.

2.4.1 Sensation and Perception

Gibson in (Gibson 1979) proposed that perceiving an object for example corresponds

in fact to perceiving all the actions we can do with the object. He called all the

possibilities raised by an object “affordances”, and actually it has been observed that

the vision of an object like a hammer activates the part of the brain corresponding

to the action of handling the hammer even if subjects do not want to handle the

hammer (Ellis and Tucker 2000). This definition of perception is very interesting for

robotics, because it does not imply cognitive functions of high level like recognizing

or understanding. Therefore the term “sensation” is used to express the raw data
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coming from the sensors like the sense vector in (Chesters and Hayes 1994).

The distinction between perceptions and sensations in robotics is stressed in

(Maillard, Gapenne, Gaussier and Hafemeister 2005) where a perception is a dy-

namical sensory-motor attraction basin and this notion is used to generate appro-

priate behaviors when “perceiving” (e.g. moving toward the object). However, the

sensations produced by an object can activate several sets of possible actions and

as in optical illusions (see examples in Fig. 2.1) there is not always a true or unique

possible interpretation. Similarly, several perceptions of movement can be raised

by the variation of visual sensation. Actually the agent can either perceive itself

moving or perceive the observed object moving. It needs other sensors to select the

correct perception. We define notions of sensation and perception even though we

will barely use the notion of perception.

Sensation: set of raw data coming from the sensors.

Perception: interpretation of the ongoing action or affordance raised by a sensa-

tion.

Figure 2.1: Examples where the same visual sensation leads to different perceptions

We can find applications of low-level imitation (i.e. very automatic) by tightly

coupling sensations and actions in (Demiris and Johnson 2003, Andry, Gaussier and

Nadel 2003, Gaussier et al. 1998) and we detail the experiment of Gaussier and

colleagues in the coming subsection.
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2.4.2 An Example of Low-level Imitation

Although imitation behaviors can be very complex, the researchers (Andry et al.

2003, Gaussier et al. 1998) modeled imitation at a low level merely by merging

vision and action. In their experiment, they made a robot learn the sensory-motor

association between the position of its arm (proprioception) and its vision. Once

the associations had been learned, the experimenter turned the camera and directed

it on his own arm—instead of the robot’s arm—and started to move his arm. The

robot confounding the arm of the experimenter with its own arm, perceived an error

between its proprioception and the input from its camera. Therefore, it tended to

reduce this error (hardcoded homeostatic control) by moving its arm to adapt the

proprioception with the vision. The result is that the robot reproduced—and then

imitated—the experimenter’s movements.

This elegant way of producing low-level imitation circumventing the correspon-

dence problem is very interesting as it does not need complex architectures or strong

assumptions. However, it needs an external action from the experimenter—turning

the camera—to switch the robot between the phase of learning to the phase of imi-

tation. Therefore the problem for an agent of being autonomous even in the decision

of imitating or not is still not solved.

2.4.3 Our Vision of Low-level Imitation

In Chap. 5 we will present a new vision of imitation based on the same kind of

approach but where low-level imitation is not produced by the reduction of errors

between the usual sensation and the actual sensation, but on the contrary by trying

to amplify the difference—in the sensory-space—between the usual sensation and
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the current sensation. With this vision, imitation of a moving arm is executed

because this moving arm produces an unexpected sensation of movement in an area

of the visual field and the robot moves its own arm in the same area to increase the

sensation of movement in this area using the sensory-motor association. Therefore it

would produce low-level imitation as well, but because of a different reason (trying

to increase an error instead of trying to decrease an error). In this case, we would

not need to turn the camera in another direction in order to make the robot imitate

and as we will see imitation is in the continuity of other behaviors of the robot.

2.5 Summary

The literature review has first shown the importance of imitation for autonomous

agents. Then we have seen than imitation is complex and one of the main difficulties

is to decide when and who to imitate. Independently to this problem, it has been

observed that affect and imitation are linked and we wonder whether affect can

be useful—and maybe necessary—to have autonomous agents. Recent works on

perception-action coupling allow us to generate architectures combining affect and

imitation inspired by natural phenomena, and to present a new vision of low-level

imitation.

The main advantage of this new vision of low-level imitation is that it allows us

to produce imitative behaviors modulated by affect within an architecture producing

other useful behaviors for autonomous agents. We will present the successive be-

haviors of imprinting in Chap. 4, exploration, exploitation and imitation in Chap. 5,

but before we start by presenting a method we have developed in order to improve

synchronization in robots.
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Chapter 3

Visual Velocity Detection

We want to study the correlation between affect and imitation, and synchronization

seems to have strong effects on affective bonds (Hatfield et al. 1994), therefore we

need systems able to provide good synchronization in order to test and use this

phenomenon. For example, we may need to make robots dance together, but to

synchronize a dance between two robots we need temporally accurate systems. Ac-

tually, with repetitive movements such as a dance, a small temporal lag may suggest

no synchronization or even opposition. In robotics, object-following strategies are

usually achieved either by efficient but complex systems which do not fit with our

approach and our very simple hardware, or by adequate systems with detection

of movements (e.g. (Gaussier et al. 1998)) but which are not accurate enough for

synchronization.

In their studies of imitation tasks using robots, (Andry et al. 2003) use the

amount of movement (temporal variation of intensity of light) to perceive the target

position. This technique is efficient and simple as it does not need complex visual

tasks such as object recognition. However, the problem with this mode of imitation
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in robotics is that there is always a delay between the object agent (the agent to be

imitated) and the subject agent (the agent imitating). The subject agent starts to

move only after the object agent has moved into a new position.

In this chapter, we present a first step towards the development of suitable mech-

anisms based on visual velocity detection with respect to our general approach. This

system is not only applicable in cases of precise reproductions of movement (e.g.,

when mirroring a movement) but also in cases where movements do not need to

be precise but must be very well synchronized, when dancing for example. In this

latter case, our velocity detection system alone (without positional information) al-

lows an agent to copy beats perfectly even if the amplitude of movements is not

perfect. After presenting the problem to be addressed, we show how to solve it with

a classical position detection system and compare it with the use of our visual veloc-

ity detection system. Our experimental results show how our system outperforms

systems based on position detection but raises the problem of the quality of the

imitation. We therefore propose in the last part, a way to combine advantages from

both methods.

3.0.1 Problem addressed

In the context of an autonomous mobile robot that has to interact with other agents

in its environment, we have addressed the problem of achieving natural and fast

reactions by the robot to detected changes in its environment. By this, we mean that

we want the agent to react as quickly as possible to the changes in its environment

(in our case, motions in the visual field). Minimizing the reaction time to respond to

environmental changes is very important, in particular when the limited perceptual

and computational resources of the agent impose severe constraints, as is the case
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with the Hemisson robot (www.k-team.com) we have used in our experiments. The

camera available for this robot can only process fewer than ten images per second,

while an average camera can process about 30 images per second. Moreover, the

camera is only able to provide “images” of a line of 102 grayscale pixels, although this

is sufficient to detect the position and the velocity of object in only one dimension.

We have therefore designed four architectures to allow a robot to follow a target

or to be synchronized with the movement of a target:

1. position detection with Winner-Take-All (WTA) (Sec. 3.1 method 1),

2. position detection without WTA (Sec. 3.1 method 2),

3. velocity detection with focalization1 (Sec. 3.2 method 3),

4. and velocity detection without focalization (Sec. 3.2 method 4).

The first two are based on position detection and the last two are based on veloc-

ity detection. We have implemented these architectures in a Hemisson robot (the

“subject” robot) fitted with a camera. The target is composed of two vertical strips

or a pattern of strips drawn on a white paper attached to an object Koala robot,

as shown in Fig. 3.1. We use a Koala instead of a Hemisson as target because we

need to calculate the position of the target; Koala is fitted with odometers, giving us

access to the real velocity of the target and allowing us to drive it with a sinusoidal

movement. We describe the architectures based on position detection in Sec. 3.1 and

the architectures based on velocity detection in Sec. 3.2. Finally we will discuss the

possibilities and advantages associated with combining both methods in Sec. 3.3.3

before concluding in Sec. 3.4.

1selection of an area where the velocity detection is applied.
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Figure 3.1: Experimental setup. On the left the Koala robot (object) moves the
target observed by a Hemisson robot (subject) on the right.

3.1 Position detection

The basic principle underlying position detection is the one described in (Gaussier

et al. 1998). St is an array—one dimensional hypercube in our software—of the

intensity of the pixels from the sensor (camera) at time t. The area of maximum

variation of intensity of light corresponds to the area where the object is moving

and to compute the “map” of the intensity differences, we apply a square function

on the intensity difference, (dSt = St − St−1), between two successive images. In
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addition to being continuous and revealing the absolute values of differences, the

square function applies a kind of filter by neglecting small differences (which could

be noise) and emphasizing the important ones. We obtain an image of the moving

contrasted areas of the target (Mt = (dSt)
2) and to obtain a smooth and stable

activity bubble focussed on the center of the target, we spatially and temporally

filter it. Spatial filtering is realized by convolving the signal with a gaussian function,

whereas temporal filtering is realized by smoothing temporal changes (see Eq. (3.1))

Mt =
Mt−1 + τMt

1 + τ
(3.1)

with τ a time constant. Temporally smoothing the signal brings stability and also

makes it possible to maintain the position of the target even if it does not move

for a small period. Then we use a winner take all (WTA) to set to one, the value

of the array at the position with the maximum quantity of movement among all

the positions of the visual field. This activation can therefore be used in order to

activate motor commands in order to follow the target. The subject robot needs to

slow down when it is about to reach the target in order to be smooth and to avoid

over shooting. In addition, the robot has to stay on the same target and neglect

perturbations appearing on the sides of the visual field, therefore it is better to

ignore extreme positions. Integrating the position activity signal with the derivative

of gaussian is simple, biologically plausible (Amari 1977) and produces an activity

suitable for driving a robot that is tracking. The produced activity is negative when

the moving target is on the left and positive when it is on the right, moreover, the

produced activity is null or low when the activated position is either in the center

or on a extreme position of the visual field.
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This is a classical method (method 1) to allow robots to follow a moving target.

However, we can again simplify the architecture by removing the WTA (method 2).

The new resulting behavior of the robot is slightly different but still interesting: now,

the virtual speed of the subject robot does not depend only on the position of the

target, but also on its contrast and activity. As there is no WTA to trigger the value

Mt (position of the moving target) to a threshold independent of the input activity,

the speed of movement of the subject robot will directly depend on the quantity

of movement on the perceived position (Mt) of the moving target. Therefore, the

agent does not respond to the target’s position exactly as it would with the previous

architecture; however, this new behavior is closer to the behavior we expect from

an agent—animal, human or even robot. In fact we naturally have this kind of

expectation when testing it. During the tests we moved the target with the hand

and we automatically try to augment the quantity of movement of the target when

the robot does not react fast enough. This even though we know that it is useless

when there is a WTA as the quantity of movement does not matter. We present the

global architecture in Fig. 3.2 where we can see the part not needed to apply the

method 2.

3.2 Velocity detection

Position detection methods work fine (the robot virtually follows the target), how-

ever, there are unavoidable delays between the movement of the target and the

movement of the subject robot. In order to increase the reactivity of the subject

robot to changes in its environment, we proposed to use the velocity, instead of the

position, of the target as the input information for synchronization. As can be seen
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Derivative of

command

Figure 3.2: Position-following architecture. The gray part corresponds to the part
that we can remove in order to obtain a simpler architecture with slightly different
behavior.

in the experiments, this method allows the subject robot to start to move as soon

as the object robot (target) moves without having to wait for a significant change

in the position of the target. Following the study of (Barron, Fleet and Beauchemin

1994) comparing different methods, a simple and efficient method for detecting ve-

locity is the spatio-temporal gradient technique. This technique has been used by

(Anderson 2003), who has shown that the technique is biologically plausible in sev-

eral of its aspects and raises the same perceptual errors that we observe in people.

Another advantage of this technique is that it is independent of the contrast and

intensity of light of the stimulus (providing that the contrast and intensity are not

too low). This velocity detection method, proposed by (Johnston, Benton and Mor-

gan 1999), is based on the hypothesis that each point of an object has a constant

intensity. Therefore, any variation in the luminosity of an image can be assumed to
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be due only to movements of its objects. By considering P the perceived velocity, k

a constant (essentially depending on the distance to the object), and St,x the light

intensity at the time t at the position x, we have :

Pt,x = k

∂St,x

∂t
∂St,x

∂x

(3.2)

In Eq. (3.2), dividing the variation of intensity by the contrast, is a problem when

the contrast is almost null. It is however not surprising because without contrast

we cannot estimate the movement of an object. To solve this problem we use a

threshold which allows the perceived velocity to be neglected when the contrast is

too low. (McOwan, Benton, Dale and Johnston 1999) propose a nice solution based

on the observation that the visual system measures at least three orders of spatial

derivative. They therefore use multiple orders of spatial and temporal derivatives

which are unlikely to be all null at the same time. We can see an example of a

second order in Eq. (3.3).

Pt,x = k

∂2St,x

∂x∂t
∂2St,x

∂x2

(3.3)

If we want the robot to consider the entire visual field we only need to sum the

velocity of each pixel (the video ‘synchronization with moving strips.avi’ of the CD-

ROM presents an application of this technique). However, if we want to focus its

attention on a precise area, we must first isolate this area using an adequate filter.

If we only want the robot to adapt its velocity to that of the target, we can use the

position detection method from the previous section to select the area to consider.

Figure 3.3 describes the architecture implementing method 3 with selectivity of
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the target and method 4 without selectivity of the target; both methods use visual

velocity detection. We have implemented these different architectures on a Hemisson

command

Figure 3.3: Architecture to detect the velocity of a focussed object (method 3). The
gray part could be replaced by a large static gaussian allowing the architecture to
take care of the entire visual field (method 4). In this scheme, the curves are the
result of real data.

robot (K-Team 2002-2006) and we present and compare the resulting behaviors in

the next section.

3.3 Experiments

3.3.1 Setup

In all experiments, we have used the Hemisson robot as the subject robot and

the Koala robot to carry the target. We also measure the magnitude of rotation

command that the Hemisson would send to its wheels. Since it is impossible to

know the exact position of a Hemisson robot (it does not have odometer sensors),

we have had to design experimental setups which account for this constraint: all the

computation is carried out normally but we inhibit the action and instead record

33



Visual Velocity Detection CHAPTER 3. VISUAL VELOCITY DETECTION

the commands of rotation given (but not executed) to the wheels.

We use the same setup (see Fig. 3.1) for each of the first three methods: the Koala

robot moves forward and backward with a sinusoidal velocity carrying two vertical

strips drawn on the target. The subject Hemisson observes (without moving) the

target from a distance of about 3.5 inches. To test the final method 4 we use a

similar setup but this time the target is a wider pattern of vertical strips covering

the entire visual field.

3.3.2 Results

In Fig. 3.4, we present the result of one experiment among many experiments which

produce similar results. The first graph on the left (a) shows the results of the

synchronization task using position detection with WTA (method 1) and the second

graph on the right (b) shows the results without WTA (method 2). The two graphs

on the bottom show the results of the synchronization task using detection of veloc-

ity: focused target (method 3) is shown on the left graph (c), and no focalization

with a wide target covering the entire visual field (method 4) is shown on the last

graph (d).

On each graph, the singularities observed over the first two iterations have no

meaning. They are due to the sudden start of the Koala and the fact that there is

no previous image in memory to calculate the temporal light derivative. The dashed

line corresponds to the velocity of the object agent and the solid line corresponds

to the velocity command given by the subject agent. Each time-step is 100 ms in

length (about 10 frames per second).
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Figure 3.4: Results of the four methods tested. The dash line corresponds to the
velocity of the object robot (target) and the solid line corresponds to the command
of velocity of the subject robot. At the top we see the velocities of the robots during
a task of tracking using the technique of position detection, with the WTA (method
1) on the left and without the WTA (method 2) on the right. At the bottom we
see the results of the task of tracking using the technique of velocity detection, with
a focused target (method 3) on the left, and with no focalization, and with a wide
target covering the entire visual field (method 4) on the right.

3.3.3 Discussion

All the methods we have presented here have, depending on the tasks needed during

agents’ interactions, particularly in imitation and synchronization, some interesting35
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properties and advantages.

The first method, using position detection, is very useful for following the trajec-

tory of a target. However, the delay that it produces is not convenient for synchro-

nization tasks or for frequently changing situations. For example, during a dance, a

small lag will de-correlate two agents.

The second method, which uses a simpler version of the same principle, is well

suited for following a target’s position even with a small embedded system—little

computational power is needed—and also for some specific behaviors. However, the

fact that the velocity of the reaction does not depend solely on the position of the

target but also on its quantity of movement can be a problem. Although, this can

also be an advantage if we want to make the perceived behavior more natural to a

human observer—it seems natural to have more response when the target is more

active regardless of its position. This also corresponds to the fact that we only see

motion in the peripheral vision.

