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Abstract:  High capacity associative neural networks can be built from networks of
perceptrons, trained using simple perceptron training.  Such networks perform much
better than those trained using the standard Hopfield one shot Hebbian learning.  An
experimental investigation into how such networks perform when the connection weights
are not free to take any value is reported.  The three restrictions investigated are: a
symmetry constraint, a sign constraint and a dilution constraint. The selection of these
constraints is motivated by both engineering and biological considerations.

1 Introduction

In this paper we examine the performance of certain high capacity associative memory
models in response to a variety of constraints that can be imposed on the values that the
connections in the network can take.  The networks analysed are variations of the basic
Hopfield model, employing normal, deterministic dynamics.  However the weight
matrices are not calculated using one-shot Hebbian learning, but by other rules that
produce much higher capacity.  The constraints that we examine are motivated by either
neuro-biological or engineering considerations.  In general the weights in such networks
may take on any real value and no interdependencies on the weights are imposed. The
standard one-shot Hopfield learning rule produces weights that are symmetric, a property
that is useful in producing simple dynamic behaviour.  However other learning rules for
these networks do not produce symmetric weights, but may be forced to so do.  Section 3
examines the consequences of this constraint.  The second issue to be examined is the
extent to which these networks can tolerate constraints on the sign that the weights may
take.  The primary motivation for this is that in real neural systems synapses do not
normally change from being excitatory to inhibitory, or vice-versa, so that in a simple
interpretation, the sign of a weight is not free to change during training.  Since biological
networks of neurons are not fully connected it is interesting to examine the degree to
which the modelled networks can tolerate removal of connections – dilution – prior to
training, and this constitutes the final set of experiments reported here.

The next section describes the architecture of the neural networks that underlie this
investigation.  Section 3 gives the learning rules used to train the networks and Section 4



discusses the types of constraint to the weights that are investigated.  Results and
conclusions follow in the last two Sections.

2 Models Examined

We consider networks of N units which we train with a set of N–ary, bipolar (+1/-1)

training vectors, {
p
}.  The N by N weight matrix is denoted by W, and the state (output)

of the i’th unit is denoted by Si

All the high capacity models studied here are modifications to the standard Hopfield
network. The net input, or local field, of a unit, is given by: hi = wijS j

j i

where wij is the weight on the connection from unit j to unit i.  The next state,  S i , of a unit

is derived from its local field and its current state:

 S i =

1 if hi > i

1 if hi < i

Si if hi = i

 

 
 

 
 

where the threshold, i, is normally taken as zero.  Unit states may be updated
synchronously or asynchronously.  Here we use asynchronous, random order updates.
These network dynamics and a symmetric weight matrix guarantee simple point attractors
in the network’s state space.

A training vector, , will be a stable state of the network if the aligned local fields, hi i are
non-negative for all i (assuming all i  are zero).  Each training vector that is a stable state
is known as a fundamental memory of the trained network.  The capacity of a network is
the maximum number of fundamental memories it can store.  The loading, , on a
network is the ratio of the number of vectors in the training set to the number of units in
the network, N.

3 Learning Rules

In the late 1980s it was demonstrated that perceptron like learning could be used in
associative memory networks, giving much higher capacity than the basic model.  In fact,
as Gardner (Gardner, 1988) showed, a Hopfield type network of N units may store up to
2N uncorrelated patterns (a loading, , of 2), with this figure increasing for correlated
patterns.  Learning rules of this type are designed to drive the aligned local fields of
patterns in the training set over a threshold value, T.

The training patterns will be stable if T is non-negative (see Section 2) and, for ease of
training, a value of 1 (or even 0) may be taken.  However, by raising T the attractor
performance of the network may be improved (Krauth, and Mezard, 1987) .  Some care
must be taken though.  Consider a network in which all training patterns are stable
( hi i T  for all patterns and units): any uniform, upward scaling of the weight matrix

will increase the aligned local fields, but will obviously not improve the attractor
performance.  Optimal attractor performance is achieved when the threshold is maximised



with respect to the size of the weights, so the relevant characterization is the normalised
stability measure, defined as:

 i =
hi i

Wi

where Wi  is the incoming weight vector to unit i.  The minimum of all the i  therefore

gives a measure of the likely attractor performance (Kepler, and Abbot, 1988) and we
take:

= min
p,i
( i

p ) .  The largest possible value that  can take, max  is determined by the

loading on the network – the higher the loading the lower the value of max  (see Figure

4).   This corresponds with the intuition that good attractor performance is likely to
decrease with increasing loading.

3.1 Local Learning (LL)

Diederich and Opper’s (Diederich, and Opper, 1987) local learning rule is an iterative
learning rule in which the local fields for each training pattern are driven to the correct
side of +T or –T as appropriate.  This is equivalent to the condition that:

i, p •hi
p

i
p T

So the learning rule is given by:

Begin with a zero weight matrix

Repeat until all local fields are correct

  Set the state of network to one of the  p

  For each unit, i, in turn

    Calculate hi
p

i
p .

