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Abstract 
W e  study and contrast particular issues arising in 

two social learning paradigms that are widely used *in 
robotics research: (a) following or matched-dependent 

paper we discuss two imitator perspectives which are 
widely applied paradigms in robotics imitation re- 
search, following behaviour [lo, 4, 61 and observation 
behaviour [12, 9> 3, 21, 13, 11. 

behaviour and (ai) static observational learning. Ex- 
periments are carried out with physical Khepera robots 
whose controllers include motor  schemas and new neu- 
ral network based methods for model agent-centred per- 
ception of angle and distance. The robots are trained 
to  perceive the dynamic movement of a human or robot 
demonstrator carrying a light source. The robots learn 
the behaviour either through perception from a static 
location or while following. The diflerences and impli- 
cations of the results of both the following and obser- 
vation mechanisms are compared and contrasted. 

1 Social Learning Paradigms 
Psychologists consider imitation’ to be one of the 

key elements in social learning, with social learning 
leading to the acceleration of the acquisition of intel- 
ligent behaviour [24, 8, 71. If robots could imitate ei- 
ther each other or humans, both singly and in groups, 
then robot task acquisition would be easier and faster 
with the possibility of increased behavioural complex- 
ity and ultimately some form of cultural transmis- 
sion [l]. In fact we consider this social dimension to be 
the key to making robots behave more intelligently [6], 
an approach inspired from studies of social animals 
(e.g. apes) and the ‘social intelligence hypothesis’ [ 5 ] ,  
which proposes social origins for primate intelligence. 

In our research program we investigate social learn- 
ing and interaction between both human/robot and 
robot/robot pairs to understand the social dimension 
of imitative behaviour. One part of this research is 
the need to consider the perspective of both the im- 
itator and the imitatee and study the problems of 
perception and action encountered by both. In this 

We take Thorndike’s 1898 classical definition of irnita- 
tion [22] as ‘‘ leaning how to do sotnething by seeing it done” 
but extended to  non-biological agents [15]. 

1.1 Following and Observation 
From a psychological/ethological viewpoint follow- 

ing is more rightly considered as matched-dependent 
behaviour 1241. For example rats can be trained to fol- 
low a lead rat through a maze which they then learn 
to navigate [14]. The rats may have no idea of inten- 
tionality of the lead rat and can be trained to follow 
any other salient (including non-animal) stimuli. 

Likewise, static observation can be defined via 
observational learning. Here the behaviour of the 
demonstrator is copied after they are observed car- 
rying it out. Typically the demonstrator and imita- 
tor operate within a shared context but a t  a distance 
from one another. For example Norway Rats appar- 
ently develop food preferences by smelling the breath 
of a conspecific [SI, without reference as to whether 
the demonstrating rat becomes ill or dies. The mech- 
anism is very simple - perceive what others do and 
imitate it [19]. 

To set the scene from a human-human perspective 
consider the following example: If I were to ask you to 
imitate my hand movement, and I then drew a triangle 
in space, it is very likely that you would very easily also 
draw a triangle. When imitating my movements you 
would have not attempted to  follow my hand with your 
hand as I was making the triangle shape; you would 
have probably observed my movements and when you 
felt that you knew how to reproduce the shape, started 
your own movement sequence. 

Interestingly, a more complex set of movements 
may result it a mixed approach that combines follow- 
ing and observation. For example, asslime initially 
both hands are palm to palm, then I make a clock- 
wise circle with one hand and an anti-clockwise circle 
with the other. If I then asked you to imitate my 
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movements you might initially consider this trivial. 
However most people when first seeing this demon- 
stration will typically make clockwise circles with both 
hands and assume that they are correctsly imitating the 
demonstrator. When it is pointed out that an error 
has been made, the demonstrator will usually repeat 
the demonstration by slowing down and the imitator 
will usually start to track each movement by following 
the demonstrator’s hands. In both of the examples 
above the demonstrator and imitator will consider the 
imitation successful if the resulting pa.ttern resembles 
the original; very fine matching of movements are not 
considered. 

These examples signal some interesting but not 
widely researched features of imitative behaviour in 
the relationship between static observation of, and ac- 
tive participation in, an event to be imitated. In the 
triangle example there is observation followed by im- 
itation, in the second example, observation is usually 
insufficient to completely duplicate thle task and fur- 
ther mechanisms are employed - the demonstrator ef- 
fectively slowing down and teaching the imitator, and 
the imitator using a following mechanism to capture 
the movements. 

