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Abstract

This study examines the performance of sparsely-connected associative memory models built using a number of

different connection strategies, applied to one- and two-dimensional topologies. Efficient patterns of connectivity are

identified which yield high performance at relatively low wiring costs in both topologies. Networks with displaced

connectivity are seen to perform particularly well. It is found that two-dimensional models are more tolerant of

variations in connection strategy than their one-dimensional counterparts; though networks built with both topologies

become less so as their connection density is decreased.
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1. Introduction

Our studies of sparsely-connected one-dimensional
associative memory models [1,2,3], initially inspired
by the work of Watts and Strogatz [4] on the small-
world properties of sparsely-connected systems,
demonstrate the importance of the pattern of con-
nectivity between nodes in determining network
performance. In a small step towards biological
plausibility, we extend our studies to encompass
two-dimensional networks. Our associative memory
models now represent a 2D substrate of sparsely-
connected neurons with a connection density of 0.1
or 0.01.

We will compare the performance of different con-
nection strategies in our 2D networks with results
obtained from earlier work using a 1D arrangement.
This should prove instructive, since 1D treatments
of associative memory do not tend to establish to
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what extent their findings are applicable to more
biologically-plausible topologies [5,6,7,8]. In this
pursuit we acknowledge of course that this study
falls short of a full 3D treatment, which would
require more processing power than currently avail-
able to us.

As with our earlier 1D work, our 2D studies will
focus on exploring a variety of connection strate-
gies which achieve good pattern-completion for a
minimum wiring length. We are encouraged in this
pursuit by recent studies which suggest the impor-
tance of wiring optimisation in nature, both from
the point of view of the cortical volume taken up
by axons and dendrites, the delays and attenua-
tion imposed by long-distance connections, and the
metabolic requirements of the connective tissue
[9,10,11]. A connection strategy which minimises
wiring length without impacting upon network per-
formance could potentially mitigate against these
unwanted collaterals. It is the goal of the present
work to identify such strategies, and to compare
their realisations in 1D and 2D networks. For this we
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will focus on networks with local, Gaussian and ex-
ponential connectivity, and will in addition explore
the effect of displacement via axonal-like projection.

2. Network Dynamics and Training

Each unit in our networks is a simple, bipolar,
threshold device, summing its net input and firing
deterministically. The net input, or local field, of a
unit, is given by: hi =

∑

j 6=i

wijSj where S(+/ − 1)

is the current state and wij is the weight on the
connection from unit j to unit i. The dynamics of
the network is given by the standard update:

S′
i =



















1 if hi > 0

−1 if hi < 0

Si if hi = 0

where S′
i is the new state of Si. Unit states may be

updated synchronously or asynchronously. Here we
use asynchronous, random order updates.

If a training pattern, ξµ , is one of the fixed points
of the network, then it is successfully stored and is
said to be a fundamental memory. Given a training
set {ξµ}, the training algorithm is designed to drive
the local fields of each unit the correct side of a
learning threshold, T , for all the training patterns.
This is equivalent to requiring that ∀i, µ hµ

i ξµ
i ≥ T .

So the learning rule is given by:

Begin with a zero weight matrix
Repeat until all local fields are correct

Set the state of the network to one of the ξµ

For each unit, i, in turn
Calculate hµ

i ξµ
i

If this is less than T then change the weights on
connections into unit i according to:

∀j 6= i w′
ij = wij + Cij

ξp
i ξp

j

k

where {Cij} is the connection matrix.
The form of the update is such that changes are

only made on the weights that are actually present
in the connectivity matrix {Cij} (where Cij = 1 if
wij is present, and 0 otherwise), and that the learn-
ing rate is inversely proportional to the number of
connections per unit, k. Earlier work has established
that a learning threshold T = 10 gives good results
[12], and this is used throughout. Additionally we

make no requirement that the connectivity matrix
{Cij} should be symmetrical.

3. Measuring Performance

The ability to store patterns is not the only func-
tional requirement of an associative memory: fun-
damental memories should also act as attractors in
the state space of the dynamic system resulting from
the recurrent connectivity of the network, so that
pattern correction can take place.