    If this is less than T then change the weights

    on connections into unit i according to:

wij =
i
p

j
p

N

This is the perceptron learning rule with a fixed margin of T and a learning rate of 1N .

The process will converge on a suitable weight matrix if one exists (Diederich et al.,
1987) , at which point the trained patterns are guaranteed to be stable.  We refer to this as
the LL (local learning) rule.  As shown by Abbott  (Abbott, 1990), this rule leads to a
network in which

T

2T +1 max max

where max  is the optimal value of as described earlier.  From this it is apparent that

increasing T will in turn increase the lower bound of , and this may give better attractor



performance.  However the limiting value of this lower bound, as T , is max

2
 so

that increasing T does not necessarily force the network to optimal performance.

3.2 Krauth and Mezard Local Learning (KM)

A modification to the local learning rule, proposed by Krauth and Mezard (Krauth et al.,
1987) can be shown to produce a value that does tend towards max  as T increases.  In

this version the patterns are not presented to the network in an arbitrary order.  Instead the
pattern that has the smallest aligned local field is chosen as the one for next presentation:

Begin with a zero weight matrix

Repeat until all local fields are correct

 For each unit, i, in turn

  Select the pattern,  p with lowest aligned local field at this unit and update the incoming
  weights according to:

    wij =
i
p

j
p

N

Krauth and Mezard (Krauth et al., 1987) prove that, with this rule, max as T .

4 Constraints

The weights in a neural network are constrained, primarily, by the task that the network is
required to undertake: in the case of an associative memory, that is to store patterns.
However in order to examine the consequences of neurological or engineering factors
other constraints may be imposed.  The specific constraints on the weights in the network
that we examine are described here.

4.1 Symmetry

The original Hopfield network has a symmetric weight matrix and such weights have the
desirable property of guaranteeing point atttractors, with asynchronous updating and
cycles of at most length 2 with synchronous updates.  As the symmetry is broken, more
complex dynamics become progressively more likely. On the other hand Krauth, Nadal
and Mezard (Krauth, Nadal, and Mezard, 1988) showed that, under certain circumstances,
decreasing the symmetry of the weight matrix should improve attractor performance.
Moreover a network with symmetric weights has only half the number of degrees of
freedom, so it is surprising that according to Nardulli and Pasquariello (Nardulli, and
Pasquariello, 1991) the storage capacity of a fully symmetric network is theoretically the
same as an asymmetric one.  In  (Gardner, Gutfreund, and Yekutieli, 1989) numerical
simulations suggest that at low loading there is a range of weight matrices with varying
symmetry that will embed the training patterns, but that as the loading increases towards



saturation the degree of symmetry tends towards a specific, high, value. The practical
implications of this are one of the issues investigated here.

Learning rules based on the perceptron training rule are not guaranteed to produce
symmetric weights, and in fact will produce weight matrices that are progressively less
symmetric as the loading increases.  Nevertheless Gardner (Gardner, 1988) pointed out
that an iterative perceptron like training rule could be made to produce symmetric
weights, by simply updating bothwij  and w ji , when either changes.  She also showed that

such algorithms would find a symmetric weight matrix, if one existed, for a particular

training set.  To investigate the implications of having a symmetry constraint we compare

asymmetric and symmetric versions of both the Diederich and Opper local learning

method (LL) and the Krauth and Mezard optimal version (KM).

The Symmetric Local Learning rule (SLL) is therefore:

Begin with a zero weight matrix

Repeat until all local fields are correct

 Set the state of network to one of the  p

 For each unit, i, in turn

  Calculate hi
p

i
p
.

  If this is less than T then change the weights between unit i and all other units, j,

   according to:

j i  w ij = wij +
i
p

j
p

N
 w ji = w ji +

i
p

j
p

N

The KM rule can be treated in the same way and we denote the symmetric version as

SKM.

4.2 Sign Constraints

A possible difficulty with the normal perceptron learning rule is that weights can (and do)
change sign during the learning process.  The biological equivalent of this would be for a
synapse to change from excitatory to inhibitory or vice versa.  This is not thought to
happen, and indeed Dale’s rule (Dale, 1935) states that all the efferent synapses from a
given neuron are all either excitatory or inhibitory.  For a neural network this is
equivalent to requiring that all outgoing weights from a given unit have the same sign,
and this cannot change over time.  There are now known to be exceptions to this picture,
so that, for example, the sign of the synapse may be determined by properties of the post-
synaptic cell  (Amit, Wong, and Campbell, 1989b; Wong, and Campbell, 1992).

