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And Alice got the Red Queen off the table, and set it up before the
kitten as a model for it to imitate: however, the thing didn't succeed,
principally, Alice said, because the kitten wouldn't fold its arms
properly. So, to punish it, she held it up to the Looking-glass, that it
might see how sulky it was – “and if you're not good directly,” she
added, “I'll put you through into Looking-glass House. How would you
like THAT? Now, if you'll only attend, Kitty, and not talk so much, I'll
tell you all my ideas about Looking-glass House. First, there's the room
you can see through the glass—that's just the same as our drawing
room, only the things go the other way.”

-Lewis Carroll, Through the Looking Glass (1871)

Abstract. Interactive behavior of biological agents represents
an important area in life as we know it. Behavior matching and
imitation may serve as fundamental mechanisms for the
development of societies and individuals. Imitation and
observational learning as means for acquiring new behaviors
also represent a largely untapped resource for robotics and
artificial life — both in the study of life as it could be and for
applications of biological tricks to synthetic worlds. This paper
describes a new general imitating mechanism called ALICE
(Action Learning for Imitation via Correspondences between
Embodiments) that addresses the important correspondence
problem in imitation. The mechanism is implemented and
illustrated on the chessworld test-bed that was used in previous
work to address the effects of agent embodiment, metrics and
granularity when learning how to imitate another. The
performance of the imitating agent is shown to improve when
ALICE is complementing its imitation behavior generating
mechanism.

1. Introduction
In trying to get the kitten to imitate the red queen,

Lewis Carroll's Alice found that things did not quite
correspond. In the fantasy world she entered through the
looking-glass, Alice often found that things did not work
quite the same way as in her familiar world. She had to
modify her natural behavior in order to get along in the
similar, but not quite the same, looking-glass world. We
share with Alice a fascination for worlds and artifacts
that are similar but not quite the same.

A characteristic of many social animal species as-we-
know-them, e.g. dolphins, chimpanzees, humans and
other apes, is the ability to learn from others by imitation
(see Zentall and Galef 1988, Heyes and Galef 1993,
Nadel and Butterworth 1999). Inspired by nature, over
the past decade many researchers have attempted to
design life-like social artifacts as-they-could-be, i.e.
software or robotic artifacts that are able to learn from
each other or from human beings (Kuniyoshi et al. 1990,

Hayes and Demiris 1994, Dautenhahn 1995, Gaussier
et al. 1998, Billard and Dautenhahn 1998, Billard
2000). On the one hand, a robot or a software program
that a human can teach simply by showing or
demonstrating what needs to be done is an exciting new
programming paradigm (Cypher 1993, Atkeson et al.
2000). On the other hand, imitation plays a crucial part
in the development of animals as social beings. Robots
or software systems that possess imitative skills are
therefore an important step towards truly social
artifacts (see discussions in Dautenhahn and Nehaniv,
in press).

Imitation is a scientific challenge in many ways. In
addition to fundamental problems of who, what, when
and how to imitate, finding mappings between
corresponding body parts and actions (e.g. lifting the
right leg when imitating another human who is lifting
the right leg) is a major challenge for artifacts to be
solved. The work presented in this paper specifically
addresses this correspondence problem (Nehaniv and
Dautenhahn 2000, 2001; Alissandrakis et al. 2000,
Dautenhahn and Nehaniv in press). While research on
imitation usually takes the approach of studying
learning by imitation (assuming that an artifact already
possesses the skill to imitate successfully), this paper
addresses the complementary approach of trying to
imitate or learning how to imitate (Dautenhahn, 1994).
We investigate how different such attempts at imitation
can be evaluated, quantified and illustrate possible
mechanisms for solving the correspondence problem
between demonstrator and imitator. Differences in
embodiment between animals, robotic and software
systems make it more difficult but not necessarily
impossible to acquire corresponding behaviors.

