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Abstract 
In physical implementations of associative memory, wiring costs play a significant role in 
shaping patterns of connectivity. In this study of sparsely-connected associative memory, 
a range of architectures is explored in search of optimal connection strategies which 
maximise pattern-completion performance, while at the same time minimising wiring 
costs. It is found that architectures in which the probability of connection between any 
two nodes is based on relatively tight Gaussian and exponential distributions perform 
well, and that for optimum performance, the width of the Gaussian distribution should be 
made proportional to the number of connections per node. It is also established from a 
study of other connection strategies that distal connections are not necessary for good 
pattern-completion performance. Convergence times and network scalability are also 
addressed in the wide ranging study. 
Keywords: Associative memory; Sparse connectivity; Wiring costs; Connection strategy; 
Architecture. 

1 Introduction 
 
In any very large, physically realised neural network the position of the neurons (or their 
artificial counterparts) and the nature of their interconnections will be critical to the 
functionality of the system. However, in such systems there are severe physical 
constraints which restrict the possible configurations. For example, heat must be 
dissipated, resources must be globally distributed and sufficient space must be available 
for all the desired connecting fibre (Buzsaki, Geisler, Henze, and Wang, 2004).  Despite 
these constraints real neuronal networks of great size exist. The human cortex, for 
example, consists of around 100 billion neurons, each connected on average to some 
10,000 other neurons (Braitenberg, and Schüz, 1998). In this paper we try to find 
reasonably optimal connectivity patterns in an abstract model of associative memory. Our 
models are large, with up to 10,000 units, and are sparsely connected, with the 
probability of a connection between any two neurons of 0.1 or 0.01. In earlier work 
(Davey, Calcraft, and Adams, 2006) we have shown that in such models the location of 
connections within the network has an important role in determining how well it 



performs. However, we were not then able to investigate optimal patterns of connectivity 
which minimise wiring, while at the same time giving good performance. This is the 
question addressed here. 
 

2 Background 
 
We have given a review of both connectivity patterns in real neuronal networks and of 
results with simulated associative memories in our earlier paper (Davey et al., 2006), and 
the reader is referred to this for more extensive background information. 

2.1 Network Architecture 
The networks analysed here have sparse connectivity, and each unit in the network has 
the same number, k, of afferent (incoming) connections. As described earlier, we are 
interested in the spatial organisation of effective patterns of connectivity, and it is 
therefore necessary for the units in the network to have position. The simplest approach is 
taken, and the units are arranged in one dimension, and to avoid edge effects are placed 
in a ring. We take the minimum path length between any two nodes to be the actual 
distance between them around the ring, giving a simple geometry. A range of 
connectivity strategies can be applied. The two extremes are local connectivity and 
random connectivity. In (Davey et al., 2006) we show that local connectivity, in which 
units connect only to those other units at minimum separation, obviously has minimum 
connection fibre but unfortunately performs very poorly.  On the other hand random 
connectivity gives a performance that cannot be bettered but uses far more connecting 
fibre.  In (Davey et al., 2006) we showed that the connectivity of a so-called small-world 
network (Watts, and Strogatz, 1998) can produce a similar performance to a random 
network but with considerably less wiring. Here we use a variety of additional connection 
strategies as described in Section 3. 
 

2.2 Network Dynamics and Training 
 
Each unit in the network is a simple, bipolar, threshold device, summing its net input and 
firing deterministically. The net input, or local field, of a unit, is given by:  

where S  is the current state and w  is the weight on the connection from unit j to 
unit i. The dynamics of the network is given by the standard update:  
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Unit states may be updated synchronously or asynchronously.  Here we use 
asynchronous, random order updates. 
 
If a training pattern, ξ μ , is one of the fixed points of the network then it is successfully 
stored, and is said to be a fundamental memory. Given a training set ξ μ{ }, the training 

algorithm is designed to drive the aligned local fields of each unit the correct side of a 
learning threshold, T, for all the training patterns.  This is equivalent to requiring that 
 ∀i,μ hi

μξ i
μ ≥ T . 

So the learning rule is given by: 
Begin with a zero weight matrix 
Repeat until all local fields are correct 
    Set the state of the network to one of the ξ μ  

    For each unit, i, in turn 
        Calculate hi

pξ i
p . 

