
Combining Experts In Order to Identify Binding Sites in 
Genomic Data

Faisal Rezwan, Yi Sun 
Rod Adams, Neil Davey 
Science and Technology 

Research Institute 
Univesrity of Hertfordshire 

F.Rezwan @herts.ac.uk  
 

 Alastair Rust 
Institute for Systems Biology,  

1441 North 34th Street,  
Seattle, WA 98103, USA  
arust@systemsbiology.  

 

Mark Robinson 
Department of Biochemistry 

and Molecular Biology, 
Michigan State University,  

East Lansing MI 48824, USA  
blobby@msu.edu 

 

Abstract 

The identification of cis-regulatory binding 
sites in DNA is a difficult problem in 
computational biology. To obtain a full 
understanding of the complex machinery 
embodied in genetic regulatory networks it is 
necessary to know both the identity of the 
regulatory transcription factors together with 
the location of their binding sites in the 
genome. We show that using an SVM 
together with data sampling to classify the 
combination of the results of individual 
algorithms specialised for the prediction of 
binding site locations, can produce significant 
improvements upon the original algorithms.  
The resulting classifier produces fewer false 
positive predictions and so reduces the 
expensive experimental procedure of 
verifying the predictions.  

1 Introduction 

Binding site prediction is both biologically important 
and computationally interesting.  One aspect that is 
challenging is the imbalanced nature of the data and 
that has allowed us to explore some powerful 
techniques to address this issue.  In addition the 
nature of the problem allows biological heuristics to 
be applied to the classification problem.  Specifically 
we can remove some of the final predicted binding 
sites as not being biologically plausible. 

Computational predictions are invaluable for 
deciphering the regulatory control of individual 
genes and by extension aiding in the automated 
construction of the genetic regulatory networks to 
which these genes contribute. Improving the quality 
of computational methods for predicting the location 
of transcription factor binding sites (TFBS) is 
therefore an important research goal. Currently, 
experimental methods for characterising the binding 
sites found in regulatory sequences are both costly 

and time consuming. Computational predictions are 
therefore often used to guide experimental 
techniques. Larger scale studies, reconstructing the 
regulatory networks for entire systems or genomes, 
are therefore particularly reliant on computational 
predictions, there being few alternatives available.   

DNA molecules are composed of a long chain of 
linked monomers, known as nucleotide bases, which 
come in four different types. The sequence of bases 
in a DNA sequence can be used to encode 
information necessary for the proper function of 
many biological systems. Two important examples 
include the gene sequences which encode an 
organism’s complement of proteins and the 
regulatory sequences which by binding transcription 
factors help determine the coordinated expression of 
the proteins in space and time. Functional annotation 
of DNA sequences has taken an increasingly 
important role in the post-genomic era. Many regions 
of considerable functional importance, such as 
binding sites for transcription factors, consist of 
subtle signals encoded in the DNA sequence. 
Detection of these regions in genomic sequences is a 
critical step in our evolving understanding of gene 
regulation and gene regulatory networks.  
Transcription factor binding sites are notoriously 
variable from instance to instance and they can be 
located considerable distances from the gene being 
regulated in higher eukaryotes. Computational 
prediction of cis-regulatory binding sites is widely 
acknowledged as a difficult task (Tompa, Li et al. 
2005).  

In this paper we show how algorithmic 
predictions can be combined so that a Support Vector 
Machine (SVM) can subsequently perform a new 
prediction that significantly improves on the 
performance of any one of the individual algorithms.  
Moreover we show how the number of false positive 
predictions can be reduced by around 80%.  We use 
two different data sets: for our major study we use a 
set of annotated yeast promoters take from the SCPD 
(Zhu and Zhang 1999), and then in order to validate 
the method with a complex multi-cellular species, the 
mouse, we used a set of 47 experimentally annotated 



promoters extracted from the ABS (Blanco, Farre et 
al. 2006) and ORegAnno databases (Montgomery, 
Griffith et al. 2006) . 

2 Background  

The use of a non-linear classification algorithm for 
the purposes of integrating difference sources of 
evidence relating to cis-regulatory binding site 
locations, such as the predictions generated from a 
set of cis-regulatory binding site prediction 
algorithms, is explored in this paper.  This is 
achieved by first generating a number of algorithmic 
predictions (a real number between 0 and 1 
representing the probability that a nucleotide is part 
of a binding site, see Section 3) for a set of annotated 
(labelled) promoter sequences.    These predictions 
are concatenated into vectors and an SVM is trained 
to classify them as either being part of a binding site 
or part of the background sequence.   