These different responses highlight a number of 
issues. Firstly that animals and humans may use 
a range of mechanisms to imitate, in the two cases 
above: static observation followed by an imitative re- 
sponse, or an immediate following mechanism in con- 
junction with coaching from the demonstrator. Sec- 
ondly, using only static observation seems to be pos- 
sible in both cases, however in the second case the 
resulting assemblage of actions tends to be incorrect. 
Finally the imitator will usually only revert to using 
the following mechanism as a way to .understand and 
track the movements when observation has failed. 

1.2 Paradigm Examples in R.obotics 
Both the following and observational mechanisms 

are used in robotics imitation research. For exam- 
ple, [4, 101 used following to replicate a demonstrator‘s 
actions or to improve an imitator’s learning capabil- 
ity. Following is successful since it allows the imitator 
to more closely share context and experience as the 
demonstrator performs the behaviour. As the imita- 
tor follows it can map its sensory experiences directly 
to its motor outputs, which are matc.hed to, and de- 
pend on, the demonstrator’s actions. It can thus learn 
the necessary perception-action coupliings directly and 
use them in similar situations in the future without 
the teacher being present. Following Is used in [9] as 
a means of testing an imitation model based on re- 
ducing perceptual errors, the imitativme behaviour be- 

ing achieved by continually adjusting motor outputs 
when presented with a difference between perceived 
states and goal states. 

The observational paradigm is also extensively 
used, often employing complex vision processing (e.g. 
[12]). Both physical and simulated robots are used 
in [3] to statically observe a continuously changing 
game (air hockey or marble maze). Observation is 
used in [20] to recognise what to imitate in attempts 
to build robots that imitate people. 

From the imitator robot’s viewpoint these are very 
different perspectives and it is highly likely that im- 
proved robot-human interaction may be possible if the 
characteristics and key issues involved in these learn- 
ing paradigms were better understood. We begin this 
process by offering some observations comparing the 
social learning paradigms in an implementation study 
with Khepera robots. 

2 Framework 
An imitation framework for describing the se- 

quences of actions, states and/or effects can be de- 
scribed using the the correspondence problem formal- 
isation [ 171 .2 The correspondence problem formalism 
allows the model’s given action/state/effect and the 
desired action/state/effect in the imitation sequence 
to be compared using metrics or measures of dissim- 
ilarity; the number of matched states/actions/effects, 
i.e. the fineness of the imitation attempt can be de- 
scribed as a measure of granularity. 

Our focus is to compare the following and observa- 
tional paradigms. To do this we simplify the context 
of the imitation and restrict the actions/states and ef- 
fects. In the experiments we use a physical Khepera- 
1 robot as the imitator. The model is perceived by 
means of a bright light. This light can be mounted 
on another Khepera or alternatively manipulated by 
a person. The goal for the imitator is simply to repli- 
cate movements of the model. Actions are limited to 
two possibilities: either turn by a given angle and/or 
move a given distance. States are described as the 
perceived vector from the centre of the robot to the 
light. For example figure 1 shows the state/action se- 
quence derived if the model’s actions were to describe 
a triangle. 

Two controllers were designed to investigate the 
relationships between imitation of movements using 
static observations and imitation of movements by fol- 
lowing. All experiments were carried out in real-time 
on physical robots (i.e. simulation was not used) on a 
desktop in a typical busy academic environment with 

’Note that in order t o  remove the intentionality from the 
term demons t ra tor  it is normally replaced with the term model .  
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Action [-135,101 
state [45,10] 

\ 
State [135,10] 

Imitator State [-90,5] 

Figure 1: States and Actions from Model's Initial Per- 
spective. States are specified by (degrees 6, distance 
r). The triangle shows each state achieved by execut- 
ing each action. The model is initially facing forward 
at 90". The imitator is shown placed behind the model 
at -90"). Action can be interpreted as the necessary 
movement (A@, Ar)to achieve the given state (6, r ) .  

light levels varying during the day. We examine the 
behaviour of the imitator when imitating triangles, 
circles and letter shape patterns. 