The last two methods both use velocity detection, with one focusing velocity

detection on the area of the target and the other applying velocity detection to the

entire visual field. The focalization is achieved by using the position detection to

first define the area where the velocity detection should be applied. The advantage

here is that the reaction is both fast and proportional to the real velocity of the

target and the image of the background does not influence the results. However,

this method is more complex requiring the previous position detection system on

top of the system with detection of velocity.

The final method, which integrates each pixel’s velocity without any focalization,

allows us to achieve pure synchronization. The position of the target is irrelevant

as the entire visual field is considered. If the target is moving in the visual field,
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the observing robot will move in the same direction but with a non-proportional

velocity since the background is considered. This method is especially useful when

the entire visual field is moving—e.g. when the camera itself is moving. It allows

the movements of an agent to be stabilized, in much the same way as observed in a

fly (Holst and Mittelstaedt 1950). Holst and Mittelstaedt (Holst and Mittelstaedt

1950) investigate this property in flies by putting a fly in a rotating drum with black

and white strips. The fly moves to stay in the same relative position to the drum.

We have been able to reproduce this fly phenomenon with our robot. We put the

robot in a drum with black and white strips and, when we move the drum, the robot

turns with the same velocity in the same direction (see the video ‘rotating drum.avi’

of the CD-ROM). Only the optical flow is used, and we therefore observe some drift

(the robot does not face exactly the same strips) . It is necessary to manually define

a gain coefficient to correlate the perceived optical flow with the wheels’ velocity. It

seems that the gain must be genetically defined in the fly since this insect will turn

indefinitely in the wrong direction if the head is turned and glued by 180 degrees.

The robot exhibits exactly the same behavior when the camera is turned by 180

degrees too.

It can see that both kinds of methods (position detection or velocity detection)

have advantages and disadvantages. Position detection does not produce drifts but

is not very reactive. Velocity detection is very reactive but produces a drift which

prevents a prolonged interaction due to the target becoming lost. This dilemma

is also commonly encountered in engineering disciplines. To drive a system it is

possible to use either the position (first order) with a stable but slow system, or

the velocity (second order) with a fast but unstable system. The best results are

obtained by combining both methods (Jones 1977) and this leads us to think that
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Figure 3.5: When we make the arena turn, the robot turns in the same direction, at
the same time. Like this, the robot stays relatively to the arena at the same place.

we should do the same. The resulting architecture that we propose is simpler than

the sum of the both because a lot of operations are shared between the two methods

(see Fig. 3.6). The detection of velocity can be seen as a way to anticipate the

position of the target, and the detection of position as a way to correct errors and

drifts.
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Derivative of gaussian

command

Figure 3.6: Architecture that combines the method 1 and 3 to take advantage of
both. The left part of the figure has to be linked to the Fig. 3.2 and Fig. 3.3.

3.4 Conclusion

We have presented different methods which allow us to increase the level of interac-

tion (synchronization-imitation) by imitating biologically plausible processes. These

processes are both simple and easy to implement. If we want to synchronize a dance,

velocity detection is very useful, while the detection of position is more useful when

following a moving target. If we consider different kinds of imitation we can see the

position as the goal of imitation and the movement (velocity) as the means of imita-

tion. In fact using combined methods, imitation is done in order to reach the same

position observed, but this is achieved by using the same velocity as the perceived

one.

We have also proposed to use detection of velocity for tracking a target by antic-

ipating its position (see Fig. 3.6). We can imagine a robot learning by association

the relationship between detection of velocity and position to progressively antici-
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pate position of the target from its perceived velocity. Studies such as (Hofsten and

Rosander 1996) and (Richards and Holley 1999) investigate how babies develop the

capacity of smooth tracking with the same kind of protocol and they have shown

that babies progressively develop a better coordination between the movement of

the eyes and the head. Our work can be extended to reproduce this phenomenon

with robots.

In order to continue this investigation into synchronization and imitation further,

we need to solve several problems common to most robotic studies. One of these

requires a robot to learn to anticipate and therefore neglect changes in sensations

which are produced by its own actions (e.g. perception of movement because the

robot itself is moving). If its learning is done during exploratory phases, how can the

robot choose to explore its environment or not ? The environment can sometimes be

hostile and the robot should only explore when the conditions are ideal for exploring

without risks. Even if the robot is capable of synchronization, how can it know

that it should be synchronized or not ? It should not simply blind copy and the

transitions between the behaviors should be smooth. In the next chapters (Chap. 4,

and Chap. 5), we will propose solutions for solving these problems, basing our work

on affect allowing robots to adapt their behaviors to the context. We start with the

development of affective bonds.
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Chapter 4

Affective Bonds

“They rear a very large number of chicks by an amazing device. For the

hens do not sit on the eggs. Instead they keep a great number of eggs

warm with even heat and so hatch them. As soon as the chicks come out

of the eggs, they follow the men and recognize them as if they were their

mothers”. — St Thomas More Utopia (1516)

In the introduction, we have presented why imitation is important for autonomous

agents in order to survive, to learn, and to socialize. In the previous chapter we have

presented a way to improve synchronization during imitation, however, whatever the

quality (in terms of accuracy and relevance of actions) of imitation, an autonomous

agent should not imitate all the time; other behaviors are very important like explor-

ing the environment or exploiting what it has already discovered. In this context,

a successful imitation will not necessarily be very accurate or sophisticated but will

be done at the “right” moment (appropriate context) with the “right” partner. To

be efficient, imitative behaviors have to be integrated and balanced with other be-

haviors. Better understanding of the process of balancing behaviors in animals and
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humans can greatly improve the treatment of pathological problems, but it can also

improve the functionalities of autonomous robots.

The general efficiency of a robot can be improved not only in terms of autonomy

and learning, but also in terms of human-robot interactions (Cañamero, Blanchard

and Nadel 2006). If robots are to be truly integrated in humans’ everyday envi-

ronment, they cannot be simply (pre-)designed and directly taken “off the shelf”

and embedded into a real-life setting. Too much autonomy in social robots might

also carry risks if they behave “selfishly” and are detached for their human users,

especially if the users are not used yet to the robots. A balance depending on the

partner and progressive autonomy of the robots seems to be needed.

In 1958, Bowlby and Harlow (Harlow 1958) introduced the attachment the-

ory, where they respectively showed that infants and rhesus monkeys modify their

behaviors—especially play and exploration—depending on the relationships they

have with the persons or even the objects in presence. This effect is so strong that

later in the 1960s, Ainsworth (Ainsworth 1969) observed the differences of infants’

behaviors in a scenario called “strange situation” (when the mother leaves unex-

pectedly) in order to diagnose the relationship between a child and his caregiver

(usually the mother). Studies like those from (Hatfield et al. 1994) show that there

is a strong correlation between the affective bonds with someone and the probability

to imitate and to be synchronized with him/her; the symmetrical phenomenon has

been observed as well: affective bonds change depending on the ease and frequency

of imitation and synchronization. These phenomena are very interesting from the

point of view of balancing behaviors in autonomous agents, therefore we studied

how we can produce a Per-Ac architecture to model attachment and create affective

bonds. In order to bootstrap the affective bonds, we propose to first model a simpler
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phenomenon of attachment which is the “imprinting” phenomenon and we will see

that this phenomenon is not only interesting in terms of attachment but also in

terms of learning.

Animals and robots without any experience (when they are just born or just

switched on) in an open environment can not evaluate their situation—they have

nothing to compare with, or to use as references. Luckily most of the time, animals

and robots start their “lives” in a safe situation. Many animals give birth birth in

safe places (nests or dens protected from predators, warmness and food provided

by parents ...) and users naturally switch on robots far from dangers (water, stairs,

extreme temperatures ...). Therefore a simple but safe and useful behavior is to stay

in the same situation they have started with.

Interestingly, in the 1930’s Lorenz showed that birds follow the first thing they

saw and called this phenomenon imprinting (Lorenz 1935). Animals (especially

birds) form special attachment bonds with objects to which they are exposed very

early in life. Usually young animals are imprinted to the mother—usually, the first

thing they see—but can also be imprinted to other objects (“unnatural” imprinting,

see Fig. 4.1 on the left). According to our approach we interpret this as the fact that

they try to “keep” the first sensation they had and we have developed an architecture

to make our robots reproduce this phenomenon like in Fig. 4.1 on the right).

The imprinting phenomenon was for a long time considered to be instantaneous

and irreversible, as the term “imprinting” suggests. In the mid 1930’s, ethologist

Konrad Lorenz made this phenomenon well-known through his studies of greylag

geese. Lorenz raised these animals from hatching, becoming the imprinting—parent-

like—object for them. This “unnatural” imprinting to an individual of a very dif-
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Figure 4.1: On the left Lorenz followed by its imprinted geese, on the right Lola
Cañamero followed by our imprinted robots.

ferent species initially suggested that the animals had become attached to the first

“eye-catching” object they had perceived immediately after hatching. This form

of perceptual learning was also considered to be very different from (and unrelated

to) other types of learning arising later in life, such as conditioning or associative

learning. Such view has been more recently questioned as over-simplistic. Bateson

(Bateson and Barron 2000), for example, postulates a model in which imprinting

is not an instantaneous and irreversible process but a much more flexible and less
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peculiar phenomenon. The main points of this view can be summarized as:

• Imprinting does not necessarily occur immediately after birth but has a more

flexible sensitive period (Bateson and Martin 2000) affected by both experience

and species-specific features. This provides some flexibility regarding the exact

point in time in which the mother is first “perceived” and imprinted.

• Imprinting is not a monolithic capability but is composed of several linked pro-

cesses (Bateson and Barron 2000): (1) “analysis” or detection of a “relevant”

stimulus guided by predispositions of what the animal will find attractive;

(2) recognition of what is familiar and what is novel in that stimulus, which

involves a comparison between what has already been experienced and the

current input; and (3) control of the motor patterns involved in imprinting

behavior.

• Although imprinting can be functionally distinguished from learning involving

external reward, both types of learning are deeply connected, as suggested by

the possibility of transfer of training after imprinting.

We present a novel Perception-Action architecture and experiments to simulate

imprinting phenomenon in a robot following this latter approach. Starting with a

basic architecture that simulates imprinting in the more traditional sense (Sec. 4.1),

we incrementally modify and extend this architecture to achieve further adaptation,

also integrating reward-based learning (Sec. 4.2). This adaptation is achieved in

the context of a history of “affective” interactions between the robot and a human,

driven by “well-being” responses in the robot. In the following of this dissertation,

we call “caretaker” the interactive partner of the robot. The caretaker interacts

with the robot and can induce low or high well-being on the robot.
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4.1 Robotic Architecture for Imprinting

The architecture we have used to implement imprinting follows a “Perception-

Action” approach rooted both in psychology (Prinz 1997) and in robotics (Gaussier

and Zrehen 1995), and that we have already successfully applied to synchronization

of movements in robots (see chapter 3). This approach postulates that perception

and action are tightly coupled and coded at the same level.Action is thus executed

as a “side-effect” of wanting to fit the desired sensation with the actual sensation.

Actions that allow to correct different perceptual errors are selected on the grounds

of sensorimotor associations that can be “hardcoded” by the designer (e.g., with

static coefficients, as it is our case) or learned from experience by the robot—see

e.g., (Andry et al. 2003) or (Dearden and Demiris 2005) for examples applied to

robots imitating hands’ movements. We have used this general approach to model

imprinting as an attempt to make the robot act in order to reduce the difference

between the current sensation (S) and a desired sensation (S) using sensory-motor

associations.

Learning the Desired Sensation

Intuitively, the most obvious way to implement imprinting in a robot would be to

have it learn the first sensation that it has when it is switched on (the equivalent of

“hatching” in birds) as being his desired sensation—the sensation it will memorize

and try to maintain after imprinting. This could be implemented:

St = S0 (4.1)
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where S is the desired sensation (the “goal” values for all sensor readings), t is the

time elapsed from “hatching” , S is the current sensation (the current values for all

sensors). This corresponds to the view of imprinting as “stamping” or developing

instantaneous and irreversible affiliative bonds with the first “eye-catching” stimulus.

This approach helps to guarantee that the desired sensation of the robot will be

reachable, since it corresponds to a sensation that has already been reached at least

once. On the contrary, using some sort of predispositions to code a-priori a desired

sensation does not guarantee this sensation is reachable or can exist.

However, if by accident the first sensation is noise (quite common when we start

a robot) or in the case of birds, the mother is not present at the hatching time, the

first sensation is not relevant. To improve the robustness of the process we propose

that the robot memorizes its average sensation from the beginning of its life (see

(4.2)).

St =
S0 + . . . + St

t + 1
(4.2)

At the beginning, when the robot has few experiences, the average sensation will be

almost equal to its current sensation, but with time, experiences will accumulate in

its memory and the influence of the current sensation on the desired sensation will

decrease. To implement this equation, the agent needs to store all the sensations at

all the time steps which is virtually impossible and moreover it is not biologically

plausible. However, we show how it can be equivalent to use an incremental rule

(4.3) similar to the learning rule of Rescorla and Wagner (Rescorla and Wagner

1972) used for conditioning.

St =
S0 + . . . + St−1 + St

t + 1
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=
S0+...+St−1

t
× t + St

t + 1

=
St−1 × t + St

t + 1

=
St−1(t + 1) − St−1 + St

t + 1

= St−1 +
1

t + 1

(
St − St−1

)

= St−1 + ηt

(
St − St−1

)
(4.3)

The learning rate ηt = 1

T̃t

and in this case we only need a variable increasing with

the time (T̃t = T̃t−1 + 1; T̃0 = 1) and a variable memorizing the current average

sensation (S). The complexity of the calculation is very low and biologically plau-

sible. The learning rate at “hatching” or imprinting time is 1; therefore, learning

0 2 4 6 8 10
0

1

Figure 4.2: Decrement of the learning rate (y-axis) as a function of time (x-axis).
At the beginning, a learning rate of 1 means that the desired sensation is equal to
the current sensation.

is instantaneous at that moment and the desired sensation is equal to the initial

sensation. Our first architecture used to model imprinting is described Fig. 4.3.

4.1.1 Experiments

Apparatus

We have implemented and tested our architecture using a Koala robot (www.k-

team.com). Only the ring of infrared proximity sensors located around the robot

was used to provide sensation input in these experiments. The average of all the
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Figure 4.3: General architecture used to model imprinting.

infrared front sensors was used to detect (the proximity of) objects at the front of

the robot—we will refer to this averaged reading as “the proximity sensor”. Distance

to frontal stimuli is the only modality used to form the desired sensation—i.e., for

imprinting. The only actions of the robot after “hatching” (and therefore imprinting)

are forward and backward movements as side-effects of its attempts to achieve the

desired sensation acquired at imprinting time. As a consequence of this, the robot

“approaches”, “follows” or “avoids” (reverses if approached at a distance smaller

than the imprinted distance) the frontal object as this moves around. We used two

types of imprinting stimuli: near objects (high activity of the proximity sensors) and

distant objects (lower activity of the proximity sensors). Two types of objects—a

human and a cardboard box moved by a human, as shown in Figure 4.4—were used

as near and distant stimuli. Although the experiments worked very satisfactorily

with different types of objects, only the results obtained with the cardboard box

were used for analysis purposes due to their higher clarity.
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Figure 4.4: Experimental setting. In this case, a box located close to the robot is
used as imprinting object.

Results and Discussion

Using the box, 10 tests were run for each “hatching” condition—near or distant

imprinting object. Figure 4.5 shows one representative example of each condition,

with graphs on the left side of the figure (a1 and b1) corresponding to the “near

hatching” case, those on the right (a2 and b2) to the “distant” one. Top graphs

(a1 and a2) show current (solid line) and desired (dashed line) sensations, bottom

graphs (b1 and b2) show the speed of the robot responding to the random movement

of the box. In both conditions, the desired sensation (dashed lines in a1 and a2)

fluctuates at the beginning and becomes more stable with time in both cases, even

though the imprinting stimulus moves at different distances at the front of the

robot. As a consequence of homeostatic control, the velocity of the robot (graphs

b1 and b2) changes in order to decrease the difference between desired and current
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Figure 4.5: Results of two experiments testing imprinting to near (left graphs) and to
distant (right graphs) stimuli. The y-axis shows averaged readings of the proximity
sensors on the top graphs and the speed at which the robot moves to correct the
perceptual error on the bottom graphs, the x-axis shows time from “hatching” in
all graphs.

sensations. Motor speed is directly proportional to (a fraction of) the magnitude of

the difference.

We have done a variant of this experiment where we have implemented this ar-
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chitecture on both sides of the robot, using the left front sensor and the left wheel

on one architecture, and the right front sensor and the right wheel on the other

architecture. The two architectures are not interconnected and are exactly identical

to the one described Fig. 4.3. Without doing anything else the robot is able to turn

in order to better follow or avoid the caretaker, in two dimensional space.