A general sign constraint mechanism therefore consists of a matrix of signs, gij = ±1 ,

corresponding to each weight in the network, together with requirement that: gijwij > 0 .

The sign-bias of the weights is the ratio of positive to negative weights.



4.2.1 Capacity

The effect of imposing a sign constraint to every connection in a standard Hopfield
network was first investigated in 1986 (Sompolinsky, 1986) where it was shown that the
capacity only falls from  = 0.14 to  = 0.09, for uncorrelated patterns. Later Amit et al.
(Amit et al., 1989b) showed that the perceptron learning rule could also be effective
under such a constraint.  They also showed (Amit, Campbell, and Wong, 1989a) that the
theoretical maximum capacity of a sign constrained network was exactly half that of the
unconstrained version (a simpler argument showing this is given in Campbell and
Robinson (Campbell, and Robinson, 1991)), namely  = 1.0 for signed  nets and   = 2.0
for unconstrained nets.  This is a surprising result as the volume of weight space that the
network may use is reduced by a much higher proportion.  They also showed that this
capacity (for unbiased patterns) is independent of the specific sign constraint used.  In
particular, a network of units using only excitatory (or inhibitory) connections could store
up to N uncorrelated patterns.  The argument to demonstrate this is straightforward:
Suppose a set of random set of patterns is learnable with a particular sign constraint.
Then if weight wij  is flipped, the stability of the stored patterns can be restored by

flipping bit j in each of these patterns.  So that an equal number of different, but still

random patterns can be learnt by the network with the new sign constraint. However the

presence of correlated training data will make the capacity of network sensitive to the

specific sign-bias.  Viswanathan (Viswanathan, 1993) studied networks which strictly

adhered to Dales rule, so that all the outgoing weights at a given neuron had the same
sign, i,  i gij = g  i j .  The results showed that the theoretical capacity of such networks

was always greatest when the number of excitatory and inhibitory neurons was equal,

gij = 0 .  Moreover when the training data becomes increasingly correlated the

theoretical capacity increases, so that with the optimal sign constraint ( gij = 0 ) the

initial capacity for unbiased data of N would increase as the correlation increased.

4.2.2 Dynamics

The dynamics of the network are affected by the sign bias.  Wong and Campbell  (Wong

et al., 1992) showed that in a diluted network, with any sign constraint that had a non-

zero bias of positive or negative weights, developed a new form of attractor: the uniform

state (all +1/-1).  As the sign-bias increases then the uniform state becomes progressively

more likely to attract other states.  It is likely that this behaviour would extend to fully

connected networks, since for example, in a network with positive weights only, the

energy function E S{ } = 1
2 wijSi

i, j

Sj , will have a global minimum at the uniform, +1,

state. A consequence of the increasing influence of the uniform attractor could be to
decrease the attractor basin size of the stored patterns.

4.2.3 Learning Rules

Amit et al (Amit et al., 1989b) suggest how a learning rule based on standard perceptron
learning can be modified to comply with a particular sign constraint.  The idea is
straightforward: whenever a weight change is proposed that will result in a violation of
the sign constraint, the change is not made.  A variant of this is to zero such a violating



weight.  Specifically, given a particular sign-bias, gij = ±1 , and an initialisation of zero

weights the Signed version of LL, Signed-LL, can be formally stated as:

Repeat until all local fields are correct

  Set the state of network to one of the p

  For each unit, i, in turn

    Calculate hi
p

i
p

.

    If this is less than T then change the weights to unit i according to:

    
 w ij = wij +

i
p

j
p

N
    whenever the resulting weight meets the sign constraint,  gij  w ij > 0 , otherwise leave the

    weight unchanged

The variant of this, mentioned above, is to use

          w ij = max gij wij +
i
p

j
p

N

 

 
 

 

 
 , 0

 

 

 
 

 

 

 
 

and we will denote this variant as Signed-LL-Zero

Note that this form of learning can be used in any variant of perceptron learning, so that
signed KM is straightforwardly derived from the KM algorithm.

Of course symmetry can also be maintained for signed networks, by requiring that the
sign constraints are symmetric, gij = gji  and using SLL modified to adhere to the sign

constraint, as above.  This learning rule is denoted as Signed-SLL.

     As is well known, normal perceptron learning will converge on a solution, if one
exists, since the weight changes always move the weight vectors towards ones that embed
the training vectors (Hertz, Krogh, and Palmer, 1991).  With the sign constrained version
it is also possible to show (Amit et al., 1989b) a similar result.  Providing a solution
satisfying the  sign constraint exists, then any weight change given by the Signed-LL rule
will move the weights nearer to the desired solution.

4.3 Dilution

The weights in a network can be diluted (removed) either before or after training takes
place.  For any one-shot rule, where a single weight is immediately determined by the
training patterns, without referral to the connectivity of the network, the two approaches
are obviously equivalent, and it is known (Sompolinsky, 1986) that capacity drops
linearily with the proportion of weights removed.