2.1 Controller for a Following Robot 
We used a 'Motor Schema Vector Fields' method- 

ology [2] to facilitate following behaviour. In this ap- 
proach following the model is achieved with an at- 
tractive vector3, robot movement is achieved with a 
uniform vector4 and obstacle avoidance achieved with 
a repulsive ~ e c t o r . ~  Each vector has two elements, an- 
gle and magnitude that are functions of sensor read- 
ings. The sum of the vectors is computed locally from 
the agent perspective at  each time step and result in 
a single vector. The angle of this resultant vector 
is then used to control the orientation of the robot 
with the vector magnitude converted to wheel speeds 
of the robot. Thus as the robot observes a moving 
light source the perceptions afforded by the sensors 
are converted to motor outputs. 

The attraction vector is designed so that the robot 
will orient itself towards the light bulb, the uniform 
vector provides a forward movement for the robot and 
the repulsive vector ensures that the robot does not 

3 ( @ 1 , r l )  = ( & , I  - p) ,where 
(6'0, T O )  = ET=, (LightSensorAngle(i), L ~ t ~ f ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ z ) )  

4(02,r2) = (900,gain) 
' ( 0 3 , ~ )  = (-fRSensorAngle(i). IRSensorn / laz ( z )  1 I R S e n s o r R e a d i n g ( i )  

where summation is polar, TL is the number of Sensors, k is set 
to n times the maximum values of the light sensors, gain  is the 
magnitude applied to the uniform vector to facilitate forward 
movements and sensor angles are with respect to the imitator's 
body and hence fixed. 

bump into the model (either the human hand or the 
other robot). This summation effectively makes the 
robot follow the light and keep a fixed distance from 
the model. 
2.2 Controller for a Statically Observing 

Robot 
The observation experiment is designed so that the 

imitator does not move, but learns as it observes the 
model. It achieves this by computing both the dis- 
tance and angle from itself to the moving model and 
stores these observation points as a list of two element 
vectors. Prior to observing, the robot must first learn 
how to measure angles and distance. 
Learning to Measure Angles. The robot is first 
trained to accurately compute the angle of the light 
(held by a person or a robot) from the centre of the 
imitator. A number of methods were evaluated includ- 
ing using a light compass [18], or computing the angle 
by using vector summation of the inputs to each of 
the light sensors [2]. However both of these methods 
were not accurate and suffered from incorrect read- 
ings especially when none of the robot's sensors were 
directly facing the light. A new method, which we 
call environmental sampling, was grounded in sensors 
and to some extent nearer to a biological solution: the 
robot is allowed to learn about light angles simply by 
observing them. As the Khepera is a circular robot it 
rotates in a circle in the presence of the model. It de- 
tects when the circle is complete by polling its wheel 
encoders and stopping when the appropriate value has 
been exceeded. (During the turn it reads its light sen- 
sors every 200ms. A robot turning at  8mm/s would 
typically poll it sensors 65 times.) As the speed of 
the turn is constant the time interval between read- 
ings can thus be converted to an angle. Each of the 
sensor readings are then normalised. This has two ef- 
fects, firstly that of making distant readings of angle 
equivalent to closer readings, and secondly allowing 
these values to be loaded directly as weights into a 
neural network (a counter-propagation network [ 111). 
This is a fully connected feed-forward three layer net- 
work. The first layer being the normalised input of 
the 8 light sensors, the number of middle layer neu- 
rons is set to the number of times the robot was able 
to poll its sensors and the third layer outputting the 
conversion of these values to angles. Using this tech- 
nique has a number of advantages. Firstly that the 

6Clearly a more sophisticated technology, e.g. laser scanners, 
may have provided an  alternative method to calculate both an- 
gle and distance to the model. However our approach. of us- 
ing minimal methods and limited sensors, shows that imitation, 
percept,ual matching and shared context can be achieved with- 
out sophisticated sensory hardware. 
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network can be built as the environment is observed, 
secondly there are no training steps, thirdly the size 
of the network is directly related to the internal ro- 
tation speed, sensor modality and senisor polling time 
of this particular robot and finally that, the method is 
partially resilient to sensor failure. 
Learning to Measure Distance. A method based 
on environmental sampling (which proved superior to 
triangulation) was used for the angle computation, the 
light sensors being summed as vectors as the robot 
turned. This exploited the fact that sensors directly 
facing the light would have a larger effect on the vec- 
tor magnitude than those further away. The robot was 
trained by rotating at increasing lcm distances from 
the light source. The vector magnitude was then held 
in a lookup table indexed by angle an'd distance. 