        If this is less than T then change the weights on connections into unit i 
according to: 

∀j ≠ i ′ w ij = wij + Cij

ξ i
pξ j

p

k
where Cij{ } is the connection matrix  

  

2.3 Performance Measure 
 
The ability to store patterns is not the only functional requirement of an associative 
memory: the fundamental memories should also act as attractors in the state space of the 
dynamic system resulting from the recurrent connectivity of the network, so that pattern 
correction can take place. 
 To measure this we use the Effective Capacity of the network, EC (Calcraft, 2005; 
Calcraft, Adams, and Davey, 2006; Davey et al., 2006). The Effective Capacity of a 
network is a measure of the maximum number of patterns that can be stored in the 
network with reasonable pattern correction still taking place. We take a fairly arbitrary 
definition of reasonable as correcting the addition of 60% noise to within an overlap of 
95% with the original fundamental memory. Varying these figures gives differing values 
for EC but the values with these settings are robust for comparison purposes (see 
(Calcraft, 2005) for the effect on Effective Capacity of varying the degree of applied 
noise, and the required degree of pattern completion). For large fully-connected networks 
the EC value is about 0.1 of the maximum theoretical capacity of the network, but for 
networks with sparse, structured connectivity EC is dependent upon the actual connection 
matrix C. 
 The Effective Capacity of a particular network is determined as follows: 



Initialise the number of patterns, P, to 0 
Repeat 
 Increment P 
 Create a training set of P random patterns 
 Train the network 
 For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state, allow the network to converge 
        Calculate the overlap of the final network state with the 

original pattern 
 EndFor 
 Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is P-1 
 

2.4 Connectivity in Real Neuronal Networks 
 
The position and connectivity of neurons in real neuronal systems is thought to be highly 
optimised to minimise the length of connecting fibres (Chen, Hall, and Chklovskii, 2006). 
At the level of individual neurons the connectivity pattern is so complex that only 
generalised statistics can be produced. These show that in the mouse cortex, for example, 
there are about 16 million neurons, each connected to about 8000 other neurons 
(Braitenberg et al., 1998). The density of connectivity is impressive, with approximately 
a billion synapses in each cubic millimetre of cortex. Most of the connections are local, 
with the probability of any two neurons in the same area being connected, falling off in a 
Gaussian like manner (Hellwig, 2000), see Figure 1. It is thought extremely unlikely that 
these intra-area connections are highly structured as they are added at the rate of about 
40,000 a second as the cortex matures. Cortical connectivity is of particular interest, as it 
is thought that one major function of the cortex is to act as a very large associative 
memory (Braitenberg et al., 1998). 



 
Figure 1: The probability of a connection between any pair of neurons in layer 3 of the rat visual 
cortex against cell separation. Taken from (Hellwig, 2000), with permission . 
 
 

2.5 Related Work 
 
Several researchers have investigated the standard sparse Hopfield network with small-
world connection graphs (Bohland, and Minai 2001; McGraw, and Menzinger, 2003; 
Morelli, Abramson, and Kuperman, 2004). Davey et al. also give results for small-world 
networks of perceptrons (Davey et al., 2006).  Other investigations have been reported in 
which sparse Hopfield networks are connected with scale-free connection graphs, for 
example (da Fontoura Costa, and Stauffer, 2003; Kosinski, and Sinolecka, 1999; Perez 
Castillo, Wemmenhove, Hatchett, Coolen, Skantzos, and Nikoletopoulos, 2004; Stauffer, 
Aharony, da Fontoura Costa, and Adler, 2003; Torres, Munoz, Marro, and Garrido, 
2004). Another approach is to build networks with a modular structure: see for example 
(Horn, Levy, and Ruppin, 1999; Renart, Parga, and Rolls, 1999). The present work 
differs from the foregoing in its focus on the efficiency of connection strategies, and in 
the range of connection architectures examined.  
 

3 Network Architecture        
 
All networks discussed here are based on a one-dimensional lattice of N nodes with 
periodic boundary conditions. The networks are sparse, in which the input of each node is 
connected to a relatively small, but fixed number, k, of other nodes. The main networks 
examined here consist of either 500 or 5000 nodes, with 50 afferent (incoming) 
connections per node. 



 We are interested in comparing a number of different connection strategies to see 
which is the most efficient, both in terms of overall pattern completion ability, and also in 
terms of economy of wiring. We compare five different wiring strategies: 
 
Progressive rewiring  This is based on the strategy introduced by Watts and Strogatz 
(Watts et al., 1998) for generating small-world networks, and first applied to an 
associative memory by Bohland and Minai (Bohland et al., 2001). A locally-connected 
network is set up, and a fraction of the afferent connections to each node is rewired to 
other randomly-selected nodes. Figure 2a shows the connectivity profile of a 
progressively-rewired network of 500 units, each with 50 afferent connections, at a 
setting of 50% rewiring. Rewiring in this way improves communication throughout the 
network, and it is found that as the degree of rewiring is increased, pattern completion 
progressively improves, up to the point where about half the connections have been 
rewired. Beyond this point, further rewiring seems to have little effect (Bohland et al., 
2001).  
 
Gaussian  Here the network is set up in such a way that the probability of a connection 
between any two nodes separated by a distance d around the ring is proportional to 

 )
2

)1(
exp(1

2

2

σσ
−

−
d

 

where d is defined such that the distance between adjacent nodes is 1, and lies in the 
range . Network performance is tested for a wide range of values of σ. 
Figure 2b shows the connectivity profile of a network of 500 units, each with 50 afferent 
connections, based on a Gaussian connectivity distribution with a σ of 40. 