We see how the robot learns the imprinting stimulus using a very simple func-

tion. Such learning can take place even when the imprinting object (i.e., an object

detected at a particular distance within the range of the infrared sensors) is absent

at “hatching” time, although learning becomes more slow and difficult with time,

corresponding to the limited time window during which the imprinting process is

possible in animals. However, this model still implements the simple view of im-

printing as “stamping” a permanent and irremovable trace, while, as Bateson points

out, “the process is not so rigidly timed and may indeed be undone” (Bateson and

Barron 2000). It also disregards the connection between imprinting and other types

of (reward-based) learning. For an autonomous robot living in a changing and social

environment, being able to modify or undo what was learned during imprinting is

also very important, since (a) it is virtually impossible for the designer to define a

priori a time window for the imprinting process that works in all possible environ-

mental conditions, and (b) if the environment (including the social partner) changes,

the robot has to adapt to the new features.
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4.2 From Imprinting to Adaptation

In algorithms employed in autonomous robots and neural networks research, it is

very common to use a learning rate that decreases with time in order to achieve a

good level of stability in memory that consolidates learning. The learning rate must

vary with time since, if it were constant, everything that is learned would be replaced

by new events, memory contents would change constantly. However, learning should

change not only as a function of time but also of the relevance of the stimulus. The

problem now is thus how to make the robot assess what is relevant.

4.2.1 Assessing Relevance

To assess the relevance of external stimuli, we use the notion of well-being: since

under normal circumstances, the evolutionary advantage of becoming attached to

a caretaker is to foster security, beneficial interactions with the environment, and

generally well-being, stimuli that carry some rewards associated with them are thus

those stimuli relevant to become attached to. Drawing on Ashby’s view of survival

as viability (Ashby 1952) or stability of the internal environment, in our robot well-

being is related to the values of its internal homeostatic variables in a range of ideal

values, following (Cañamero 1997). Closely related architectures have used a similar

notion of well-being (also termed “comfort” or “satisfaction” in those architectures)

and “discomfort” to assess and compare the performance of different behavior se-

lection policies in autonomous robots (Avila-Garćıa and Cañamero 2004), and to

learn affordances through the interactions of a robot with objects in the environment

(Cos-Aguilera, Cañamero and Hayes 2003). There are different ways to calculate

well-being when the internal environment consists of several internal homeostatic
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variables, such as the inverse of the average of the errors (deviations between the ac-

tual value and the ideal value or setpoint) of all the variables, the variance, etc—see

e.g., (Avila-Garćıa and Cañamero 2002) for a presentation and discussion of different

metrics. In our model, well-being corresponds to the endogenous factor of comfort

described by Dunn (Dunn 1977); it is a measure (taking values between 0 and 1)

of the viability of its internal state, i.e., the distance of the variables composing the

internal state of the agent from their ideal values. A high level of well-being corre-

sponds to a zone of good viability in its physiological space, as depicted in Fig. 4.6.

Figure 4.6: Well-being as a function of the distance of the internal states (here 2
are represented) to the ideal values.

A simple way of calculating well-being (Wb) at each point in time t given n

variables, by taking the inverse of the sum of the deficits (distances d1, . . . , dn,

between the real values of the internal states and the ideal values), is:

Wb(t) =
1

1 + d1(t) + . . . + dn(t)
(4.4)

Later, we will use tactile contact as a source of well-being. We will thus try to make

our robot learn to remember the stimulus (the sensation) that gives it most well-
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being. To do that, we modulate the learning rate with the well-being but we will not

just weight the learning rate with the well-being (it will NOT be: ηt = k.Wb

T̃t
with k, a

static parameter) because it does not show the interesting property of instantaneous

learning at “hatching” time (i.e. η0 = Wb0 and not 1) if the well-being is not equal

to 1 at the “hatching” time. Moreover, making the learning rate depend on the well-

being can present disadvantages because it is very difficult to know in advance the

average well-being of the robot and the ideal value of k is impossible to determine. If

the environment is “difficult” or “hostile” (producing very low levels of well-being)

and k is small, adaptation will be very slow, but learning will be unstable if the

environment is highly “positive” (i.e., providing very high levels of well-being) and

k is large. The strong influence of the well-being can thus be problematic because

this level has to be chosen depending on the hostility of the environment, and neither

the robot nor the designer has this information in advance.

The method that we propose does not present this problem, since the learning

rate is not modulated by the absolute value of well-being but by its relative value

We propose to define the learning rate as the ratio between the value of the current

well-being and the accumulation of the value of the well-being at all the time steps

already past:

ηt =
Wbt

W̃ bt

(4.5)

with W̃ bt = W̃ bt−1 + Wbt and W̃ b0 = Wb0. This allows the robot to learn to adapt

its desired sensation depending on what is considered the best at that moment,

and as a result of this learning, the robot will adapt its interactions to different

environments or interaction styles of caretakers. This adaptation is not something
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that only takes place “then and there”, but it also depends on the history of the

interaction. When the well-being is constant, the learning rate decrease with time

exactly in the same way as learning in the simple imprinting algorithm, but now

it can also depend on the relevance of the stimulus as measured by the well-being

provided to the robot. The more well-being a stimulus provides, the faster the robot

will develop an attachment link to it and the stronger this link will be—i.e., the more

relevant the stimulus will be for imprinting.

We can now reproduce the imprinting phenomenon described in Sec. 4.1, this

time taking into account the relevance that the observed stimulus has for imprinting,

since the well-being produced by some stimuli (e.g., a caretaker stroking the robot)

amplifies the memorization of these relevant stimuli over non-relevant ones (e.g., a

static wall). As we will see, in addition to the homogeneity and simplicity of the

equations, using this algorithm presents some other advantages for learning.

4.2.2 Multiple Time Scales

With the function described in Eq. (4.5), after some time interacting with the en-

vironment learning becomes very slow, as W̃ b becomes very large. Intuitively, this

would correspond to a situation in which the robot has formed an attachment bond

with the caretaker but cannot learn anything else. However, robots like animals have

to learn new things while interacting with their environment and they have to learn

which of these things are “beneficial” for them while remembering what was learned

during imprinting. We are thus facing the problem of how imprinting relates to

later forms of learning. A possibility is to consider further learning as a completely

different process that starts once imprinting has finished and for which we can use

a learning rate that depends solely on the well-being—e.g., as in (Cos-Aguilera et

56



Affective Bonds CHAPTER 4. AFFECTIVE BONDS

al. 2003)—but not on the time from “hatching”. However, this would erase useful

memories and produce conflicts with the imprinting phenomenon.

As Bateson points out (Bateson and Barron 2000), imprinting should not be

regarded as an irreversible process that was completed once and for all when the

appropriate “time window” closes to the world. Even if learning about the features

of the imprinting object becomes more difficult after the “sensitive period” (Bateson

and Martin 2000), the effects of imprinting are not irreversible. Moreover, he adds

that although imprinting can be functionally distinguished from learning involving

external reward, both types of learning are deeply connected, as suggested by the

possibility of transfer of training after imprinting. Therefore, to make these different

types of learning compatible, we can consider them as related processes to learn

what is relevant (beneficial) for the individual at different time scales. For example,

learning to be with the caretaker serves a goal that is beneficial in the long term,

whereas learning about the usefulness of an object to satisfy an urgent need serves

an immediate goal. Instead of learning a single desired sensation that the robot

will try to achieve or maintain through its interactions with the environment, it

could thus simultaneously learn different desired sensations that it will try to reach

depending on the time scale used to remember (seconds, hours, days, etc). We will

see later how these multiple desired sensations can be selected. We present now our

method to make robots learn different desired sensations at different time scales.

From the perspective of learning, this implies trying to reconcile imprinting and

reward-based learning, and this presents problems such as conflicting requirements

regarding the learning rates needed for each process. Our approach thus differs from

reinforcement learning algorithms such as Q-learning and TD-learning since it deals

with several learning rates and makes a selective use of memory—only the “best”
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sensation related to each time scale is kept. To provide a common framework for

imprinting and reward-based (in our case well-being based) learning, we have to

reconcile the following ideas:

• At the beginning (i.e., during the imprinting process) we want the learning

rate to decrease with time to consolidate memory and “protect” what was

learned about the imprinting object.

• It is useful to continue learning new things. Since we don’t know in advance

which is the best learning rate for each particular case, it might be useful to

remember desired sensations at different time scales. However, this process

cannot work at the beginning (during the imprinting process) since the robot

has not accumulated enough experiences. Also the learning rate needed (closer

to a constant rate) seems in conflict with the decreasing learning rate above.

To keep a continuum and avoid conflict between the two parts of the needed

process, we keep the shape and therefore the interesting properties of the decay of

the learning rate, presented in (4.5), but we amplify or at the opposite we attenuate

it. To do so, we apply the power function to the previous calculation of learning rate,

with a exponent depending on the time scale of the desired sensation learned. Each

desired sensation Sγ at the time scale γ is defined by the value γ of the exponent of

the power function, which can take values between 0 and +∞:

S
γ
t = S

γ
t−1 + η

γ
t (St − S

γ
t−1) and η

γ
t =

(
Wbt

W̃ bt

)γ

(4.6)

If γ tends to ∞, the learning rate tends to 0—after “hatching”, there is no further

adaptation of what has been learned about the imprinting object. If γ tends to 0,
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the learning rate tends to 1—there is no stability and the desired sensation tends to

correspond to the current sensation. Between these two extremes, we have different

intermediate learning modes available and when γ is equal to 1, we have exactly the

same learning properties as previously. Examples are provided in Fig. 4.7, which

shows the evolution of the learning rate (with a constant well-being) under three

different time scales. Our robot is now able to memorize different desired sensations

0 2 4 6 8 10
0

1

Figure 4.7: Evolution of the learning rate on three different time scales. The y-
axis shows learning rate values, the x-axis time from “hatching”. Parameter values
defining the time scale of the learning rates are γ0 = 0.1 for the top curve, γ1 = 0.5
for the middle curve, and γ2 = 2.5 for the bottom curve.

related to different time scales. Let us see how to select among them the sensation

that it will actually try to reach.

4.2.3 Selecting the Time Scale

It is advantageous to be able to learn more than one sensation the robot should try

to reach, some learned on the long term and more related to the familiarity and

stability of the sensation and some other learned on the short term, more related

to the immediate well-being associated to them. However, these different desired

sensations may not be compatible, and the robot has to choose between them if

we want to avoid the Buridan’s ass paradox illustrated by the fact that a hungry

and thirsty ass placed in between a source of food and and a source of drink will

hesitate until it dies. We call the chosen sensation that the robot will finally try to

reach, the goal sensation. This goal sensation should be based on desired sensations

59



Affective Bonds CHAPTER 4. AFFECTIVE BONDS

promising high well-being even if they are unfamiliar—less secure—when the well-

being of the robot is high as the robot can take risks, and based on familiar but

less promising sensations when the well-being is low as the robot can not afford to

take risks. Therefore, the goal sensation will be a desired sensation in a short time

scale (γk small) when the well-being is high, and it will be a desired sensation in a

long time scale (γk large)—of which the imprinting sensation is an example—when

the well-being is very low. The use of a short time scale allows the robot to be very

reactive to external changes, which in principle is advantageous for its survival, but

on the other hand the lack of experience puts it in an “insecure” position that should

be avoided when the well-being is already low (Avila-Garćıa and Cañamero 2004).

Intuitively, when the robot “feels secure”, it will have a more open stance towards

the external world and will tend to “live in the present”. On the contrary, in a

situation of discomfort it will be more closed to the world and the present situation,

to look back for past memories; observations of infants (Dunn 1977) and monkeys

show similar behaviors (Drea 1998). The goal sensation is a combination of desired

sensations learned at different time scales weighted by a “filter” in a gaussian shape

where the position of the maximum value depends on the well-being (see Fig. 4.8).

4.2.4 Openness to the World

Our architecture now allows the robot to keep learning after the initial imprinting,

and to be able to try to keep its “best” sensation. However, if the robot is continually

trying to achieve its “best” sensation looking into its multiple time-scales memory

(the multiple desired sensations), it will avoid any new sensation and therefore will

not be able to learn from new experiences. This can be seen as an instance of

the well known “exploitation/exploration” dilemma (Wilson 1996) in autonomous
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Figure 4.8: The final desired sensation is formed from desired sensations at different
time scales by means of a filter that weights the contributions of these desired
sensations. In this filter, the maximum value is defined by the value of the well-
being.

learning, i.e., how to decide between using the knowledge already acquired in order

to solve a problem, or continuing exploring to acquire new knowledge. We thus need

a mechanism to solve this problem.

Well-being can also be used to provide such mechanism, since there is evidence

that a good level of well-being or comfort—e.g, postural comfort (Kugiumutzakis

et al. 2005)—facilitates learning in infants, and this also makes sense in our archi-

tecture. When the robot has a low level of well-being, it should look for the most

familiar (i.e. secure) sensation it knows, but if it is not efficient and the well-being

continues to decrease, it should stop rather than trying hopelessly to reach an im-

possible or not beneficial sensation; at least external actions can be done by a human

to help it without the robot resisting. Conversely, in a situation of high well-being

the robot will have no reason to change its current sensation but on the contrary,
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should associate this new sensation as a desired sensation. A good strategy seems

thus to let the current sensation change (i.e., to “pay attention” to new sensation)

when the robot has a good level of well-being; this is achieved by inhibiting (modu-

lation by “activity” in Fig. 4.9) its attempts to attain its desired sensation. On the

contrary, when the well-being is low, the robot will try to actively reach memorized

desired sensations, unless the well-being is really too low. The activity of the robot

to changes, would thus have an inverted-U shape as a function of well-being allowing

the robot to accept external stimulation in extreme situations. Figure 4.9 summa-

rizes our global Perception-Action architecture described in this section, combining

imprinting and reward-based (well-being based) adaptation.

Figure 4.9: Global Perception-Action architecture for imprinting and adaptation.
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4.2.5 Experiments

Apparatus

The setting of these experiments is very similar to the one presented in Section 4.1.1,

but this time we need to add some new features to manage well-being. The robot

receives reward increasing the well-being as a result of tactile contact on its leftmost

infrared proximity sensor. We added to the architecture an internal homeostatic

variable, “tactile contact” that the robot must keep close to an ideal value (as high

as possible) and that decays with time in the absence of contact on the infrared

sensor mentioned above. We adapt Eq. (4.4) to calculate the robot’s well-being

using this variable:

Wb =
1

1 + e−contact
(4.7)

The robot will try to keep Wb as high as possible given its present circumstances and

the history of its interactions. To facilitate interaction with humans, the robot emits

beeps with a frequency that depends on the level of “distress”, i.e., the frequency

of the beeps increases as the well-being decreases. This is akin to a “separation

distress” response in animals, and is intended to “flag” the need for action on the part

of the human—tactile contact that will increase well-being in the robot—see e.g.,

(Panksepp 1999)—for a discussion of the separation distress and comfort responses

in animal).

Results

Figure 4.10 shows the results of one example of interaction with the robot among 10

similar tested interactions, with an architecture including 20 time-scales. We began

63



Affective Bonds CHAPTER 4. AFFECTIVE BONDS

the interaction (the moment of “hatching”) without any object at the front of the

robot. The robot therefore starts with an imprinting situation in which there is no

imprinting object—point ‘a’ at the top of Figure 4.10. Therefore, when we try to

approach it (point ‘b0’) it moves backwards (marked as ’b1’ in the bottom graph

of the figure). We then increase its well-being (point ‘c1’ in the middle graph) by

touching its side sensor and we observe (also in the middle graph) that the activity

level decreases. When we approach the robot again (point ‘c0’) it does not reverse

(avoid us) anymore, as we can observe in the “plateau” in the lower graph. We then

remain close to the robot for some time, touching its sensor simultaneously in order

to make it learn that in fact, and contrary to its initial experience, it is beneficial to

have a stimulus in front of it. When this stimulus disappears, we also stop touching

its side sensor; the well-being then starts to decrease while the activity level increases

(d1), and the robot will select, as goal sensation, the long-term desired sensations

(d0) and therefore it will try to reach them (e0): it will move forwards (d2) to try

to find something at its front. When it finds it, it stops (e1). It is interesting to

note a very stable shape (denoted by ‘f’) on a rather long time scale of the desired

sensations graph. This means that, globally, the presence of something at the front

of the robot is positive even if locally (on a short time scale) it is not always the

case. In fact, continuing this experiment (approaching an “object” to the robot and

giving it comfort) for a longer period, we would assist to a slow propagation of that

stable shape (f) to the very long-term scales, eventually modifying the memory of

the imprinting stimulus.
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4.3 Conclusion

We have presented a Perception-Action architecture and experiments to simulate

imprinting in a robot. Following recent theories about imprinting in animals, we

do not consider imprinting as rigidly timed and irreversible but as a more flexible

phenomenon that allows for further adaptation as a result of experience. Our ar-

chitecture reconciles two types of learning traditionally considered as different, and

even incompatible, due to apparently conflicting features and functions: the estab-

lishment of an initial attachment to a situation or a caretaker (an imprinting object)

and reward-based learning as a result of experience, that we have grounded in the

notion of internal well-being. Adaptation is achieved in the context of a history of

interactions between the robot and a human, driven by variation of well-being in

the robot (see video ‘affective bonds.mp4’ of the CD-ROM for an illustration of this

chapter).

