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Abstract

Recent work on extracting features of gaps in handwritten
text allows a classification of these gaps into inter-word and
intra-word classes using suitable classification techniques.
In the previous work, we apply 5 different supervised classi-
fication algorithms from the machine learning field on both
the original gap dataset and the gap dataset with the best
features selected using mutual information. In this paper,
we improve the classification result with the aid of a set
of feature variables of strokes preceding and following each
gap. The best classification result attained suggests that the
technique we employ is particularly suitable for digital ink
manipulation at the level of words.

1. Introduction

In this paper, we further address the problem of identify-
ing word boundaries in handwritten text: a process known
as word segmentation. We make use of a selection of
contemporary classification algorithms, such as multi-layer
perceptrons, support vector machines, and Gaussian mixture
models.

In [9] we tried to find a suitable classifier to automatically
segment so-called digital ink: graphically enhanced frag-
ments of pen trace representing handwritten words, shapes
and symbols, of the sort that usually appear on paper when
real ink is used for writing. Further details about the problem
domain can be found in the next section. The previous
work was done by applying classifiers using features of gaps
between adjacent pen strokes. Here we attempt to improve
the performance of the classifier by including features of
these 2 strokes as well as the gap itself.

In this work, we first produce a new dataset using stroke
and gap information. We then test 5 different supervised
classification learning algorithms from the machine learning
field to categorise gaps.

We expound the problem domain in the next section. In
Section 3, we introduce the datasets used in this paper. All
experimental results are given in Section 4. The paper ends
in Section 5 with a discussion.

2. Problem domain

In this paper we focus on one level of the semantic
penetration of pen input: the level of words. More detail
can be found in [9]. By ‘word” we mean a group of pen
strokes that have lexical significance, i.e. one that represents
a word in a human language or a distinct symbol that
can be used as a word. We wish to automatically segment
digital ink represented as a sampled pen trace into word
fragments purely on the basis of spatiotemporal relations
between consecutive strokes, ignoring any meaning that
may be represented by each such stroke. This has been a
known problem in handwriting recognition research as well,
although in this area of technology, word segmentation is
seen merely as a precursor to full character recognition.

To extract features, we have been guided by [7] where a
thorough geometric and temporal features were provided for
a pen gesture recogniser. We illustrate some of features in
Figure 1. It presents a single pen stroke with its bounding
box. The features x and y as shown give the dimensions
of the bounding box and the angle « is linked with its
aspect ratio. The distance s is between the end points of the
stroke, and f is the angle between the line connecting those
points and the vertical. Finally, if ; is the angle between
two consecutive pen segments of the stroke, ¢ and i + 1,
then one can use the feature o = Y7 §; as a measure of
curvature. The proposed features included a few related to
the time interval of the stroke and the speed of the pen tip
as well. We have introduced a gap feature which has proven
especially useful for our purposes. We call it river width
or river for short, following Fox and Tappert [5]. The river
of a gap is the shortest distance between two consecutive
strokes, i.e. the length of the shortest chord drawn between
pen position samples from neighbouring strokes, as shown
in Figure 2. Two rivers are indicated there by double-headed
arrows.

We have expanded the set proposed in [5] by our own
form factors, see [4], for each pen stroke. The pen trace
has thus been abstracted to a sequence of strokes and gaps,
where each gap is represented by 14 feature variables,
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Figure 1. An illustration: the sort of features of a
single pen stroke with its bounding box.

Figure 2. An illustration: two rivers of gaps are
shown by double-headed arrows.

while each stroke by 25. In this work, we are interested in
classifying gaps. A human reader has annotated the gaps in
our experimental traces as either intra-word or inter-word
by recognising the words in the language. Thus the task is
to search for a classification method which can produce the
same annotations with as few errors as possible.

3. The description of the datasets

The original gap dataset includes 2482 data points labeled
by inter-word and 4980 intra-word. In [9], we presented
experimental results with all 14 features and reduced features
involving the 8 most significant to the classification found
by analysing mutual information. Figure 3 shows the mutual
information of each feature with the class variable sorted by
their values. As shown, there is a reasonable “jump” from the
ninth value to the eighth. We ignore those features indexed
from 9 to 14. Thus 8 features with mutual information
values more than 0.3, a subset of all of the features, can
be obtained. More detail of applying mutual information for
feature extraction can be found in [9].
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Figure 3. Mutual information of class variable and

each feature of gaps: each value is shown as a
star sign. The background are dashed lines that are
major grid lines to the current axes. The horizontal
dash-dot line denotes the cut off value.

