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Abstract. The classical approach to using utility functions suffers from
the drawback of having to design and tweak the functions on a case
by case basis. Inspired by examples from the animal kingdom, social
sciences and games we propose empowerment, a rather universal func-
tion, defined as the information-theoretic capacity of an agent’s actuation
channel. The concept applies to any sensorimotoric apparatus. Empow-
erment as a measure reflects the properties of the apparatus as long as
they are observable due to the coupling of sensors and actuators via the
environment.

1 Introduction

A common approach to designing adaptive systems is to use utility functions
which tell the system which situations to prefer and how to behave in general.
Fitness functions used in evolutionary algorithms are similar in spirit. They
specify directly or indirectly which genotypes are better.

Most utility functions and fitness functions are quite specific and a priori.
They are designed for the particular system and task at hand and are thus not
easily applicable in other situations. Each time the task and the properties of the
system have to be translated into the “language” of the utility or fitness function.
How does Nature address this problem? Is there a more general principle?

One common solution found in living organisms is homeostasis [1]. Organisms
may be seen to maintain “essential variables”, like body temperature, sugar
levels, pH levels. Homeostasis provides organisms with a local gradient telling
which actions to make or which states to seek. The mechanism itself is universal
and quite simple, however the choice of variables and the methods of regulation
is not. They are evolved and are specific to different phyla.

2 Empowerment

2.1 Motivation

Our central hypothesis is that there exist a local and universal utility function
which may help individuals survive and hence speed up evolution by making
the fitness landscape smoother. The function is local in the sense that it doesn’t



rely on an infinitely long history of past experience, does not require global
knowledge about the world. The utility function is applicable to all species,
hence, it should be universal. At the same time it should adapt to morphology
and ecological niche. The utility function should be related to other biologically
relevant quantities.

In the quest for the function one invariably notices certain traits reappear in
different contexts over and over again. In animal kingdom we see the striving for
domination and control. Humans and even states strive for money, power and
control. In board games such as Reversi or Othello there is a concept of mobility,
which is defined as the number of moves a player can make. Everything else being
equal players should seek higher mobility.

The unifying theme of these and many other examples is the striving towards
situations where in the long term one could do many different things if one
wanted to, where one has more control or influence over the world. Predators
with better sensors and actuators can hunt better. Having high status in a group
of chimpanzees allows one more mating choice. Having a lot of money enables one
to engage in more activities. One can choose from an array of options. However,
if one doesn’t know what to do, a good rule of thumb is to choose actions leading
to higher status, more power, money and control. We will now apply this idea
to “embodied” agents.

2.2 The Concept of Empowerment

In his work on ecological approach to visual perception [2] Gibson proposed that
animals and humans do not normally view the world in terms of geometrical
space, independent arrow of time, and Newtonian mechanics. Instead, he argued,
the natural description is in terms of what one can perceive and do. Thus,
different places in the world are characterized by what they afford one to perceive
and do.

This perspective is agent-centric. The concept of “the environment” is a by-
product of the interplay between the agent’s sensors and actuators. In this spirit
we base our utility function solely on the sensors and actuators, without the
need to refer to the “outside” of the agent.

We propose empowerment, a quite general utility function, which only relies
on the properties of “embodiment”, the coupling of sensors and actuators via the
environment. Empowerment is the perceived amount of influence or control the
agent has over world. For example, if the agent can make one hundred different
actions but the result, as perceived by the agent, is always the same, the agent
has no control over the world whatsoever. If, on the other hand, the agent can
reliably force the world into two states distinguishable by the agent, it has two
options and thus two futures to choose from. Empowerment can be seen as the
agent’s potential to change the world, that is, how much the agent could do in
principle. This is in general different from the actual change the agent inflicts.

In the section 2.4 we will quantify empowerment using Information The-
ory [3]. Briefly, empowerment is defined as the capacity of the actuation channel



of the agent. The main advantage of using Information Theory for defining em-
powerment is that the measure is universal in the sense that it does not depend
on the task or on the “meaning” of various actions or states.

2.3 The Communication Problem

Here we provide a brief overview of the classical communication problem from
Information Theory and define channel capacity for a discrete memoryless chan-
nel. For an in depth treatment we refer the reader to [3, 4].

There is a sender and a receiver. The sender transmits a signal, denoted by
a random variable X, to the receiver, who receives a potentially different signal,
denoted by a random variable Y . The communication channel between the sender
and the receiver defines how transmitted signals correspond to received signals.
In the case of discrete signals the channel can be described by a conditional
probability distribution p(y|x).