Our implementation is still simple and we have made simplifications but we

would like to improve it in the future. Firstly, we only used one feature (distance

to the perceived stimulus) to learn about the caretaker. Proper treatment of learn-

ing about the imprinting object would require considering multiple features that

the robot would have to analyze in order to recognize the caretaker from different

perspectives and in different situations. Secondly, at present the robot only stores

a desired sensation per time scale in its memory. However, taking into account

other contextual factors would necessitate learning and handling different desired

sensations within each time scale. Third, desired sensations provide the robot with

a mechanism to decide what it should reach, but further development would also

require a mechanism to decide what it should avoid (“avoided sensations”), some-
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thing like the basis of “fear” system. Finally, the robot can now actively try to

reach known situations in order to stay in a stable environment, or passively accept

new situations, but to be more autonomous, it should also be able to explore new

situations by itself and express opportunism behaviors if appropriate. The balance

between these different possible and necessary behaviors will be the subject of the

next chapter, and we will show that it can lead to low level imitation depending on

affect.
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Figure 4.10: Evolution of the different internal states and movements of the robot
during an interaction of about 2 minutes. 20 time scales have been used simultane-
ously. See text in the results part for explanations.
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Chapter 5

From Balancing Behaviors to

Low-level Imitation

In the previous chapter we have proposed a robotic architecture to develop affective

bonds to specific situations by autonomously forming desired sensations. The robot

was acting in order to reach these desired sensations and stay in familiar situations.

However, in that architecture the robot was not able to discover any new situation in

the absence of external stimulation, as it only tried to stay safe in the same situation.

For autonomous agents (children, animals or robots), exploring the environment is

essential as it allows them to learn new things and also offers opportunities to con-

solidate past experiences. Exploration is also a risky activity as it exposes the agent

to unknown, potentially overwhelming or dangerous situations. Therefore, explo-

ration must be done with care, and a trade-off should exist between activities such

as seeking stability, exploring, imitating novel actions performed by another agent,

or trying to take advantage of opportunities offered by new situations and events.

Endowing a robot with this capability poses three main problems: (1) generating all
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these behaviors from the same underlying architecture; (2) autonomously switching

among them; and (3) achieving a good balance in the execution of these activities.

In this chapter, we extend our robotic architecture to achieve these three goals. In

addition, trying to solve the exploration, exploitation problem leads to low-level

imitation as a side-effect.

Taking an incremental approach to design our architecture, we first recall the

architecture presented in the previous chapter adopted here to seek stability to later

add elements that progressively induce capabilities of exploration, exploitation, and

finally low-level imitation. At each step, new behavioral capabilities are added

while preserving the existing ones, and an important issue is to make the robot

achieve a good balance among all its activities. Autonomously achieving an adaptive

execution of activities can be seen as an instance of the behavior selection problem.

In our case, however, changes in observable behavior are not achieved by “switching”

among a set of discrete behaviors, but differential execution of activities relies on a

modulatory mechanism based on notions of “well-being” that we already use in the

previous chapter and “affect” that we will define. In our model, well-being depends

on the internal (physiological) states of the agent, whereas affect depends on the

values of its sensors (sensations). Well-being thus corresponds to the endogenous

factor of comfort described by Dunn (Dunn 1977), whereas affect corresponds to its

exogenous factor. We use the following definitions:

• The well-being of an agent is a measure (taking values between 0 and 1) of the

viability of its internal state, i.e., the distance of the variables composing the

internal state of the agent from their ideal values. A high level of well-being

corresponds to a zone of good viability in its physiological space, as depicted

in Fig. 5.1 (left).
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• Affect in this model is the evaluation (expressed in values between 0 and 1) of

the “goodness” or “safety” of a situation based on the familiarity (in terms of

frequency) and the past well-being (pleasantness) of the associated sensation.

A high level of affect corresponds to the fact that the agent evaluates the

situation in the world as highly safe; as depicted in Fig. 5.1 (right), this can be

represented in the agent’s sensory space as a function of the mismatch between

the actual sensation and the desired sensations to which the robot would tend

to access in case of danger. Using affect, agents are able to evaluate how far

they are from a safety zone that corresponds to a familiar zone or to a zone

where they expect to maximize their well-being and therefore their life time

(Likhachev and Arkin 2000).

Figure 5.1: The two components of the robot’s comfort: well-being can be repre-
sented in the physiological space (left) and affect in the sensory space (right).

As we will show in the remainder of the chapter, modulation of the architecture

based on well-being and affect achieves adapted execution of different activities.

This makes the robot explore if nothing happens, take advantage of opportunities

in the presence of novelty while avoiding danger, imitate another agent that is

performing a novel action, or return to familiar situations (“safe zones”) if nothing
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happens but the well-being is low.

In Sec. 5.1 we present a system that we add on the previous architecture to make

the robot progressively explore its world. Then in Sec. 5.2 we add another system

to allow the robot take advantage of what it has discovered. Before concluding in

Sec. 5.4 we show in Sec. 5.3 how a side effect of the previous systems produces

low-level imitation moderated by affect.

5.1 Exploration

Reproducing the imprinting phenomenon and adding the possibility of adaptation

allows the robot to memorize which are the sensations it should try to reach in order

to have good stability and well-being. However, in the absence of external stimula-

tion, the robot described in the previous chapter will stay all the time in the same

situation as it will never have the opportunity to encounter other sensations—it

will never experiment with new situations. On the contrary, animals often look for

novelty (Panksepp 1999, Power 2000) and, as already pointed out by (Oudeyer and

Kaplan 2004, Kaplan and Oudeyer 2004, Steels 2004), it would be very beneficial

for robots to look for novelty—in our case, unfamiliar sensations. Obtaining new

sensations can however be dangerous and not always be useful as too much novelty

does not produce efficient learning (Kaplan and Oudeyer 2007). Moreover, Dunn

(Dunn 1977) observed that children explore more when they are in a familiar envi-

ronment; Likhachev and Arkin (Likhachev and Arkin 2000) use the zone of comfort

in order to modulate exploration in robots.

To generate spontaneous exploration, in (Blanchard and Cañamero 2006) we

proposed to increase the effect of an exploratory behavior while the robot does
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not have any other specific motivation. Exploratory behavior can consist in the

execution of different actions selected randomly (Andry et al. 2003, Demiris and

Dearden 2005), or selected in order to lead to a maximum of learning (Kaplan and

Oudeyer 2004), or as in our case a simple exploratory behavior of moving forward,

represented by Be, a positive variable defining the positive speed of the robot for

exploration. To add this new behavior without interfering with the previous behavior

making the robot seek for desired sensations, we need to inhibit the exploratory

behavior when the robot has specific motivations—in this case when the robot is

seeking for desired sensations. Therefore, in order to modulate the exploratory

behavior, we introduce a notion of apathy with a variable Ap representing the fact

that the robot does not have any specific motivation. Finally, the action to explore

(Ae) based on the exploratory behavior (Be) is amplified when Ap is large, and

becomes null when Ap is small:

Aet = (Aet−1 + Bet)Apt (5.1)

For many reasons that we will see later, the robot can have the motivation to

stop, inverse or amplify the ongoing variation of sensation. We use a variable Mc

to denote the motivation to continue or amplify these actions. Mc is negative when

the robot tries to oppose itself to the ongoing actions, and positive when it tries to

amplify them. The apathy (Ap) leading to exploration represents the case in which

the robot has low motivation to amplify or oppose itself to the ongoing actions:

Ap
γ
t = e−r(Mc

γ
t )2 (5.2)

where r is a parameter defining the decay rate of apathy as a function of motivation.
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The robot can now theoretically explore (move forward in order to experiment

with non-desired or novel sensations) when it does not have any other motivation.

However, the behavior described in the previous chapter, always carries the motiva-

tion to avoid new sensations and therefore the robot would always be opposed to the

exploratory behavior. Our proposed solution to this problem is to apply the notion

of affect presented earlier to dynamically modify the motivation to continue. Affect

reflects the subjective (i.e. without reasoning or exact predictions) evaluation of the

situation in term of exogenous comfort (i.e. familiarity and past good experiences

with the situation). Affect measures the proximity (in the sensory space) of the

agent to its desired sensations corresponding to the zone of exogenous comfort (or

safety zone, see Fig. 5.1). The physical distances are not relevant to the agent, what

is really important for the agent is the amount of action (moving far or not) it would

have to do in order to reach its desired sensations. This appreciation of distance is

given by Paγ representing the perceived actions needed to make the robot reach its

desired sensation at the time scale k. The variable affect (Afγ) varies from 1 (close

to the desired sensation) to 0 (far to the desired sensation) and is defined in:

Af
γ
t = e−s(Pa

γ
t )2 (5.3)

where s is a parameter indicating the decay rate of the affect as a function of the

perceived actions needed to reach the desired sensation of the time scale k.

We recall that when the affect is high, the robot can afford to increase its dis-

tance from the desired sensations, whereas it should try to decrease it when the

affect is low. The motivation to continue (Mcγ) which tends to amplify or stop the

ongoing actions (perceived actions) must then be positive when the affect is high,
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and negative when the affect is low. The threshold between what should be consid-

ered as “low” or “high” affect is subjective and we set this threshold using a static

parameter q defining the characteristic behavioral profile (or in a very restricted

sense the “personality”) of the robot and q can be interpreted as the timorousness.

If q is high, the robot will often oppose itself to the perceived actions and try to stay

in familiar situations, whereas if q is low, the robot will more often try to continue

and amplify the perceived actions (it will try to increase the distance to its desired

sensations). This helps to define the degree of openness to the world (Opγ) which is

a variable for each time scale representing the amplification of any perceived actions

for “curiosity”:

Mc
γ
t = Op

γ
t = Af

γ
t − q (5.4)

In this part of the architecture, we equate the motivation to continue to the openness

to the world (Mcγ = Opγ); the architecture is similar to the one presented in the

previous chapter but the motivation to continue is computed as in Fig. 5.2 instead of

being constant and equal to −1 corresponding to a permanent opposition to novelty.

When we apply this architecture to a robot in a static environment, it does not

move at the beginning but when the action to explore (Ae) increases, it starts to

move forward; in this case, the robot is not in a familiar situation anymore (Afγ is

low), and therefore it starts to have the motivation to oppose itself to the ongoing

actions (Mcγ = Opγ < 0). As the robot has motivation the level of apathy (Apγ) will

become low and this will stop the actions to explore (Ae). It is interesting to note

that, therefore, the robot moves by small steps; such“cautious approach” behavior

is not only useful to control the level of unfamiliarity during exploration, but it

also reproduces the approach of an animal to a new stimulus—it moves forward,
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Figure 5.2: Actions are the result of spontaneous generation of actions for explo-
ration (Ae) and actions (Ac) generated in order to amplify the perceived ongoing
actions. The different layers correspond to different time scales. We take the average
when they are grouped together.

stops, waits a bit, moves forward again and so on (see video:‘animal avoidance

behavior.mpg’). However, if the caretaker moves, the robot will perceive novelty

and inhibit its exploratory behavior and only try to reach stability, i.e., retrieving

its initial distance to the caretaker. Figure 5.3 shows typical positions of our Koala

robot during this “cautious approach” exploratory behavior when tested with three

different values of q : 0, 0.5 and 1, s set to 0.1, and r to 1 (see video: ‘exploration

and avoidance with negative affect.mov’).

We can observe that the robot moves confidently (smoothly) when q is low,

whereas it moves with hesitation (with some backwards movements) when q is high.

In all cases, exploration is slower when the robot is farther away from its initial (and

therefore familiar) situation (initial distance to the caretaker). The decay rate of

exploration as a function of unfamiliarity depends on the parameter s and therefore

can be changed.
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Figure 5.3: Successive positions of the robot during exploration for three different
values of q (0, 0.5 and 1) for curves from top to bottom.

5.2 Exploitation and Interruption-Related Behav-

iors

We have shown that the robot can autonomously modulate two kinds of behaviors—

seeking stability (previous chapter) and exploration—depending on its internal states

and on external events. The first behavior makes the robot try to reach sensations

known as familiar or pleasant, the second makes it explore new sensations when it

is already in a familiar or desired situation. However, if during an action (executed

either in order to reach a desired sensation or in order to explore), the well-being

increases or decreases suddenly, the robot should interrupt its current behavior and

increase or respectively decrease the effect of the perceived ongoing actions. In fact,

if the robot accidentally moves close to a reward (stimulus increasing the well-being),

it should continue its movement, showing opportunism. On the contrary, it should

cancel or resist to this movement if it discovers a danger (stimulus decreasing the
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well-being), therefore showing avoidance behavior. Affect is able to interrupt on-

going behavior, as could be done in animals or human using a motivational and

emotional control (Simon 1967). The difficulty for the robot is to know if the vari-

ation of well-being is due to the recent changes or to long-term changes. Therefore,

we use the past well-being (Wbγ) at different time scales to compare it with the

actual well-being (Wb). In fact, we use the same learning rates as those used for the

computation of desired sensations in order to estimate the well-being associated to

each desired sensation:

Wb
γ
t = Wb

γ
t−1 + η

γ
t (Wbt − Wb

γ
t−1) (5.5)

We call pleasure (P lγ) the measure of the variation (between −1 and 1) of well-being

at different time scales:

P l
γ
t = Wbt − Wb

γ
t (5.6)

We then use this notion of pleasure to compute the motivation to continue (Mcγ),

which now not only depends on the openness to the world (Opγ) but also on the

variation of well-being:

Mc
γ
t = Op

γ
t + P l

γ
t (5.7)

The new way of computing the motivation to continue generating opportunism and

avoidance behaviors is presented in Figure 5.4.

To test the ability of the robot to take advantage of opportunities, we use the

same experimental setup as in previous sections but this time we put boxes on the

side of the path of the robot as rewards, as shown in Fig. 5.5: when the robot moves

forward, the boxes touching the contact sensor on the side of the robot increase the

77



From Balancing Behaviors to Imitation
CHAPTER 5. FROM BALANCING BEHAVIORS TO LOW-LEVEL

IMITATION

Figure 5.4: Computation of motivation to continue either to express opportunism
or avoidance behaviors. The layers correspond to the time scales.

well-being. The values of the static parameters are similar to the previous experi-

ment but s is set to 0.001 (a small s decreases the influence of the initial situation)

and q to 0.75 (a large q decreases the influence of the exploratory behavior). We

run a dozen experiments in three different contexts. In the first experiment (exp 1)

where there is no external reward—the well-being is constant, like in Sec. 5.1—only

s and q have changed. In the second experiment (exp 2), there is a reward at the

front of the robot. In the third experiment (exp 3), the robot is already next to a

reward and by exploring will lose it.

Figure 5.6 presents the successive positions and well-being of the robot during

one typical trial in each context (exp 1 in solid line, exp 2 in dashed line and exp 3 in

dotted line). We observe that the robot always starts with an exploratory behavior

similar to that in Sec. 5.1; however, if it encounters a reward it accelerates (exp 2),

and if the reward is lost it tries to come back and stop exploring for a while (exp 2)

or forever (exp 3). The robot is able to produce the behaviors shown before (seeking

stability and exploration) but can also interrupt these behaviors to take advantage
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Figure 5.5: Setups of the experiments with rewards: in the first experiment there is
no reward, in the second experiment (exp 2), the reward is on the way of the robot
and in the third experiment (exp 3), the reward is on the side of the robot.

of opportunities and avoid dangers.

Figure 5.7 depicts the entire architecture allowing the robot to explore when it

feels safe, seek stability if it feels uncomfortable, and interrupt these behaviors if it

discovers an opportunity or a sudden danger.

5.3 Low-level Imitation

We have presented our final architecture which allows an agent to:

1. learn and remember familiar and pleasant sensations;

2. act in order to explore its environment;

3. interrupt the previous behaviors in order to take advantage of an opportunity,

or avoid a danger.

All these behaviors are smoothly balanced depending on the context and the internal

states of the agent. However, our goal was to produce imitative behavior (even if at

low level) depending on affect and we have presented our final architecture without

mentioning yet imitation.
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Figure 5.6: Successive positions of the robot (top) and its corresponding well-being
(bottom) for the three experiments—exp 1 without reward in solid line, exp 2 with
a local reward in dashed line, and exp 3 with a disappearing reward in dotted line.

Interestingly, our current architecture also allows a robot to perform low-level

imitation as a side effect of the exploratory process depending on affect and pleasure.