2/1 Nd <≤

 
Exponential  In this case the network is set up in such a way that the probability of a 
connection between any two nodes separated by a distance, d, (where 2/1 Nd <≤ ) is 
proportional to  
 ))1(exp( −− dλ  

Networks are tested over a wide range of λ .  Figure 2b shows the connectivity profile of 
a network of 500 units, each with 50 afferent connections, based on an exponential 
connectivity distribution with a λ of 0.025. 
 
Restricted-uniform  With this particular architecture, no connections are permitted when 
the distance between two nodes exceeds a given limiting distance . At distances less 
than , all connections are of equal probability. Networks with a wide range of values 
of /  are used, where  is the maximum possible connection distance, equal 
in every case to N/2, where N is the number of nodes in the network (there are N/2 nodes 
either side of any given connection point around the ring). The reason for introducing this 
particular connection strategy is to examine the effect of eliminating all distal 
connections in a network. Figure 2c shows the connectivity profile of a network of 500 

limd

limd

limd maxd maxd



units, each with 50 afferent connections, based on a restricted-uniform connectivity 
distribution in which /  = 0.5. limd maxd

 
Restricted-linear  The rationale for introducing this network architecture is similar to that 
for the restricted uniform network above. There is again a connection distance  
beyond which the probability of connection is zero, but now the probability of connection 
for all distances up to  is proportional to 

limd

limd dd −lim , where d is the distance between 
the two nodes under consideration. The connection profile for this architecture is again 
given in Figure 2c, for a network of 500 units, each with 50 afferent connections, based 
on a restricted linear connectivity distribution in which /  = 0.5. Networks are 
tested over a range of values of / . 
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Figure 2a. Connectivity histogram for a 
progressively-rewired network at a setting of 
50% rewiring, with a class interval of 2. The 
network consists of 500 units, each with 50 
afferent connections per node. 
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Figure 2b. Connectivity histogram for a 
Gaussian network at a σ of 40, and an 
exponential network at a λ of 0.025, with a 
class interval of 2. The networks consist of 
500 units, each with 50 afferent connections 
per node. 

 

Figure 2c. Connectivity histogram for a 
restricted uniform and restricted linear 
network, each set to a connection limit of 
50% of the maximum connection distance of 
the network ( = 125,  = 250). The 

class interval is 2. The network consists of 
500 units, each with 50 afferent connections 
per node. 

limd maxd

 

4 Results and Discussion 

4.1 Gaussian, exponential and rewiring architectures compared 
Our first experiment used a network of 5000 units with 50 afferent connections per node, 
set up with three different architectures: a progressively-rewired network with rewiring 



percentages ranging from 0 to 100, a family of Gaussian networks whose σ was varied 
from 10 to 2500, and a set of exponential networks with λ  in the range 0.001 to 0.06. In 
each case the range of parameters was chosen to take the network from a locally-
connected state at one extreme to a largely random state at the other. Values of Effective 
Capacity were measured for each variant of each network type, and the results for the 
progressively-rewired and the Gaussian networks are shown in Figure 3. 
 The progressively-rewired network exhibits a similar curve to that discovered by 
Bholand and Minai, with a relatively poor performance when the network contains only 
local connections, and with performance progressively improving as the degree of 
rewiring increases. Once the degree of rewiring reaches about 50%, little further 
improvement occurs. At 100% rewiring, this is a random network, and its theoretical 
capacity is at a maximum. 
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Figure 3a (left). Effective Capacity vs degree of rewiring. Rewiring beyond about 50% of 
connections yields little further advantage. Figure 3b (right). Effective Capacity vs Gaussian σ. 
Values of σ of 200 and above achieve an Effective Capacity equalling that of the random network. 
The networks consist of 5000 units, each with 50 afferent connections Results are averages over 10 
runs. 

 

As expected, the performance of the Gaussian and exponential architectures approaches 
that of the local network when the distributions are very tight (small σ or relatively large 
λ), and both achieve the same maximum Effective Capacity of 23 as the random network 
when the spread of connections is broad (large σ or relatively small λ). 
 In order to facilitate more useful comparisons between the three networks, and to 
highlight their pattern-completion performance at low mean wiring lengths, we use the 
data from the above simulations to plot the Effective Capacity for each network variant 
against its corresponding mean wiring length. This immediately pays dividends: from 
Figure 4 it is very clear that while all three networks are capable of achieving the same 
high values of Effective Capacity, the Gaussian and exponential networks do so at 
considerably lower mean wiring lengths. In order to achieve an Effective Capacity of 22, 
for example, the rewired network would need to be 50% rewired, and this results in a 
mean wiring length of 630, while the Gaussian (at a σ  of 120) and the exponential 
network (at a λ  of 0.01) would both have a mean wiring length of just 96, and are thus 
considerably more efficient in terms of achieving high Effective Capacity at low mean 
wiring length. 
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Figure 4. Effective Capacity against mean wiring length for a network of 5000 units with 50 afferent 
connections per node (connectivity level, k/N, of 0.01). Comparison of Gaussian, exponential and rewiring 
architectures. Results are averages over 10 runs for each network setting. 

