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Emergence is a central organizing concept for the understanding of complex sys-
tems. Under the manifold mathematical notions that have been introduced to charac-
terize emergence, the information-theoretic are of particular interest since they provide
a quantitative and transparent approach and generalize beyond the immediate scope
at hand.

We discuss approaches to characterize emergence using information theory via the
intrinsic temporal or compositional structure of the information dynamics of a system.
This approach is devoid of any external constraints and purely a property of the infor-
mation dynamics itself. We then briefly discuss how emergence naturally connects to
the concept of agenthood which has been recently defined using information flows.

1.1 Introduction

The concept of emergence is of central importance to understand complex sys-
tems. Although there seems to be quite an intuitive agreement in the community
which phenomena in complex systems are to be viewed as “emergent”, similarly
to the concept of complexity, it seems difficult to construct a universally ac-
cepted precise mathematical notion of emergence. Unsurprisingly one is thus
faced with a broad spectrum of different approaches to define emergence.
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The present paper will briefly discuss a number of notions of emergence and
then focus on the information-theoretic variants. Due to its universality, infor-
mation theory spawned a rich body of concepts based on its language. It provides
power of quantification, characterization and of prediction. The paper will dis-
cuss how existing information-theoretic notions of emergence can be connected
to issues of intrinsic structure of information and the concept of “agenthood” and
thus provide new deep insights into the ramifications, and perhaps the reason
why emergence plays such an important role.

1.2 Some Notions of Emergence

Of the broad spectrum of notions for emergence we will give an overview over a
small selection representing a few particularly representative approaches, before
concentrating on the information-theoretic notions which form the backbone of
the philosophy of the present paper.

A category-theoretic notion of emergence has been brought forward in [11].
While having the advantage of mathematical purity, category theory does not
lend itself easily for the practical use in concrete systems. One of the difficulties
is that the issue of identifying the emergent levels of description is exogenous
to the formalism. These have to be formulated externally to be verified by the
formalism. As is, the approach provides no (even implicitly) constructive way
of finding the emergent levels of description.

The difficulty of identifying the right levels of description for emergence in a
system has brought up the suspicion that emergence would have to be considered
only “in the eye of the beholder” [6]. In view of the fact that human observers
typically agree on the presence of emergence in a system, it is often felt that it
would rather be desirable to have a notion of emergence that does not depend
on the observer, but is a property that would arise naturally from the dynamics
of the system.

In an attempt to derive emergent properties of a system, a pioneering effort
to describe organizing principles in complex systems is the approach taken by
synergetics [4]. The model attempts to decompose nonlinear dynamic systems in
a natural fashion. In the vicinity of fixed points, dynamical systems decompose
naturally into stable, central and unstable manifolds. Basically, this decomposes
a system into fast and slow moving degrees of freedom (fast foliations and slow
manifolds).

Since the lifetime of the slow degrees of freedom exceeds that of the fast
ones, Haken termed the former master modes as compared to the latter which
he termed slave modes. The main tenet of synergetics is that these master
modes dominate the dynamics of the system. In the language of synergetics,
the master modes correspond to emergent degrees of freedom. An information-
theoretic approach towards the concept of synergetics is presented in [5].

The synergetics view necessarily couples the concept of emergence to the
existence of significantly different timescales. In addition, the applicability of
above decomposition is limited to the neighbourhood of a fixed point. Under
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certain conditions, however, it is possible to achieve a canonical decomposition of
chaotic dynamical systems even without separate time scales into weakly coupled
or decoupled subsystems [13]. In addition to above, a significant number of other
approaches exist, of which we will briefly mention a few in §1.3.5 in relation to
the information-theoretic approaches to be discussed in §1.3.3 and §1.3.4.

1.3 Information-Theoretic Concepts of Emer-
gence

Among the possible formalizations of emergence, the information-theoretic ones
are particularly attractive due to the universality of information theory and
the power of expression, description and prediction it provides, as well as the
potential to provide paths for explicitly constructing the structures of relevance
(see e.g. §1.4.1).

1.3.1 Notation

We introduce some notation. For random variables use capital letters such as
X,Y, Z, for the values they assume use letters such as x, y, z, and for the sets
they take values in use letters such as X ,Y,Z. For simplicity of notation, we
will assume that such a set X is finite. A random variable X is determined by
the probabilities Pr(X = x) assumed for all x ∈ X . Similarly, joint variables
(X,Y ) are determined via Pr(X = x, Y = y), and conditional variables via
Pr(Y = y|X = x). If there is no danger of confusion, we will prefer writing
the probabilities in the shorthand form of p(x), p(x, y) and p(y|x) instead of the
more cumbersome explicit forms above.