If the caretaker moves at the front of the robot, the robot receives unexpected sensa-

tions and inhibits its exploratory behavior. Moreover, if the robot is not too far from
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Figure 5.7: Final architecture allowing to produce seeking stability, opportunism,
avoidance and exploration.

its desired sensation (familiar zone) or its well-being increases (positive pleasure),

the motivation to continue (Mcγ) is positive and therefore the robot tries to amplify

the variation of sensation (the distance between the current new sensation and its

desired sensations). The result is that the robot moves toward the caretaker when

the caretaker moves toward the robot and the robot moves away from the caretaker

when the caretaker moves away from the robot (see video: ‘exploration and imita-

tion with positive affect.mov’). This is not the case if the robot is in an unfamiliar

zone or if the well-being decreases; we observe low-level imitation depending on af-

fect and pleasure. This view of low-level imitation differs from other approaches of

low-level imitation like (Andry et al. 2003, Demiris and Johnson 2003) because we

do not consider imitation as the reduction of error between what is expected and

what is actually sensed but, on the contrary, as the process of amplifying—only in

the appropriate context—an unexpected or unfamiliar sensation.

Figure 5.8 presents a typical result of a dynamical interaction with the robot.

In this case, we use the same setup as in the experiment about exploration (see

Sec. 5.1), but this time the caretaker moves to observe the reaction of the robot.
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In the top graph we can see the successive positions of the robot in solid line, and

the estimated1 position of the caretaker in dashed line. In the bottom graph we can

see the values (Sd) of the distance sensor of the robot. We observe that the robot

tries to amplify the relative movement of the caretaker (represented by the arrows

in the figure) when its sensation is close to its initial sensation (imitative behavior),

but this amplification becomes null or even negative when its sensation is far from

its initial, therefore familiar, sensation (avoidance zone). Our robot can therefore

imitate another agent to discover new sensations while remaining able to interrupt

its behavior to avoid new dangers or take advantage of new opportunities like we

have seen in the previous section.

5.4 Conclusion

We have presented a way to make our robot explore its world when it is in a fa-

miliar situation. Increasing autonomy and exploring the environment are essential

activities for autonomous agents to learn new things and to consolidate past expe-

riences and apply them to improve behavior. However, exploration is also risky as

it exposes the agent to unknown, potentially overwhelming or dangerous situations,

and therefore a trade-off must exist between activities such as seeking stability, ex-

ploring, imitating another agent (and, in so doing, discovering new sensations) and

taking advantage of opportunities offered by new situations and events while at

the same time avoiding danger. Our architecture achieves an adapted execution of

different behaviors on the grounds of modulatory mechanisms based on notions of

“well-being” and “affect.” This includes production and modulation of imitative

1Estimation done using the absolute position of the robot and the detected distance of the
caretaker to the robot
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Figure 5.8: Top: successive positions of the robot (solid line) and of the caretaker
(dashed line). Bottom: sensation from the sensors to the robot. When the sensation
is close to the familiar sensation (the one the robot starts with), the robot moves like
the caretaker (imitative behavior) but when the sensation is far from the familiar
sensation, the robot avoids the movements of the caretaker (avoidance behavior).
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behavior, which is used instead of the exploratory behavior when a “teacher” pro-

poses new stimulations. The modulation of exploration depending on familiarity is

not only a way to make the robot safely explore its environment, but it can be also

a great advantage during human-robot interaction. Actually, if the robot explores

(therefore take initiatives) when it is familiar with it environment, it means recip-

rocally that it will take initiatives only once the caretaker (or a human partner in

the case of a companion robot) is familiar with the robot.

We have shown how affect can modulate low-level imitation in a coherent global

architecture. However, there are some limitations like the fact that the robot cannot

learn more than one sensation desired for each time scale. It can be also useful to

memorize the sensations that should be avoided. This is the subject of our next

chapter, where we will show how we can make the robot memorize an unlimited

number of desired sensations at each time scale and also how it can memorize the

sensations it should avoid. We will discuss about the other issues like the problem

of multidimensionality later in Chap. 7.
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Chapter 6

Complex Desired Sensations

“It’s not just learning things that’s important. It’s learning what to do

with what you learn [...]”—Norton Juster, in The Phantom Tollbooth

(1961)

6.1 Introduction

We have presented an architecture allowing an agent to learn and remember sensa-

tions it should try to reach in order to increase or stabilize its well-being. We call

these sensations “desired sensations”. Desired sensations correspond to sensations

associated with three factors:

1. the well-being;

2. the familiarity, probability for a sensation to occur;

3. the recency of a sensation in time.
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Each desired sensation at different time scales is a desired sensation with different

weights regarding these factors. The agent is therefore capable of setting its own

goals (i.e. sensation it should try to reach) on the basis of reinforcement (value of

the well-being), probability, and recency.

However, there are some limitations; for example, the agent can only remem-

ber one desired sensation for each time scale, whereas different sensations can be

associated with the same level of familiarity, well-being, or recency. Moreover, for

an agent it is useful to not only memorize the sensations it should reach, but also

the sensations it should avoid. We present in this chapter a method to improve the

learning system in order to make the agent learn: a) many desired sensations for

each time scale, and b) “avoided sensations”, the sensations it should avoid.

Although the main emphasis of our work is not reinforcement learning, it presents

some commonalities with this approach to learning. Rewards or positive reinforce-

ments can be seen as high well-being, whereas punishment and negative reward can

be seen as low well-being. Section 6.2 presents the main ideas of classical approaches

of reinforcement learning and discusses the problems raised by them, like the need

of arbitrary discretization of the environment and the large need of computational

resources. Then in Sec. 6.3 we propose a solution to handle these problems in the

continuity of our current architecture. Section. 6.4 presents the results of experi-

ments we have carried out on our real robot. Finally Sec. 6.5 draws some conclusions

and perspectives to continue this work.
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6.2 Classical Reinforcement Learning

The temporal-difference model (Sutton and Barto 1987) is a very common and

efficient reinforcement learning method (Sutton and Barto 1998). Its principle is to

discretize the inputs (from the sensors and the internal states of an agent) in order

to obtain a finite number of possible states (inputs). The expected reward (i.e. well-

being) for each state is evaluated using the actual reward of the state in addition to

the reward expected in states immediately accessible. The agent then acts in order

to reach the states maximizing the expected reward; it needs a world model to know

which action to execute to get in one precise state. Even if the convergence of the

algorithm is proved, learning is very slow because the agent needs to try each state

several times, and the speed strongly depends on the discretization used, which can

lead to a huge number of different states. It is therefore also very demanding in

terms of memory, in order to store all the expected reinforcements for each possible

state, or it needs a good generalizer (Univ. of Michigan RL Group 2007).

Q-learning (Watkins 1989) uses similar principles but it works even if the agent

does not know which action to execute in order to reach a given state (it does

not require a world model). The agent learns the expected reinforcement for each

possible state-action couple. This decreases again the speed of learning because

there are many more possibilities to explore, and the quantity of memory needed is

multiplied by the number of different possible actions.

6.2.1 The Issue of Discretization

In artificial intelligence, numerous powerful algorithms have been designed to learn,

anticipate and decide. However, they are often inappropriate when applied to robots
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in the real world, particularly if the robots are not pre-programmed to detect specific

stimuli. For example, many models of classical or instrumental conditioning need

to predefine the set of possible stimuli to consider. Information theory (Cover and

Thomas 1991) provides powerful tools to statistically measure the temporal corre-

lation between events and anticipate them (Capdepuy, Polani and Nehaniv 2006).

However, this approach also relies on discretization, and the problem is again to

define the set of events by discretizing the world.

Discretization can be adaptive, for example by grouping together events that

carry the same predictive information. To do this, we can use classification algo-

rithms like k-mean, Kohonen’s maps, Estimation-Maximization algorithm—see e.g.

(Butz, Sigaud and Gérard 2003). Many of these algorithms need strong assump-

tions on the distribution of classes and the discretization needs to be arbitrarily or

randomly initiated therefore the quality of the learning process depends on random

initializations. When developing the Q-learning algorithm, Watkins was aware of the

difficulty of coping with continuity: “To avoid the complications of systems which

have continuous state-spaces, continuous action sets, or which operate in continuous

time, I will consider only finite, discrete-time Markov decision processes” (Watkins

1989, page 38). Even after the discretization is done, the algorithm converges quite

slowly because it needs to try several times the different possible state-action pairs

in order to estimate statistically the reward that can be expected for each one. Once

the reinforcement can be reliably anticipated for each state-action pair, the agent

can act in order to reach the state with the highest expected reinforcement.

These approaches are very powerful when they are used in simulation, since the

environment is often discrete (e.g. a grid where the agent is moving) and it is easy

to make an agent try different situations a large number of times. They can be
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well adapted to robotics when the elements of the environment are predefined, and

there are obvious salient cues that the robot can consider as classes of events (e.g.

a salient color or pattern).

However, in the case of robots in real environments without specific features,

the robots have to find by themselves the cues predicting rewards. These cues are

not necessarily salient, and can for example be a specific light intensity, a range

of sound frequencies or a specific position, rather than binary signals associated

with the presence or absence of light, sound, shape, etc., as it is usually the case in

discretized environments. Humans and animals are very efficient at discriminating

between similar stimuli if they have distinctive predictive values. In this case, using

the salience of sensations can be misleading, since for example a light being turned

on or off might not have any predictive value, whereas a small change in the intensity

of a light at a specific level can be significant.

Most algorithms involving discretization are not able to cope efficiently with this

kind of situation because they waste vast amounts of memory storing the predictions

of expected rewards for many different values of the sensory input, even though most

of them are not relevant or are redundant. Moreover, there is usually no difference

between the effect of a small reward obtained immediately and the promise of an

important reward to be obtained later. However, in some cases it is very important

to make such difference: for example if a robot is about to “die” it should go where

it is sure and quickly find at least a small reward (e.g. satisfy an urgent need in part

by consuming a small resource), whereas it should try to maximize the long-term

reward when it has more time (e.g. go to a farther location or explore for larger

quantities of resources, where it could possibly better satisfy needs).
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6.3 Our Approach to Learning

As there is no free lunch (Wolpert and Macready 1997), there is no general algorithm

that, on average, performs better than another one without further and more suitable

assumptions, we will make and use assumptions about the world in order to improve

our architecture. In our work, we assume that the world is continuous since physical

robots acting in the real world have to deal with a continuous, rather than discrete,

environment: there are continuous variations of rewards with continuous variations

of sensory inputs (sensations), and the relations between rewards and sensory inputs

are consistent. Consequently, if the agent—a robot in our case—receives a high

reward for a specific sensory input, it can anticipate a good reward for other close or

similar sensations. Therefore, instead of estimating the expected reward for all the

many possible states and trying to reach the state anticipating the maximum reward,

we propose to make the robot remember only the sensation (desired sensation)

associated with the best reward (see Fig. 6.1). As previously mentioned, our robot

can memorize and recall desired sensations at different time scales, depending on its

affective state. However, for the sake of clarity, in this chapter we focus only on one

time scale.

6.3.1 Desired Sensations

To illustrate the various possibilities, we consider a continuous environment—our

usual environment in which a robot interacts with a human and objects in the real

world—and as previously, we use S, the distance of obstacles at the front of the

robot for sensory input, A for the speed of forward movement (backward movement

if the speed is negative) and Wb to represent current well-being or the immediate
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Figure 6.1: Desired sensation depending on the maximum of well-being associated
with the sensation

reward in terms of reinforcement learning. We consider the problem depicted in

Figure 6.2: the robot receives the distance to a landmark (or a caretaker) as sensory

input (sensationS) and its well-being (Wb) increases when a reward (e.g. a source

of energy symbolized by a box) is located at its side.

Figure 6.2: Using the distance to a landmark detected by its distance sensors, the
robot must learn a desired sensation: which corresponds to a reward on its side.

In order to make the robot learn the sensation associated with the highest well-

being, we could simply set the desired sensation (Ŝ) to be equal to the current

sensation (S), but only when the well-being (Wb) is higher than the highest remem-
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bered well-being (Ŵ b):

if Wb > Ŵb then





Ŵ b = Wb

Ŝ = S
(6.1)

The problem with this equation is that if the well-being is very high once and

is never high again, or if the sensation is very hard to obtain, the desired sensation

learned would be useless. Moreover, the robot would not be able to learn more

than one sensation associated with a reward. Actually, even if it memorizes another

desired sensation associated with a slightly smaller reward, the principle of continuity

makes this desired sensation infinitely close to the previous one learned as we can

see in Figure 6.3. Therefore, to be reliable and robust the robot should not only

memorize the sensations associated with the highest reward, but also the sensations

associated with a positive reward at a high probability. We have shown in Eq. (6.1)

Figure 6.3: Impossibility to learn two local maxima.

how to memorize the sensation only associated with the maximum well-being.

On the contrary equation (6.2) shows how the robot can memorize the most

frequent sensation (S) (maximum of familiarity) as the average of all sensations

at each point in time (t). We have already presented this equation similar to the
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learning rule of Rescorla and Wagner (Rescorla and Wagner 1972) in Chap. 4, where

we use it to make the robot become imprinted to familiar sensations.

St = St−1 + ηt

(
St − St−1

)
(6.2)

The learning rate is ηt = 1

T̃t

, and in this case we only need a variable that increases

with time (T̃t = T̃t−1 + 1; T̃0 = 1) and another variable to memorize the current

average sensation (S). The complexity of the calculation is very low and biologically

plausible. As we work with a discrete digital computer, the calculation are done step

by step, however, the values of functions we use (e.g. average) do not depend on

the size of these steps, only the precision can be affected.

Now the agent can learn two extreme cases: the sensation associated with the

best reward (Ŝ), and the average sensation (S), regardless of what the reward is.

It is nevertheless not very useful to learn only those extreme cases. The first one

indicates the sensation associated with the best reward, but this memory might not

be reliable as it may have happened only once. The second case indicates which

are the sensations that happen more often, but this does not mean that they are

good things for the robot, only that they appear often in its environment. However,

all the intermediate cases are very important because in order to maximize the

cumulative reward, the agent should balance the effect of the reward and the effect

of the probability. If a robot urgently needs a reward (for example consuming a

resource to avoid dying), it should focus on the sensations promising small rewards

with high probabilities (easy to obtain), but if the situation is not urgent, it should

focus on sensations promising higher rewards in order to maximize the cumulative

reward and also to learn more about these high rewards. The robot must thus
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be able to memorize a range of desired sensations, from those often obtained but

predicting small rewards, to those rarely obtained but predicting high reward.

In Sec. 4.2 of the Chap. 4, we have shown how a robot can learn the average

“best” sensation by weighting the learning rate with the well-being: ηt with ηt = Wbt

W̃ bt

with W̃ bt = W̃ bt−1 + Wbt; W̃ b0 = Wb0. Using the time scales (γ), we were able to

balance the effect of the recency, familiarity and well-being in the learning of desired

sensations. However as we used only one parameter to balance three factors, they

could not be independent: either recency and well-being (small γ) have a strong

influence on the learning rate or past and familiarity have a strong influence (large

γ). We were unable to make the robot memorize the absolute best sensation it had

like in Eq. 6.1 because if γ is close to zero, it would only memorize the best sensation

among the most recent sensations—for a null γ the memorized desired sensation is

equal to the current sensation.

We propose in Eq. 6.3 a modification to make the agent learn different desired

sensations (Sk) where the balance between the weight of the well-being and the

familiarity is controlled by the parameter k (we consider only one time scale γ = 1):

Sk
t =

ek.Wb0.S0 + . . . + ek.Wbt.St

ek.Wb0 + . . . + ek.Wbt

= Sk
t−1 +

ek.Wbt

ek.Wb0 + . . . + ek.Wbt

(
St − Sk

t−1

)
(6.3)

For extreme values of k (namely 0 and +∞) we obtain, respectively, the same

results as in Eq. 4.2 where only the familiarity is taken into account because e0 = 1,

and Eq. 6.1 where only the maximum of the well-being is taken into account because:

lim
k→+∞

ek.Wb0.S0 + . . . + eWb.rt.St

ek.Wb0 + . . . + ek.Wbt
= Sargmax(Wb0,...,Wbt). (6.4)
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We can have all the combinations of the weight of the well-being versus the famil-

iarity by making the values of k vary between 0 and +∞.

Like in our previous method, only the variation of the well-being and not its

absolute value, influences learning; therefore, we do not need to define a priori

which value of well-being has to be considered as a good well-being.We can actually

add any constant (c) to the well-being and it does not change the learning rate:

ηk
t =

ek.(Wbt+c)

ek.Wb0+k.c + . . . + ek.Wbt+k.c

=
ek.Wbt.ek.c

ek.Wb0.ek.c + . . . + ek.Wbt.ek.c

=
ek.Wbt

ek.Wb0 + . . . + ek.Wbt

=
ek.Wbt

W̃ bk
t

(6.5)

with W̃ bk
t = W̃ bk

t−1 + ek.Wbt.

6.3.2 Avoided Sensations

We have shown how a robot can learn desired sensations associated with high well-

being, but it can also be useful to learn sensations predicting danger or low well-being

(negative reward or punishment) in order to avoid them. With our model, they are

easy to compute as they are equal to the sensations Sk
t for negative values of the

parameter k. If k tends to −∞, Sk
t corresponds to the “worst” sensation. We call

them “avoided sensations”.