In our approach, a correspondence is a recipe
through which an imitator can map observed actions of
the demonstrator to its own repertoire of actions as
constrained by its embodiment and by context
(Nehaniv and Dautenhahn 2000, 2001, in press). A
correspondence thus serves as a ‘looking-glass’ through
which an observed demonstrator's behavior is
‘refracted’ to yield similar, but possibly not quite the
same, action sequences for the imitator. This allows it
to get along in its environment, using the affordances of
its own embodiment, while exploiting observations of
the behavior of others. We address the role that
imitation can play in the development of behavioral
competencies in artificial agents. Imitation and



interaction games between human infants and caretakers,
e.g. turn-taking, play an important role in the
development of social cognition and communication in
the young human animal (see articles in Uzgiris et al.
1989, Nadel and Butterworth 1999). The fact that an
imitative action -- even an accidental one-- may receive
positive feedback could increase the animal's motivation
and tendency to imitate (cf. Dautenhahn and Nehaniv, in
press b). Moreover, this can serve to draw attention
toward salient aspects of the environment and reveal
affordances of actions and objects useful for survival in
the course of ontogeny.

2. Chessworld Revisited
For purposes of this research, we use the chessworld

test-bed that was first introduced and described in
(Alissandrakis et al. 2000). It consists of a chessboard on
which agents as chess pieces travel according to the
movement rules defined by their type e.g. the Bishop can
only move diagonally on squares of the same color. Note
that our intention is only to borrow elements like the
simple discrete nature and the different piece
embodiments. We do not to consider the actual game of
chess. Each move results in a displacement of the piece
on the chessboard, and these actions are to be imitated.
The success of the imitation can be measured by using
many different metrics. In this case three simple standard
distance metrics are used, namely Hamming norm,
Euclidean distance and infinity norm (e.g. Rudin, 1976).

In the work described in our previous paper
(Alissandrakis et al. 2000), as a generating mechanism
the imitating agent uses only a simple greedy type
algorithm to match the actions of the demonstrator. This
greedy algorithm tries to match the behavior by choosing
a valid action for the imitator minimizing the distance
(measured using a metric) between the square that was
visited as a result of the demonstrator move and the
square reached by the imitator. By ‘valid’ we mean that
this action can be performed by the imitator chess piece
type and does not result in the piece moving beyond the
edges of the board. This can be repeated until the
algorithm produces an attempted matching behavior i.e. a
sequence of actions that can then be used by the imitator
to move as close as possible to that target location.

For example let us consider a Queen as the
demonstrator that performs the action E3 (move three
squares to the east). If the imitator is another Queen, the
algorithm will simply produce the sequence [E3]. The
same sequence will be produced if the imitator is a Rook.
If the imitator is instead a King, the algorithm will
produce the sequence [E, E, E] (three sequential moves
of a single square to the east). If the imitator is a Bishop,
the algorithm will produce [NE, SE] or [SE, NE]. Note
that due to embodiment limitations (the Bishop cannot
occupy the target square as it is of different color)
moving according to either action sequence, the imitator
cannot reach the desired square exactly, but only an
adjacent one. Similar embodiment issues occur for an
imitator Knight using the sequences [N1E2] or [S1E2].1

                                                          
1 To avoid confusion interpreting the action names, the entire

Knight action set is {E1N2, E1S2, W1N2, W1S2, N1E2,

Table 1. Possible correspondence relations for different
imitator types found using the greedy generating algorithm
(Euclidean distance metric used), together with performance
P of the attempted match (see section 4). Disp. is the relative
displacement effect of the action sequence. Given the
demonstrator type, action and effect, the possible sequences
with their effects for each imitator type are shown below.

Demonstrator Action Disp
Queen E3 (+3,0)

Imitator Sequence Disp. P
Queen [E3] (+3,0) 100%

Rook [E3] (+3,0) 100%

King [E,E,E] (+3,0) 100%

Bishop
[NE,SE] or
[SE,NE]

(+2,0) 67%

[N1E2] (+2,+1) 53%
Knight

[S1E2] (+2,-1) 53%

In order to study different types of imitation, the
squares visited as a result of the demonstrator’s actions
were presented to the algorithm in three different ways
to emulate different sub-goal granularity. For end-goal
level granularity the imitating agent was using as input
to the algorithm only the final square visited as a result
of an entire sequence of demonstrator moves instead of
using sequentially each of the squares visited at each
move. At path level granularity the algorithm must also
go through the intermediate squares between the visited
squares during the demonstrator sequence; e.g. for a
Queen starting at square (1,1) and reaching square (4,4)
by a diagonal move, the imitator would have to also
sequentially consider the squares (2,2) and (3,3) along
the path of the demonstrator move. For the current
work only trajectory level granularity – matching the
end result of actions on a move-by-move basis - will be
used. This takes advantage of the natural segmentation
of actions (moves) in the chessworld, but also conceals
deep issues of perception and action that must be
addressed in physical applications (cf. Heyes and Ray
2000, Nehaniv and Dautenhahn 2001).