In the scheme adopted here a fraction of the weights of the network are set to a constant
value of zero (effectively removed from playing any part in the network dynamics).  This



may be done in such a fashion that the symmetry of the connection matrix is maintained,
that is if wij  is removed then so is w ji , or alternatively in a completely random way.  We

use both approaches.  If symmetry is maintained in dilution, subsequent training uses
symmetric local learning, otherwise normal perceptron style learning is used.  The
dilution rate, d, is the proportion of weights that are removed prior to training.

5 Analysis Tools

5.1 Introduction

The experiments described in the next section are designed to give empirical information
about the performance of the networks under the constraints described in Section 4.  To
this end we use several measures of performance: the training time and  values at
specific loadings and learning thresholds are reported.  Where appropriate the degree of
symmetry in the networks weight matrix is also reported as described in 6.1.1.  The
training sets are all randomly generated and by default have no bias towards +1 or –1.
However on occasion we are interested in the response of the network to training sets that
are biased: the bias of a training set is the probability that any bit will be +1.

The most interesting performance measure is the ability of the network to act as a pattern
completion/corrector.  This is difficult to ascertain and our approach to measuring this is
described next.

5.2 Attractor Basin Size

An effective associative memory model is expected, not only to have the training patterns
as fixed points of the network dynamics, but also that these fixed points should act as
attractors in the state space.  The ideal behaviour of such an associative memory would be
such that a given initial state should relax to the nearest trained pattern.   It is therefore
important to know the mean size of the basins of attraction of the trained patterns.

Since the attractor basins cannot be expected to be Hamming hyperspherical (Storkey,
and Valabregue, 1999), it is usual to take the minimum Hamming radius:

R p( ) = inf q p : q Basin p( ){ }
The mean radius of attraction over the patterns, R, can act as a measure of the quality of a
particular associative memory.  It is also common for R to be normalised with respect to
the size of the network, so that it lies between zero and one.

For very small networks it is possible to exhaustively explore the state space (see, for
example Personnaz, Guyon, and Dreyfus, 1986) , in order to calculate R exactly, but for
more realistic sizes the nature of the attractors is very hard to compute (Floréan, and
Orponen, 1993; Kepler, and Abbott, 1988) and only empirical methods are available.

A sample of states at a fixed distance, r, from a trained pattern, 
p
, is made, and if all of

them relax to 
p
, it is concluded that R(

p
) is at least as big as r.  Clearly, the larger the

sample size the higher the quality of the estimate, in all of our experiments the sample



size is 50.  An analysis of the affect of sample size on the estimate of R can be found in
(Davey, and Hunt, 2000b).

In our implementation we have slightly adapted the method of Kanter and Sompolinsky
(Kanter, and Sompolinsky, 1987) in the calculation of R.  For each of the sample states
chosen a fixed fraction, m0, of the state is identical to the corresponding part of one of the

stored patterns, 
p
 , and the rest of the state is random.  Initially a low value is taken for

m0 and consequently it needs to be incrementally increased until all of the sample states

relax to  
p
 .  Averaging m0 over different stored patterns yields:

R = 1 m0

As is pointed out in (Kanter et al., 1987), for finite size associative memories, another
factor needs to be considered.  The initial states used in this calculation may overlap one

of the other stored patterns more closely than  
p
, and to compensate for this the

definition of R is modified to:

R =
1 m0
1 m1

where m1 is the largest overlap with the rest of the stored patterns.  This is a double
average over both different sets of stored patterns and different sample states.

So in our implementation, a fixed number of random starting points are chosen, each of
which has a low overlap with the members of the training set (low average m0).  If, as is
likely, the start state does not relax to the closest training pattern in one or more of the
random cases, the value of m0 is increased (by 1

N ), and the search is repeated.  This

continues until all random start states relax to the closest stored pattern.  This procedure is
performed for six different sets of stored patterns for each network type.

The perfect attractor network has R = 1, which means that it is possible to move away
from any stored pattern, and stay within its basin of attraction up to the point at which
another stored pattern becomes nearer (see Figure 1).  Note that the calculation of average
attractor basin size for the trained patterns can only be undertaken when these patterns are
themselves stable.

p1 p2
r

r

p4

p3

Figure 1 Calculating R.  In this figure p1, p2, p3 and p4 are patterns.  The closest pattern in the

training set to p1 is p2, at a distance of 2r.  Optimal performance occurs when all vectors within the

hypersphere centred on p1 and radius r, are attracted to p1.  If all patterns stored in a network

exhibit this performance, its normalised average basin of attraction, R, is 1



6 Results

6.1 Symmetry of the Weights

For both symmetric and non-symmetric versions of the networks studied here the
theoretical capacity is known to be 2N for unbiased, random patterns and higher for
biased ones.  Moreover both the basic learning rules described earlier will find an
appropriate weight matrix if one exists.  So it is sensible to compare the symmetric and
non-symmetric networks in terms of their attractor performance and convergence time of
the learning rule, but not for maximum capacity.  In general, as would be expected, the
size of the attractor basins decreases as loading increases, as can be seen in Figure 2.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R

Figure 2: The basin of attraction size for the Symmetric Local Learning Network, with 100 units
and unbiased patterns.  Results are averages over 10 networks at intervals of 0.01 in loading, .

