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Abstract. This paper1 introduces a simple model for evolutionary dynamics ap-
proaching the “coding threshold”, where the capacity to symbolically represent
nucleic acid sequences emerges in response to a change in environmental condi-
tions. The model evolves a dynamical system, where a conglomerate of primitive
cells is coupled with its potential encoding, subjected to specific environmental
noise and inaccurate internal processing. The separation between the conglom-
erate and the encoding is shown to become beneficial in terms of preserving the
information within the noisy environment. This selection pressure is captured
information-theoretically, as an increase in mutual information shared by the con-
glomerate across time. The emergence of structure and useful separation inside
the coupled system is accompanied by self-organization of internal processing,
i.e. an increase in complexity within the evolving system.

1 Introduction

One of the most fundamental problems in biology and artificial life is the definition
and understanding of “the gene”. As pointed out by Carl Woese, whose work pro-
vided a very strong motivation for this study, this problem continues to contribute to
much debate between classical biologists who understand “the gene to be defined by
the genotype-phenotype relationship, by gene expression as well as gene replication”
and many molecular biologists who declared the problem to be solved when the Watson-
Crick structure of DNA clearly revealed the mechanism of gene replication [1]. Woese
strongly argues against fundamentalist reductionism and presents the real problem of
the gene as “how the genotype-phenotype relationship had come to be”. In other words,
the main question is how the mechanism of translation evolved.

The evolution of the translation mechanism is a complicated process, and we may
only intend to analyse its simplified models. However, in doing so we shall take a princi-
pled approach and consider a model of evolutionary dynamics in a generic information-
theoretic way, without obscuring it with hypothetical aspects such as biochemical com-
position of “primordial soup”, structural properties of procaryotic cells, susceptibility
of aminoacyl-tRNA synthetases to horizontal gene transfer (HGT), etc. The simple as-
sumptions that we make, following Woese [1], include the notion of primitive cells as
loosely connected conglomerates existing during the “era of nucleic acid life” [2, 3],

1 The Authors list is in alphabetical order.



and the conjecture that primitive cell organization was “largely horizontal” in nature [4,
5], making the simple cellular componentry open to HGT.

In taking the information-theoretic view, we focus on the “coding threshold” sep-
arating the phase of nucleic acid life from the evolutionary stage “where the capacity
to represent nucleic acid sequence symbolically in terms of a (colinear) amino acid se-
quence developed” [1]. More precisely, we hope to understand the pressures that forced
such a transition to “proto-symbols” encoding features of primitive cells in dedicated
sequences and enabling a rudimentary translation. The analysis presented by Woese
[1] sheds light not only on this transition, but also on saltations that have occurred at
other times, e.g. advents of multicellularity and language. The common feature is “the
emergence of higher levels of organization, which bring with them qualitatively new
properties, properties that are describable in reductionist terms but that are neither pre-
dictable nor fully explainable therein” [1].

More importantly, the reason for the increase in complexity can be identified as
communicationwithin a complex, sophisticated network of interactions: “translation-
ally produced proteins, multicellular organisms, and social structures are each the re-
sult of, emerge from, fields of interaction when the latter attain a certain degree of
complexity and specificity” [1, 6]. The increase of complexity is also linked to adding
new dimensions to the phase space within which the evolution occurs, i.e. expansion
of the network of interacting elements that forms the medium within which the new
level of organization (entities) comes into existence [1, 6]. These observations can be
formalised information-theoretically. More precisely, we intend to consider a commu-
nication channel between a conglomerate of primitive cells and itself at a future time
point, and pose a question of the channel capacity constrained by the noise. By vary-
ing the nature and degree of this noise prevalent in the environment within which such
conglomerates exist and evolve, we hope to identify conditions leading to a separation
between the conglomerateper seand its encoding with “proto-symbols”. Specifically,
we investigate conditions under which such separation is beneficial in terms or pre-
serving the information within the noisy communication channel across time. In other
words, the separation evolves to protect some information about the conglomerate in
the encoding. A rudimentary translation then helps to recover the information that oth-
erwise would have been lost due to the noise.

The adopted information-theoretic view allows us to concentrate on generic pro-
cesses common to a collection of such conglomerates rather than on specific interac-
tions within an environmental locality. Considering a collection of conglomerates is
important because, as noted by Woese [1],

A sufficiently imprecise translation mechanism could produce “statistical pro-
teins”, proteins whose sequences are only approximate translations of their re-
spective genes [7]. While any individual protein of this kind is only a highly
imprecise translation of the underlying gene, a consensus sequence for the var-
ious imprecise translations of that gene would closely approximate an exact
translation of it.

