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Abstract 

  

Fatigue damage of aluminium alloys is one of the key concerns in transport industries, 

particularly in the aerospace industry. The purpose of the project is to develop new 

knowledge and techniques against fatigue failure for these industries through a 

systematic investigation of fatigue resistance and crack growth behaviours of 

aluminium alloys. 

Fatigue and fracture mechanics have been investigated analytically, numerically and 

experimentally in this project. Overload transient effect on fatigue crack growth has 

been examined by considering various parameters including crack closure, overload 

ratio (OLR), load ratio (𝑅 ratio), baseline stress intensity factor range, (∆𝐾)𝐵𝐿 and 

geometry. It was found that crack closure can be correlated qualitatively and 

quantitatively to all other parameters associated with overload transient behaviour. It 

is proposed that the effect of crack tip plasticity on the non-linearity of the compliance 

curve can be separated to obtain reliable crack closure measurement. In this project, 

different methods are used to better understand the transient retardation process so 

that the damage tolerance design (DTD) of the components made of aluminium alloys 

can be enhanced. 

Another important parameter for fatigue and damage tolerance design (DTD) of 

engineering components is the threshold stress intensity factor range for fatigue crack 

growth, ∆𝐾𝑡ℎ. A small variation in identification of ∆𝐾𝑡ℎ can lead to a big change in 

overall estimation of fatigue life. In this project, an analytical model has been 

developed for aluminium alloys by fitting an analytical curve with raw crack growth 

data in order to identify the ∆𝐾𝑡ℎ. This model has the capacity to identify ∆𝐾𝑡ℎ for 

different aluminium alloys at various 𝑅 ratios. 

There is a great demand for enhanced fatigue life of aluminium alloys in the transport 

industry. This project has carried out a detailed investigation of electromagnetic 

treatment (ET) in the form of electropulsing treatment to develop an efficient technique 

for fatigue resistance enhancement. ET parameters including the treatment intensity, 

treatment time and the number of applications have been optimised. It is suggested 

that the duration of ET treatment can be used as the main parameter among all these 

to control the fatigue resistance of the aluminium alloy. The improvement in fatigue 
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resistance has been explained by the change in microhardness and conductivity of 

aluminium alloy due to ET. Additionally, the fracture morphology was analysed using 

scanning electron microscopy (SEM). The precipitates and dislocation characteristics 

were also studied using transmission electron microscopy (TEM). The outcomes of 

this investigation will help improve structural integrity by enhancing fatigue resistance 

of aluminium alloys. 
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Nomenclature 

 

A Area 

AFGROW Air force growth 

ASTM American Society for Testing and 

Materials 

𝑎 Half crack length 

𝑎𝑃 Crack length plus the overload plastic zone 

𝑎𝑡 Tolerable crack length 

𝑎𝑐𝑟𝑖𝑡 Critical crack length 

𝑎𝐷 Delay distance due to crack growth 

retardation 

𝑎𝑑𝑒𝑡 Detectable crack size 

𝛼 Constraint factor 

B Magnetic field strength 

𝑏 Minor axis 

BL Baseline 

𝛽 Geometry factor 

CA Constant amplitude 

CAA Civil Aviation Authority 

CCT Centre-cracked tension 

CPL Crack propagation life 

CPCA Compression pre-cracking constant 

amplitude 

CPLR Compression pre-cracking load reduction 

CTOD Crack tip opening displacement 

CST Constant strain triangular 

𝐶 Material constant 

𝐶𝑓 Crack closure factor  

DEF STAN Defence Standard 

DTD Damage tolerance design 

d Diameter 
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𝑑𝑎

𝑑𝑁
 

 

Crack growth rate 

∆𝐾 Stress intensity factor range 

(∆𝐾)𝐵𝐿 Baseline stress intensity factor range 

∆𝐾𝑒𝑓𝑓 Effective stress intensity factor range 

∆𝐾𝑡ℎ Threshold fatigue crack growth stress 

intensity factor range 

∆𝜎 Stress range 

∆𝑎 Crack increment 

∆𝐷

𝐷𝑖
 

Damage repairing parameter 

EPFM Elastoplastic fracture mechanics 

𝐸 Young’s modulus 

𝐹 Force 

ET Electromagnetic treatment 

𝜀 Strain 

𝜀𝑦𝑠 Yield strain 

FAA Federal Aviation Authority 

FCG Fatigue crack growth 

FE Finite Element 

FEM Finite element method 

𝑓 Frequency 

GP Guinier-Preston  

HCF High cycle fatigue 

𝐻𝑒 Element height 

𝐼 Current 

𝐽 Current density 

ISO International Organization for 

Standardization 

𝐾 Stress intensity factor  

𝐾𝑚𝑎𝑥 Maximum stress intensity factor 

𝐾𝑚𝑖𝑛 Minimum stress intensity factor 
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𝐾𝑂𝐿 Maximum stress intensity factor at overload 