 
The high mean wiring length of the progressively-rewired network is caused by the 
relatively large number of distal connections which occur as the network is rewired. From 
the relatively good performance of the Gaussian and exponential distributions, however, 
it is clear that not all of these distal connections are essential for good pattern-completion 
performance. Just how few are needed becomes clear from histograms showing 
connectivity profiles for the three network variants at the point where the Effective 
Capacity is 22 (at a σ  of 120, a λ  of 0.01 and at a rewiring of 50%). See Figure 5. It is 
immediately clear that the Gaussian and exponential distributions have few if any distal 
connections, and yet achieve excellent pattern-completion performance. They achieve 
this by relaxing the constraint of strictly local connectivity in favour of a broader, but still 
reasonably local distribution of connections. 
 
 



0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500

Connection distance

Fr
eq

ue
nc

y

Gaussian
Exponential
Rewired

 
Figure 5.  Connectivity histogram for a network of 5000 units, each with 50 connections (connectivity level, 
k/N, of 0.01), comparing Gaussian, exponential and rewiring architectures with the same relatively high 
Effective Capacity of 22. The class interval is 25. 

 
We should also note the closeness of the Gaussian and exponential curves in Figure 5. It 
would seem that the small differences between these two distributions is of little import 
when designing a high performance architecture for a sparse auto-associator. 
 

4.2 Exploring architectures with restricted maximum connection lengths 
 
The good performance of the Gaussian and exponential distributions, as evidenced 
above, seems to imply that a large number of distal connections are not essential for good 
pattern-completion in a sparse associative network. In order to see if they are necessary at 
all, we looked at the performance of two networks in which the maximum connection 
distance can be controlled: the restricted-uniform and restricted-linear architectures 
described above, and depicted in Figure 2c. 
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Figure 6. Effective Capacity against wiring length for a network of 5000 units, each with 50 
afferent connections (connectivity level, k/N, of 0.01). Plots are shown for the Gaussian 
architecture, the progressively-rewired architecture, and the restricted uniform and restricted-linear 
architectures. Results are averages over 10 runs for each network setting. 

 
Using a network of 5000 units, each with 50 afferent connections we took measurements 
of Effective Capacity for these two new network architectures, as the maximum permitted 
connection distance was progressively increased from around 10% to 100% of the total 
connection distance afforded by the network. As with the previous experiment, we plot 
the Effective Capacity of each variant of each network type against the mean wiring 
length of the corresponding networks. The results appear in Figure 6, alongside those of 
the Gaussian and the progressively-rewired network. To improve clarity, the results for 
the exponential architecture have not been plotted here since they are indistinguishable 
from those of the Gaussian. It can be seen immediately from this graph that the 
performance of both the restricted-uniform and restricted-linear networks closely track 
that of the Gaussian. Yet these two distributions have no distal connections whatsoever. 
 This demonstrates at a stroke that in order to achieve a high Effective Capacity at 
low mean wiring length in a sparsely-connected network, there is no need for the 
presence of any distal connections whatsoever. From this perspective, the asymptotic tails 
of the Gaussian and of the exponential appear to be redundant. 
 



 

4.3 Comparing networks with higher connectivity levels 
 
In networks with higher levels of connectivity, the difference in performance between the 
different architectures is much less marked. Figure 7 shows a similar plot of Effective 
Capacity against wiring length to that of Figure 6, but for a network of 500 units, each 
with 50 afferent connections: ten times the connectivity level of the previous networks. 
To improve clarity, the results for the exponential architecture have again been omitted 
since they are indistinguishable from those of the Gaussian. The first thing to emerge 
from this graph is that the progressively-rewired network again performs the worst, but 
that it is now much closer to the others. On the other hand it appears as if there is now a 
marginal difference between the restricted-uniform and the better-performing Gaussian. 
The performance of the restricted-linear architecture is again indistinguishable from that 
of the Gaussian. 
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Figure 7.  Effective Capacity against wiring length for a network of 500 units, each with 50 afferent connections 
(connectivity level, k/N, is 0.1). Plots are shown for the Gaussian architecture, the progressively-rewired 
architecture, and the restricted-uniform and restricted-linear architectures. Results are averages over 50 runs for 
each network setting. 

 
Figure 8 shows the profiles of the four networks under discussion at settings which give 
rise to comparable values of Effective Capacity close to 16 (16.1 on the Gaussian 
network, at σ = 42; 15.9 on the progressively-rewired network, at 25% rewiring; 16.1 on 
the restricted-uniform network, at a length restriction of 30% of the maximum possible 



connection length; and 15.7 on the restricted-linear network, at a length restriction of 
40% of the maximum connection length). These points have corresponding mean wiring 
lengths of 33.8, 43.3, 38.0 and 33.7 respectively. The close similarity of the Gaussian and 
the restricted-linear profiles here makes clear why these two networks share the same 
pattern-completion performance. And it is perhaps surprising, in view of the obvious 
differences between the restricted-uniform profile and that of the Gaussian, why the 
former performs so well. 
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Figure 8.  Connectivity histogram for a network of 500 units, each with 50 afferent connections (connectivity 
level, k/N, is 0.1), comparing the four architectures at the point where Effective Capacity is close to 16: 
Gaussian, progressively-rewired, restricted-uniform and restricted-linear. The class interval is 2. 