3. Go Ask ALICE — Introducing
Correspondences

Building on the earlier work (Alissandrakis et al.
2000) in a discrete chessworld environment, we
introduce ALICE (Action Learning for Imitation via
Correspondences between Embodiments) to illustrate
how building up correspondences can help solve the
problem of how to perform similar behavior with a
possibly different body. ALICE is a generic mechanism
for building up a correspondence based on any
generating method for attempts at imitation by
examining the history of such attempts (cf. Byrne’s
string parsing approach to imitation (Byrne 1999)).

The correspondence library that ALICE builds up
functions as a kind of mirror through which to refract a
demonstrator's behavior into the repertoire of the

                                                                                     
N1W2, S1E2, S1W2}. We try to avoid multiple names for
actions such as E2N1 and N1E2, which both would
correspond to hopping two squares east and one square
north, or, equivalently, one square north and two squares
east.



imitator's own actions as constrained by its embodiment.
Such a library of action correspondences can be
employed when imitating (cf. the natural imitation of
humans by dolphins (Herman, in press) or robotic
imitation (Nehaniv and Dautenhahn 2000, 2001)).
Mechanisms and correspondences of this type are also
relevant to the imitation of perceptually opaque
behaviors2 and to sensory motor correspondences (Heyes
and Galef, 1993), to the extraction of the structure of
demonstrated behavior (Byrne 1999, Whiten in press,),
and to neural mechanisms for the perception of actions
and affordances and its direct mapping to motor actions
via ‘mirror neurons’ (Gallese et al. 1996, Rizzolatti and
Arbib 1998, Arbib in press).

ALICE is comprised of two major components on top
of the generating mechanism. First, when the imitator
observes a new demonstrator action not seen before, the
imitator can relate the result of the generating mechanism
used (in this case the greedy algorithm) to that action.
This relation is then placed in the library of
correspondences3.

Using the entries in the library instead of performing
the algorithm for actions already observed is less
computationally expensive; especially when the
complexity of the algorithm that produces the matching
behavior increases. In this case the generating algorithm
used is a simple one, but potentially in another setting
that may no longer be true, and the cost of recalculating
instead of using an already found solution may be
considerable - for example a ten degrees of freedom
robot arm in the real world having to solve again the
inverse kinematics equations for moving the manipulator
to a point in the workspace that has been visited before
from the same initial configuration.

If correspondences were built up making use only of
the sequences generated by the generating algorithm, the
imitator could not perform any better, although it could
perform faster. Some of these imitator sequences related
to the demonstrator actions may even be invalid in
certain contexts. For example the Bishop cannot use the
sequence [NE, SE] to imitate the Queen action E3 (see
Table 1) if the piece is currently located along the
northern edge of the board. So the need to discover and
consider also the alternative sequence [SE, NE] becomes
apparent if the agent is to mostly rely on using the
correspondence library instead of using the generating
algorithm every time. For the same demonstrator action it
is impossible for the Bishop to achieve perfect imitation,
as the piece cannot occupy the target location due to its
movement rules. But for the Knight there do exist
possible imitating sequences that can achieve this
required displacement e.g. [W1S2, S1E2, S1E2]. These
sequences cannot be found using the greedy generating
algorithm because the metric measured distance not only
decreases but also increases as a result of certain actions.

                                                          
2 Perceptually opaque behaviors (Heyes and Galef, 1993) are

perceived very differently when observed than when being
performed e.g. tongue protrusion or winking, but not singing.