Following these procedures the robot can compute 
both angle and distance without further training. 
Observing Angles. After the learning phase is com- 
plete the network operates by feeding a normalised 
sensor vector to the input layer and receiving the angle 
from the output layer. The network is thus operating 
as a pattern matching mechanism. There are some bi- 
ological observations which may show similar (though 
not equivalent) mechanisms in anima1.s. For example 
young bees appear to record the image of their hive 
from many angles and positions around it: they fly in 
and out of the hive varying their circular flight path 
each time [ 161. 
Observing Distance. During the observation phase 
the angle is computed, followed by magnitude of the 
vector summation7, the two values providing the key 
to the lookup table to yield distance. This mecha- 
nism allowed reasonably accurate distance measure- 
ments between around 10" to 170" in front of the robot 
to a distance of around 30cm from the light source. 

During the observation experiment, the robot first 
collects a set of angles/distances from itself to the 
model which are then time averaged. Critical changes 
based on density of the observed points are extracted 
and implied velocities are calculated. The imitator 
uses the critical points and implied velocities to then 
imitate the model's trajectories and vlelocities. 

3 Results 
In our initial experiments we compared behaviour 

on three very simple imitations. These were a trian- 
gle, circle and the letter T. The triangle was chosen 
because of the sharp changes of direction at  each ver- 
tex, the circle because of its continuous shape and the 

( 0 4 ,  rq) = (LightSe7~sorAngle(i), L:lghtSensorReading(i)), 
with the result,ant magnitude r4 held in a lookup table indexed 
by robot turn angle and distance from the model. 

letter T because of the need to reverse direction and 
remap the shape. We emphasise that our goal was 
not to design robots that perfectly imitate geometric 
shapes but rather investigate relevant aspects of the 
imitation attempt in the two learning paradigms. 

3.1 Following 
Observations of robot behaviour using the 'follow- 

ing' controller highlighted some issues with using a 
simple reactive architecture, one of which is a familiar 
problem for path following mobile robots [23, 91. This 
is where the robot fails to follow the path of the imi- 
tator with precision due to the tight reactive cycle be- 
tween the sensors and the motors. In our experiments 
this is shown in figure 2: for the triangle and circle 
the robot either cut the triangle corners or inscribed 
a smaller circle inside the model circle. The T-Shape 
exhibited this cutting problem and also showed the im- 
itator avoiding the model when the model started to 
reverse towards it when inscribing the T-shape. These 
problems arise due to what we call impersistence, i.e. 
the inability to sustain appropriate actions, and is a 
consequence of the imitator always reacting to the lat- 
est perception vector whilst effectively 'forgetting' the 
previous perceptions. Also the reaction of the imita- 
tor's motors always lags behind that of the sensors (for 
example the imitator may have partly turned towards 
the model when a new reactive cycle begins). 

Figure 2: Following Behaviours for triangle, circle and 
T shape. The  graphics represent typical behaviours of 
the following mechanism. Dotted line is the model, 
bold line is  the imitator. 

The impersistence problem in robotics appears to be 
unsolved, but partial solutions have been attempted 
by providing further dampening to the system, by de- 
laying the imitator response, slowing down the model 
or alternatively using 'vector' or 'pure' pursuit meth- 
ods (see [23]) although both the latter methods rely 
on accurate measurement of a distant 'goal' point. A 
novel solution proposed by [9] uses an additional cam- 
era which can move independently of the robot body 
controlled through a biologically inspired neural net- 
work. However precise imitation, both when and after 
following, is difficult and the solutions can limit the 
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behaviours of both model and imitator severely. In- 
deed, there is a deep issue relating what an imitator’s 
sensors are telling it and what it is actually doing when 
following. A further issue is that  as the imitator re- 
acts, its reference frame is changing in relation to  the 
model. Calculation of these changes is not possible 
from using the reactive vector alone. This means the 
robot cannot retain a memory of the imitation from 
its sensor perceptions; it can however do so by storing 
its motor outputs (i.e. the velocity of each wheel dur- 
ing each time-cycle). Thus it imitates what it ‘feels’ 
rather than what it ‘sees‘. However this can be ben- 
eficial. As part of the experiment a series of small 
strips of tape were placed on parts of the imitator’s 
path. A Khepera initially moving at  constant veloc- 
ity will typically slow down when moving over these 
strips. However, when following and in order to main- 
tain contact with the imitator the reactive vector will 
produce an increase in motor outputs as the model 
moves away at  constant velocity from the imitator. 
This change then becomes part of the memory of the 
imitation. Thus the imitator manages to imitate more 
faithfully by reference to its internal state rather than 
an external observed state. 