Graphs for the other networks show a similar pattern.

The next set of results, shown in Table 1, compares Local Learning (LL) with the
symmetric version, SLL.  In all cases the loading of the (100 node) network is  = 0.3, the
patterns are unbiased and the results are averages over fifty runs.  At this loading the
theoretical value of  max is 1.27.



T R Training
Epochs

LL 1 0.84 0.57 7.7

LL 10 1.14 0.64 54.8

LL 100 1.18 0.63 500.6

SLL 1 0.80 0.54 11.6

SLL 10 1.14 0.65 35.6

SLL 100 1.18 0.65 307.8

Table 1: The comparative performance of local learning and its symmetric counterpart, under a

loading of 0.3 (30 patterns in a 100 node network).  The patterns are unbiased and the results

averages over 50 runs.

It can be seen that the imposition of symmetry does not affect the attractor performance
(R) of the network.  Moreover the increase in T raises the value of  but, interestingly,
this does not improve attractor performance, in the change from T = 10 to T = 100, in
either case.  The actual value of  obtained is much higher than the theoretical lower
bound, which for this learning rule, at this loading is: 0.42 for T = 1, 0.60 for T = 10 and
0.63 for T = 100.

The training time (epoch count) is increasing linearily with T, which is in accordance
with the theoretical upper bound on training time (Krauth et al., 1987).  However it is
apparent that the convergence of SLL, at the higher values of T, is significantly faster
than the non-symmetric version.

The results for the Krauth and Mezard rule, shown in Table 2, again with   = 0.3,
unbiased patterns and the results averaged over fifty runs show a similar pattern to LL.
The imposition of symmetry does not make much difference to R, with KM being
marginally better than SKM.  A comparison of  Tables 1 and 2 shows the R values for LL
to be similar to those for KM, although as in accordance with the theoretical result, the 
values are higher for KM, getting close to the theoretical maximum (1.27) with the
highest threshold.  The results do not contain the training epoch count as the algorithm
does not take place in a simple epoch by epoch fashion.



T R

KM 1 0.87 0.57

KM 10 1.19 0.66

KM 100 1.23 0.64

SKM 1 0.87 0.56

SKM 10 1.19 0.61

SKM 100 1.23 0.62

Table 2: The comparative performance of Krauth / Mezard local learning and its symmetric

counterpart, under a loading of 0.3 (30 patterns in a 100 node network).  The patterns are unbiased

and the results averages over 50 runs.

6.1.1 Symmetry

It is interesting to look at the degree of  symmetry in the weight matrices produced by the
asymmetric versions of the learning rules.  To this end the symmetry measure of Krauth,
Nadal and Mezard (Krauth et al., 1988) was applied to the resulting weight matrices. It is
defined as:

 =

wij
i,j

w ji

wij
2

i, j

.

For a symmetric matrix this takes the value +1.  For an anti-symmetric matrix it takes the
value –1 and for a random set of weights it will be roughly zero.  The results, in Table 3,
show that the weight matrices produced for all thresholds are highly symmetric with the
symmetry increasing with the threshold.

T  - LL  - KM

1 0.961 0.968

10 0.983 0.991

100 0.983 0.991

Table 3: Symmetry of LL and KM with alpha = 0.3, and unbiased patterns.  Averages over 50 runs

6.2 Sign Constraints

6.2.1 Capacity

The first set of results measures the capacity of signed networks trained using Signed-LL,
varying both the bias of the training sets, and the weight sign-bias.  The actual capacity
can only be estimated; an incremental search was undertaken for the first point at which



the network failed to learn five different sets of random patterns.  The highest loading for
which this was possible was taken as the capacity of the network.
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Figure 3: Capacity of 100 unit networks, trained using Signed-LL, with varying degrees of Sign

Bias and with different correlations within the training sets (data-bias  0.5 to 0.9).