The issue of computing the desired sensations1 is that they can be between two

1We use “desired sensation” here as a generic notion, but it can refer either to a proper desired
sensation (k > 0) or to the particular case where k < 0, which should rigorously be an avoided
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local maxima and therefore predict (reward) high well-being where the well-being is

in fact low (no reward), i.e. a “false positive”, see Figure 6.4. This is a very general

Figure 6.4: Wrong desired sensation, resulting from the average of multiple local
maxima.

problem in optimization; while searching for the global maximum of a function we

may temporarily find a local minimum. In fact, this happens when the desired

sensation is moving from a local maximum to another local maximum, because it is

higher, or more frequent. A solution is to make the robot quickly forget the past and

consequently have its desired sensations quickly moving from local maxima to local

maxima. We have therefore to focus learning on recent sensations, and focusing

learning on past or recent sensations is exactly the role of the time scales that we

have developed in Chap. 4.

Therefore we raised the learning rate ηtk to the power of γ, with γ taking values

between 0 and 1, in order to make the recent sensations have more weight than the

old ones in the learning of the desired sensations:

S
γ,k
t = S

γ,k
t−1 +


ek.Wbt

W̃ bk
t




γ (
St − S

γ,k
t−1

)
. (6.6)

sensation.
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The smaller γ, the larger the learning rate is, and the faster the desired sensations

change; therefore, the desired sensations oscillate between local maxima depending

on the current sensations (exploration) of the agent, as depicted in Figure 6.5. The

Figure 6.5: Oscillation of a desired sensation between local maxima. While an agent
explores the sensory-space, its desired sensations move from local maxima to local
maxima crossing local minima.

main problem with partly forgetting the past is that the robot will not be able

to remember a sensation associated with a high well-being if it did not experience

it recently, it is especially a problem for the imprinted sensation. However, de-

sired sensations oscillate between local maxima, and avoided sensations oscillate

between local minima; therefore, if the robot memorizes the extreme values (Ŝ) of

the successive desired and avoided sensations (see Figure 6.6 desired sensation), it

can remember two sensations—minimum and maximum values—anticipating a high

well-being and two sensations anticipating a low well-being. We will see in the next

chapter how we could make the agent memorize an unlimited number of sensations

of each kind.

Using the Eq. (6.3) the agent was able to memorize the sensations (Sk
t ) associated
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Figure 6.6: The desired sensations strictly oscillate between the two extreme re-
wards. Learning the variation’s limits of the oscillations makes the agent learn the
sensations associated with the extreme rewards.

with extreme values of the well-being (low well-being with k < 0 and high well-being

with k > 0); with the same principle, we will make the agent learn the extreme values

of the desired sensations. Since there is a parameter k to control which extremum

(high or low) of the well-being is considered, we use a new parameter l to control

which extremum values of the desired sensations to consider (minimum values with

l < 0 and maximum values with l > 0, respectively left and right extremities in

Fig. 6.5). Equation (6.7) presents how the extreme desired and avoided sensations

(Ŝγ,k,l
t ) are computed:

Ŝ
γ,k,l
t = Ŝ

γ,k,l
t−1 +

el.S
γ,k
t

S̃
γ,k,l
t

(
S

γ,k
t − Ŝ

γ,k,l
t−1

)
(6.7)

with S̃
γ,k,l
t = S̃

γ,k,l
t−1 + el.S

γ,k
t ; S̃γ,k,l

0 = el.S
γ,k
0 .

Figure 6.7 illustrates learning of extreme desired sensations (k > 0) and Fig. 6.8

illustrates learning of extreme avoided sensations (k < 0).
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Figure 6.7: Extreme values of a desired sensation (k > 0). Values for l are l < 0 at
the leftmost extreme, and l > 0 at the rightmost extreme.

Figure 6.8: Extreme values of an avoided sensation (k < 0). Values for l are l < 0
at the leftmost extreme, and l > 0 at the rightmost extreme.

6.4 Experiments and Results

We have tested this algorithm on our Koala robot that had to remember sensations

associated with reward or punishment (high or low well-being). We make2 the robot

alternatively move forward and backward, and we observe how it creates its desired

2It is hardcoded.
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and avoided sensations depending on variations of its well-being (depending on the

rewards it reaches). The experimental setup was the one depicted in Fig. 6.6; the

sensory input (S) used was its frontal distance sensor measuring its distance to a

caretaker3 at the front used as a landmark. The right distance sensor was used to

detect rewards—an object located in close proximity within the range of its right

sensor provides high value of the well-being of the robot. Figure 6.9 shows the well-

being of the robot as a function of the sensation of distance to the landmark (e.g.

the caretaker).
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Figure 6.9: Value of the well-being (Wb) as a function of the sensation (S) for
different pass of the robot. We see that the maximum of well-being is for sensations
of distances of about 75 and 425 (not in spatial units, but values given by the
sensors), which correspond to the presence of the two objects (rewards) on the right
of the robot.

3We used different types of stimuli as “caretaker”, notably humans and cardboard boxes.

100



Complex Sensations CHAPTER 6. COMPLEX DESIRED SENSATIONS

In Fig. 6.10 we can observe how the desired and avoided sensations of the robot

evolve with time and experiences of the robot. We compute the desired sensations

Sγ,k with k = +400; γ = 0.9, and the avoided sensation Sγ,k with k = −400; γ = 0.9.

If k or γ differ, the curves are more or less smooth but qualitatively similar. The

desired sensation (in solid line) oscillates between sensations 75 and 425, which

correspond to the presence of the reward (object on the right of the robot). The

avoided sensation (in dash line) strictly oscillates between the two rewards at the

beginning and then around them, which indicates that the robot should avoid to be

either between the objects providing reward or behind them.

Figure 6.10: Evolution of the current sensation (St) of the robot in dotted line,
the desired sensation (Sγ,k with k = +400; γ = 0.9) in solid line and the avoided
sensation in dashed line (Sγ,k with k = −400; γ = 0.9). The desired sensation
oscillates between sensations 75 and 425, which correspond to the presence of the
reward. The avoided sensation oscillates strictly between the two rewards at the
beginning and then around (farther) them, indicating that the robot should avoid
to be either between or around the objects providing the rewards.
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Desired and avoided sensations are constantly changing; therefore, the robot

cannot remember anything for a long time. However, the next step for the robot is

to memorize the extremes of these desired and avoided sensations. We present in

Figure 6.11 the evolution of these extremes (Ŝγ,k,l) for the same values of k and γ

and −0.1 and 0.1 for l (l is small because the amplitude of the sensation is large);

however, this does not have effect on the qualitative results. The extremes of the

avoided sensations quickly converge (almost at the first cycle) to the sensations

corresponding to the rewards (sensations of 75 and 425). The extremes of the

avoided sensations correspond at the beginning to the sensation obtained when the

robot is located between the rewards, and at the end to the sensation obtained when

it is located behind the rewards. This means that the robot should avoid staying

between or behind the objects providing reward, since in those two cases no reward

is obtained.

6.5 Conclusion and Perspectives

We have presented the first basic principles and implementation of what can be

regarded as a new approach to reinforcement learning, where agents can learn to

anticipate rewards and punishment using their sensory inputs especially in the real

(continuous) world.

Doya, for example, proposed to approximate the reward function in order to

process reinforcement learning in continuous time and space (Doya 2000), but we

argue that it is enough to only memorize where the rewards are even if the robots

cannot know what are the values of these rewards. The advantages of our approach

are that the agent memorizes only the relevant information and does not need much
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Figure 6.11: Evolution of the extreme values (Sγ,k,l) of the desired and avoided
sensations using the same values of k and γ than in Fig. 6.10, but with a value of 0.1
for l in the curves at the top, and −0.1 in the curves at the bottom. The extremes
of the desired sensations are in solid line and the extremes of the avoided sensations
are in dashed line.

memory or computer time; it does not use notion of events or discretization, and

this strongly reduces the effects of a priori choices and decreases learning time. The

agent cannot memorize precise situations: the exact highest reward (k would need

to be +∞), or the exact first situation (γ would need to be +∞), etc. However,

when we work in the real world with robots we are not interested in exact particular

situations, but in situations which last for a while or happen often. The difficulties

are to define how long is a “while” and how often is “often” and actually, there

are no definite right answers. We have addressed already this issue in Chap. 4

for the time scale, and we have made the agent memorize many desired sensations

with many different time scales. We propose to apply the same process here and

make the agent learn many desired sensations, some where the value of the reward
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is important, some where the familiarity is important, some where the recency is

important, etc. Therefore, to make the agent learn all these combinations of desired

sensations we use different variables Sγ,k,l with different combinations of the values

of γ, k, and l.

The agent still needs to decide which of these desired sensations it should con-

sider: should it reach a desired sensation associated with a high well-being (k > 0)

or avoid a desired sensation associated with a low well-being (k < 0)? Should it give

more importance to the value of a reward or to its probability ? We have already

proposed a solution in Chap. 4 to select the time scale of a desired sensation using the

internal state of the agent. In the next chapter, we will discuss how to make more

complex selections among desired sensations driven by three parameters (γ, k, l).

We will also discuss the treatment of multidimensional dependent sensations as we

have already dealt with the case of the independent ones in Chap 4.
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Chapter 7

Discussion

In this chapter, we first present our ideas and proposals to go further on different

specific points of the thesis and in a second part we study the links of our propositions

with other studies, and finally we present our new Perceive, Appraise and Act (PAA)

architecture which structures and formalizes what we have done and proposed.

7.1 Going Further

7.1.1 Multiple Desired Sensations

We have shown in Chap. 6 how an agent can memorize the sensations associated to

two extreme positive and negative rewards; however, we can extend our approach

to make the robot learn many more rewards: looking for the two extreme desired

sensations in between two extreme avoided sensations and so on. We can define

several levels of desired sensations: the first one representing the limits of the avoided

sensations on the total range of sensations the agent has experienced; then inside
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these limits, the limits of the desired sensations, and inside these new limits, the

limits of the avoided sensations at the second level etc. Figure 7.1 illustrates two

levels of desired sensations in an example with three rewards.

Figure 7.1: Using hierarchical intervals between extreme desired and avoided sen-
sations, the robot can memorize many rewards or punishments. On the extreme
sensations (Ŝ), the parameters γ and t have been omitted, the signs after the pa-
rameters k, and l precise if the values of the parameters are positive or negative.
The subscript number indicates the level of the extreme sensation (here we represent
only two levels).

7.1.2 Exploration, Opportunism and Danger Avoidance

Inside the limits of the explored zone, the agent has learned the sensations it should

avoid or reach. However without external stimulation, the agent is not able to

explore and the explored zone depicted in Fig. 7.1 is restrained to its initial sensation.
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All the desired sensations (S) and extreme desired sensations (Ŝ) are equal to the

initial sensation.

We raised this issue in Chap. 5 where we showed that an agent does not only

has to learn which sensations are associated with high well-being but has also to

explore its environment in order to discover these sensations. We first proposed to

use the notion of affect measuring the familiarity and “positiveness” of the current

sensation to trigger an exploratory behavior. As soon as the agent moves too far

from the familiar and positive sensations the affect becomes low again and stops the

exploration until the current new sensation becomes familiar; this process prevents

risky explorations.

Moreover, we have shown the exploration process should be modulated by an

exploitation process inhibiting or amplifying the effect of an ongoing action if the

well-being is respectively decreasing or increasing. The use of the notion of extreme

desired sensations is therefore well adapted to directly modulating the exploration

process depending on the opportunities or sudden danger. When the well-being is

increasing, the extreme positive desired sensations (with a positive parameter k)

will change faster than the extreme avoided sensations (with a negative parameter

k). The difference between two kinds of extreme desired sensations can therefore

directly modulate the current ongoing actions, which indirectly corresponds to using

the variation of well-being as we did in Chap. 5 but in a more coherent way with

the extreme desired sensations.

When the agent is in a safe and familiar situation (high affect) it should be eager

to explore, its openness (Op) to the world will be high and will give motivation to

continue (Mc) the exploration of sensations out of the bounds of its extreme desired

sensations. However, as we saw in the Chap. 5, exploration should be modulated by
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the variation of the well-being (pleasure P l) which can be evaluated by measuring the

difference between the extreme positive desired sensations and the extreme negative

(avoided) desired sensations. If the well-being of the explored sensation increases,

the positive extreme desired sensations becomes closer to the new sensation, the

difference (P l) between extreme positive and negative desired sensations is positive,

and the motivation to continue (Mc) increases (see Fig. 7.2). On the contrary,

if the well-being of the explored sensation decreases, the negative extreme desired

sensation becomes closer to the new sensation, the difference (P l) between extreme

positive and negative desired sensations is negative, and the motivation to continue

(Mc) decreases (see Fig. 7.3).

Figure 7.2: When the explored sensation S is associated to high well-being, the plea-
sure P l is positive which increases the motivation (Mc) to continue the exploration
(Op).

7.1.3 Multiple Dimensions

In this thesis, we have purposely limited our study to one dimension in order to

simplify and clarify what we are studying. However, for most real problems, it

is necessary to deal with multiple dimensions or modalities. Although this is not

an issue for independent sensations and actions, this becomes complex when the
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Figure 7.3: When the explored sensation S is associated to low well-being, the plea-
sure P l is negative which decreases the motivation (Mc) to continue the exploration
(Op). It may even stop the exploration.

different modalities of sensations and actions are correlated. In Chap. 4 we have

shown an example with two independent dimensions. The desired sensation S was

a vector of two components, the measure of the distance on the left side of the robot

s0 (the average of the left sensors) and the measure of distance on the right side of

the robot s1 (the average of the right sensors). The action A was also a vector of two

components, the velocity of the left wheel a0, and the velocity of the right wheel a1.

The robot was able to follow a care-taker in a two dimensional space because the two

sides of the robot can be independent and work in parallel. For example, if the robot

is too far from the person on the left side (s0) it activates its left wheel (positive a0)

and better follows the care-taker. Independently the same process happens on the

right side and the resulting behavior is coherent as the robot turns to follow or avoid

the care-taker in a same way that a Braitenberg vehicle (Braitenberg 1984) follows

or avoids a light—with the great advantage in our case that the robot decides itself

to follow or not. Figure 7.4 illustrates the fact that the two components (s0 and s1)

of the desired sensation (S) have independent values.

However, in most cases, the dimensions are not independent, the ideal value of
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Figure 7.4: When the dimensions are independent, each component of a desired
sensation has a value independent of the other component of the desired sensation.

a component of a desired sensation on one dimension depends on the components

of other dimensions. Let us imagine an agent evolving in a 2D world with zones

of reward and punishment. The components of the sensation of the agent are the

coordinates of the agent in the world. The well-being increases when the agent is in

zones of reward and decreases when it is in zones of punishment, see Fig. 7.5.

Figure 7.5: The agent has to learn where the zones of reward (in red with a plus sign)
and punishment (in blue with a minus sign) are. The components of the sensation
are the coordinates of the agent (S = {s0, s1}).

In this case the component of a desired sensation for example the abscissa de-
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pends on the ordinate; for a same abscissa the agent can have a reward or a pun-

ishment depending on the ordinate. As we did in Sec. 7.1.1 we propose to bound

the zones of reward and punishment using extreme desired sensations for each pos-

sible combination of extreme values of desired sensations on each dimension. In one

dimension, we bounded each desired sensation with two extreme desired sensations

defining the minimum and maximum values of the desired sensation using respec-

tively negative and positive values of l. In multidimensional spaces, we bound each

desired sensation with extreme desired sensations defined by all the combinations of

minimum and maximum values for each component of the desired sensation.

In our 2D example, we use two parameters (l0 and l1), one for each dimension and

for each desired sensation (Sk
t ) we define four extreme desired sensations with all the

combination of negative and positive values of l0 and l1 (
̂

S
kl−

0
l−
1

t ,
̂

S
kl−

0
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1

t ,
̂

S
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S
kl+
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t ).

The learning rate of an extreme desired sensation is modulated by the contribution

of the desired sensation on each dimension. Therefore, the final learning rate is the

product of the learning rate for each dimension (ηk,l0
t , η

k,l1
t ), see Eq. 7.1.
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and

S̃
k,li
t = S̃

k,li
t−1 + eli.s

k
i,t ; S̃k,li

0 = eli.s
k
i,0 (7.3)

In our 2D example, each desired sensation is bounded by four extreme desired

sensations which define a quadrilateral delimiting a zone of reward or punishment,

see Fig. 7.6. We use eight extreme desired sensations defining a hexahedron in three
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Figure 7.6: Quadrilaterals created by extreme desired sensations bounding zones of
reward and punishment.

dimensions, 16 extreme desired sensations in four dimensions and so on. It may

not be sufficient to describe all the possible distributions of zones of reward and

punishment, therefore, as we proposed in Sec. 7.1.1, we can refine the intersections

of the different zones using a second level of extreme desired sensations. However,

once we have defined these zones using extreme desired sensations, the agent needs

to evaluate in which zone it is. In two dimensions, we can compute the surface of

the triangle defined by the current sensation and two extreme sensations using the

half of a mathematical function: the determinant see Fig. 7.7.