In other words, a given gene can be translated not into a unique protein but instead into
a family of related protein sequences: “early life did not require a refined level of tol-
erance” [3]. Looseness of the outcome is implied by an imprecise genome replication



comprising relatively few unique genes [5] — therefore, rather than trying to develop
a dynamical system (conglomerate plus encoding) that fully preserves the information
about the conglomerate, we only need to develop dynamics that corresponds to “statis-
tical proteins”, preserving information in a “consensus sequence”.

In modeling the evolution, we adopt the view that maximization of information
transfer through selected channels is one of the main evolutionary pressures [8–12].
Although the evolutionary process involves a larger number of drives and constraints,
information fidelity (i.e. preservation) is a consistent motif throughout biology: e.g.,
modern evolution operates close to the error threshold [13], and biological sensorimo-
tor equipment typically exhausts the available informatory capacity (under given con-
straints) close to the limit [14]. Adami, in fact, argues that the evolutionary process
extracts valuable information and stores it in the genes. Since this process is relatively
slow [15], it is a selective advantage to preserve this information, once captured. In the
following, we shall concentrate on the information preservation property of evolution.
Everything else is modeled minimalistically: we encapsulate the influence of evolu-
tionary constraints within a dynamical system, and represent the acquisition of valuable
information by an explicit “injection” of information at the beginning of each trajectory.

2 Modelling evolutionary dynamics
Our generic model for evolutionary dynamics involves a dynamical coupled system,
where a conglomerate is coupled with its potential encoding, evolving in a fitness land-
scape shaped by a selection pressure. The selection pressure rewards preservation of
information in presence of both environmental noise and inaccuracy of internal cou-
pling. When the conglomerate is represented as a dynamical system, the information
about it can be captured generically via attractors of the dynamical system. In partic-
ular, a loss of such information corresponds to a loss of structure in the phase-space,
while informational recovery would correspond to recovery of the equivalent (e.g., iso-
morphic) structure in the phase-space. Importantly, the information about the attractors
can be compactly encoded if there is a need for it.

The dynamical coupled system is described by the equations

Xt =
{

f (Xt−1) + ϕ if t 6= t∗

α [f (Xt−1) + ϕ ] + (1− α)h (Yt−1) if t = t∗ (1)

Yt =
{

g (Xt0 + ψ) if t = t0
Yt−1 if t > t0

(2)

whereXt andYt are the variables that describe the conglomerate and its potential en-
coding respectively. Functionf defines the dynamical system representing the con-
glomerate, andα ∈ [0, 1] sets the relative importance of translationh; we usedα = 1/2.
Noise functionsϕ andψ are described in Section 2.1. The mechanism that extracts in-
formation from the conglomerate into its encoding at timet0 is given byg.

At time t = t0, noise is introduced into the environment affecting dynamics of the
conglomerate. Our null hypothesis is that the ability to symbolically encode nucleic
acid sequences does not develop when (possibly anisotropic) environmental noiseϕ is
outside a certain range. In other words, it is precisely a limited reduction in the infor-
mation channel’s capacity, brought about by the environmental noise, that creates the



selection pressure for the separation between a conglomerate and its encoding. At the
timet = t0, information from the conglomerate is accessed by the systemY (encoding)
via the internal processing functiong. The accessed information is not entirely accu-
rate because of possible limitations of the access mechanism, and the noise functionψ
represents this inaccuracy.

We aim to identify a functiong that maximizes the ability to recover, in the face
of environmental noise and in presence of an imperfect internal processing, as much
original information as possible — i.e., the ability to resist both the external noiseϕ
and internal noiseψ. The feedback from theY to X occurs at the time pointt∗, i.e. the
functionh translates the inputYt∗−1 from the encoding back into the conglomerate.

2.1 External and internal noise

The functionϕ describes the external (environment) noise that affects the variableX
after some information has been stored inY . This noise represents a pressure to push the
systemX towards certain attractors. It is implemented as a random variableϕ ∈ [−l, u],
whereu > 0 andl > 0, which is uniformly distributed, with probability1/2, between
0 andl, and with probability1/2 between0 andu. In other words, positive values may
be more sparsely distributed than the negative ifu is larger thanl.

The functionψ represents the internal noise associated with accessing information
from Xt by the systemYt at any given timet. In other words, it represents the inaccu-
racy within the internal communication channel. In addition, the noiseψ may be inter-
preted as inaccuracy of the environment’s representation within the encodingY which
indirectly “perceives” the environment through the systemX. This noise is modelled
as uniform random noiseψ ∈ [−b, b], where0 < b ¿ 1.0.