 
To summarise our results to this point, it emerges that when designing sparsely-
connected networks to be used as associative memories, and where good pattern 
completion performance with randomly generated patterns is required at low wiring 
costs, progressively-rewired networks perform poorly. They achieve the same Effective 
Capacity as other network architectures, but they do so at relatively high wiring costs. 
These relative costs increase when the network becomes more sparse. By contrast, 
relatively tight Gaussian, exponential and restricted-uniform and -linear architectures 
perform well, achieving high Effective Capacities at low wiring costs. 
 The high Effective Capacity achieved by relatively tight connectivity distributions 
appears to suggest that direct long distance communication across the network is not 
essential for good pattern completion performance. To further underline this point there 
appears to be no significant difference in performance between the Gaussian and 
restricted-linear architectures, even in the more demanding sparser network: the 
Gaussian’s asymptotic tail, which would give better communication across the network 



than the restricted-linear distribution in which no distal connections are permitted, is 
redundant.  

4.4 Optimal Gaussian distributions 
 
In the foregoing we have studied a number of different architectures using networks of 
size 500 and 5000 units. Both networks had 50 afferent connections per node, giving us 
connectivity levels, k/N, of 0.1 and 0.01 respectively. From a comparison of Figures 5 
and 8 we can see that in the sparser of the two networks (Figure 5), we could use 
relatively tighter Gaussian or exponential distributions (i.e. relative to network size) 
without significantly impairing performance. In the sparser network a σ of around 5% of 
the maximum connection length of the network gave good results, whereas in the less 
sparse network, a σ of around 15-20% of the maximum connection length was needed. 
  The question naturally arises: to what extent does the connectivity profile of the 
best performing networks depend on network size and connection density? To establish 
an answer to this question we first measured the performance of a network with Gaussian 
connectivity distribution with a fixed value of σ set to 120 (known to give good 
performance) and another set to 30 (giving a performance intermediate between that of a 
local and a random network). The networks were tested under conditions of increasing 
network size, but with the number of connections per node remaining fixed at 50. We 
then repeated this procedure for locally-connected and random networks of the same 
configuration. 
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Figure 9. Effective Capacity vs network size for a network with a fixed number of connections per node, k (= 
50), for four different connection strategies: a locally-connected network, a random network, and ones with 
Gaussian connectivity distributions with a σ of 30 and with 120: averages over 10 runs. 

 
Figure 9 shows the interesting results. From this it may be seen that all four networks 
exhibit a largely constant value of Effective Capacity, as the size of the network is 
increased from 1000 to 10,000 units. Clearly network size per se, does not influence 
Effective Capacity within this range of network sizes; and a Gaussian network with a 
given value of σ achieves the same Effective Capacity regardless of network size. This 
occurs because the effect of the increase in the network size, N, is automatically offset by 
the concomitant increase in the number of bits per pattern (since in a generic Hopfield 
network the number of bits per pattern is simply equal to the total number of nodes in the 
network). 
 What is unexpected here is that with the value of σ for the connectivity distribution 
of the network held constant as the network increases in size, there is no deterioration in 
performance. Clearly as the network becomes larger and larger, there is no need to 
broaden the Gaussian connectivity distribution in order to maintain the Effective 
Capacity of the network. In many networks the characteristic path length (the average 
over the whole network of the shortest path linking each pair of nodes) is known to have 
important implications for the rate at which information can move through a network.  
For example in network models of the spread of disease, the time taken for the whole 
population to be infected is related to the characteristic path length (Watts et al., 
1998).   However, in our sparsely-connected network with a Gaussian connectivity 
profile of σ = 30, we find that that the network continues to perform at the same level 
(with an Effective Capacity of about 13) as the network size is increased from 1000 units 
to 10,000 units. During this time the measured degree of clustering remains fixed at about 
0.5, but the mean minimum path length increases from 2.5 to more than 35. Clearly the 
mean minimum path length is not a factor that appears to have any bearing on the pattern-
completion performance of this network. 
 In a second experiment we held the network size constant, at 5000 units, but 
gradually increased the number of connections per node from 50 to 500. This procedure 
was used initially with four different connection strategies: local and random 
connectivity, a local network with 10% of connections rewired to random nodes, and a 
Gaussian connectivity distribution with a fixed σ of 30. 
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Figure 10a.  Effective Capacity vs the number of connections per node in a fixed-size network of 5000 units, 
showing the effect of using different connection strategies: Random and local connectivity, a local network with 
10% of connections rewired to random nodes, and a Gaussian connectivity distribution with a fixed σ of 30. 
Results are averages over 4 runs. 