A wide range of binding site prediction 
algorithms were used in this study. Those used for 
the analysis on yeast were selected to represent the 
full range of computational approaches to the binding 
site prediction problem. The algorithms chosen were 
typically taken from literature although some were 
developed in-house or by our collaborators in the 
case of PARS, Dream and Sampler. Table 1 lists the 
algorithms used with the yeast dataset, details can be 
found in (Robinson, Sun et al. 2006).  Where 
possible, parameter settings for the algorithms were 
taken from the literature, if not available, default 
settings were used. A different set of algorithms were 
used when dealing with the mouse dataset to take 
advantage of the tracks available from the UCSC 
genome browser (Karolchik, Baertsch et al. 2003); 
once again they represent a range of different 
algorithmic approaches along with some additional 
sources of relevant evidence. 

 
Table 1.  The 12 Prediction Algorithms used with the 
yeast dataset.  Note Dream was run using two 
different modes of operation. 

Strategy  Algorithm 
Scanning algorithms Fuzznuc 

MotifScanner 
Ahab  

Statistical algorithms  PARS 
Dream (2 versions)  
Verbumculus  

Co-regulatory 
algorithms 

MEME  
AlignACE  
Sampler 

Evolutionary algorithms  SeqComp  
Footprinter 

 

Table 2 lists the sources of evidence used with the 
mouse dataset. Each of these sources was extracted 
from the UCSC genome browser (Karolchik, 
Baertsch et al. 2003) for the promoter regions of 
interest.  
 
Table 2.  The 7 Prediction Algorithms used with the 
mouse dataset.  

Strategy Algorithm 
MotifLocator Scanning algorithms 
EvoSelex 
Regulatory Potential 
PhastCons (Conserved) 

Evolutionary 
algorithms 

PhastCons (Most 
conserved) 

Indirect evidence CpGIsland 
Negative evidence Exon 

 

3 Description of the Data 

High quality experimentally annotated datasets were 
used in this study. In all cases it is important to be 
aware that such annotations are limited to positive 
observations and as such cannot guarantee 
completeness. It is possible that additional binding 
sites exist in the sequences used and will here be 
classified as background. Any additional binding 
sites which are present but which are not included in 
the annotations will necessarily affect our evaluation 
of prediction accuracy in this study. 

 The yeast, S.cerevisiae was selected for the 
model organism for the first experiment; the use of 
this particularly well studied model organism ensures 
that the annotations available are among the most 
complete. 112 annotated promoter sequences were 
extracted from the S.cerevisiae promoter database 
(SCPD) (Zhu and Zhang 1999) for training and 
testing the algorithms. For each promoter, 500 base-
pairs (bp) of sequence taken immediately upstream 
from the transcriptional start site was considered 
sufficient to typically allow full regulatory 
characterisation in yeast. In cases where annotated 
binding sites lay outside of this range, then the range 
was expanded accordingly. Likewise, where a 500 bp 
upstream region would overlap a coding region then 
it was truncated accordingly.  Further details about 
how the data was obtained can be found in 
(Robinson, Sun et al. 2006).  

The dataset for the second experiment uses 
annotated transcription factor sites for the mouse, 
M.musculus, taken from the ABS and ORegAnno 
databases.  There are 47 annotated promoter 
sequences in total.  Sequences extracted from ABS 
are typically around 500 base pairs in length and 
those taken from ORegAnno are typically around 
2000 bp in length.  Most of the promoters are 



upstream of their associated gene although a small 
number extend over the first exon and include 
intronic regions: where promoters were found to 
overlap they were merged.  Seven sources of 
evidence were used as input in this study.  
MotifLocator uses the PHYLOFACTS matrices from 
the JASPAR database (Wasserman and Sandelin 
2004) to scan for good matches in the sequences.  
EvoSelex uses motifs from (Rajewsky, Vergassola et 
al. 2002) and the Fuzznuc algorithm to search for 
consensus sequences.  A number of sources of 
evidence were extracted from the UCSC genome 
browser: Regulatory Potential (RP) is used to 
compare frequencies of short alignment patterns 
between known regulatory elements and neutral 
DNA.  The RP scores were calculated using 
alignments from the mouse, rat, human, chimpanzee, 
macaque, dog, and cow. PhastCons is an algorithm 
that computes sequence conservation from multiple 
alignments using a phylo-HMM strategy.  The 
algorithm was used with two levels of stringency, 
conserved and most conserved, which are included as 
separate sources of evidence. The CpGIsland 
algorithm finds CG sequences in the regulatory 
region which are typically found near transcription 
start sites and are rare in vertebrate DNA. Finally, 
Exon predictions are included for those sequences 
where the sequence extends over the first exon and 
into the next intronic region and should be 
considered a type of negative evidence.  

For both experiments, each source of evidence is 
placed into a matrix consisting of a vector of inputs 
for each sequence position, each associated with a 
binary label indicating the presence or absence of an 
experimental annotation at that position, see Figure 1, 

which illustrates the input vectors for the yeast 
dataset.  