Given a probability distribution over the transmitted signal, mutual informa-
tion is defined as the amount of information, measured in bits, the received signal
on the average contains about the transmitted signal. Mutual information can
be expressed as a function of the probability distribution over the transmitted
signal p(x) and the distribution characterizing the channel p(y|x):

I(X;Y ) =
∑
X ,Y

p(y|x)p(x) log2

p(y|x)∑
X p(y|x)p(x)

. (1)

Channel capacity is defined as the maximum mutual information for the
channel over all possible distributions of the transmitted signal:

C = max
p(x)

I(X;Y ) . (2)

Channel capacity is the maximum amount of information the received signal
can contain about the transmitted signal. Thus, mutual information is a function
of p(x) and p(y|x), whereas channel capacity is a function of the channel p(y|x)
only. Another important difference is that mutual information is symmetric in X
and Y and is thus acausal, whereas channel capacity requires complete control
over X and is thus asymmetric and causal (cf. [5]).

There exist efficient algorithms to calculate the capacity of an arbitrary dis-
crete channel, for example, the iterative algorithm by Blahut [6].

2.4 Definition of Empowerment

For the sake of simplicity of the argument, let us assume a memoryless agent in
a world. Following the information-theoretic approach to modeling perception-
action loops described in [7, 8] we can split the whole system into the agent’s



sensor, the agent’s actuator and the rest of the system1 including the environ-
ment. The states of sensor, actuator and the rest of the system at different
time steps are modeled as random variables (S, A, and R respectively). The
perception-action loop connecting these variables is unrolled in time. The pat-
tern of dependencies between these variables can be visualized as a Bayesian
network (Fig. 1).
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Fig. 1. The perception-action loop as a Bayesian network. S – sensor, A – actuator, R
– rest of the system. R is included to formally account for the effects of the actuation
on the future sensoric input. R is the state of the actuation channel.

Previously we colloquially defined empowerment as the amount of influence
or control the agent has over the world as perceived by the agent. We will now
quantify the amount of influence as the amount of Shannon information2 the
agent could “imprint onto” or “inject into” the sensor. Any such information
will have to pass through the agent’s actuator.

When will the “injected” information reappear in the agent’s sensors? In
principle, the information could be “smeared” in time. For the sake of simplicity
in this paper will be using a special case of empowerment: n-step sensor empow-
erment. Assuming that the agent is allowed to perform any actions for n time
steps, what is the maximum amount of information it can “inject” into the mo-
mentary reading of its sensor after these n time steps (Fig. 2)? The more of the
information can be made to appear in the sensor, the more control or influence
the agent has over its sensor.

We view the problem as the classical problem of communication from Infor-
mation Theory [3] as described in Sec. 2.3. We need to measure the maximum
amount of information the agent could “inject” or transmit into its sensor by
performing a sequence of actions of length n. This is precisely the capacity of the
channel between the sequence of actions and sensoric input n time steps later.

Let us denote the sequence of n actions taken, starting at step t, as a random
variable An

t = (At, At+1, . . . , At+n−1). Let us denote the state of the sensor n

1 We include the rest of the system, denoted by R, only to account for the effects of
actuation on the future sensoric input. R is the state or memory of the actuation
channel. For the problem of channel with side information it is established [4] that
knowing the state of the channel may increase its capacity. Thus, in addition to
actuator, sensor and the rest of the system it is useful to define context, a random
variable approximating the state of the actuation channel in a compact form (cf.
Information Bottleneck [9], ε-machines [10, 11]). However, we omit this more general
treatment from the present discussion.

2 The word “information” is always used strictly in the Shannon sense in this paper.
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Fig. 2. 3-step sensor empowerment. Actions are independent of system’s state (agent
with “free will”). The communication channel goes from actions (At, At+1, At+2) to
sensor St+3.

time steps later by a random variable St+n. We now view An
t as the transmitted

signal and St+n as the received signal. The system’s dynamics induce a condi-
tional probability distribution p(st+n|an

t ) between the sequence of actions An
t

and the state of sensor after n time steps St+n. This conditional distribution
describes the communication channel we need.

We define empowerment as the channel capacity of the agent’s actuation
channel terminating at the sensor (see Eq. 1 and Eq. 2):

E = C = max
p(an

t )

∑
An,S

p(st+n|an
t )p(an

t ) log2

p(st+n|an
t )∑

An p(st+n|an
t )p(an

t )
. (3)

Empowerment is measured in bits. It is zero when the agent has no control
over what it is sensing, and it is higher the more perceivable control or influence
the agent has. Empowerment can also be interpreted as the amount of informa-
tion the agent could potentially “inject” [8] into the environment via its actuator
and later capture via its sensor.