In Figure 3 it can be seen that when the patterns are not correlated (data-bias = 0.5) the
capacity is independent of the specific sign bias, as expected.  However this capacity is
significantly less than the theoretically predicted one of 100 patterns in a 100 unit
network.  As the training sets become more correlated, an increasing sign bias causes the
capacity to fall considerably.   This is in accord with the theoretical prediction of
Viswanathan (Viswanathan, 1993) for the special case of networks that adhere to Dale’s

law.  The exception is with highly correlated patterns (data-bias = 0.9) where capacity is
very low whatever the sign bias.  It is also noteworthy that the networks can withstand
some bias in the signs: with these networks capacity was maintained reasonably up to a
sign bias of 0.8.

The second of Viswanathan’s theoretical predictions, that increasing correlation should
increase capacity is however, not confirmed in the general set of sign biases studied here.

6.2.2 Basins of Attraction and Symmetry of Weights

In these experiments the mean normalised radii of the basins of attraction, R, associated
with fundamental memories is estimated.   The minimum of the normalised stability
factors, , and the symmetry of the weights , is also reported.  All three sets of results
are with 15 random patterns in 100 unit networks, with T = 10, and results averaged over
50 runs.  This loading is chosen as, in most cases, it is well within the capacity of the
networks.

Uncorrelated Data



Considering first the uncorrelated data, Table 4, where it can be seen that the signed
networks show progressively poorer performance (R values) as the sign of the weights
becomes more correlated.   This confirms the increasing importance of the uniform
attractor,  as the sign of the weights become similar (see Section 3.2).  However for each
sign-bias the  values of each type of network are very similar so that the normal relation
between R and  is broken; for this type of network a very unusual result.

It is also interesting to note that the non-symmetric version of the signed nets, Signed-LL,
performs better than the symmetric version, Signed-SLL. Normally the symmetric weight
models are preferred, as they have simpler dynamics (Davey, Adams, and Hunt, 2000a),
and it is particularly unusual that networks with a relatively low degree of symmetry (  =
0.41), as in the case of the 0.50 sign-bias version of Signed-LL should perform so well.

As the sign bias increases the weights become progressively more symmetric, so that at a
Sign-Bias of 1.00 the weights are very nearly symmetric.  = 0.95.  This is not
unexpected:  as the sign bias  of the weights increases the more likely it is that two weight
pairs,wij  and w ji , will have the same sign and can therefore take similar values.

For comparison the unrestricted learning rule SLL is also included and it can be seen that
it attains a  value roughly twice that of the signed networks.  This is in accord with the
theoretical prediction – as is shown in Figure 4 for any given kappa-max the maximum
theoretical capacity of a signed net is half that of its unsigned counterpart (and vice versa)

0

0.5

1

1.5

2

0 0.4 0.8 1.2 1.6

kappa-max

al
ph

a

Sign Constrained

Normal

Figure 4: Theoretical relationship between maximum capacity, , and the maximum possible value

of , -max for unbiased random data.



Network Sign-Bias R

0.50 0.78 0.99 0.41

Signed-LL 0.75 0.52 0.98 0.54

1.00 0.23 1.00 0.95

0.50 0.65 0.95 1.00

Signed-SLL 0.75 0.39 0.95 1.00

1.00 0.20 0.94 1.00

SLL - 0.96 1.84 1.00

Table 4: Uncorrelated Data (bias 0.5).  Attractor Performance, R,  and  for three different types

of network.  Each result is for 100 unit networks trained with 15 patterns averaged over 50 runs. For
this loading the masimum theoretical value of  is more than 2.0 for the unsigned network.

Correlated Data

Tables 5 and 6 give similar results when the data is correlated.  The overall pattern of
results, for R and  is as for the uncorrelated data.  However the  results show
decreasing  as the sign-bias increases, contributing to the resulting poor attractor
performance.  Normally in these networks increasing correlation in the training set should
improve performance, and this is confirmed here in the slightly higher R values, when
comparing Tables 4, 5 and 6.

Network Sign-Bias R

0.50 0.82 0.98 0.41

Signed-LL 0.75 0.60 0.91 0.51

1.00 0.12 0.64 0.88

0.50 0.70 0.95 1.00

Signed-SLL 0.75 0.46 0.88 1.00

1.00 0.07 0.56 1.00

SLL - 0.99 1.85 1.00

Table 5: Correlated Data (bias 0.6).  Attractor Performance, R,  and  for three different types of

network.  Each result is for 100 unit networks trained with 15 patterns averaged over 50 runs.



Network Sign-Bias R

0.50 0.97 0.87 0.40

Signed-LL 0.75 0.92 0.83 0.49

1.00 - - -

0.50 0.85 0.83 1.00

Signed-SLL 0.75 0.83 0.80 1.00

1.00 - - -

SLL - 1.00 1.60 1.00

Table 6: Correlated Data (bias 0.8).  Attractor Performance, R,  and  for three different types of

network.  Each result is for 100 unit networks trained with 15 patterns averaged over 50 runs.

Results for a sign-bias of 1.00 are not reported as these networks fail to learn at this loading and

pattern bias.