To measure this we use the Effective Capacity of
the network, EC [8, 13]. The Effective Capacity of
a network is a measure of the maximum number of
patterns that can be stored in the network with rea-

sonable pattern correction still taking place. We take
a fairly arbitrary definition of reasonable as correct-
ing the addition of 60% noise to within an overlap of
95% with the original fundamental memory. Vary-
ing these figures gives differing values for EC but the
values with these settings are robust for compari-
son purposes. For large fully-connected networks the
EC value is proportional to N , the total number of
nodes in the network, and has a value of approxi-
mately 0.1 of the maximum theoretical capacity of
the network. For large sparse locally-connected net-
works, EC is proportional to the number of connec-
tions per node, with the constant of proportionality
dependent upon the actual connection matrix C.

The Effective Capacity of a particular network is
determined as follows:

Initialise the number of patterns, P , to 0
Repeat

Increment P
Create a training set of P random patterns

Train the network

For each pattern in the training set
Degrade the pattern randomly

by adding 60% noise

With this noisy pattern as the initial state,
allow the network to converge

Calculate the overlap of the final
network state with the original pattern

EndFor

Calculate the mean pattern overlap over
all final states

Until the mean pattern overlap is less than 95%

The Effective Capacity is P − 1.
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Figure 1. One dimensional sparsely-connected network with 14 nodes, and 4 afferent connections per node, illustrating the
connections to a single node: Left, locally-connected, right, after rewiring.

Figure 2. Two dimensional sparsely-connected network with 64 nodes, and 8 afferent connections per node, illustrating the
connections to a single node: Left, locally-connected, right, after rewiring. Note that opposite edges are joined to form a
toroidal surface.

4. Network Architecture

The networks discussed here are based on one- and
two-dimensional lattices of N nodes with periodic
boundary conditions. Thus the 1D networks take the
form of a ring, and the 2D implementations that of a
torus. The networks are sparse, in which the input of
each node is connected to a relatively small, but fixed
number, k, of other nodes. The main 2D networks
examined consist of 4900 nodes arranged in a 70 ×
70 array,with 49 afferent (incoming) connections per
node, giving a connection density of 0.01; and of 484
nodes arranged in a 22 × 22 array, with 48 afferent
connections per node, giving a connection density
of 0.1. The 1D networks consist of 5000 nodes and
of 500 nodes, both with 50 connections per node,
again giving connection densities of 0.01 and 0.1,
respectively. All references to spacing refer to the
distance between nodes around the ring in the case
of the 1D network, or across the surface of the torus
in the 2D case.

We have already established for a 1D network
that purely local connectivity results in networks
with low wiring length, but with poor pattern-
completion performance, while randomly-connected
networks perform well, but have high wiring costs
[1]. In searching for a compromise between these
two extremes we will examine four different connec-
tion strategies, applying them to both 1D and 2D
networks.

4.1. Progressively rewired

This is based on the strategy introduced by Watts
and Strogatz [4] for generating small-world net-
works, and applied to a one-dimensional associative
memory by Bohland and Minai [7], and subsequently
by Davey et al [14]. A locally-connected network is
set up, and a fraction of the afferent connections
to each node is rewired to other randomly-selected
nodes. See figure 1. It is found that rewiring a one-
dimensional network in this way improves commu-
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nication throughout the network, and that as the
degree of rewiring is increased, pattern completion
progressively improves, up to the point where about
half the connections have been rewired. Beyond this
point, further rewiring seems to have little effect [7].

4.2. Gaussian

Here the network is constructed in such a way
that the probability of a connection between any two
nodes separated by a distance d is proportional to

1

σ
exp

(

−
(d − 1)2

2σ2

)

Network performance is tested for a wide range of
values of σ.

4.3. Exponential

In this case the network is set up so that the prob-
ability of a connection between any two nodes sep-
arated by a distance, d, is proportional to

exp (−λ (d − 1))

Networks are tested over a wide range of λ.