The maximizing distributions over the sequences of actions can be interpreted
as distributions of actions the agent should follow in order to inject the maximum
amount of information into its sensors after n time steps.

The conditional probability distribution p(st+n|an
t ) may induce equivalence

classes over the set of sequences of actions. For example, if the various sequences
of actions produce only two different outcomes in terms of the resulting prob-
ability distribution of sensoric input p(st+n) then the agent may view all the
sequences of actions just in terms of two meta-actions corresponding to the two
different distributions over the resulting sensoric input.

3 Experiments

In this section we present two experiments to illustrate the concept of empower-
ment. The first experiment demonstrates how an agent’s empowerment looks in a
grid world and how it changes when a box is introduced. The second experiment
illustrates empowerment of an agent in a maze.



3.1 Box Pushing

Consider a two-dimensional infinite square grid world. An agent can move in the
world one step at a time into one of the four adjacent cells. The actuator can
perform five actions: go left, right, forward, back, and do nothing. For the sake
of simplicity, let’s assume that the agent has a sensor which reports the agent’s
absolute position in the world. What is this agent’s n-step empowerment?

For this scenario the n-step empowerment turns out to be the logarithm of the
number of different cells the agent can reach in n time steps: log2(2n2 +2n+1).
This is log2 5 for 1 step, log2 13 for 2 steps, and so forth. The empowerment does
not depend on where the agent starts with the sequence of actions (Fig. 3, b).

We now add a box occupying a single cell. The agent’s sensor, in addition to
the agent’s position, now also captures the absolute position of the box. Let us
assume that the box cannot be moved by the agent and thus remains stationary.
If the agent tries to move into the cell occupied by the box the agent remains
where it was. In this case the agent’s empowerment is lower the closer the agent
is to the box (Fig. 3, c). This can be explained by the fact that the box blocks
some paths, and as a result it may render unreachable some of the previously
reachable cells. Empowerment is high in the box because from there the agent
can reach the maximum number of cells including the one occupied by the box.

stationary box pushable box

the agent
does not
perceive
the box

a. E ∈ [5.86; 5.93] b. E = log2 61
≈ 5.93 bit

the agent
perceives
the box

c. E ∈ [5.86; 5.93] d. E ∈ [5.93; 7.79]

Fig. 3. 5-step empowerment field over the grid. The field is centered at the box. Because
empowerment in cells further than 5 cells away from the box is always log2(61) ≈ 5.93
bits, only the 13×13 cells central part of the field is shown. Cells are colored according to
scaled empowerment of the agent in the cell. Darker color means higher empowerment.
Maps are scaled independently of each other. Corresponding ranges of empowerment
are provided below the maps. Note that the ranges are different in size.



Let us now assume that the box can be pushed by the agent. If the agent tries
to move into the cell occupied by the box, it succeeds and the box is pushed in
the direction of the agent’s move. Empowerment is now more complex than just
the number of cells reachable by the agent, because it also includes the position
of the box. In this scenario the agent’s empowerment in a given cell is the binary
logarithm of the number of unique combinations of the agent’s and the box’s
final positions achievable from a given cell. The agent’s empowerment is higher
the closer the agent is to the box (Fig. 3, d). The number of cells the agent can
reach in n time steps is still the same as for the case without the box. However,
some paths leading to same cells after n steps can now be differentiated by
different positions of the box, because it was pushed differently. Thus, because
the position of the box is observable and controllable by the agent, it can be
viewed as an extra reservoir for empowerment.

It is also interesting to see what happens if the agent doesn’t perceive the
box, that is when the sensor captures only the agent’s position. In the case of
the stationary box, the empowerment field does not change (Fig. 3, a is identical
to Fig. 3, c). This is because the position of the box never changes. Excluding it
out from the sensor thus cannot decrease the amount of control over the sensor.
With a stationary box, a sensor for the box’s absolute position is useless. Having
no sensor for the box, just by noticing the change in the conditional probability
distribution p(st+n|an

t ) describing the actuation channel the agent could infer
that something changed in the world (no box → stationary box).

In the case of the pushable box leaving out the position of the box from the
sensor results in the completely flat empowerment field over the grid (Fig. 3, b),
exactly as in the initial setup without the box. This is because the movement of
the agent and hence its position is not influenced by the box at all. Thus, if the
agent doesn’t see the box, it cannot perceive it even indirectly.