Define the entropy of a random variable X by

H(X) := −
∑
x∈X

p(x) log p(x)

and the conditional entropy of Y given X as

H(Y |X) :=
∑
x∈X

p(x)H(Y |X = x)

where H(Y |X = x) := −
∑
y∈Y p(y|x) log p(y|x) for x ∈ X . The joint entropy

H(X,Y ) is the entropy of the random variable (X,Y ) with jointly distributed
X and Y . The mutual information of random variables X and Y is defined as

I(X;Y ) := H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ) .

1.3.2 Projections

In analogy to (regular) maps between sets, we define a probabilistic map X → Y
via a conditional p(y|x). If the probabilistic map is deterministic, we call it a
projection. A given probability distribution p(x) on X induces a probability
distribution p(y) on Y via the probabilistic map X → Y in the natural way.
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1.3.3 Emergence as Improved Predictive Efficiency

Based on the epsilon-machine concept, a notion of emergence in time series
has been developed in [1, 12]: a process emerges from another one if it has a
greater predictive efficiency than the second. This means that, the ratio between
prediction information (excess entropy) and the complexity of the predicting
epsilon-machine is better in the emerging process than the original process. This
gives a natural and precise meaning to the perspective that emergence should
represent a simpler coarse-grained view of a more intricate fine-grained system
dynamics. In the following, we will review the technical aspects of this idea in
more detail.

For this, we generally follow the line [12]. Consider a random variable X
together with some projection X → X̂ . Then define the statistical complexity
of the induced variable X̂ as Cµ(X̂) := H(X̂).

Let random variables X,Y be given, where we wish to predict Y from X.
Define an equivalence relation ∼ε on X of equivalent predictiveness with respect
to Y via

∀x, x′ ∈ X : x ∼ε x′ iff ∀y ∈ Y : p(y|x) = p(y|x′) . (1.1)

The equivalence relation ∼ε induces a partition X̃ of X into equivalence classes1.
Each x ∈ X is naturally member into one of the classes x̃ ∈ X̃ , and thus there
is a natural projection of X onto X̃ . This induces a probability distribution on
X̃ and makes X̃ a random variable which is is called a causal state.

Consider now an infinite sequence . . . S−1, S0, S1, . . . of random vari-
ables. Furthermore, introduce the notation S[t,t′] for the subsequence
St, St+1, . . . , St′−1, St′ , where for t = −∞ one has a left-infinite subsequence
and for t′ = ∞ a right-infinite subsequence. We consider only stationary pro-
cesses, i.e. processes where p(s[t,∞]) = p(s[t′,∞]), for any t, t′. Then, without
loss of generality, one can write ←−S := S[∞,t] for the past of the process and
−→
S := S[t,∞] for the future of the process, as well as ←→S for the whole sequence.

Following (1.1), introduce an equivalence between different pasts ←−s ,←−s ′ in
predictiveness with respect to the future −→S (for detailed technical treatment of
the semi-infinite sequences, see [12]). This induces a causal state S̃. Then, in
[12] it is shown that, if a realization s̃ of the causal state induced by the past
s[−∞,t] is followed by a realization s of St+1, the subsequent causal state induced
by s[−∞,t+1] is uniquely determined. This induces an automaton on the set of
causal states, called the ε-machine. Then the statistical complexity Cµ(S̃) (the
entropy of the ε-machine) measures how much memory the process stores about
its past.

As opposed to that, one can consider the excess entropy of the process,
defined by E = I(←−S ;−→S ). The excess entropy effectively measures how much
information the past of a process contains about the future. It can be easily

1Note that the partition consists of subsets of X . However, we will use the partition itself
later as a new state space and therefore the individual equivalence classes x̃ are both subsets
of X and states of the new state space X̃ .
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shown that E ≤ Cµ(S̃). In other words, the amount the past of the process
“knows” at a point about its future cannot exceed the size Cµ(S̃) of the internal
memory of the process.

Armed with these notions, in [12] the following definition of emergence is
suggested: define E/Cµ(S̃) ∈ [0, 1] as a measure of predictive efficiency, that
is, how much of the internal process memory is used to actually predict what
is going to happen. If we consider a derived process induced by a projection
applied to each member of the sequence ←→S , this derived process is then called
emergent if it has a higher predictive efficiency than the process it derives from.
In particular, emergence is an intrinsic property of the process and does not
depend on a subjective observer.

1.3.4 Emergent Descriptions

The emergent description model developed by the author in [10] takes an ap-
proach that, while related to predictive efficiency, differs from it in some im-
portant aspects. In the emergent descriptions model, consider again a sequence
of random state variables ←→S . Assume that there exists a collection of k prob-
abilistic mappings each inducing a sequence of random variables ←→S (i), with
i = 1 . . . k, forming a decomposition of the original system ←→S .