 
As may be seen from Figure 10a, the networks with local connectivity, random 
connectivity and with 10% rewiring show a linear relationship between Effective 
Capacity and the number of connections per node. This suggests, as we have previously 
argued (Calcraft et al., 2006), that for large networks the Effective Capacity is directly 
proportional to the underlying maximum theoretical capacity of the network (since the 
theoretical capacity of such networks is itself proportional to k (Hertz, Krogh, and 
Palmer, 1991)). Of the plots depicted, the locally-connected network performs the worst, 
and the random network, the best. The Gaussian network with a constant value of σ 
initially performs as well as the 10% rewired network, but as soon as the number of 
connections per node is increased from its starting value of 50 to 100, relative 
performance drops, and from then on its Effective Capacity tracks that of the locally-
connected network. Clearly as the number of connections per node of a network 
increases, σ must also be increased if relative performance is not to deteriorate. 
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Figure 10b.  Effective Capacity vs the number of connections per node in a fixed-size network of 5000 units, 
showing the effect of using different connection strategies: Random and local connectivity, a local network with 
10% of connections rewired to random nodes, and two Gaussian connectivity distributions whose value of σ is 
made proportional to k, the number of connections per node (in one case σ is set to 2.4k and in the other to 0.6k). 
Results are averages over 4 runs. 

 
This suggests that we need to increase the value of σ in the Gaussian distributions when 
we increase k. Figure 10b demonstrates the effect of this, depicting the performance of 
two Gaussian connectivity distributions whose values of σ were made proportional to k, 
the number of connections per node. For these two plots we have made σ equal to 0.6k, 
and to 2.4k, factors chosen to give values of σ of 30 and 120 respectively when k is 50, as 
used in the experiments above. As can be seen, the performance of these two networks 
does not drop with increasing k, but instead increases linearly with k in a similar way to 
that of the other three non-Gaussian networks. The network whose value of σ is set to 
0.6k exhibits a slope slightly greater than that of the 10% rewired network, while that 
with a σ of 2.4k tracks the response of the random network very closely indeed. The 
important result thus emerges that by making σ proportional to the number of 
connections per node in a sparse network, we obtain consistent performance as the 
network is scaled up or down in size. 

4.5 Scaling effects 
 
In the above we have examined the way that different networks behave when either the 
number of units, or the number of connections per unit is increased. We did this to 
establish the relationship between network size and Gaussian σ for well-performing 
networks, and relatively small network sizes were used. We now turn our attention to a 
different though related question: how well do the networks studied here scale up: does 



the performance of the networks continue to increase linearly as the network is scaled up 
in size? To answer this question we have run two simulations, one using a connectivity 
level, k/N, of 0.01 and the other with 0.1. In both cases measurements of Effective 
Capacity were made as the networks were progressively increased in size while keeping 
the connectivity level, k/N, at a constant 0.01 or 0.1. In the network with connectivity 
level 0.1 three different architectures were used: local connectivity, random connectivity, 
and a Gaussian connectivity distribution in which σ was maintained at a value of 0.8k, 
where k is the number of connections per node. This value gives a σ of 40 when k=50, 
and thus corresponds to the well-performing configuration examined earlier with the 0.1 
connectivity network. In the case of the 0.01 connectivity network we have used 
Gaussian architectures with a σ of 0.6k and 2.4k, as previously explored, alongside 
random and local networks. 
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Figure 11.   Effective Capacity of networks based on different connection strategies, as network size is increased 
from 1000, while keeping a fixed connectivity level, k/N, of 0.1. The results are averages over 4 runs. 
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Figure 12.  Effective Capacity of networks based on different connection strategies, as network size is increased 
from 1000, while keeping a fixed connectivity level, k/N, of 0.01. The results are averages over 4 runs. 

 
The results appear in Figure 11 for a fixed connectivity level, k/N, of 0.1, and in Figure 12 
for a connectivity level of 0.01. The first point to note from both graphs is their extreme 
linearity. The only departure from this is in the sparser of the two networks at the left-
hand side of the plot, where the number of connections per node, and thus the resultant 
Effective Capacity, is very low. Once the Effective Capacity exceeds a value of 4 or 5 all 
architectures exhibit a highly linear relationship between Effective Capacity and network 
size. 
 We have previously claimed (Calcraft et al., 2006) that in large networks, whether 
fully or sparsely-connected, Effective Capacity is proportional to the underlying capacity 
of the network (which is itself proportional to k, the number of connections per node in a 
sparsely-connected network), and the linearity of these plots strongly supports this view. 
It can further be seen that the slope of each line is dependent on the architecture. And 
since no architecture has a lower theoretical capacity than a locally-connected network, 
and none has a higher capacity than a random network, we would expect to find that all 
other conceivable architectures would result in lines contained within the bounds formed 
by the local and random plots. 
 Since the Effective Capacity of the architectures tested appears to increase linearly 
with increasing network size (beyond initial size effects), it seems reasonable to suppose 
that this linearity will continue as the network expands still further, a fact which we have 
confirmed by taking spot measurements at much larger network sizes (50,000 units for 
the 0.01 connectivity level network, and 20,000 units for the network with 0.1 
connectivity level). The general findings of this paper thus appear to be robust for 
networks of considerable size, and indeed we see no reason why these networks should 
not scale to sizes well beyond the scope of current day technology. 