6.3 Dilution

In these experiments networks are either diluted asymmetrically and trained using LL, or
are diluted symmetrically and trained using SLL.

6.3.1 Capacity

As described in the previous section, to find the capacity of the diluted networks we
search for the point at which the learning rule fails to converge, when presented with ten
sets of patterns at the given loading.  We investigate 100 unit networks with dilution rates
varying from 0 to 0.9 in increments of 0.1.  The symmetric learning rule, SLL, is used
here, with T=1.  All training sets are unbiased  (b = 0.5).

The results (Figure 5) show a similar pattern to that reported for one-shot Hebbian
learning (Sompolinsky, 1986): a roughly linear decrease in capacity with increasing
dilution.  Interestingly the capacity of this form of network with 80% of the connections
removed is roughly equivalent to a fully connected standard Hopfield network.  Note also
that for all dilutions up to 0.6, at least 30 patterns are learnable by the network.
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Figure 5: Capacity of diluted networks (N = 100) trained with the SLL rule.

6.3.2 Effect of Varying Training Threshold

In this section we present the results of varying the learning threshold, T, for networks
trained using both the LL and SLL rules.  In all cases dilution of 0.4 is considered, since
networks with this many connections have a capacity well in excess of the 30 patterns we
wish to store, as shown in Figure 4.

Attractor Performance

Table 7 shows how the attractor performance changes for the network with d = 0.4, as the
learning threshold is increased.  As a base case the undiluted version of the network is
also given.  Consider first the results for the non-symmetric networks (LL).  It is
immediately apparent that the effect of dilution is to lower the  value and
correspondingly lower the R values.  Increasing the learning threshold from 1 to 10 does
improve the R value slightly, but the R value does not approach that of the undiluted
network.  Increasing the learning threshold further (from 10 to 100) does not appear to
bring benefit.

The symmetric networks (SLL) show a similar pattern. However the most significant
result here is that the attractor performance of the symmetrically diluted and trained
networks is markedly inferior to the non-symmetric versions.



Network T R

LL (d = 0) 1 0.83 0.56

LL (d = 0.4) 1 0.55 0.23

LL (d = 0.4) 10 0.68 0.26

LL (d = 0.4) 100 0.67 0.23

SLL (d = 0) 1 0.80 0.55

SLL (d = 0.4) 1 0.53 0.10

SLL (d = 0.4) 10 0.62 0.11

SLL (d = 0.4) 100 0.63 0.11

Table 7: Attractor performance of diluted networks, under a loading of 0.3 (N = 100).  Training sets

are unbiased (b = 0.5) and results are averages over 50 runs.

Training Times

Table 8 shows how the training time varies as T is increased.  Again the undiluted
networks are shown for comparison.  The symmetric and non-symmetric versions take a
similar number of epochs to train.  With the threshold, T, at 1, the effect of dilution is to
significantly increase the training time, when compared with the undiluted networks.
Moreover, as T is increased the training time increases in a roughly linear way.  This
pattern is also seen in undiluted networks (Krauth et al., 1987).

Network T Epochs

LL 1 10.32

LL (d = 0.4) 1 27.63

LL (d = 0.4) 10 184.47

LL (d = 0.4) 100 1941.84

SLL 1 8.26

SLL (d = 0.4) 1 27.11

SLL (d = 0.4) 10 195.53

SLL (d = 0.4) 100 1881.84

Table 8: Training times for diluted networks under a loading of 0.3 (N = 100).  Training sets are

unbiased and results are averages over 50 runs.

6.3.3 Symmetry

Next the symmetry of the asymmetric networks is examined.  If a network is randomly
diluted at a rate of d = 0.4, but the remaining weights are symmetric wherever possible,



we would expect  (our measure of symmetry) to be roughly 0.6, which is therefore the
maximum value that  could be expected to achieve.  As can be seen from Table 9, the
weight matrix for the undiluted network is very nearly symmetric, but  is significantly
less than 0.6 for each of the diluted networks.  The inference we draw from this is that the
learning rule is introducing greater asymmetry to the weight matrix in order to cope with
the asymmetric dilution - compare with the 0.96 in the last row which is very close to the
maximum value it could be of 1.0 for the undiluted network. This degree of asymmetry is
likely to be a problem for these types of networks, as symmetry is necessary for
prohibiting non-point attractors.  So when the heavily diluted LL networks are run they
often reach multi-point orbits, which are difficult to identify.

Dilution T

0.4 1 0.49

0.4 10 0.49

0.4 100 0.48

0.0 1 0.96

Table 9: Symmetry of weight matrices in networks trained with LL. Averages over 50 runs.