Then [10] defines ←→S (k) to be an emergent description for ←→S if the decom-
position S

(i)
t , fulfils three properties ∀i = 1 . . . k:

1. the decomposition represents the system fully:
I
(
St;S

(1)
t , . . . S

(k)
t

)
= H(St));

2. the individual substates are independent from each other:
I
(
S

(i)
t ;S(j)

t

)
= 0 for i 6= j;

3. and they are individually information conserving through time
I
(
S

(i)
t ;S(i)

t+1

)
= H

(
S

(i)
t+1

)
.

Similarly to the predictive efficiency from §1.3.3, the emergent description
formalism considers the predictivity of a time series which is measured by mutual
information. However, the emergent description model only deals with a system
without a past, unlike the predictive efficiency model which uses ε-machines and
thus includes full causal histories. However, a much more important difference is
that the emergent description model explicitly considers a decomposition of the
total dynamical system into individual independent informational components.
Rather than considering the system as a unstructured “bulk”, this view per-
ceives it as having an inner informational dynamics and a natural informational
substructure. Similar to the emergence notion from §1.3.3 this substructure
is not externally imposed, but rather an intrinsic property of the system. It is,
however, not necessarily unique. Fig. 1.1 shows schematically the decomposition
into emergent descriptions.
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Figure 1.1: Schematic structure of emergent description decomposition into indepen-
dent modes.

The emergent description model has the advantage that it can be explicitly
constructed due to its quantitative characterisation (§1.4.1). This is a consid-
erable advantage to more conceptual abstract models (such e.g. the category-
theoretic approach mentioned in §1.2).

1.3.5 Other Related Approaches

Two further related approaches should be mentioned. The authors in [9] sug-
gest emergence as higher-level prediction models for partial aspects of a systems,
based on entropy measures. This model can be viewed as a simplified version
both of the predictive efficiency and of the emergent description model. Com-
pared with Crutchfield/Shalizi’s predictive efficiency, it does not consider causal
states, and compared with our emergent description model, it does not consider
a full decomposition into independent information modes.

As opposed to that, [7] construct a decomposition into dynamical hierar-
chies based on smooth dynamical systems. This model is close in philosophy to
the emergent descriptions approach, except for the fact that it is not based on
information theory.

1.4 Emergent Descriptions: Construction and
Generalizations

1.4.1 Construction

The quantitative character of the emergent description model provides an ap-
proach to construct (at least in principle) an emergent description (or at least an
approximation) for a given system. Consider a system with 16 states, starting
with a equally distributed random state and with a deterministic evolution rule
st+1 := st + 1 mod 16, i.e. it acts as a counter modulo 16. We attempt to find
an emergent description of the system into 2 subsystems of size 4 (these val-
ues have been chosen manually), applying a multiobjective Genetic Algorithm
(GA) [2] to find projections that maximize system representation (criterion 1)
and individual system prediction (criterion 3). With the given parameters, the
optimization implicitly also optimizes criterion 2.

The multiobjective optimization fully achieves criterion 1 and comes close in
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maximizing criterion 32. The search is far from fully optimal and can easily be
improved upon. However, it provides a proof-of-principle and it demonstrates
several issues of relevance that are discussed below. The dynamics of one of the
emergent descriptions found is shown in Fig. 1.2.
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Figure 1.2: Automaton found in multiobjective GA search. The two groups of states
belong to the two components of the emergent description, and the arrows indicate the
stochastic transitions, where darker arrows indicate higher transition probabilities.

The left automaton, if the GA had been fully successful, would have shown
a perfect 4-cycle, i.e. a counter modulo 4, with only deterministic transitions;
the failure of the GA to find this solution is due to the deceptiveness of the
problem. However, the right counter, the lower-level counter, can never be
fully deterministic according to the model from §1.3.4. Like a decadic counter,
perfectly predicting the transition to the next state in right counter would ideally
depend on the carry from the left counter; but the indepence criterion does not
allow the right counter to “peek” into the left, thus always forcing a residual
stochasticity.

1.4.2 Hierarchical Emergent Descriptions

It turns out that this observation has a highly relevant relation to the algebraic
Krohn-Rhodes semigroup decomposition [3]. Here, it turns out that the most
general decomposition of a semigroup has a particular hierarchical structure that
comprises a high-level substructure (group or flip-flop) which does not depend
on anything else) and then a successive hierarchy of substructures each of which
may depend on all the structures above them, the simplest example illustrated
by a counter such as above3.

To incorporate this insight into the emergent description model, one could
modify the conditions from §1.3.4 to respect the possible Krohn-Rhodes struc-
ture of the system. Schematically, this would correspond to a decomposition of
the kind shown in Fig. 1.34.