In previous work, we were able to correctly classify
nearly a half of the data to a 99% accuracy from the value
of the river feature alone, which presented in Figure 3
is the most significant to classification. Since it measures
the shortest distance between samples in adjacent strokes,
gaps between words usually have a larger value than gaps
within words. One can expect to benefit from this variable
as much as possible, though exceptions often occur with
variety in writing styles as mentioned in the introduction
section. Specifically those gaps with a river value above a
particular threshold value are extremely likely to be inter
word gaps, and those below a lower threshold are likely to
be intra word gaps; such vectors are denoted as evident data.
Two thresholds of the values of river can be determined as
displayed in Figure 4. In this figure, the river values increase
from left to right. Boundary 1 specifies a river value, on the
left of which one can ensure that the probability that the gap
belongs to class intra-word is not less than 99 percent; while
boundary 2 specifies another value of river, on the right of
which the probability that the gap belongs to class inter-word
is not less than 99 percent. Then the whole dataset is filtered
by means of these two thresholds. In this way, a sub-dataset
called hard, whose values of the river feature are within these
two boundaries, is obtained. This subset therefore consists of
3361 gaps that cannot easily be classified by the river feature.

3.1. The hard stroke-gap-stroke dataset

One might expect that a further improvement in classifi-
cation could be achieved by utilising more information from
the characteristics of the preceding and following strokes
of a gap. To this end, a new set of vectors was created
by concatenating a gap with its preceding stroke and its
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Figure 4. The fuzzy dataset is generated with two
boundaries.
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Figure 5. Mutual information of the class variable
and each feature: each value is shown as a star sign
if the corresponding feature is one of gap variables,
otherwise it is presented as a circle if the feature is
one of stroke variables. The horizontal dash-dot line
denotes the cut off value.

following stroke, i.e. stroke-gap-stroke. This dataset contains
the same number of data points as the original gap dataset,
namely 7462 points. However, this set now has a total of
64 features, for each stroke we have 25 additional features,
and is called SGS-64. As before, one can apply mutual
information to select a subset of features for this dataset [9].

It can be seen that the 10 most significant features for
classification are in fact all gap feature variables. Since we
want to know whether the combination of stroke and gap
features can improve the categorisation, a cut off value of 0.1
is used so that a set of stroke features can be involved. This
produces a reduced dataset, called SGS-19, with the same
number of data points but only 19 features. Using the river
feature, which is still the most significant feature in Figure

Table 1. 19 significant features selected using
mutual information.

No. | Feature From
1 River gap
2 X-displacement gap
3 Distance between centre of gravity gap
4 Displacement gap
5 Length of the bounding box diag- gap

onal
6 Num. of samples in stroke gap
7 Duration of stroke gap
Distance between first and last gap
point
9 Cosine between first and last point gap
10 | Distance between centre of gravity gap

incl. pressure
11 | Length of the bounding box diag-

following stroke

onal
12 | Angle of the bounding box diago- gap

nal
13 | Sine between first and last point following stroke
14 | Sine between first and last point gap
15 | Num. of samples in stroke following stroke
16 | Y-displacement gap

17 | Duration of stroke
18 | Total stroke length
19 | Total stroke length

following stroke
following stroke
preceding stroke

5, one can again produce a hard subset from this reduced
feature dataset, called Hard-SGS-19.

Table 1. lists 19 selected features using mutual informa-
tion. It includes all but one gap features and 6 new stroke
features. Interestingly only 1 feature is selected by mutual
information from the stroke preceding the gap. Note that
some gap features, such as No. 5 and 6, are the same as
those used for describing a stroke. During the data collection
procedure, pen data is recorded while the pen is within 5mm
of the table surface. While pen pressure is under a certain
threshold, the pen is considered to off the tablet surface (i.e.
a gap). However, there will be some pen-trace information
describing the movement of the pen over a gap. At the very
minimum this will include the start and end of the gap as
the pen moves out of and in to proximity. At the most it will
describe the movement of the pen over the entire gap. Table
2. shows brief explainations of these 19 features.

4. Experimental results with supervised classi-
fiers
4.1. Supervised classifiers

In this section, we first list the supervised classifiers used
in our experiments. Readers who are interested in those



Table 2. Descriptions of 19 significant features.

No. Feature Description

1 River This is the minimum distance between two
strokes. Distances are calculated between all
the sample points in stroke N and those in
stroke N + 1.

2 X-displacement This is the X-displacement between the end
of stroke N and the start of stroke N + 1
(start and end of the gap).

3 Distance The centre-of gravity of a stroke
between centre | is the average all the sample
of gravity points: x = avg.ofall x coords,

y = avg. of all y coords.

4 Displacement As X-displacement, but in 2 dimensions (X

and Y coords).

5 Length of the | A bounding box is found round the coords
bounding box | of the sample points for a stroke. Minimum
diagonal and maximum X and Y coords are found

by checking each sample point in the stroke.
The length of the diagonal of this box is
then found.

6 Num. of samples | The number of sample points in a stroke.
in stroke

7 Duration of | The time taken to draw (write) the stroke.
stroke All sample points are time stamped, so this

is the Time(end) — Time(start).

8 Distance The distance between X, Y of start point
between first | and X, Y of the end point.
and last point

9 Cosine between | This is the cosine of the angle between the
first and last | last X, Y sample point of stroke N+ 1 and
point first X, Y sample point of stroke N

10 Distance This is as Distance between centre of
between centre | gravity, but is in a 3-dimensional space,
of gravity incl. | with pen pressure constituting the thrid di-
pressure mension.