3.2 Static Observation 
A similar set of tests for the static observation 

experiment are shown in figure 3 below. The re- 
sults appear promising with the robot imitating the 
model with reasonable accuracy, with vertices accu- 
rately tracked and little evidence of the impersistence 
problem. However a number of points should be borne 
in mind. Firstly the performance of the tracking mech- 
anisms depends crucially on how the observed data is 
filtered. Time averaging and a significant event ex- 
traction are both based on thresholds. The choices of 
threshold have to be carefully chosen to achieve this 
level of accuracy. Secondly, the method required to 

Figure 3: Obser~iation Behaviours for triangle, circle 
and T shape. Dotted line is imitator’s imitation at- 
tempt.  Unbroken line i s  unfiltered observation. Based 
on 100 observations at lOOrns intervals, 10 point mov- 
ing average. 

compute the path is complex as compared to the rel- 

atively simple vector summation methods used in the 
following experiment. Finally and most importantly, 
by using observation alone the imitator would have no 
way of learning any parts of the imitation which were 
not addressable from observation alone. For example, 
the static imitator only records a constant velocity 
when observing the model traversing the tape strips 
discussed in ‘Following’ above; when imitating it fails 
to increase its motor outputs over the strips to main- 
tain velocity. I t  seems that this need to modify motor 
outputs may only be obtained from experiencing the 
situation. 

4 Discussion 
We have shown, using some simple experiments, 

different aspects of robotic perception and perfor- 
mance which may be encountered when attemping 
to use imitation to match movements made by either 
robots or people. Our results illustrate that each of the 
two often used paradigms, following and static obser- 
vation, raise different issues. The table shown in figure 
4 illustrates the various dimensions and trade-offs that 
we observed in the course of our experiments. The ex- 
amples are simple in that no explicit communication is 
permitted between the model and imitator, in fact the 
sensory information is basically the perceived bright- 
ness of a light bulb. The results indicate that there is 
a clear trade-off between positional accuracy obtained 
from static observation and the advantages of direct 
perception-action coupling available from following. 
This is probably unsurprising, given that static obser- 
vation is certainly the more complex and engineered 
method in these and most other robotics experiments. 

The relative simplicity of the following paradigm 
also hides some key advantages, in that the robot is 
able to directly map its perceptions against its mo- 
tor actions. I t  is thus able to learn much about the 
environment directly and relatively cheaply. However 
to achieve positional accuracy, more complex observa- 
tional algorithms are required, but Observation alone 
may be insufficient to correctly assess the physical 
complexities of the environment. There might be an 
argument for suggesting that observation can be most 
effective after a following episode, i.e. observation can 
fine-tune already stored movement patterns. 

Animals use both seeing and feeling in imitation 
and there may be an appropriate time to see (ob- 
serve) as opposed to feel (follow) in social learning. A 
mixed approach may be valuable, this approach cor- 
responding to intermediate positions or switching in 
the spectrum table shown. One could imagine for ex- 
ample cases where the observation is less static e.g. 
several follow-observe-follow cycles, or where a series 
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Spectrum of Trade-offs for Following vs. ObseNational Learning 

Following Observation 

w r h i g h  Sharing Computatio Cont al xt Complexity with Model 

shared C - partial 

direct Pers ective transformed 
"seeing" 

- 
"feeling" I 

distant Sensory Jotor Coupling 

lmpersistence 

May Require co-operation 

Lack of sensory feedback 

Conversion from very different 
sensor values lo motor outputs 

Figure 4: The  table summarises the key aspects re- 
vealed by the experiments with extremes of each aspect 
shown (see text). Comparative costs a.re shown in the 
boxes. Mixed approaches might alloui the balance of 
these costs and benefits. 

of static observations are made prior to  each episode 
of following behaviour. The next stage in this research 
will be to  look at these mechanisms imore closely by 
comparing points along the continuum from follow- 
ing to  observation with mixed strategies. We also in- 
tend to  add a further aspect to  the t,able in looking 
at simple, non-symbolic feedback using re-inforcement 
signals between the model and imitat.or allowing the 
model to  indicate success of the imitation attempt. 

We remark as a final consideration, that there are 
many examples in human life where observation alone 
would lead to disastrous consequences. So, if you have 
never skied before please don't attempt to  ski down a 
steep mountain by only watching others! 
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