2.2 State-space

The dynamical system employed is a logistic mapXt+1 = rXt (1−Xt), wherer is
a parameter, i.e. the functionf is given byf (x) = rx (1− x). The logistic mapf is
initialized with a value between0.0 and1.0, and stays within this range if the value of
r is within the range[0, 4.0]. We usedr = 3.5, resulting in four attractors of the logistic
map (approximately0.38, 0.50, 0.83, 0.87). The timet = t0 is set after the logistic map
settles into its attractors, having passed through a transient. The functiong is a surjective
mapping from[0, 1] to [0, 1]. The functionh is identityh(y) = y.

In order to estimate the probability distribution of a random variable (X or Y ) at
each time-point, we generate an initial random sample(Xt0) = (X1

t0 , X
2
t0 , . . . , X

K
t0 )

of lengthK. EachXi
t0 , where1 ≤ i ≤ K, is chosen from a uniform random dis-

tribution within [0.0, 1.0]. The mappingXi
t+1 = f(Xi

t) produces an ensemble ofK
corresponding time series,1 ≤ i ≤ K, denoted as[X] = [X1

t , X2
t , . . . , XK

t ], where
t0 ≤ t ≤ T , and T is a time horizon. Within the ensemble, eachXi

t time series
may have a different initial valueXi

t0 . At any given timet′, we can obtain a sample
(Xt′) = (X1

t′ , X
2
t′ , . . . , X

K
t′ ).

Given the initial sample(Xt0), and the mappingYt0 = g(Xt0 +ψ), we can generate
the initial sample(Yt0) = (Y 1

t0 , Y
2
t0 , . . . , Y

K
t0 ) for the variableY . In the corresponding

ensemble[Y ] = [Y 1
t , Y 2

t , . . . , Y K
t ] each sample is identical to the initial sample.



3 Genetic Algorithm

In evolving the potential encoding systemY coupled withX via a suitable functiong,
we maximize the mutual information between the initialXt0 and recoveredXt∗ states
of the system, by employing a simple genetic algorithm (GA). The mutual information
betweenA andB is defined asI(A; B) =

∑
a∈A

∑
b∈B P (a, b) log P (a,b)

P (a)P (b) , where
P (a) is the probability thatA is in the statea, andP (a, b) is the joint probability.

We generate an ensemble ofXt time series, each series governed by equation (1).
The ensemble[X] provides a fixed constraint on the optimization. Foreachfunctiong,
an ensemble[Y ] is then generated, using equation (2) — i.e., the values of the series
Yt depend on the choice of functiong. The ensemble[X] is kept unchanged while we
evolve the population of functionsg, being an optimization constraint, but the ensemble
[Y ] differs for each individual within the population. The fitness of each functiong is
determined by the mutual information betweenXt0 andXt∗ , denotedIg(Xt0 ; Xt∗) and
estimated via the mutual information between samples(Xt0) and(Xt∗).

Since the information fromYt∗−1 (different for each individual) is fed back into
Xt∗ , equation (1), the sample(Xt∗) is specific for each individual within the population.
Therefore, it may be contrasted with the sample(Xt0) which is identical across the
population, producing distinct fitness valuesIg(Xt0 ;Xt∗) for each individualg. The
experiments were repeated for different ensemblesXt.

We generate a population ofg functions (the size of the population is fixed at400).
In order to implement the mappingg, the domain ofg is divided inton consecutive bins
xi such thatxi = [(i−1)/n, i/n) for 1 ≤ i < n, where [a,b) denotes an interval open on
the right, andxn = [(n−1)/n, 1]. The range ofg is divided intom consecutive binsyj

such thatyj = [(j−1)/m, j/m) for 1 ≤ j < m, andym = [(m−1)/m, 1]. Then each
binxi in the domain is mapped to a binyj in the range:G : xi → yj , whereG represents
the discretized mapping. Formally, anyx ∈ xi is mapped tog(x) ≡ G(xi), where
G(xi) is the median value of the binG(xi). For example, ifn = 100, m = 10, and
y7 = G(x30), that is, the binx30 = [0.29, 0.30) is mapped to the biny7 = [0.6, 0.7),
then for anyx ∈ x30 (e.g.,x = 0.292), the functiong(x) would return0.65 = y7.