11 Length of the | As Length of the bounding box diagonal
bounding  box | above
diagonal

12 Angle of the | This is the angle between minimum and
bounding box | maximum X and Y coords as found in
diagonal Length of the bounding box diagonal

above.

13 Sine between | This is the sine of the angle between the
first and last | first X, Y sample point of stroke N and
point last X, Y sample point of stroke N + 1

14 Sine  between | This is the sine of the angle between the
first and last | last X, Y sample point of stroke N + 1
point and first X, Y sample point of stroke N.

15 Num. of samples | As (6) above.
in stroke

16 Y-displacement As (2) above, but in the Y-displacement.

17 Duration of | As (7) above.
stroke

18 Total stroke | The sum of the distances between adjacent
length sample points along a stroke.

19 Total stroke | As (18) above.
length

classification techniques can follow the references to learn
more.
« Logistic discrimination analysis (LDA) [2];
« K-nearest neighbor classification (KNN) [6];
« Guassian mixture model (GMM) [2];
« Multi-layer perceptron (MLP) using scaled conjugate
gradients algorithm [2];
« Support vector machine (SVM) using Gaussian kernel
[8].

Parameters of each class-condition density were estimated
from the training dataset in the GMM. For the MLP, a two-
layer architecture was set up, since it has been proved for
classification tasks that the MLP with sigmoidal activation
function and two layers of weights can approximate any
decision boundary to arbitrary accuracy [3].

4.2. Experiments

Experiments were performed on the hard dataset with
all 14 gap features, the selected set of 8 gap features, and
19 stroke-gap-stroke features, namely, hard-G-14, Hard-G-8
and hard-SGS-19. In the experiments, 2/3 of the data points
from the dataset are used for training, while 1/3 are used
for testing. The user-chosen parameters for each classifier
were selected by cross-validation, where the training set
was divided into 10 partitions. 9 partitions were used to
train the model and the other one was used as a validation
set. In Table 3., we present all the user-chosen parameters
attained by using cross-validation. The SVM experiments
were completed using LI1BSVM, which is available from the
URL
http://ww. csie. ntu.edu.tw ~cjlin/libsvm The others
were implemented using the NETLAB toolbox, which is
available from the URL
http://ww. ncrg. aston. ac. uk/ net| ab/.

Table 3. User-chosen parameters from
cross-validation. K denotes the number of
neighbours; ncl and nc2 are the number of

Gaussian models in each mixture; j signifies the
number of hidden units in the MLP; A is the upper
bound of coefficients «; in the SVM; and ¢ is width

of radial basis function.

KNN [ GMM | MLP | svM
(K) | (ncl, nc2) )] (4, 0?)
Hard-G-8 9 6, 6 8 [25016
Hard-G-14 9 6,4 5 | 20,01

| Hard-sGs-19 | 9 | 96 | 5 | 20,01 |

4.3. Classification results

It can be seen in Figure 6 that for all but one of the
classifiers the results for the SGS data are noticeable better
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Figure 6. Bar graph: classification results for each
hard test dataset with 8, 14, 19 feature variables. The
corresponding accuracy is shown on the top of each
bar.

than the gaps only data. In particular, the GMM performs
much better on the Hard-SGS-19 dataset.

Furthermore, when considering the hard dataset with 19
feature variables, the SVM classifier gives a classification
rate 93.7% which we can amalgamate with the evident data
points to calculate a final classification rate of 96.6% for the
whole dataset as shown in [9]. This is our best classification
result.

5. Discussion

Our aim in this piece of work has been to investigate
whether the performance of a word segmentation system
could be improved using additional feature information. To
do so, we took feature representations of the stroke preceding
and following each gap. We analysed the mutual information
of all the 64 resulting features with the two classes of gap. By
taking the 19 best features we were able to include six stroke
features. The classification results for the best classifiers,
again the MLP and SVM, showed a notable reduction in
the error rate - roughly one sixth of misclassifications were
removed. Our best classifier, the SVM on the Hard-SGS-
19 dataset, in combination with predicting on the basis of
the river feature on the evident dataset gave an overall
classification of unseen gaps at 96.6% correct.

Such a high level of word entity identification is likely
to be sufficient to support digital ink applications in which
character recognition is not used. Indeed the fact that word
structure can be identified with less than one error in 30
words and irrespective of overall legibility of text, makes
this technique especially suitable for digital ink manipulation
at a whole word level. The cost of error (when errors are
infrequent) is small: an occasional misclassification would
only split a word in two resulting in a minor problem, e.g.

a line break mid-word. For a small text area characteristic
of Tablet PC and Personal Digital Assistants applications,
this would happen once or twice in a screen, which would
be completely acceptable. On the other hand, since writing
on digital media is generally less easy than it is using pen
and paper, some support for editing hand-written text, if only
at a level of whole word manipulation, is crucial to ensure
that stylus-based note-taking and document-processing are
accepted by the mainstream user.
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