The algorithms either output a binary value 
designating the prediction of being within a binding 
site or not, or a probability.  All predictions in the 
matrix were then normalised as real values in the 
range [-1,1] with the value of 0 allocated to sequence 
positions where an input source was unavailable.  In 
other words each feature is scaled individually as a 
number between -1 and +1.  Additionally, we 
contextualize the training and test datasets to ensure 
that the classification algorithms have data on 
contiguous binding site predictions. This is achieved 
by windowing the vectors within each of the 
annotated promoter sequences. We use a window 
size of 7 (found after testing of various window sizes, 
see (Sun, Robinson et al. 2005)) providing contextual 
information for 3 bp either side of the position of 
interest.   

Additionally this procedure carries the 
considerable benefit of eliminating a large number of 
repeated or inconsistent vectors which are found to 
be present in the data. (Sun, Robinson et al. 2005) 
These arise when for instance the 12 yeast algorithms 
produce the same set of predictions for different 
nucleotides; if the annotations are all the same then 
these are repeats and if different these are 
inconsistent data items. The inclusion of such items 
could otherwise pose a significant obstacle to the 
training of the classifiers.  With windowing the input 
vector is increased from 12 to 84 and the chance of 
all 84 values repeating is therefore much reduced.  A 
similar process was undertaken for the mouse 
dataset. 
 

 
Fig. 1.  The formation of the windowed data for the yeast dataset.  The 12 predictions from the original 
algorithms for the target site are concatenated with the predictions from the 3 sites on either side.  This gives an 
input vector of 12 by 7 real numbers.  The corresponding label of this vector is the annotation of the central 
nucleotide. 

 



 

4 Performance Metrics 

As only approximately 8% of the yeast dataset is 
annotated as being a part of a binding site, this 
dataset is imbalanced (as is the mouse dataset).   If 
the algorithms are to be evaluated in a useful manner 
simple error rates are inappropriate, it is therefore 
necessary to use other metricsSeveral common 
performance metrics, such as Recall (also known as 
Sensitivity), Precision (also known as Specificity), 
False Positive rate (FP-Rate) and F-Score, can be 
defined using a confusion matrix (see Table 3) of the 
classification results.  Precision describes the 
proportion of predictions that are accurate; Recall 
describes the proportion of binding site positions that 
are accurately predicted; FP-Rate describes the 
proportion of the actual negatives that are falsely 
predicted as positive; and the F-Score is the weighted 
harmonic mean of Precision and Recall. There is 
typically a trade off between Precision and Recall, 
making the F-Score particularly useful as it 
incorporates both measures. In this study, the 
weighting factor, β, was set to 1 giving equal 
weighting to both Precision and Recall. It is worth 
noting that for all these metrics a higher value 
represents improved performance with the solitary 
exception of FP-rate for which a lower value is 
preferable. 
 
Table 3.  The definition of performance measures  
 Predicted 

Negatives 
Predicted 
Positives 

Actual 
Negatives 

True Negatives - 
TN 

False Positives - 
FP 

Actual 
Positives 

False Negatives 
- FN 

True Positives - 
TP 

 

5  Results 

5.1 Results for the yeast genome 

Before presenting the main results we should point 
out that predicting binding sites accurately is 
extremely difficult.  For the yeast dataset the 
performance of the best individual original algorithm 
(Fuzznuc) is shown in Table 4.  

Table 4: Confusion Matrix for the yeast data for the 
best original algorithm, Fuzznuc                                                                                           
 Predicted 

Negatives 
Predicted 
Positives 

Actual 
Negatives 

TN= 83% FP = 10% 

Actual 
Positives 

FN = 4% TP = 3% 

 
Here we can see over three times as many false 
positives as true positives.  This makes the 
predictions almost useless to a biologist as most of 
the suggested binding sites will need expensive 
experimental validation and most will not be useful.  
Therefore a key aim of our combined classifier is to 
significantly reduce the number of false positives 
given by the original algorithms.   

As described above the imbalanced nature of the 
data must be addressed.  First the data is divided into 
a training set and test set, in the ratio 2 to 1.  For the 
yeast dataset this gives a training set of 32,615 84-ary 
vectors and a test set of 16,739 vectors.  It is not 
necessary to use cross validation of the training / test 
set division as the test set is so large (Henery 1994). 
In the results here for the yeast dataset the majority 
class in the training set is reduced, by random 
sampling, from 30,038 vectors to 9,222 and the 
minority class was increased from 2,577 vectors to 
4,611 vectors using the SMOTE algorithm.  
Therefore the ratio of the majority class to the 
minority class is reduced from approximately 12 : 1 
to 2 : 1.  Other ratios were tried but this appears to 
give good results (Sun, Robinson et al. 2005).  The 
test set was not altered at all. 