4.6 Convergence times 
 
Our results suggest that when trying to achieve good pattern-completion performance at 
low mean wiring lengths in sparsely-connected networks, it is desirable to use only 
relatively short-range connections. Long-range connections appear not to be necessary in 
achieving good pattern completion with randomly generated patterns, and to be positively 
detrimental when wiring costs are taken into account. However, this analysis currently 
makes no reference to the convergence time of the network: the number of cycles which 
the recurrent network takes when moving towards a fundamental memory of the network 
as it progressively ‘repairs’ a damaged pattern. It might reasonably be expected that the 
presence of a significant number of distal connections in a sparse network would be an 
important factor in keeping convergence times for the network to a minimum, since their 
presence would improve the effective speed of communication across the network. Our 
final experiment is designed to test this supposition. 
 Convergence times are not simply an intrinsic property of a given network. They 
will critically depend upon the degree of difficulty of the task that the network is required 
to perform: the degree of difference between a presented pattern and the closest 
fundamental, or indeed spurious memory. The further the ‘distance’ between these two, 
the longer the convergence time. In order to explore the effect of using different 
connectivity strategies on convergence times we have taken measurements of 
convergence times in our networks as increasing levels of noise are applied to the pattern 
set, progressively increasing the degree of difficulty of the task. 
 When measuring Effective Capacity we are attempting to see how many patterns, 
damaged by applying 60% noise, the network can on average reinstate to within 95% of 
the original. In the following tests we have measured convergence time as we applied 
increasing levels of random noise, from 4% to greater than 60%. The point at which the 
noise is 60% corresponds to the exact conditions of the Effective Capacity measurement 
for the three networks. 
 We have performed these measurements for both 500 and the 5000 unit networks, 
both of which have 50 afferent connections per node. In the case of the smaller network 
we have used parameter settings of the various architectures which result in an Effective 
Capacity of 16 (a value close to the maximum of 17, but where wiring lengths are kept to 
a minimum). We have trained the networks on 16 patterns, and measured convergence 
times on recall for different levels of noise applied to the test pattern set. In the case of 
the larger network, we used a similar approach, though the networks were trained on 20 
patterns (again, a value close to the maximum of 23, but where wiring lengths are low), 
matching the quantity of patterns successfully learned during earlier Effective Capacity 
tests. The results appear in figures 13 and 14. 
 In the case of the smaller network (Figure 13), all architectures perform in exactly 
the same way, with convergence times increasing at a relatively slow rate until the 
applied noise reaches about 45%, and the convergence time is around 4 or 5 cycles. 
Convergence times then increase relatively sharply, reaching more than 25 cycles when 
the noise reaches 75%. 
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Figure 13. Convergence time (measured in cycles) vs the degree of noise applied to each pattern in a network of 
500 nodes, each with 50 afferent connections. A range of architectures is represented, each of whose parameters 
gives rise to an Effective Capacity of 16. Each network is trained on 16 patterns, thus the point at which the 
noise is 60% corresponds to the exact conditions of earlier Effective Capacity measurements. Results are 
averages over 50 runs. 

 
In the larger sparser network (Figure 14), convergence times again increase relatively 
slowly until the noise reaches around 45%, where convergence time is now around 10 
cycles. After this point, all but the randomly-rewired network show reasonably steep 
increases in convergence time, reaching significantly higher levels than the 500 unit 
network. For example, the restricted-uniform architecture in the 5000 unit network has a 
convergence time of 140 cycles at a noise level of 68%, whereas in the 500 unit network, 
convergence time was only at around 17 cycles for the same amount of noise. 
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Figure 14.  Convergence time (measured in cycles) vs the degree of noise applied to each pattern in a network of 
5000 nodes, each with 50 afferent connections. A range of architectures is represented, each of whose 
parameters gives rise to an Effective Capacity of 20. Each network is trained on 20 patterns, thus the point at 
which the noise is 60% corresponds to the exact conditions of earlier Effective Capacity measurements. Results 
are averages over 10 runs. 

 
Thus we see that there is a price to be paid for adopting more efficient patterns of 
connectivity over the random network. However, the relative increase in convergence 
time observed only occurs in the sparser of the two networks examined: that with a 
connectivity level, k/N, of 0.01. Furthermore, the difference only appears when the 
networks are working under extreme conditions. At the current pattern loadings, if the 
noise applied to the pattern set is kept below 50%, there is no discernible difference 
between convergence times of any of the network architectures even when the 
connectivity level is only 0.01. 
 Thus when searching for the most efficient pattern of connectivity for a sparsely-
connected associative memory, where good pattern completion performance on random 
patterns is required at low wiring costs, networks based on Gaussian, exponential, 
restricted-uniform or restricted-linear architectures can safely be used without any issues 
of increased convergence times, except in the case of very sparse heavily loaded 
networks, where randomly-rewired networks have lower convergence times, albeit at the 
cost of significantly greater mean wiring length. 
 