3 At each stage in its growth, a library of correspondences is an
example of a (partial) relational homomorphism between the
abstract automata associated to the demonstrator and the
imitator (Nehaniv and Dautenhahn 2001, in press).

The second component of ALICE overcomes this
difficulty: To discover such sequences the imitator
agent can examine its own history without having to
modify or improve the generating algorithm used. By
history we mean the list of actions that were performed
so far by the agent while imitating the demonstrator
together with these actions’ relative displacements and
possible effects on the environment, ignoring the
imitation context. This history provides helpful
experience data that ALICE uses to extract useful
mappings to improve and add to the correspondence
relation library created up to that point. The methods
for actually extracting this information can vary and
also managing the sequences that are found can depend
on additional metrics e.g. keep only the shortest
sequence that can achieve that displacement, or keep
only the top five sequences according to performance.
For the current work any number of sequences (of
length up to five actions) can be related to an observed
demonstrator action, while keeping track of their
performance.

A summary of the ALICE mechanism is
given by the following pseudocode.

ALICE MECHANISM PSEUDOCODE

Consider the demonstrator behavior as a
sequence of actions.

For each of these demonstrator actions:

• Create new entry in the
correspondence library and add
sequence of imitator actions
found by the generating
mechanism, if the demonstrator
action has not been observed
before.

• Use appropriate imitator actions
sequence from the correspondence
library if entry already exists.

Examine history by considering
sequences of past actions performed so
far.

For each of these sequences:

• If sequence of imitator actions
produces same effects to known
demonstrator action, add
sequence to that entry in the
correspondence library.

In figure 1, four different possible solutions to the
correspondence problem for a Knight imitating a
Queen (or Bishop) performing a particular diagonal
move are shown. All result in the imitator achieving the
same displacement as the imitator, although each
follows a different trajectory. Note that the two
sequences in the bottom can become invalid if the
imitator is too close to the upper or lower edges of the
board, making again apparent that having several
options in the correspondence library is helpful.



Fig. 1. This figure shows four different possible corresponding
sequences ([N1E2, S1E2, W1N2, E1N2], [E1N2, E1N2, E1S2,
E1N2], [E1N2, W1N2, N1E2, S1E2] and [S1E2, N1E2, W1N2,
E1N2]) that can be used by the Knight to imitate the action
NE4 by the demonstrator Queen (or Bishop). These can be
found with ALICE but cannot with only the greedy algorithm.

Fig. 2. A possible development for a demonstrator Queen
imitator Knight correspondence library. The correspondence
build-up with ALICE is shown in intervals of five simulation
steps, left to right, top to bottom. At the displacement
coordinates for each observed demonstrator action dark or light
color tones indicate whether at least one of the corresponding
sequences satisfy the imitation criteria perfectly or not,
respectively. Given that the demonstrator to be imitated is a
Queen, the shape that slowly emerges is composed of the
vertical, horizontal and diagonal directions that characterize its
movement rules.

The figure 2 above shows the development of such a
correspondence library for a Knight imitating a Queen.
At each of the time instances shown, every observed
demonstrator action is noted as a point at the appropriate
vertical and horizontal co-ordinates of its resulting

displacement. These can be both negative and positive,
relative to the current location of the chess piece. If at
least one of the correspondence sequences found so far
accomplishes that exact displacement a dark color tone
is used, otherwise a light one. The shape that slowly
emerges relates to the set of demonstrator actions
observed so far.

When every demonstrator action has been
encountered at least once, we can say that the set is
complete with at least one corresponding sequence for
every possible action. But such a complete set of
correspondence relations between a demonstrator and
an imitator cannot necessary guarantee a consistently
satisfying performance of imitation, even in simple
environments like the chessworld. The corresponding
sequence may be invalid in a different context than the
one it was observed in, for example by requiring
movement outside the edges of the chessboard. It
becomes apparent that as the world resolution and
complexity increases, the context becomes more
relevant and therefore the variety and quality of the
correspondence relations becomes more important.
Using the mechanism that extracts sequences from the
history as an ongoing feature can address this, as it will
continue to enrich the individual mappings with more
alternatives that possibly provide better solutions.