4.4. Displaced connectivity

Here, inspired by the work of Herzog et al [15],
we simulate the effect of an axon which travels some
distance from its pre-synaptic neuron before arbori-
sation. Thus in our simulation the connections from
any host node are made in a local cluster, sepa-
rated by a given distance from that node. See fig-
ure 3, which depicts a network of 14 nodes, with 4
connections per node. Figure 3 (left) illustrates lo-
cal connectivity, while figure 3 (right) shows the ef-
fect of displacing the point of arborisation by 3-4
units around the ring. In creating such networks, the
direction of displacement is chosen randomly, and
we examine the effect on network performance of
a range of displacements. A network with zero dis-
placement corresponds to a locally connected net-
work. A similar technique is used with 2D networks,
with displacements of a randomly chosen direction
across the 2D surface of the network.

Figure 4. Effective Capacity vs degree of rewiring for a 1D
network with 5000 units and 50 incoming connections per
node, and a 2D network with 4900 units and 49 incoming
connections per node. The 1D local network has an EC of
just 6, while in the 2D network it is a much healthier 12.
Once rewiring has reached around 40 or 50% there is little
further improvement in performance.

5. Results and Discussion

5.1. Progressive rewiring

This connection strategy was introduced by Watts
and Strogatz as a way to move in a controlled man-
ner from a locally-connected network to a random
one, and as explained above, it involves the pro-
gressive rewiring of a locally-connected network to
randomly-chosen connection sites. See figure 2. The
results of applying this procedure in 1D and 2D net-
works of similar size are shown in figure 4. The net-
works are initially built with local-only connections,
and their Effective Capacity is measured as the net-
work is rewired in steps of 10%, until all connections
have been rewired, at which point the network is ran-
domly connected. As may be seen, both networks be-
have similarly, improving in pattern-completion per-
formance as the rewiring is increased, up to around
40% or 50% rewiring, after which little further im-
provement is apparent. This echoes the results re-
ported by Bholand and Minai [7], for a 1D network.

There is, however, an important difference be-
tween the performance of the 1D and 2D networks
here, since although both achieve the same effec-
tive Capacity of 23 when fully rewired, their perfor-
mances are very different when connected locally (ie
when the rewiring is zero). In this configuration the
1D network has an Effective Capacity of 6 patterns,
while the 2D network successfully recalls 12.

In seeking an explanation for this considerable im-
provement when moving from the 1D network to the
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Figure 3. Illustration of a locally-connected network (left), and a network with displaced local connectivity (right). Both
networks have 14 nodes, with 4 efferent (outgoing) connections per node. The outgoing connections of only one of the 14 nodes
are depicted.

2D representation, we would point to two aspects of
the network which change as the dimensionality is
changed. Firstly, the degree of clustering [4], the ex-
tent to which nodes connected to any given node are
also connected to each other, decreases from 0.73 to
0.53 as we move from 1D to 2D in the above locally-
connected networks; and we have previously found
that very tightly clustered networks perform badly
as associators [16]. Secondly, there is an improve-
ment in communication across the network as we
increase dimensionality. In the 1D network it takes
a maximum of 99 steps to pass data between the
furthest-separated nodes, whereas in its 2D counter-
part this has dramatically dropped to just 9 steps:
or translated into terms of characteristic path length
[4], the 1D network has a path length of 48, while
in the 2D network this drops to 6.5. We would also
speculate that in a 3D implementation, a locally-
connected network might perform even better.

The significant improvement in local performance
experienced when moving from 1D to 2D networks
has considerable implications when searching for op-
timal patterns of connectivity. The reason for this
is that, since in the 2D topology there is a much
smaller difference between the best and the worst
performing architectures, the rewards for using opti-
mal patterns of connectivity will be correspondingly
less - and we would speculate that this is likely to
be even more significant in 3D networks.

5.2. Optimal architectures in networks of

connection density 0.01

In order to compare the performance of other con-
nection strategies with that of progressively-rewired
networks, we measured the Effective Capacity of
networks whose patterns of connectivity were based
on Gaussian and exponential probability distribu-
tions of varying σ and λ. The Effective Capacity of
all three network types (Gaussian, exponential and
progressively-rewired) were then plotted against
the mean wiring length of the corresponding net-
works, providing us with an efficient way to evaluate
pattern-completion performance and correspond-
ing wiring costs. Figure 5 shows the results for a
1D network of 5000 nodes with 50 connections per
node, while figure 6 depicts a 2D network of 4900
nodes with 49 connections per node.