6.3.4 Effect of Varying Dilution and Bias

In this section we examine how the attractor performance and training times change as the
dilution rate is varied.  The SLL rule is used here due to the difficulty of measuring R for
highly diluted networks trained with the LL rule, in which the dynamics are increasingly
complicated (see above).  Training sets which are unbiased (b = 0.5) and correlated (b =
0.7) are used.

Attractor Performance

In Figure 6 it can be seen that the R values decrease with increasing dilution and that the
networks perform better with correlated patterns, regardless of the amount of dilution.
Once again, this also holds for undiluted networks (Davey et al., 2000b).
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 Figure 6: Attractor performance of networks trained using SLL, under a loading of 0.3 (N = 100)
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Training Times

Finally, in Figure 7, the effect of increasing dilution on training times is given.  Increasing
dilution increases the training time, the bias of the training patterns does not have a
significant effect.
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7 Conclusion

This paper has discussed how three types of constraint on the weights in a network of
perceptrons affects the performance of the network as an associative memory.
Considering each constraint in turn:

Symmetry

Symmetry of the weights in an associative neural network is a mixed blessing.  Desirable
from the perspective of dynamics, but with potentially damaging implications for the
attractor performance.  However as shown above, for both forms of learning rule, the
addition of a symmetry constraint did not have an adverse affect on the attractor basins.
The  reason for this is probably that the matrices that result from unconstrained learning
are already highly symmetric and become more so with a larger learning threshold, which
is itself an interesting result.

It is also apparent that, for the LL rule, imposing a symmetry constraint during learning
had a helpful affect on convergence – almost halving the training epochs required. In
symmetric local learning, for each epoch, each weight is changed twice, so if both these
changes  are constructive in moving the weight towards its final value, the learning may,
at best, be twice as efficient.  If the LL weight matrix was actually strongly asymmetric,
then it is improbable that the SLL double weight change would be constructive, and the
observed halving of training epochs would not have occurred.

The best versions of these fully connected. high capacity Hopfield networks are those
with strictly symmetric weights, since they have simple dynamics (only point attractors in
the phase space), and learn faster.

Sign Constraints

Complete freedom in assigning weights to connections may not be an adequate model of
biological systems, where amongst other constraints, connections may be only excitatory
or only inhibitory. An investigation into how the proportion of signed to unsigned
weights in a network, its sign-bias, affects the behaviour of the network was undertaken.

One of the important results here is that the actual capacity of a sign constrained network
is a lot less than the theoretical maximum. The presence of correlation in the training data
decreased the capacity, contrary to both the behaviour of unsigned nets and the theoretical
prediction of Viswanathan (Viswanathan, 1993).  The degree of correlation in the signs of
the weights was shown to affect the dynamics of the trained networks, so that the best
attractor performance (R values) was attained with neutral sign correlation, where the
uniform attractor was not significant. It was also observed that with sign constrained
networks, the normal static measure of likely performance, the smallest normalised
stability measure, was not a good predictor of performance.  The specific sign bias of
these networks is important in attaining good performance and it suggests that in
biological systems the ratio of excitatory to inhibitory synapses may not be accidental.

Dilution

Dilution of the weights in a high capacity associative neural network is interesting from
both the neurophysiological perspective and from an engineering point of view, in which
the number of connections can be viewed as a resource to be minimised. There are at least



two ways in which pre training dilution can be undertaken in such networks, either
maintaining symmetry or not. In the latter case the asymmetry of the remaining weights
causes problems with the network dynamics, as discussed in section 4.2.3.

The capacity of the SLL networks is shown to decrease linearily with the rate of dilution,
a similar pattern to that of networks trained with one-shot Hebbian learning. However the
SLL network maintains a relatively high capacity for dilution rates up to 80%. The
attractor performance of the diluted networks is poorer than the undiluted counterparts,
and although increasing the learning threshold does improve performance it is not
possible to recover to the level attained by fully connected networks, and training times
are significantly increased.  The presence of correlated training patterns is not a problem
for these networks, indeed the attractor performance is actually better for biased patterns,
as shown in section 6.3.4.

Importantly it is shown that symmetrically diluted networks do not perform as well, in
terms of attractor performance, as their asymmetric cousins.  An interesting question that
it has not been possible to explore here is whether a symmetric dilution policy together
with the asymmetric learning rule would bring benefit. The low symmetry of the
asymmetrically diluted LL networks (Table 9) suggests that this is a possibility worthy of
exploration.

In  overall conclusion it can be seen that the sign-constrained networks perform
reasonably as associative memories, but are weaker than the networks without this
constraint.  The fully connected, symmetrically trained networks, SLL, give the best
performance.  However the interaction between symmetry and dilution shows that this
conclusion is not necessarily appropriate for diluted networks.  Some preliminary work
on networks with small-world connectivity patterns (Bohland, and Minai 2001; Watts,
and Strogatz, 1998) suggests that asymmetric dilution gives better attractor performance
than symmetric dilution.
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