4. Experimental Set-up and Results
Using the Swarm simulation system, a series of

exhaustive experiments were done, implementing
ALICE on the chessworld test-bed. At each run, a
demonstrator agent is performing a random walk on the
chessboard using any (valid) actions from the set
defined by its chess piece type. An imitating agent
starts from the same initial square (at the beginning of
the run) and tries to imitate each of these actions using
sequences consisting of actions (of its own type)
returned from the generating mechanism (in this case
the greedy algorithm explained in section 2 above). For
each combination of demonstrator and imitator types
two experiments are carried out, one using the
correspondences built up with ALICE enabled and one
without.

Due to space limitations, only results for imitator
Knight with demonstrator Queen are shown. In figures
3 and 4, for a random walk of 2100 demonstrator
actions, the imitation performance is shown as the
percentage of the distance from the target location
achieved by the demonstrator action that the imitator is
able to cover by performing the imitating sequence. In
each figure the three subplots correspond to the three
different metrics used. More precisely, given a fixed
metric, performance P is measured as P = (a-b)/a,
where the distances from the imitator’s position to the
target position before and after performing the
imitating sequence are a and b respectively. For clarity,
a running average trendline of P with period of 15
demonstrator actions (time steps) is shown in each
case. The plots in both figures are from representative
model runs and also show that the choice of metric
used does not affect the imitation success as calculated
by this performance measure.



Fig. 3. Imitation performance without ALICE for the Knight imitating the Queen using Hamming norm (top), Euclidean (middle)
and infinity norm (bottom) metrics, for a random walk comprised of 2100 demonstrator actions. In each plot, a moving average
performance trendline with a period of 15 time steps is shown. Imitation success is measured as performance P described in the
text.



Fig. 4. Imitation performance with ALICE for the Knight imitating the Queen using Hamming norm (top), Euclidean (middle) and
infinity norm (bottom) metrics, for a random walk comprised of 2100 demonstrator actions. In each plot, a moving average
performance trendline with a period of 15 time steps is shown. Imitation success is measured as performance P described in the
text.



In figure 3 we can see that the generating mechanism
alone is unable to find all but a very small portion of
perfectly matching sequences for the demonstrator’s set
of actions, resulting in an overall mediocre performance
of imitation, exhibiting no improvement over time. In
figure 4 the use of the ALICE mechanism to build up the
correspondence relation library results in an overall
improvement and extended periods of P = 100%
performance.

The glitches observed between the long periods of
such performance are due to the context of situations that
can make the sequences learned so far corresponding to
an action invalid (as discussed in section 3), although
alternatives may later be discovered by the sequence
extracting component of ALICE that looks for matches
of the effects of sequences in the imitator’s history to
previously observed actions of the demonstrator.

5. Discussion
Imitation and behavioral matching can serve as a

fundamental component for behavior acquisition and life-
like social interaction in life as it could be. The work
presented in (Alissandrakis et al. 2000) showed that
agent embodiment, together with the use of different
metrics and sub-goal granularities can affect the success
and character of the imitation observed. In this work we
introduce ALICE (Action Learning for Imitation via
Correspondences between Embodiments). A
correspondence serves as a ‘looking-glass’ through
which an observed demonstrator's behavior is ‘refracted’
to yield similar, but possibly not quite the same, action
sequences for the imitator. This allows it to get along,
using the affordances of its own embodiment, while
exploiting observations of the behavior of others in its
environment. We show how the imitator agent with
ALICE exposed to the demonstrator behavior in the
chessworld, can build up useful partial solutions to the
correspondence problem, i.e. mapping the demonstrator
actions to those it can perform in it own particular
embodiment to achieve similar effects, exhibiting highly
successful imitating performance. Effectively ALICE
provides a combination of learning and memory to help
solve the correspondence problem. Due to its generic
nature, it can be implemented in a variety of ways, not
depending on a specific generating mechanism. Future
work will bring ALICE to more complex real world test-
beds, studying the requirements for the different
mechanism components (the imitating sequence
generating algorithm and the algorithm that extracts
alternative corresponding sequences from the history of
the imitator) in more complex settings, addressing issues
of perception, segmentation, context, self repair (via self-
imitation of previous optimal behavior), development
and interaction.
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