 



5 Conclusions 
 
In the foregoing we have examined the pattern-completion performance of sparsely-
connected associative memory models built using a number of different connection 
strategies. Networks based on progressively-rewired, Gaussian, exponential, restricted-
uniform and restricted-linear architectures were tested at network sizes of 500 and 5000 
units, each with 50 afferent connections per node. 
 It was found that all five architectures were capable of achieving the same best 
pattern-completion results, at particular settings of their parameters. For example, the 
Gaussian needed a large value of σ, giving a broad connectivity distribution, and the 
progressively-rewired network needed to be rewired by at least 40 or 50%. But when the 
mean wiring length of the networks was taken into account, major differences emerged. 
The poorest performer was the progressively-rewired network, based on the strategy 
originally proposed by Watts and Strogatz. In the sparser of the two networks under test 
(with 5000 units, each with 50 connections, yielding a connectivity level, k/N, of 0.01), 
the mean wiring length of the progressively-rewired network was as much as 6 times that 
of its Gaussian counterpart. In the 500 unit network, with 0.1 connectivity level, the 
performance of the rewired network came closer to that of the Gaussian, but was still 
markedly poorer. 
 In both the 500 and the 5000 unit networks, the Gaussian and exponential 
architectures consistently achieved some of the best results when wiring costs were taken 
into account. In the sparser of the two networks, very good pattern completion results 
were obtained with relatively tight Gaussian profiles in which a σ of just 120 was used in 
a network whose maximum connection distance was 2500. This suggested that in such 
sparse networks, very few if any distal connections are needed in order to maintain good 
pattern-completion for randomly generated patterns. In the 500 unit network, the 
Gaussian σ needed to be relatively larger (i.e. compared to the size of the network) in 
order to achieve equivalent performance. 
 We introduced the restricted-linear architecture in order to determine to what extent 
the asymptotic tail of the Gaussian, with its small number of relatively long-distance 
connections was necessary in order to maintain good communication across the network, 
and achieve good pattern-completion. It was clear in both the 5000 unit and the 500 unit 
networks that the performance of the restricted-linear architecture was indistinguishable 
from that of the Gaussian, and we thus concluded that from the point of view of 
achieving good pattern completion using randomly generated patterns at low mean wiring 
length, there is no need for distal connections whatsoever. Clearly, connections should 
not be entirely local, since local networks always perform badly, but connections should, 
however, all be located relatively close to the host node, and it would seem that the 
precise distribution shape is not critical, and becomes even less so in sparser networks. 
 Our experiments showed that in networks with a constant connectivity level k/N, the 
optimum width of the Gaussian connectivity distributions relative to the size of the 
network changed as network size was increased, and we set out to determine what factors 
affected this. We obtained the interesting result that in order to maintain the relative 



performance of a network based on a Gaussian connectivity distribution, Gaussian σ 
needs to be made proportional to k, the number of connections per node. This is robust 
for networks with increasing k or with increasing k and N. 
 It was considered that by adopting a Gaussian or similar architecture with a tight 
connectivity distribution in order to obtain good pattern-completion performance at low 
wiring costs, there might be a risk that the resultant impairment of communication across 
the network could also result in an unwanted increase in convergence times. Tests were 
therefore carried out with both the 500 and 5000 unit networks, and it was found that the 
only noticeable impairment occurred in the sparser of the two networks, and only at the 
point where the networks were most heavily stressed. When trained on 20 patterns, and 
with 60% of random noise applied to each pattern, convergence times of the Gaussian 
and other networks rose sharply, while that of the progressively rewired network (rewired 
by 30%) showed a slower rise. However, this effect was not noticeable at noise levels 
below 50%. Thus it would appear that only in very sparse and highly stressed networks is 
there any advantage in using a progressively-rewired connectivity distribution, with its 
high wiring costs, over the much more efficient Gaussian, exponential, restricted-uniform  
or restricted-linear architectures. 
 To complete our study, we considered to what extent our results would also apply to 
much larger networks. To this end we studied the Effective Capacity of networks built 
using a number of different architectures. Measurements were taken as the networks were 
scaled up, all the time maintaining a constant connectivity level, k/N. 
 Beyond initial size effects, all networks exhibited a highly linear performance, in the 
full range of experiments up to network sizes of 10,000 units. Further spot measurements 
were made at network sizes of 20,000 units for the networks with 0.1 connectivity level, 
and at 50,000 units for the 0.01 connectivity level networks, and these again confirmed 
the extreme linearity of the Effective Capacity measure for the range of different 
architectures as network size is increased. We thus conclude that our findings, in terms of 
network architecture and performance, are applicable in the range of networks accessible 
to current technology. 
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