Therefore, in the GA, each functiong can be encoded as an array ofn integers,
ranging from1 to m, so that thei-th element of the array (thei-th digit) represents the
mappingyj = G(xi), where1 ≤ j ≤ m. We have chosen ageneration gapreplacement
strategy. In our experiments, we set the generation gap parameter0.3. In other words,
the entire old population is sorted according to fitness, and we choose the best30%
for direct replication in the next generation, employing an elitist selection mechanism.
The rest of selection functionality is moved into the (uniform) crossover. Mutation is
implemented as additive creeping or random mutation, depending on the number of
“digits” in the genome. If the number of digits is greater than10, then additive creeping
is used: a digit can be mutated within[−5%, +5%] of its current value. If the number
of digits is less than10, the random mutation is used with the mutation rate of0.01.

4 Results

Our main goal is to verify whether, as the evolution takes place in a noisy environment,
some structure emerges inY (e.g., attractors are observed inY -space). The emergent



structure inY can be associated with “proto-symbols” (“codes”) that help in retrieving
at timet∗ some (or most of the) information accessed att0. This phenomenon must be
supported by self-organization within the processing functiong betweent0 andt∗.

4.1 Emergence of structure in the encoding

We begin by analyzing the optimization constraint — the systemX. Figure 1 (left)
shows the ensemble[X] at the timet∗ − 1, i.e. right before the moment when the
feedback fromY to X occurs. It can be observed that the environment noiseϕ (u =
0.025 andl = 0.025)2 disrupts the logistic map dynamics, and some information about
the attractors ofX is lost in the course of time: the observed sample(Xt∗−1) does not
contain four clear clusters.

A random processing functiong results in an encodingY that, despite some struc-
ture (not shown), is not able to “help”X in recovering the lost information. Figure 1
(right) shows the un-recovered ensemble[X] at the timet∗ that contains values that are
much more diverse than the four attractors of the original logistic map. As a result, the
mutual informationIg(Xt0 ;Xt∗) is low (≈ 0.7 bits).
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Fig. 1. Randomg (noiseϕ± 0.025; ψ = ±0.015). Left: two remaining “clusters” in the sample
(Xt∗−1). Right: the sample(Xt∗) does not recover full information about four attractors.

Let us evaluate now the evolved coupled system. Figure 2 shows the encoding en-
semble[Y ] at the timet∗− 1, as well as the recovered ensemble[X] at the timet∗. The
sample(Yt∗−1) settles into four clusters that can be easily represented by four “codes”
corresponding to the four attractors ofX. This emergent encoding allows to recover the
information withinX, as evidenced by four clear clusters within the sample(Xt∗). The
corresponding increase in the information-based fitness function is shown in Figure 3.

The clustering corresponds to emergence of discrete “proto-symbols’ in the encod-
ing Y . In the simplest case, each non-empty bin in the range ofg may be associated
with such a cluster, creating a symbol in the encodingY . Following this, the function
h may reconstruct precise information aboutXt0 by clusteringXt∗−1 into the clusters
encoded byYt∗−1, and then simply using the inverse mappingg−1 to retrieve the orig-
inal attractor. Without the clustering, however, the information reconstructed at time

2 Similar results were obtained with anisotropic noise.
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Fig. 2.Evolvedg (noiseϕ = ±0.025; ψ = ±0.015). Left: four clusters in the encoding(Yt∗−1).
Right: Four recovered clusters in sample(Xt∗). I(Xt0 ; Xt∗) ≈ 1.4 bits. Contrast with Figure 1.
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Fig. 3.Mutual information (fitness) in bits. Squares indicate the average fitness, ’+’s show fitness
of the best individual in each generation. Black squares trace possible maximum fitness: the mu-
tual information when(Xt∗) is as informative as(Xt0), i.e,I(Xt0 ; Xt∗) = H(Xt0) (entropy).

t∗ is not precise, and rather than having four crisp attractors,X can be described as
an individual with an imprecise translation of the underlying gene within a “consensus
sequence” [1], analogous to a “statistical protein”.

This experiment demonstrated that noise within the environment affects the emer-
gence of structure in the encoding, allowing to recover the information withinX. The
null hypothesis, however, is that the coding threshold is not approached when environ-
mental noiseϕ is outside a certain range. To verify the null hypothesis let us consider
an evolution of the coupled system with a) larger noiseϕ; and b) without noiseϕ.

Figure 4 shows the ensemble[X] at the timet∗ − 1, as well as the un-recovered
ensemble[X] the timet∗. These results indicate that in this case there is too much
noise in the environment to make the encoding useful.