As described earlier an SVM with Gaussian 
kernel was used as the trainable classifier, and to find 
good settings for the two free parameters of the 
model, C and γ standard 5-fold cross validation was 
used.  After good values for the parameters were 
found (C = 1000, γ = 0.001), the test set was 
presented and the results are given in Table 5: 
 
Table 5: Results for the yeast dataset 
 
 Recall Precision F-

Score 
FP-
Rate 

Best 
Original 
Algorithm 

0.400 0.222 0.285 0.106 

Meta 
Classifier -  

0.305 0.371 0.334 0.044 

 
The first notable feature of this result is that the 
combined classifier has produced a weaker Recall 
than the best original algorithm.  This is because it is 
giving fewer positive predictions, but it has a much 

! 

Recall =
TP

TP + FN
Precision =

TP

TP + FP

FP _ Rate =
FP

FP +TN
F _ Score =

1+ " 2( )Recall # Precision
" 2Recall + Precision



higher precision.  Of particular significance is that 
the FP-Rate is relatively low at 0.04, so that only 4% 
of the actual non-binding sites are predicted 
incorrectly.   

5.2 Results for the mouse genome 

In order to examine if our approach is also applicable 
to the much more complicated case of multi-cellular 
eukaryotes, we now give results for the mouse, 
M.musculus genome.  Prediction in this case is 
significantly more difficult. The mouse genome 
contains significantly more non-coding DNA 
sequence than the yeast genome, thereby increasing 
the search space.  Furthermore, complex, multi-
cellular organisms, such as the mouse, exhibit more 
complex organisation of the gene regulatory regions. 
Genes are often regulated by a number of spatially 
distinct regulatory modules, each containing a 
number of transcription factor binding sites.  These 
modules can be located not just in the regions 
proximal to the promoter but also many thousands of 
base pairs away, both upstream and downstream as 
well as inside intronic regions. Furthermore, there are 
a number of other biological features found in non-
coding sequence which are not necessarily related to 
transcription factor binding or gene regulation at all.  
All these factors tend to increase the difficulty of 
making accurate computational predictions of 
binding sites. 

Firstly we give the confusion matrix for the best 
individual matrix (MotifLocator). 
 
Table 6: Confusion matrix of the best individual 
algorithm for the mouse data 
 
 Predicted 

Negatives 
Predicted 
Positives 

Actual 
Negatives 

TN= 75% FP = 22% 

Actual 
Positives 

FN = 1.5% TP = 1.5% 

 
It is clear from the low true positives and the high 
false positives that this problem is indeed harder than 
the equivalent problem in yeast, as would be 
expected.  
The results are shown in the following table: 

Table 7: Results for the mouse dataset 
 
 Recall Precision F-

Score 
FP-
Rate 

Best 
Original 
Algorithm 

0.495 0.063 0.111 0.224 

Meta 
Classifier -  

0.300 0.159 0.208 0.069 

 
Once again the Precison has been improved, at some 
cost to the Recall.  However, once more, the FP-Rate 
is greatly reduced. 

6 Discussion 

The identification of regions in a sequence of DNA 
that are regulatory binding sites is a very difficult 
problem.  Individually the original prediction 
algorithms are inaccurate and consequently produce 
many false positive predictions.  Our results show 
that by combining the predictions of the original 
algorithms we can make a significant improvement 
from their individual results.  This suggests that the 
predictions that they produce are complementary, 
perhaps giving information about different parts of 
the genome.  The only problem of our approach is 
that the combined predictor can indicate implausibly 
short binding sites.  However we have shown that by 
simply rejecting these binding sites, using a length 
threshold, gives a very low rate of false positive 
predictions.  This is exactly the result that we 
wanted: false positives are very undesirable in this 
problem area (Yellaboina, Seshadri et al. 2004). 

We have investigated the contribution that each 
algorithm makes to the final prediction (Sun, 
Robinson et al. 2005) and find that there is a wide 
difference between the various methods.  More work 
needs to be done to unravel both the detailed nature 
of the predictions and the biological significance of 
the results. 

When we tested the method on the much more 
difficult case of the mouse genome we also found 
that the number of false positive predictions could be 
significantly reduced. The reduction of false positives 
by a factor of 6 relative to the reduction of the true 
positives by a factor of 2 illustrates that the processes 
is preferentially filtering noise from the predictions. 
One limitation of these results is the large reduction 
in Recall.  Further work will extend the range of 
sources used as evidence, it is hoped that by 
incorporating a larger pool of evidence that less 
genuine predictions will be missed.  The approach 
will also be applied to other available organism 
datasets to test the generality of these results.  One 
particular goal is to apply the approach to systems 
where experimental validation of the predictions can 



be made, circumventing the uncertainty surrounding 
the completeness of the promoter annotations 
currently available. 
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