𝐾𝑜𝑝 Crack opening stress intensity factor 

𝐾𝑐𝑙 Crack closing stress intensity factor 

𝐾𝐶 Fracture toughness 

LEFM Linear elastic fracture mechanics 

LSF Low cycle fatigue 

𝐿𝑒 Element length 

MSD Multiple site damage 

m Material constant  

NDI Non-destructive inspection 

N Number of cycles/ fatigue life 

NASA National Aeronautics and Space 

Administration 

𝑁𝑑 Delay distance due to crack growth 

retardation 

𝑣 Poisson’s ratio 

OLR Overload ratio 

OL Overload 

OICC Oxide induced crack closure 

P Load or pressure 

Potential drop Potential drop 

PICC Plasticity induced crack closure 

PSB Persistent slip band 

% 𝑂𝐿 Percentage of overload 

Q4 Four-noded quadrilateral elements 

𝑅 Load ratio or stress ratio 

RICC Roughness induced crack closure 

𝑟 Radius 

𝑟𝑃 Plastic zone size 

RICC Roughness induced crack closure 

S Stress 

SENB Single edge notched bend 

SIF Stress intensity factor 
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S-N Stress vs number of cycles 

SOLR Shutoff overload ratio 

S

𝑁
 

Signal to noise ratio 

SENB Single edge notch bend 

SEM Scanning electron microscopy 

SSY Small-scale yielding 

σ Normal stress 

 𝜎𝑚𝑎𝑥 Maximum stress 

 𝜎𝑚𝑖𝑛 Minimum stress 

 𝜎𝑎 Alternative stress/ stress amplitude 

 𝜎𝑚 Mean stress 

𝜎𝑦𝑠 Yield stress 

𝜎0 Flow stress 

𝜎𝑐𝑙 Crack closing stress 

𝜎𝑒 Endurance limit 

𝜎𝑜𝑝 Crack opening stress 

𝜎𝑇 Thermal stress 

𝜎𝑜𝑝 Crack opening stress 

TEM Transmission electron microscopy 

𝑡 Thickness 

𝜏 Shear stress 

𝜃 Crack angle 

𝑈 Stress intensity factor range ratio 

𝑢 Breakdown voltage 

VA Variable amplitude 

𝑤 Width 

X-FEM Extended finite element method 

𝑦 Shape factor 

𝛾 Shear strain 
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1 Introduction 

 

This chapter consists of three sections. The first section provides a brief contextual 

description of the project and its industrial relevance. The aims and objectives of the 

project are provided in the second section. The outline of this thesis is highlighted in 

the final section. 

 

1.1 Background 

 

Aluminium alloys are widely used in engineering structures where light weight is a 

priority [1]. The 2000 and 7000 series aluminium alloys are recommended for 

aerospace applications while the 6000 series is recommended for marine and 

automotive industries. The average demand of aluminium alloys in aircraft in 2015 was 

47 % by weight [2]. Although composite materials are replacing aluminium alloys in 

aircraft manufacturing, advanced aluminium alloys with excellent properties are 

fighting back and making aircraft manufacturers’ choice more difficult. Boeing has 

predicted that 38050 new aircraft will be produced from 2015 to 2034 at a total value 

of over US$5.6 trillion [3]. Meanwhile, Airbus has predicted this similar demand as the 

production of 32600 aircraft which has been estimated at a value of around US$4.9 

trillion [4]. Again, for lightweight vehicles, the aluminium content will approach 35 billion 

pounds (16 billion kilograms) in weight by 2025, making lightweight vehicles the main 

market for aluminium alloys [5]. As a result, the demand for aluminium alloys for the 

aircraft and automobile manufacturing industries will grow even though it will have 

competition from steel and composite materials. However, the problem with aluminium 

alloys is that they are prone to fatigue cracking [6]. Maintenance and repair of 

structures result in huge financial cost and extra carbon emissions. To deal with this 

problem, detailed investigation of fatigue crack growth assessment and fatigue 

resistance enhancement of aluminium alloys are necessary to improve the service life 

of the structures. Eventually, these industries will save millions of dollars and reduce 

the greenhouse effect. 
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Fatigue is the continuous degradation of material performance under cyclic loading. 

Most of the engineering failure is caused by fatigue. An aircraft experiences quite 

different stresses during take-off and landing compared to cruising which induces 

variable amplitude (VA) fatigue loading on the aircraft structure. Fatigue damage can 

lead to catastrophic failure. Aviation accidents associated with the Comet, Aloha 

Airlines Flight 243, United Airlines Flight 232 and  El Al Flight 1862 are some of the 

examples of such failures which have historical significance. By controlling the fatigue 

damage, such events could be made far less likely. 

The constant amplitude (CA) loading effect gives general insights for fatigue design 

[7]. However, the structure usually experiences variable amplitude (VA) loading in a 

real application. Moreover, the behaviour of fatigue crack growth under VA loading is 

different from CA loading. In order to achieve more accurate damage tolerance design 

(DTD), fatigue crack growth analysis under VA loading needs to be implemented [8].  

An overload along with CA loading is a simple form of VA loading. It is well known that 

overload leads to retardation of fatigue crack growth. The mechanism of this is yet to 

be fully understood. This phenomenon needs to be investigated quantitatively and 

qualitatively further based on linear elastic fracture mechanics (LEFM) before it can 

be adopted in a DTD approach. 