We can see from this that in both the 1D and
the 2D networks, all three architectures achieve
a maximum pattern-completion performance of
around 23 patterns. And in both topologies the
Gaussian and exponential architectures achieve this
at a considerably lower mean wiring length than
the progressively-rewired networks. But, largely be-
cause of the better performance of the local network
in 2D topology, the differences are not so large in
the 2D network. Thus, comparing network configu-
rations which achieve an Effective Capacity of 20 (a
high value at a relatively low mean wiring length),
using a Gaussian architecture in the 1D network
would use only one quarter of the wiring of the
equivalent progressively-rewired network. In the
case of the 2D network, the corresponding saving in
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Figure 5. Effective Capacity vs wiring length for Gaussian,
exponential and progressively-rewired architectures on a 1D
network with 5000 nodes and 50 connections per node. Note
that the leftmost point on the rewired plot corresponds to
a local-only network (zero rewiring), and the rightmost to a
random network (100% rewiring). Results are averages over
50 runs. The performance of the Gaussian and exponential
networks are indistinguishable.

Figure 6. Effective Capacity vs wiring length for Gaussian,
exponential and progressively-rewired architectures on a 2D
network with 4900 nodes, and 49 connections per node. Again
the leftmost point on the rewired plot corresponds to a lo-
cal-only network, and the rightmost to a random network.
Results are averages over 50 runs.

wiring drops to a half. Clearly, however, this is still
far from a trivial saving, and the fact that connec-
tivity between neurons in the cortex is believed to
follow a Gaussian probability distribution [17] (ie
the probability of any two neurons being connected
decreases with distance according to a Gaussian dis-
tribution) bears witness to the continuing benefits
of this architecture in real 3D systems.

5.3. Optimal architectures in networks of

connection density 0.1

In our 1D studies using networks of connection
density 0.1 we reported that the differences between
the rewired network and those based on Gaussian

Figure 7. Effective Capacity vs wiring length for Gaussian,
exponential and progressively-rewired architectures on a 1D
network with 500 nodes, and 50 connections per node. Re-
sults are averages over 50 runs.

Figure 8. Effective Capacity vs wiring length for Gaussian,
exponential and progressively-rewired architectures on a 2D
network with 484 nodes and 48 connections per node. Results
are averages over 50 runs.

and exponential distributions were noticeably less
than at the lower connection density of 0.01 [1], but
that differences were still in evidence. Once we move
to a 2D topology, however, we see that whilst there
continues to be a noticeable difference in perfor-
mance between the rewired network and the Gaus-
sian and exponential distributions at the lower, 0.01,
connection density, this effectively disappears at a
connection density of 0.1. See figure 7, which illus-
trates the performance of a 1D network of 500 nodes,
with 50 connections per node; and figure 8, which
depicts a 2D network with 484 nodes, and 48 con-
nections per node.

However, the 2D network on which we are basing
this conclusion differs from our previous low con-
nection density 2D network in not one, but two re-
spects. Its connection density is indeed ten times
greater, at 0.1, but the total size of the network is
also smaller by a similar factor. Thus it is not yet
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Figure 9. Effective Capacity vs wiring length for Gaussian,
exponential and progressively-rewired architectures on a 2D
network with 4900 nodes and 490 connections per node.
Results are averages over 50 runs.

clear to what extent the merging of performance of
the different architectures seen in the 484 node 2D
network is the result of the higher connection den-
sity used here (0.1 against 0.01), or whether it is due
to the smaller size of the network. In an attempt to
distinguish between these two factors, we have re-
peated the experiment for the 2D network at a size
of 4900 units, with 490 connections per node, thus
retaining the higher connection density of 0.1, but
increasing the network size to that used in the lower
connection density experiments. The results appear
in figure 9.

Clearly, there is again very little to choose in
terms of performance between the three architec-
tures, and we must conclude that in 2D associative
memory models with connection densities of 0.1
and above, whether the pattern of connectivity is
based on a Gaussian or exponential probability dis-
tribution, or whether a progressively-rewired local
network is used, the choice will have very little in-
fluence on the pattern-completion performance of
the network, or the amount of wiring used.