The determinant is a function that can be applied in any number of dimensions
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Figure 7.7: Surface between the current sensation (S) and two extreme desired
sensations (Ŝ) evaluated using the determinant.

and the sign of the determinant can be used to specify if a sensation is inside or

outside a zone. Figure 7.8 illustrates a one dimensional function evaluating the

distance of a sensation to a zone defined by extreme desired sensations. Figure 7.9

illustrates a two dimensional case, the 2D function is the sum of the exponential of

the determinant computed for each side of the quadrilateral delimiting the zone.

Figure 7.8: One dimensional function determining if a sensation is within a interval
of extreme desired sensations (Ŝ).
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Figure 7.9: Two dimensional function determining if a sensation is within a quadri-
lateral of extreme desired sensations (Ŝ).

7.1.4 Complexity

The first limits we could see with this architecture is the increasing complexity with

the number of dimensions. Actually, we need to compute a large number of desired

sensations and extreme desired sensations with multiple parameters. However, many

problems in artificial intelligence concern navigation in two dimensions or movements

of effectors usually arms or legs with about five degrees of freedom. The number

of extreme desired sensations needed to bound the desired sensations is 2n where

n is the number of dimensions, and the calculation of the determinant needs n3

operations. Therefore, we need 2nn3 operations in function of n the number of
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dimensions. For two dimensions, this represents 24 operations1 , which is not a

problem even for small processors; for 5 dimensions, this represents 4000 operations

which it still accessible. For 10 dimensions, this represents about a million operations

which is still possible with modern computer, as it is about the number of operations

needed to treat classical images of one megapixel.

We guess that the practical limits are around 10 dimensions, however, we saw

we may not need a very high number of dimensions, and there are possibilities to

reduce them. For example, by alternatively freezing degrees of freedom (Lungarella

and Berthouze 2002), using only the main significant dimensions with principal

or independent component analysis (PCA or ICA) (Calinon and Billard 2005), or

setting a priori the dimensions which can be considered independently.

An other issue is to store and manage the multiple desired sensations and extreme

desired sensations varying on different axes (γ, k, l, level, ...). However, even if the

notation we used is quite complex, the multiple axes are easy to handle using the

notion of hypercubes that we have defined in Appendix C

7.1.5 Imitation

In Chap. 5 we have proposed a new vision of low-level imitation, where imitation is

interpreted as an amplification of novelty and not a reduction of difference between

the actual sensations and what is expected (Andry et al. 2003, Demiris and Johnson

2003). By novelty we mean, the difference between the actual sensation and familiar

sensations. We have illustrated it with a simple behavior where the robot had to

move forward and backward in symmetry with the experimenter. However, this

1An operation can correspond to many basic instructions, but this number of instructions does
not depend on the number of dimensions.
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behavior may not be interpreted as low-level imitation, and a behavior of following

someone can be interpreted as low-level imitation (Hayes and Demiris 1994) whereas

we interpreted it as a behavior of seeking for stability.

The ambiguity comes with the fact that it depends on which sensation we are

referring to. If we consider the absolute position of the robot, in the room, following

the experimenter can be seen as imitation, as it performs the actions changing its

sensation of position in the room. If we consider the sensation coming from the

frontal sensors of the robot (vision or sensation of distance) following the experi-

menter makes it have the same sensation and therefore it is seen as a behavior of

seeking for stability. Learning and focusing on the relevant sensation may be an

issue but at the same time, it can explain why we do not imitate the same thing all

the time, and be a good way to move between nests of learning (Kaplan and Oudeyer

2004). Once something is familiar the agent will stop amplifying it, therefore the

agent will stop imitating, and try to explore by focussing on other sensations.

In another context, imitation by amplifying novelty can be more explicit. Let us

imagine an arm acting on two dimensions, along two axes, if an experimenter creates

unexpected activity on an area of it visual field, and the agent tries to amplify this

activity, using its sensory-motor association it will move in order to create activity

in the same area, therefore it will seem to imitate the experimenter. The result

would be similar to the experiment of (Andry et al. 2003) or (Demiris and Johnson

2003) in one dimension, however, in our case the interpretation is different and we do

not need to move the camera to switch between explorative or imitative behaviors.

In all our architectures, we have hardcoded the sensory-motor association because

in animals and even humans, many low-level behaviors are innate. Moreover, we

assumed that during the explorative behavior classical learning methods allow the
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agent to learn the associations between actions and sensations. Actually, in recent

work done with Antoine Hiolle (Hiolle, Cañamero and Blanchard 2007) our Koala

robot was able to learn which actions to execute in order to follow an experimenter.

At the beginning the robot may be wrong (e.g. move backward instead of forward

when the experimenter is moving away) but after some trials and errors, it executes

the appropriate actions.

We have exposed our main ideas to go further and to fix some of the technical

issues our architecture may raise. Now to resume our chapter and to address the

points we have just raised, we propose a new global architecture called the Perceive,

Appraise and Act architecture improving the Per-Ac (Gaussier and Zrehen 1995)

model.

7.2 Perceive, Appraise and Act Architecture (PAA)

7.2.1 “Perceive”

We have proposed to not define events in advance (i.e. we do not cluster sensations)

therefore the agents have to categorize events by themselves. This process is similar

to self organizing maps and it is in fact a particular case but here all the points

(desired sensations and extreme desired sensations) are initialized with the same

values (the first sensation) and the differences in their evolution are only due to the

differences in their parameters γ, k, l, level, ..., not in their initialization.

Therefore, one of the main part of the architecture is the one which categorizes

sensations. Using many extreme desired sensations this structure defines many zones

of sensations associated with high or low well-being, high or low familiarity, more

or less recency ... This structure called the “Perceive” module which defines zones
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of sensations, allows the agent to interpret its current sensation and then perceiving

its environment. The generated perception can then be sent to the “Act” module

to generate an appropriate action using sensory-motor associations.

7.2.2 “Act”

The “Act” module uses the sensory-motor associations to generate actions corre-

sponding to the perception sent by the perceive module. The association of the

perceive and act modules (see Fig. 7.10) is equivalent to a Per-Ac architecture as it

is defined in (Gaussier and Zrehen 1995). With this approach, the perception of an

Figure 7.10: Scheme of a Per-Ac architecture.

object through the sensations is characterized by the set of actions an agent does in

presence of the object. For example, the perception of an object by an agent which

has to move to the object corresponds to the set of associations between sensations

produced by the presence of the object and the actions the agent has to execute.

“Perception [is seen] as a dynamical sensory-motor attraction basin” (Maillard et

al. 2005).

7.2.3 “Appraise”

The Per-Ac architecture allows agents to react to stimuli as if they recognized ob-

jects even if they do not have high level processes. Chapter 3 illustrates how the
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behavior of a robot following the movement of a rotating drum can be implemented

with a Per-Ac architecture. The Perceive module generates the perception of the

unwanted movement of the drum by evaluating the difference between the current

visual sensation of movement and the goal sensation, which is in this case to not

have sensation of movement. Therefore the Act module receiving the undesired per-

ception of movement sends commands to the wheels in order to follow the movement

of the drum and therefore inhibits the visual sensation of movement.

However, we have shown in Chap. 4 and 5 that the goal sensation should not be

constant, but should depend on the history of the agent. We have defined the notion

of desired sensations allowing an agent to learn which sensations generate high well-

being, or at the opposite low well-being, which ones are familiar and which ones

are recent, etc. Therefore, depending on which desired sensation the agent uses as

goal sensation, the agent can generate many different perceptions, but as we have

already seen, in order to act, the agent has to select a desired sensation to reach or

avoid (in the particular case of avoided sensations predicting low well-being).

We have already proposed several ways of selecting a desired sensation, especially

using the notion of comfort composed of well-being as endogenous factor and affect

as exogenous factor. Even once a desired sensation has been selected, the actions

executed to reach this sensation can be more or less activated (as we did in Chap. 4)

or even be inverted (as we did in Chap. 5 for exploration or imitation). Therefore

to complete the Per-Ac architecture, with the elements we have developed we need

to add a new module which will evaluate or appraise the situation in order to select

an appropriate desired sensation and to modulate the action. We therefore present

the global Perceive, Appraise and Act (PAA) architecture Fig. 7.11.
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Figure 7.11: Scheme representing the global Perceive, Appraise and Act (PAA)
architecture we have developed.
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Chapter 8

Summary and Perspectives

‘It’s hard to explain,’ said Mr Anderson , ‘but it will be easy to see. The

dog will really love you. Robutt [a companion robot] is just adjusted to

act as though it loves you.’

‘But, dad, we don’t know what’s inside the dog, or what his feelings are.

Maybe it’s just acting too.’ — Isaac Asimov in “A Boy’s Best Friend”

(1974).

8.1 Summary

In this thesis, we have explored ways of increasing the autonomy of agents, and we

have oriented our research towards imitation as experiences suggest that it is a great

way of increasing autonomy. In animals, humans or robotics, imitative behaviors

are useful for acting, learning and communicating. We have explored in Chap. 2

different studies carried out on imitation and correlated developed theories. Many
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architectures have been developed to better explain imitation processes in nature

and have been implemented to increase quality (essentially in terms of reproducing

relevant actions with accuracy) of imitation in robotics. Nevertheless, for agents to

be autonomous in their choices of actions for survival, learning, communication and

accomplishment of specific tasks, we need architectures where imitative behaviors

are one of the components, which must be well integrated with the other necessary

behaviors like seeking for stability, exploration or exploitation. Moreover, the use of

imitative behavior (i.e. whether to imitate) should also depend on the interactive

partner as some “models” may be “noxious”, or bad teachers.

We have adopted the animat approach to artificial intelligence (Guillot and

Meyer 2001), a bottom-up approach which seeks to understand animal or human

intelligence by simulating and understanding animal-like behavior at a simple level

from which functionality and complexity are added incrementally (Wilson 1991).

We took inspiration on what is observed in nature for two reasons, a) it gives us

good hints to solve our problems, and b) attempting to reproduce a natural phe-

nomenon helps us to understand it better. In nature, emotion and affect have strong

influences on imitative behaviors and reciprocally, imitation and synchronization in-

fluence affect and emotion (Heyes 2001, Trevarthen et al. 1999, Hatfield et al. 1994).

Therefore our idea has been to study how the notion of affect can be used to mod-

ulate imitative behavior in robotics as seems to be the case in nature.

We first developed a programming framework appendix. C in order to be able

to more easily design, monitor and adapt architectures, even during ongoing experi-

ments. This was essential as we use a “bottom-up” approach. We want to be able to

take advantage of opportunities coming from unexpected properties that otherwise

would be considered “bugs” without a close and dynamic interaction between the
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physical environment and the internal architecture of the robot.

Then in Chap. 3 we proposed our first architecture, using our “bottom-up” ap-

proach, to allow a robot to increase its synchronization during a task of following a

moving target. However, in addition to synchronization being important for emo-

tional contagion (Hatfield et al. 1994) we still had the issue of making a robot

autonomously decide who and when to imitate.

We wanted to use affect to modulate imitative behaviors, and a possibility could

have been to create affective bonds between agents and to modulate imitation de-

pending on the value of these affective bonds. However, it would have not fit with

a “bottom-up” approach which precludes high-level or abstract cognitive functions

and does not have notion of “others”. We have therefore proposed in Chap. 4 a solu-

tion, based on biologically plausible rules, to model affective bonds without cognitive

function of high level. This is based on learning what we have defined as “desired

sensations”. These represent the raw inputs from the sensors (sensation) that an

agent should try to reach. In trying to reach these desired sensations, our robot

has reproduced a behavior observed in nature known as “imprinting phenomenon”

where newborn birds follow the first thing (usually the mother) they see (Lorenz

1935). We then improved the process to allow the desired sensations to be modi-

fied depending on stimuli considered as rewards. We introduced the use of multiple

simultaneous time scales in the learning process of the desired sensations allowing

an agent to continuously pass from an “imprinting” behavior to a more classical

learning behavior. This follows the observations of (Bateson and Barron 2000) who

noticed that even though imprinting and learning are different processes they are

still correlated. However, we have explained that without external stimulation the

agents will not explore the environment and therefore will not learn.
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In the following chapter, Chap. 5 we proposed to generate explorative behaviors

using ideas based on works such as (Kaplan and Oudeyer 2004, Steels 2004, Oudeyer

and Kaplan 2004). We have started with the issue of exploration rather than im-

itation for two reasons: a) we wanted to implement imitative behavior within the

framework of other behaviors, and for an autonomous agent, learning and thus ex-

ploring is probably more important than imitating; b) we decided that within our

approach, explorative behavior is a prerequisite for imitative behavior. We have also

shown that it can be useful that an agent can act in order to amplify the variation

of sensation if the agent receives a reward and inversely, act in order to reduce this

variation if the agent receives a punishment. Similarly, acting in order to amplify

the variation of sensation during exploration is a way of increasing the explorative

process, whereas acting in order to decrease the variation decreases the explorative

process. Therefore we used affect and the need of exploration to modulate the ex-

plorative process by acting in order to amplify or reduce the variation of sensation.

The important point, is that if an agent induces a variation of sensation to another

agent, depending on its affect, the second agent amplifies this variation and produces

low-level imitative behavior or inhibits this variation and avoids interaction—this

may be a step toward turn-taking. We therefore proposed that low-level imitation

can be seen as an emergent property resulting from the balance using affect of behav-

iors such as seeking for stability, exploration and exploitation. Moreover, with this

method imitative behaviors can be integrated within architectures providing other

useful behaviors for autonomous agents and imitative behaviors are modulated by

affect, as it is the case in nature (Heyes 2001, Hatfield et al. 1994). It is useful

as agents should only imitate other agents they had good experiences with—they

should not copy “bad” teachers.
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One limitation is that this architecture can only handle simple cases, for example

an agent can memorize only one kind of sensation. However in Chap. 6 we have

extended our work to show some possible similarities with reinforcement learning,

and we have proposed to use this architecture to make agents learn to distinguish

between sensations associated with rewards and punishments.

Finally, in Chap. 7 we have proposed many solutions non-implemented yet to

improve our architecture, especially in dealing with several rewards and punishments

in several dimensions.

8.2 Perspectives

The idea that imprinting should be used in order “to learn new goals and ideals” has

also been proposed by Marvin Minsky in 2006 (Minsky 2006, pp42). He came to this

idea by using a philosophical approach whereas we came to the same idea in order

to solve technical problem in robotics. Therefore, we will study how far, and useful

parallel we can make between philosophical works and our robotics work. A first

point is that “caretaker” does not always define exactly what we refer to; an agent

can be imprinted with other agents which do not necessarily take care of it—even

though it is generally the case in our epigenetic approach . Minsky encountered

the same difficulty, and thus proposed to define a new word corresponding to this

property: “imprimer”. His definition is that “an imprimer is one of those persons

to whom a child has become attached”.

We would also like to develop the process of selecting the desired sensations—

“Appraise” module of the general architecture presented in the discussion—as it a

keystone of our architecture. Moreover, we can imagine more desired sensations
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with more parameters. One of these parameters should be the potentiality of the

agent to reach a desired sensation. Agents have different empowerment in different

situations, therefore, they should also take account of it. We list the four main

notions the Appraisal module should take into account to select a desired sensation

or to modulate actions:

1. The valence associated with the desired sensations (corresponding to positive

or negative values of the parameter k),

2. The potentiality or empowerment to reach the desired sensation (our architec-

ture does not handle yet this parameter),

3. The arousal which modulateq the amplitude of actions (corresponding to Mc),

4. The familiarity or predictability of the sensation (corresponding to small values

of the parameter k).

Psychological notions of emotion seem well adapted to help us understand and

develop more efficient Appraisal modules. This is especially the case of the appraisal

theory of emotion developed by Scherer (Scherer 2001, Scherer 1984). Moreover,

although the emotional space is usually represented using two components, valence

and arousal, a recent study (Roesch, Fontaine and Scherer 2006) shows that we can in

fact extract four main components to better describe the emotional space (valence,

potency, activation, and unpredictability) see Fig. 8.1). This is very important

because they correspond to the main notions we need to select desired sensations.

Therefore more studies on these works may help us improve our architectures and

maybe we could contribute to better understand and model psychological emotional

processes.
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Figure 8.1: Four main components describing the emotional space (Roesh, Fontaine
and Scherer 2006) reproduced with permission. Interestingly, these components
correspond to those we need to select desired sensations.

Another domain we would like to develop is human-robot interaction. Although

the behaviors that we have implemented are simple, it would be interesting to see

if our architecture can be useful to develop companion robots (Dautenhahn et al.

2005) or therapeutic robots (Billard et al. 1998) as the possibility of adaptation to

the interacting human should be a great advantage.

In the discussion we have stressed the fact that our architecture has some inter-

esting properties to solve problems related to reinforcement learning, therefore we

should do more work to improve these capabilities and do quantitative comparisons

with classical algorithms used in reinforcement learning problems.