2In fact, the GA fails to find the best solution since the problem is GA-deceptive.
3It also bears some algebraic relation to the Jacobian decomposition discussed in [7].
4It is evident how to formalize this diagram in the spirit of §1.3.4.
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Figure 1.3: Emergent description with hierarchical dependence of states similar to
Krohn-Rhodes decomposition.

1.4.3 Emergent Descriptions with History

In the present model system there is, however, a way to recover the independence
of modes and maintain an optimal predictiveness. Note that in the emergent
description model we completely banished state history. If we readopt it similar
in spirit to component-wise ε-machines, then the components can count individ-
ually whether a carry is required or not. The idea is schematically represented
in Fig. 1.4.
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Figure 1.4: Emergent description with state histories.

1.4.4 Discussion

We have contrasted the ε-machine approach to characterize emergence with that
of the emergent descriptions. The approaches are in many respects orthogonal,
as the ε-machine creates a relation of the two full half-axes of the temporal
coordinate without any decomposition of the states itself, while the emergent
description approach limits itself to a single time slice, however suitably de-
composing the state into independent modes. This approach has however been
shown to lose some predictivity even in the very simple counter scenario. As a
remedy one can introduce either a hierarchical form of emergent descriptions,
inspired by the Krohn-Rhodes decomposition, or else aim for an ε-machine like
history memory for the individual modes which is a kind of marriage of the
emergent prediction and the ε-machine models.

In particular, this observation suggests the hypothesis that it might be pos-
sible to formulate a trade-off: one the one hand the memory requirements that a
“serial” computation model such as the ε-machine needs to compute the future
from the past; on the other hand the information processing resources required
by the “parallel” computation model such as the hierarchical emergent descrip-
tions which involves combining information from different components of the
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decomposition to compute a component’s future. It is quite possible that uni-
versal trade-offs may exist here, offering the possibility for resource optimization
and also for studying generalized forms of ε-machines where computational re-
sources can be shifted more-or-less freely between temporal and compositional
degrees of freedom.

1.5 Agenthood

As a final comment, it should be mentioned that in [8] it has been shown that
the perception-action loop of an agent acting in an environment can be modeled
in the language of information. This is particularly interesting for above consid-
erations, as the agent/environment system is a generalization of a time series (a
time series can be considered an agent without the ability to select an action,
i.e. without the capacity for “free will”).

Using infomax principles, above agent/environment system can be shown to
structure the information flows into partly decomposable information flows, a
process that can be interpreted as a form of concept formation. This gives a new
interpretation for the importance of emergence as the archetypical mechanism
that allows the formation of concept in intelligent agents and may thus provide
a key driving the creation of complexity in living systems.

Bibliography

[1] J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and
induction. Physica D, pages 11–54, 1994.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[3] A. Egri-Nagy and C. L. Nehaniv. Making sense of the sensory data —
coordinate systems by hierarchical decomposition. In Proc. KES 2006, 2006.

[4] H. Haken. Advanced synergetics. Springer-Verlag, Berlin, 1983.

[5] H. Haken. Information and Self-Organization. Springer Series in Synerget-
ics. Springer, 2000.

[6] I. Harvey. The 3 es of artificial life: Emergence, embodiment and evolution.
Invited talk at Artificial Life VII, 1.-6. August, Portland, August 2000.

[7] M. N. Jacobi. Hierarchical organization in smooth dynamical systems. Ar-
tificial Life, 11(4):493–512, 2005.

[8] A. S. Klyubin, D. Polani, and C. L. Nehaniv. Organization of the informa-
tion flow in the perception-action loop of evolved agents. In Proceedings of



10

2004 NASA/DoD Conference on Evolvable Hardware, pages 177–180. IEEE
Computer Society, 2004.

[9] S. McGregor and C. Fernando. Levels of description: A novel approach to
dynamical hierarchies. Artificial Life, 11(4):459–472, 2005.

[10] D. Polani. Defining emergent descriptions by information preservation. In
Proc. of the International Conference on Complex Systems. NECSI, 2004.
Long abstract, full paper under review in InterJournal.

[11] S. Rasmussen, N. Baas, B. Mayer, M. Nilsson, and M. W. Olesen. Ansatz
for dynamical hierarchies. Artificial Life, 7:329–353, 2001.

[12] C. R. Shalizi. Causal Architecture, Complexity and Self-Organization in
Time Series and Cellular Automata. PhD thesis, University of Wisconsin-
Madison, 2001.

[13] S. Winter. Zerlegung von gekoppelten Dynamischen Systemen (Decomposi-
tion of Coupled Dynamical Systems). Diploma thesis, Johannes Gutenberg-
Universität Mainz, 1996. (In German).