However, the particular parameters which we
adopt (the value of σ for a Gaussian distribution,
or of λ for an exponential, or the degree of rewiring
used) will still have considerable influence on per-
formance. These parameters will determine the
operating point of our network along the curve
in figure 9. At the left-hand end of the curve, a
completely local network will give us an Effective
Capacity of around 150 patterns, at a mean wiring
length of around 8. At the right-hand end we obtain
an Effective Capacity of approaching 200 patterns
at a mean wiring length of between 20 and 30.

By contrast, in networks with a connection den-

sity of 0.01, the Gaussian and exponential archi-
tectures are clearly better performers than the
progressively-rewired network, and because of the
relatively steep rise in the Effective Capacity against
mean wiring length curves for these architectures,
it is easier to select an operation point along the
curve which has both a high Effective Capacity and
a low mean wiring length.

5.4. Optimal architectures in networks with

displaced connectivity

We now turn our attention to networks with dis-
placed connectivity. In the foregoing we have as-
sumed that the incoming and outgoing connections
to any given node are derived from a simple proba-
bility distribution centred on the node. But this is
not always the case with neurons in the cortex. It
is commonly found that axons travel a certain dis-
tance before arborisation [18]. We now factor this
behaviour into our simulations, and compare results
for both 1D and 2D networks. Figure 3, referred to
earlier, illustrates the principle, showing displaced
efferent connectivity in a 1D network with 14 nodes.

5.5. 1D network with displaced connectivity

For this experiment we use a 1D network of 500
units, each with 50 efferent connections. We assume
that there is initially only a single outgoing connec-
tion from each node, which is displaced by a dis-
tance laterally before it arborises to connect to the
50 nodes closest to the point of arborisation. The di-
rection of displacement around the ring for any set
of connections is random, so that the ‘axon’ of each
node has an equal probability of travelling clockwise
or anticlockwise around the ring before arborisation.
In the first experiment we measured the Effective
Capacity of a locally-connected 1D network with
lateral efferent displacements in the range 0 to 200
units. Figure 10 shows the results. The first point
on the graph represents the performance of the net-
work with purely local connectivity (displacement
is zero). This is poor, as expected. A displacement
of 10 units brings a small improvement, but then
successive increases reap more considerable rewards,
with a reasonably steep linear increase in Effective
Capacity as the displacement is increased from 10 to
50 units in steps of 10. The performance then flat-
tens out at an Effective Capacity of around 16 by
the time the displacement has reached 60 or 70.
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Figure 10. Effective Capacity vs displacement for a locally–
connected network of 500 units, each with 50 efferent con-
nections. Results are averages over 200 runs.

Figure 11. Effective Capacity vs mean wiring length for a 1D
network of 500 units, with 50 efferent connections per node.
Architectures are based on a local network with increasing
displacement from 0 to 200, a progressively-rewired network,
and a set of Gaussian distributions of varying width. Results
are averaged over 200 runs. The near-vertical slope of the
displaced-connectivity plot is caused by the effect of sharing
the efferent conduit.

In order to see the effect of displacement of a
locally-connected network on performance when
wiring costs are taken into account, we again plot
Effective Capacity against mean wiring length;
and for comparison purposes we have included the
Gaussian and progressive rewiring results for an
efferent network of the same size. In calculating the
wiring length for the displaced network we assume
that the output of each node travels along a single
connection fibre until it arborises. The results are
shown in Figure 11.

As may be seen, the network with displaced
connectivity dramatically outperforms the others,
reaching an Effective Capacity of more than 16 at
a mean wiring length of just 17 units. None of the
other networks reach this level of Effective Capac-

Figure 12. Effective Capacity vs displacement for a 2D net-
work of 484 units, with 48 efferent connections per node. A
displacement of 3 units carries an increase in patterns re-
called from 12 to nearly 14.

ity until their mean wiring lengths reach a value of
around 80.