Finally, we would like to further develop our software, especially the user inter-

face in order to make it more usable.
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The main scientific points to remember are:

• the possibility to make agents simultaneously learn at different time scales,

• the new vision of low-level imitation—where low-level imitation is seen as

amplification of novelty—,

• and the use of affect in order to generate and balance behaviors of seeking for

stability, exploration, exploitation and imitation.
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Glossary

affect (Af): immediate subjective (based on exogenous factors, external stimuli)

evaluation of a situation (expectancy of well-being) without direct or logical

explanation.

agent: human, animal, or actor of a simulation, which needs to act in its physical

or virtual environment to keep its internal states close to ideal values.

apathy (Ap): lack of motivation to stop or continue an ongoing action.

avoided sensation (Sk−): sensation associated with low well-being as opposition

to a positive desired sensation; agents should avoid them.

behavior of seeking for stability : behaviors where agents act in order to min-

imize variations of their sensation.

comfort: global evaluation of the “goodness” of a situation based on the evaluation

of the exogenous factors (affect) and endogenous factors (well-being).
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desired sensation (S): sensation associated with high or low well-being, by ex-

tension it can design a positive desired sensation.

extreme desired sensation (Ŝ): bounding limit of the value of a desired sensa-

tion.

goal sensation: selected desired sensation to reach .

homeostatic control: actions are driven in order to keep some state in a range of

values around a ideal value.

hypercube: generic representation of variables, vectors, matrix, cubes etc. with as

many dimensions as we need.

motivation to continue (Mc): motivation to continue and amplify an ongoing

action, or inversely (when negative) to stop an ongoing action.

openness to the world (Op): motivation to interact with the environment.

perception: interpretation of the ongoing action or affordance raised by a sensa-

tion.

pleasure (P l): value representing the variation of comfort.

positive desired sensation (Sk+): sensation associated with high well-being as

opposition to a avoided sensation; agents should try to reach them.

positive reward: stimulus increasing well-being.

punishment: stimulus decreasing well-being, as opposition to a positive reward.
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reward: stimulus increasing or decreasing well-being, by extension it can design a

positive reward.

sensation (S): set of raw data coming from the sensors.

well-being (Wb): value representing the proximity of internal states of an agent

to their ideal values.
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Publications and Dissemination

Several contributions developed in this thesis have published in, or submitted to,

relevant conferences and journals. We have also disseminate our works on TV,

newspaper and radio.

B.1 Publications

Chapter 3 .

• Blanchard, A.J. and Cañamero, L. (2005). Using visual velocity de-

tection to achieve synchronization. In Y. Demiris, K. Dautenhahn,

and C.L. Nehaniv (Ed.), Proceedings of the AISB’05 Third International

Symposium on Imitation in Animals and Artifacts. Hatfield, UK.

Chapter 4 .

• Blanchard A.J. and Cañamero L. (2005). From Imprinting to Adap-

tation: Building a History of Affective Interaction. Fifth Interna-
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tional Workshop on Epigenetic Robotics (EPIROB05), Nara Japa, Lund

University Cognitive Studies, vol. 123, pp. 23–30.

• Blanchard A.J. , Cañamero L. and Nadel, J. (2006). Attachment

Bonds for Human-Like Robots. International Journal of Humanöıd

Robotics. Vol. 3, Issue 3 (September 2006) pp. 301–320

Chapter 5 .

• Blanchard, A.J. and Cañamero, L. (2006). Modulation of Exploratory

Behavior for Adaptation to the Context. Biologically Inspired

Robotics (Biro-net) in AISB’06: Adaptation in Artificial and Biological

Systems, Bristol, UK, Vol. 2, pp. 131–139

• Blanchard, A.J. and Cañamero, L. (2006). Developing Affect-Modulated

Behaviors: Stability, Exploration, Exploitation or Imitation ?

Proc. of the 6th Intl. Wksp. on Epigenetic Robotics (EPIROB06), Paris,

France.

• Blanchard, A. and Cañamero, L. (2007). Développement de Liens Affec-

tifs Basés sur le Phénomène d’Empreinte pour Moduler l’Exploration et

l’Imitation d’un Robot. Review Enfance, N. 1/2007, pp. 35–45.

Chapter 6 .

• Blanchard, A.J. and Cañamero, L. (2006). Anticipating Rewards in

Continuous Time and Space Without Discretisation. Third Work-

shop of SAB on Anticipatory Behavior in Adaptive Learning Systems

(ABiALS06), Roma, Italy.
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Chapter 7 .

• Hiolle, A, Cañamero, L. and Blanchard, A.J. (2007). Discovering the

Caretaker: A Developmental Approach. Affective Computing and

Intelligent Interaction, (ACII07), submitted.

B.2 Dissemination

TV .

• Programando emociones. (January 2007). Redes, TVE. National

Spanish TV.

• British Satellite News (March 2007) English Satellite TV.

• Discovery Channel (to be diffused) International TV.

Newspapers .

• Emotion robots learn from people. (2007). BBC News 24.

• Audio Slideshows. (March 2007). St Alban Observer. Local newspa-

per.

Radio .

• Leading edge. (1st March 2007) BBC radio 4 National English Radio.
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Programming framework

C.1 Introduction

Working with real robots using a bottom up approach makes us solve problems or

take advantage of properties of the physical world. We need to see exactly which

are the properties of the behavior coming from the physical parts of a setup and

the properties due to software and architectures. All architectures are therefore

implemented using software that we have developed to interface with different kinds

of robots and to provide useful features to analyze and modify the architectures in

real time.

We can summarize our different needs as follows. The software has to:

1. be fast and light to be able to compile in small processors, for embedded

robotics;

2. be very dynamic in order to quickly change parts or parameters of an architecture—

setup in robotics is time consuming;
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3. allow us to easily check internal states of an architecture. Wrong behaviors do

not always come from wrong architectures; in robotics many problems occur

for technical reasons. For example, low battery, light changing conditions,

interferences are the kind of problems I met during my experiments;

4. easily interface with robots, sensors, effectors and simulators;

5. analyze behaviors and store events from experiments.

We then studied different software or languages we can use to implement our ar-

chitectures noticing the advantage and inconvenience of each one. Some were not

stable or finalized when I started my PhD work but it is interesting to know and

understand the possibilities, and prepare future work.

C.2 Existing Software and Languages

C.2.1 Statistical Software (R and Matlab)

R (R Development Core Team 2005) and Matlab (www.mathworks.com) are very

interesting because they are easy to code and offer many interesting libraries for

analyzing data (generation of graphs and statistical analysis) or controlling agents.

However, they are slow, since they are interpreted languages, and not adapted at all

for real-time control. For example, they are slow to draw a graph and according to

our third request in Sec. C.1, we need to be able to check the internal values of an

architecture in real time.

136



Programming framework APPENDIX C. PROGRAMMING FRAMEWORK

C.2.2 Eyes-web

Eyes-web (www.eyesweb.org) is a recent project developed by the InfoMus Lab in

Genova (Italy). Its main interest is to graphically display architectures by applying

different filters and functions on data coming from different inputs like microphones,

cameras, keyboards, etc. These architectures can be described in a text file in

the universal xml format or using a graphical user interface. If the functions or

filters we need do not exist we can program them in C++ and include them in

our architectures. The problem is that there is no interface to control robots, and

eyes-web only works on Microsoft Windows. Moreover, the resulting architecture

cannot be embedded in a robot.

C.2.3 Leto and Promethe

Leto and Promethe (perso-etis.ensea.fr/˜andry/promethe/index en.html) are pro-

gramming frameworks written in C for linux by the neuro-cybernetic group of ETIS

in Cergy (France) allowing users to respectively design and simulate neural networks.

They provide several neural groups that we can reuse and we can also program our

own neural groups in C. Moreover several devices such as a video-cards, serial ports,

Koala robots (www.k-team.com), etc. can be controlled. The main problem of this

software is that it is still in development, it is complex and difficult to tune to our

own needs. Moreover, it only works on linux even if it is quite easy to adapt to

other platforms because it is written in plain C and uses a multi-platform graphical

library GTK (www.gtk.org). The code cannot be embedded in a robot and the sep-

aration between design and simulation make it impossible to dynamically modify an

architecture during an experiment.
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C.2.4 URBI

URBI (Universal Real-time Behavior Interface, www.urbiforge.com) is a recent inter-

esting solution to interface robots. It is not adapted to design complex architectures

and cannot be used alone; however it is an interesting option that complements any

robot controller in order to provide a good generic interface with different kinds of

robot. It can treat commands sequentially but it is especially well adapted to work

asynchronously with a good management of events. Although its functions are lim-

ited it is very suitable to link functions with other languages like C, java or matlab

...

C.3 Our software

C.3.1 Language

All software presented above have interesting features; however, none of them really

suits our needs enumerated in section C.1. To implement, develop and test our

architectures, we will therefore develop our own program. In order to retain the

pre-existing interesting features and not spend too much time in reprogramming

them we tried to make our program as generic as possible for three main reasons.

1. Reusing already existing code

2. Integrating our code in other existing programs

3. Making our programs work on various platforms and systems (robot environ-

ments are usually specific).
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For almost all processors and systems, there exists a C compiler which is very

well optimized. This is the case of the robots like Hemisson and Koala (www.k-

team.com), Lego, AIBO, etc. Moreover all the previously mentioned software is

easy to interface with C programs and many libraries exist in C. Therefore, we have

programmed the basic modules of our application in plain ANSI C, which makes it

compile everywhere without needing virtual-machine or exotic libraries. These basic

modules allow us to run any architecture everywhere but not to modify or monitor

them easily and dynamically; these modules can also access specific modules which

provide the functions for particular hardware or links to other software.

In order to modify architectures without needing to recompile the program, which

is quite a long operation, or even modify the architectures during an experiment,

we have developed a simple script language. A script can be stored in a text file,

accessed and modified through a text interface working with any simple net such

as telnet or ssh. We have also developed a more sophisticated, user friendly and

powerful graphical user interface which needs to be executed on a computer. The

overall structure is presented in Figure C.1 and in the next section we will present

our script, our basic generic data structure called hypercube.

C.3.2 Script

The role of a script interpreter is to make it possible to dynamically design an

architecture without needing to modify the source code of the program. Reading and

executing a script consume more memory and processor time. This is not a problem

with modern computers; however for complex and demanding architectures or for

small embedded systems, a fast and light program can be necessary. That is why we

use the exact syntax of the C language in the script. On top of avoiding the need
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Figure C.1: Relations between the different parts of our application

to define a new syntax which is long to design and long to learn, we can use on the

scripts the pre-compiler of the C. The main point is that it makes the architectures

easy to embed in a C program. Actually, once we have developed a script with all

the opportunities to modify it easily, we can copy it inside the source of a program,

including the basic modules, and compile it. We obtain a dense optimized program

running the previously defined architecture in the script; the drawback is that we

cannot modify it anymore without recompiling all the program.

The structure of the script is a list of functions either creating and initiating new

structures (allocating memory) or modifying the values of already created structures.

We present an example of a script reading the value of the sixteen sensors of a Koala

robot plugged into the serial port COM1 of the computer. We will explain what a

“hypercube” is in the next subsection. This script can either be loaded and executed

by the interpreter or be included in the source of a program to be compiled and
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executed on a specific system.

koala_robot = createKoala(‘‘COM1’’);

sensors = createHypercube(1, ‘‘position’’, 0, 16);

getSensor = getKoalaSensor(koala_robot, sensors);

The architectures we build are based on perception-action (Gaussier and Zrehen

1995) structures; the general principle is to receive data from sensors—values that

we call “sensations”—and process them in order to send commands to the effectors—

values we call actions. However, the more possible functions we have to describe an

architecture, the more complex it is to use and understand. It is more complex to

program because it needs more time to test and debug and the interpreter will be

more complex as well. In order to unify the processed data and limit the number of

functions to program we have defined a universal data structure called hypercube.

C.3.3 Hypercubes

What we call “hypercube” is a generic representation of variables, vectors, matrices,

cubes and so on with as many dimensions as we need. They are different from

C multidimensional arrays in many ways. Firstly, all the data of a hypercube are

stored in only one row of memory, which can save a lot of time and memory since

it does not need intermediate pointers to access other dimensions, and secondly it

reduces memory allocation. We can create multiple virtual hypercubes accessing

the same memory, but with a different access order of the components, without

reorganizing the memory structure. Moreover, virtual hypercubes can be a subset of

other hypercubes of higher dimension without copying or reorganizing the memory

structure. All the values of the hypercubes at each time step can be stored in
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hypercubes of higher dimension, then we can analyze all the history of an experiment

by printing in a file and exporting the values of these hypercubes. We can also use

this history to virtually reproduce an experiment simulating the input from the data

acquired during a real experiment. In this case interaction is lost (actions do not

affect input) but we can still study evolutions of internal states or memories with

different parameters or architectures.

In the same way that we have defined and used a generic unique data structure,

we have defined a unique generic computational function. Apart from specific func-

tions dedicated to acquire or export data respectively from and to specific hardware,

the computation is based on a unique main function recursively applying basic op-

erators on different dimensions of the hypercubes. This allows us to easily execute

statistical functions, simulate neural networks or realize visual processing (filter,

convolution). We detail this function applyUpdate because it is the main compo-

nent of the architectures. Depending on the size, the position, the number and

order of dimension of the hypercubes, different operations will be executed (scalar

product, integration, convolution, ...). The first two parameters are input hyper-

cubes, the third one is the output hypercube, the fourth one defines the operator

to apply and the last one is a number allowing us to modify the consideration of

the different hypercubes. Each operator has to be defined in the source code which

is a constraint but at the same time, it makes architectures more homogenous, and

forces the designer to reuse the same generic biologically plausible functions. The

designer can apply almost any continuous functions without needing to define a new

operator by combining the preexisting operators.

Other languages like Haskell (www.haskell.org) or Sac (www.sac-home.org) use

also multidimensional arrays to simplify programing and make more generic pro-
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grams but they are usually functional languages, and need a compiler other than

than C compiler. They can be used only for strict mathematical functions, whereas

we use less conventional functions to better suit needs for neural networks, filtering

or image processing. As we will see in the next section, using a unique data struc-

ture will greatly simplify the way we can analyze or even modify the data during an

experiment without interrupting it.

C.3.4 Graphical user interface (GUI)

The main goal of our software was to enable us to test, control and modify easily an

architecture even during an experiment. It is not possible to display and analyze a

large amount of data in text mode. That is why we have developed a graphical user

interface to use during tests, debugging, demonstrations or programming. Moreover,

we take the opportunity to have graphical capabilities to simplify and improve the

usability of the software. The drawback is that the graphical interface cannot be

used in embedded systems as it needs graphical possibilities and specific graphical

libraries.

However, we restrict the number of functions of the graphical interface to the

minimum in order to be able to fully use the core functions. The advantage of

this is to test, modify and improve the core functions: moreover, each time we do a

modification in the core functions, the consequences are immediately effective within

the text or graphical interface. As we do not want to spend too much time to realize

the graphical interface and we want to keep the possibility of using the software

on different platforms, we use a powerful and generic graphical library wxWidget

(www.wxwidgets.org) working on Windows, Linux and Mac OS.

The interface works as follows. Each component of an architecture is displayed
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in a list representing the current architecture. We can select a component of the

architecture in order to execute it once, a precise number of times or indefinitely; we

can also know how long it takes to execute it, which is very useful when optimizing.

All data (hypercubes) can be visualized and controlled in different manners: tables

of values, chars or cursors see Fig. C.2. We can decide to modify them by writing

in the tables, or by moving the cursors with the mouse. In the case of a hypercube

with only one value, the frequency of a sound can represent the value of the variable.

This is useful to interact with the robot without watching the screen and is more

appealing during demonstrations.

C.4 Conclusion

We have developed our own software to meet our specific needs: however, we have

been careful to a) not develop what already exists and b) always think about the

possibility to embed our work in different platforms and software. All the work we

will present in this thesis has been designed, tested and executed with the present

software. Among the different capabilities potentially implementable in the software,

only those relevant to this research have been actually implemented, well developed

and tested. The graphical interface has been used on Linux and Windows, and

the text interface has been used on Linux, Windows, and Mac. Moreover, we have

already built a library to interface our software with the statistical software “R”, and

this library has been used to simulate and test behaviors of several sub-architectures.

One of the possibilities brought about by the capacity to modify an architecture

during its execution time is to make the software modify the architecture itself

depend on the events happening during an experiment. We have not exploited this
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Figure C.2: Screenshot of the software running on Linux. The editor on the bottom
right corner is a basic external text editor used to write and display the script in
text mode.

possibility yet but we think it could be useful for example to automatically adapt the

number of neurons to the complexity of the input data or to simulate the growing

of a neural system. The way we thought about this software makes it very generic

and depending on further needs, we can interface the software to other projects

bringing powerful new functionalities like acquisition functions (e.g. Eyes-web) or
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brain-like computing functions (like Promethe). This can also open different ways

of cooperation: people developing architectures for robots could find it useful to

use this software and we could spread our code in the form of an open project

for example. Only the part of the software we really needed and heavily used are

robust, efficient and easy to use; few corrections, tests and completions should make

it robust and more broadly usable.
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