In a noise-free environment (ϕ = 0.0), we expect a lesser or no pressure on the
coupled system. In fact, there are four unobscured clusters in the sample(Xt∗−1), as
shown in Figure 5 (left). However, the evolved encoding, being still affected by internal
processing noiseψ, loses some of this information and hinders the recovery att∗. Figure
5 (right) shows results of translation of ill-structured encoding: with zero environmental
noise there is no pressure for emergence of a more precise structure in the encoding.
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Fig. 4.Evolvedg (noiseϕ = ±0.06; ψ = ±0.015). Left: the sample(Xt∗−1). Right: the sample
(Xt∗) does not recover the information about four attractors. Mutual informationI(Xt0 ; Xt∗) ≈
1.1 bits. Contrast with Figure 2.
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Fig. 5. Evolvedg (ϕ = 0.0; ψ = ±0.015). Left: the sample(Xt∗−1). Right: the sample(Xt∗)
obscures the four attractors. Mutual informationI(Xt0 ; Xt∗) ≈ 1.4 bits. Contrast with Figure 2.

4.2 Self-organization within the processing function

At this stage, we analyse self-organization within the processing functiong. Figure 6
contrasts a randomly selected functiong at the start of the evolution (noiseϕ is defined
asϕ = 0.025, while noiseψ = ±0.03 is increased to better illustrate the phenomenon),
with the best individual functiong after100 generations. The important difference is in
the way of mapping attractors ofX (and their neighbourhoods) into the encodingY .
Let us consider, for example, theψ−neighbourhood of the attractorx ≈ 0.50. Figure 6
(left) shows that this neighbourhood has values between0.07 and0.91. This wide distri-
bution is explained by the internal processing noiseψ and absence of any organization
in g, so that even a slight shift fromx to x±ψ may result in a large difference between
g(x) andg(x ± ψ). Figure 6 (right) shows the best individual functiong evolved af-
ter 500 generations. Here, despite the same level of noiseψ, we can observe that the
ψ−neighbourhood of a given attractor inX (e.g. the neighbourhood ofx ≈ 0.50) is
mapped by the evolved functiong to a smaller interval (e.g., it has values between0.93
and0.96). In other words, the selection pressure resulted in a more “condensed” map-
ping. This is achieved by an increase in organization (stability) ing: a small shift from
x to x±ψ results now only in a small difference betweeng(x) andg(x±ψ). Moreover,
only the attractors’ neighbourhoods are generally handled in this way — no two other
similar values of the domain are mapped to points close to each other in the range.
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The self-organization ofg counters the effect of internal processing noiseψ, given
the noiseϕ in the environment3. This self-organization helpsY to maintain the structure
of the spaceX (namely, the information that it had a certain number of attractors). The
functionh translates this encoding back intoX.

5 Discussion and Conclusions
We considered a model for evolutionary dynamics in the vicinity of the “coding thresh-
old”, and identified conditions under which a separation between a conglomerate of
primitive cells and its symbolic encoding becomes beneficial in terms of preserving the
information within a noisy environment. The model evolves a dynamical system, where
a conglomerate is coupled with its potential encoding, affected by environmental noise
and inaccurate internal processing. The experiments supported the hypothesis that the
ability to symbolically encode nucleic acid sequences does not develop in the absence
of environmental noise or when the noise is too high (reminiscent of the U-shaped curve
relating adaptive pressure to perception accuracy [18]). Instead, a (possibly anisotropic)
limited noise constraining the channel’s capacity creates the selection pressure for the
separation between the conglomerate and its encoding. Formally, we captured this se-
lection pressure as an increase in mutual information shared by the conglomerate across
time. The experiments provided evidence that the emergence of structure and useful
separation inside the coupled system is accompanied by self-organization of internal
processing, i.e. an increase in complexity within the evolving system.

Following this path suggests a few intriguing possibilities for coupling systems in
different ways, e.g. considering systems where a) the encoding evolves in parallel with
the conglomerate, being subjected to different noise; b) the encoding may be used by
other co-evolving conglomerates; c) two coupled systems similar to the one analyzed in
this work exchange the respective encodings. These directions are under investigation,
aiming at understanding of emergence and universality of genetic code. Woese observed
that “statistical proteins form the basis of a powerful strategy for searching protein phase
space, finding novel proteins” [1]. We believe that further modelling of the evolutionary
dynamics in such a space may explain mechanisms resolving Eigen’s paradox [19] and
leading to convergence on “the lingua franca of genetic commerce” [1].

3 In general, following [16, 17], we may say that self-organization results from fluctuations, that
is, internal information processing has self-organized in response to environmental “pollution”.
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