5.6. 2D network with displaced connectivity

In order to see the effect of applying this connec-
tion strategy to a more biologically plausible 2D net-
work, we repeated the experiment with a network
arranged as a 2D substrate of 22 x 22 nodes (484
nodes in total), each with 48 efferent connections.
Figure 12 shows the resultant plot of Effective Ca-
pacity against displacement, and demonstrates that,
as with the 1D network, performance improves as
the displacement is increased, though to achieve op-
timum pattern completion performance in this net-
work, the displacement is required to have a value
approaching half the width of the substrate. How-
ever, improvements are noticeable even for small
displacements - thus a displacement of just 3 units
takes the Effective Capacity of the network from 12
to nearly 14.

If we now turn to the overall efficiency of the
2D displaced networks, and plot Effective Capacity
against wiring length, we see from figure 13 that
the displaced network with efferent connectivity
achieves high Effective Capacities for relatively low
wiring lengths. As expected, the relative gain in
the 2D network is much smaller than that of its 1D
counterpart (cf figure 11): the displaced 2D net-
work achieves an Effective Capacity approaching
16 at a mean wiring length of less than 3, while the
Gaussian and rewired networks need nearly double
the amount of wiring - which is clearly a non-trivial
gain.
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Figure 13. Effective Capacity vs mean wiring length for a 2D
network of 484 units, with 48 efferent connections per node.
Architectures are based on a local network with increasing
displacement from 0 to 10, a progressively-rewired network,
and a set of Gaussian distributions of varying width. Results
are averaged over 200 runs.

The displaced-local network thus appears to be
an interesting contender when attempting to achieve
good pattern-completion performance at low wiring
costs in both 1D and 2D networks. Moreover, the
time which the associator takes to converge during
recall in networks with displaced connectivity ap-
pears to be comparable to other well-performing net-
works of similar size (about 8 epochs in the above
tests).

The reason for the improved wiring efficiency ob-
served here in networks built with displaced connec-
tivity appears to lie in the sharing of the efferent
conduit. In order for an associative memory to per-
form well, each of its nodes must be connected to
some of the nodes which are not immediately local
to it [2]. This requirement for non-local connectiv-
ity, however, significantly adds to the mean wiring
length of the network. But by using displaced ar-
borisation, non-local connectivity can be achieved at
a very low wiring cost. These benefits are apparent
in networks built with both 1D and 2D topologies,
though are greatest in the former.

6. Conclusion

Using high capacity associative memory models
we have examined the pattern-completion perfor-
mance and corresponding wiring costs of networks
based on a number of different connection strate-
gies, built with a 1D topology. All experiments were
repeated for similar networks built with a 2D topol-
ogy, and comparisons drawn between the two sets of
results.

In our first set of experiments we compared the
performance of 1D and 2D networks of similar size,
as they were progressively rewired from a state
of local-only connectivity to a state of fully ran-
dom connectivity. It was found that although both
topologies yielded the same results in the case of
random connectivity (as must be the case), there
were important differences when connectivity was
purely local. In this case the 2D network was able
to recall twice the number of patterns achieved by
the 1D network. It was suggested that this may be
the consequence both of the decrease in clustering,
and of the much improved communication between
distant nodes in the 2D network. It was also sug-
gested that for similar reasons, a 3D network might
show even more pronounced effects.

We then compared plots of Effective Capacity
against mean wiring length for Gaussian, exponen-
tial and progressively-rewired networks. Our initial
tests used a connection density of 0.01. In both
the 1D and 2D topologies the Gaussian and ex-
ponential networks consistently outperformed the
progressively-rewired networks, though in moving
from a 1D to a 2D topology, the benefits of us-
ing Gaussian or exponential connectivity were less
pronounced.

In networks of connection density 0.1 it was
found that the small advantages of using Gaussian
or exponential patterns of connectivity over the
progressively-rewired network in the 1D topology
all but disappeared in the 2D networks. Thus, while
2D associative memory models appear to be more
tolerant of variations in connection strategy than
their 1D counterparts, networks of both types be-
come less so as their connection density is decreased.

Finally we explored the effects of using displaced
connectivity, in which the point of efferent arborisa-
tion is displaced a finite distance from the host node.
Such networks proved to be much more efficient than
the other network architectures in achieving a high
Effective Capacity at low wiring cost, though once
again this strategy proved to be more beneficial in
1D than in 2D networks. In future work we will in-
vestigate the effects of displaced axonal arborisation
in networks of even lower connection density.
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