To summarize, empowerment as a general utility function in this scenario
translates to a simple measure of reachability for simple cases (no box, stationary
box). Furthermore, it reacts reasonably to changes in the dynamics of the world,
which do not need to be explicitly encoded into empowerment. We believe that
empowerment discovers intuitively interesting places in the world.

3.2 Maze

Consider a two-dimensional square grid world. Similar to the previous scenario
an agent moves in the world one step at a time into one of the four adjacent
cells. Some cells have walls between them preventing the agent from moving. A
maze is formed using the walls (Fig. 4). The agent has a sensor which captures
the agent’s global position.

We measure the n-step empowerment of the agent. Similar to the previous
scenario, because of deterministic actuation and the nature of the sensor, em-
powerment is the logarithm of the number of the cells reachable in n moves.
Empowerment maps for several time horizons are shown on Fig. 5.

A natural measure for navigation in mazes is the average shortest path from
a given cell to any other cell. To navigate through any place in the maze fastest



Fig. 4. A 10× 10 maze. Walls between cells are shown in black.

E ∈ [1; 2.32] E ∈ [1.58; 3.70] E ∈ [3.46; 5.52] E ∈ [4.50; 6.41]

Fig. 5. 1-, 2-, 5-, and 10-step empowerment field over a 10 × 10 maze (left to right).
Walls are shown in white. Cells are colored according to empowerment. Darker color
corresponds to higher empowerment in the cell. Maps are scaled independently of each
other. Corresponding empowerment ranges are shown below each map.

one would want to start in a cell with lowest average distance to any other cell.
The map of average shortest distances is shown on Fig. 6. It is similar to the
map obtained using empowerment with several time steps. In fact, empowerment
and average shortest path are roughly anti-correlated (See Fig. 7). However, the
two types of maps need not coincide. For instance, if the task were to avoid a
predator, the average distance map would not be of much help. However, n-step

Fig. 6. Map of average shortest distance to other cells. Darker color corresponds to
lower average distance.



empowerment with straightforward modifications3 would implicitly include the
effects of the predator into the picture.
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Fig. 7. 10-step empowerment of cells (vertical) vs. the average distance to other cells
(horizontal).

4 Discussion & Conclusions

In the search for a general principle for adaptive behavior we have introduced
empowerment, a natural and universal quantity derived from an agent’s “em-
bodiment”, the relation between its sensors and actuators induced by the en-
vironment. Empowerment is defined for any agent, regardless of its particular
sensorimotor apparatus and the environment, as the information-theoretic ca-
pacity of the actuation channel. Empowerment maximization, as a utility or
fitness function, can be colloquially summarized as “everything else being equal,
keep your options open.”

We have shown two simple examples where the empowerment measure cap-
tures features of the world which have not and need not be specially encoded.
For example, in the box pushing scenario, if the box is pushable the agent is
more empowered the closer it is to the box, if the box is not pushable the agent
is, vice versa, less empowered the closer it is to the box.

The presence of the box need not be “encoded” into empowerment at all.
In both cases empowerment was calculated identically, the sensor and the ac-
tuator over which empowerment was measured remained unchanged. It was the
dynamics of the world that changed, and empowerment generalized naturally to
capture the change. The result was different depending on whether the box was
pushable or not.

In the example with walking in a maze, empowerment is anti-correlated with
the average shortest distance from a cell to any other cell. However, these two
measures will cease to coincide, if, for example, a predator were introduced.
3 A natural way to make the presence of the predator “known” to empowerment is to

assume that once the agent is dead, for example, eaten by the predator, all actions
have the same effect. As a result, empowerment drops to zero.



Our central hypothesis is that similar to the two simple examples, where em-
powerment in most cases was related to the number of reachable cells, empow-
erment maximization may translate into simpler measures and interpretations,
like homeostasis, phototaxis, avoidance, etc.

Empowerment is useful for a number of reasons. Firstly, it is defined univer-
sally and independently of a particular agent or its environment. Secondly, it
has a simple interpretation – it tells the agent to seek situations where it has
control over the world and can perceive the fact. Thirdly, if the agent were to
estimate empowerment on-board, it would know what actions lead to what situ-
ations in the future – this knowledge could be used for standard planning. Last
but not least, empowerment can be calculated on-board in an agent-centric way
or externally, as, for example, a fitness function in evolutionary search. In the
latter case the agent need not know anything about empowerment – it would
just behave as though it maximizes empowerment.
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