The fatigue crack closure mechanism has been widely used to rationalise crack growth 

behaviour both under CA and VA loading [7, 8]. However, there is still a long-term 

debate about the existence and effectiveness of crack closure inside the fatigue 

research community. Some argue crack closure alone cannot explain overload 

transient fatigue crack growth behaviour [9, 10]. The separation of intrinsic (e.g. 

deformation heterogeneity) and extrinsic factors (e.g. crack closure) on fatigue crack 

growth is believed to be the key in successfully applying the crack closure concept. In 

this project, both compliance and replica techniques have been utilised to investigate 

fatigue crack growth behaviour under overload effect. The crack growth retardation 

due to the overload effect has been explained by the crack closure concept. Load ratio 

(𝑅 ratio), overload ratio (OLR), baseline stress intensity factor range, (∆𝐾)𝐵𝐿 and 

geometry effect in fatigue crack growth have also been analysed. An investigation has 

also been conducted to study the effect of crack tip plasticity on non-linearity of the 

compliance curve in order to improve the crack closure assessment. Furthermore, strip 
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yield model and finite element (FE) model of cracked aluminium sample have been 

generated in order to investigate the crack closure effect. 

The fatigue crack growth threshold, ∆𝐾𝑡ℎ can be taken as an important parameter for 

DTD.  Any discrepancy identifying this parameter can lead to the false prediction of 

fatigue life [11, 12]. The real identification and application of this parameter will help 

develop more reliable DTD. Analytical modelling of this parameter will also be both 

cost and time effective. In this project, an analytical model has been developed to 

identify ∆𝐾𝑡ℎ  for different aluminium alloys based on significant parameters which are 

determined by the least squares method. 

In addition, this project has considered a novel mechanism for the fatigue life 

enhancement of aluminium alloys. Electromagnetic treatment (ET) has been identified 

as a potential way to improve fatigue life of metal alloys [13-16]. In order to optimise 

the material properties which include higher fatigue resistance, the treatment 

parameters need to be controlled. Also, a detailed investigation of the effects of 

different parameters of ET on fatigue resistance is necessary.  This will potentially help 

save millions of dollars in aerospace and automotive industry by improving the fatigue 

resistance of metals in the near future. In this project, the effects of ET treatment of 

aluminium alloys in the form of electropulsing treatment has been conducted in order 

to enhance the fatigue resistance.  The change of microhardness and conductivity of 

the aluminium alloy due to ET have also been correlated to the improved fatigue 

resistance. Additionally, SEM fractographic analyses and TEM studies have been 

conducted to evaluate the effect of ET on the aluminium alloy. 

 

1.2 Aims and objectives 

 

The three aims of the project are: 

 To have a further understanding of fatigue crack growth behaviour under 

variable amplitude (VA) loading.  

 To understand and identify fatigue crack closure and fatigue crack growth 

threshold for the damage tolerance design (DTD). 
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 To understand the effect of electromagnetic treatment (ET) on fatigue 

resistance. 

To achieve above aims, experimental, numerical and analytical analyses of fatigue 

behaviour of aluminium alloys have been conducted to attain the following objectives: 

 To carry out a comprehensive literature review on the fundamental theories and 

research associated with the fatigue crack growth problem and ET effect on 

fatigue resistance. 

 To conduct experimental research to understand crack growth behaviour under 

VA loading. 

 To carry out detailed analytical and numerical simulation of the fatigue crack 

closure and fatigue crack propagation on engineering aluminium alloys.  

 To evaluate and analyse numerical and experimental results and to investigate 

the elements affecting crack growth under VA loading.  

 To study the crack tip plasticity effect in order to improve the crack closure 

measurement.  

 To identify the fatigue crack growth threshold using the analytical technique to 

increase the reliability of the fatigue crack growth life prediction. 

 To conduct the experimental research to understand the effects of different ET 

parameters on material characterisations which improve the fatigue life of 

aluminium alloy which include fatigue test, microhardness test, conductivity 

test, SEM and TEM.  

 

1.3 Outline of the thesis 

 

This thesis presents the research work carried out between October 2012 to March 

2017 for the PhD project titled “Fatigue crack growth assessment and fatigue 

resistance enhancement of aluminium alloys”. It contains ten chapters. Chapter 1 

gives a brief introduction of the background, aims and objectives of the project along 

with this outline of the thesis. Chapter 2 is a detailed literature review of theories, 

methods used and key findings associated with this project. Chapter 3 describes the 

research strategy adopted for this project.  Chapter 4 and 5 present experimental and 

analytical analyses of fatigue crack growth under variable amplitude (VA) loading. 
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Effect of plasticity on compliance curve based crack closure measurement using 

experimental, finite element (FE) and analytical (e.g. strip yield model) analyses is 

explained in Chapter 6.  An analytical model of identification of threshold stress 

intensity factor range for fatigue crack growth, ∆𝐾𝑡ℎ is described in Chapter 7. The 

experimental analysis of electromagnetic treatment (ET) effect on fatigue resistance 

is presented in Chapter 8 and Chapter 9. Finally, conclusions of the project & further 

recommendations are highlighted in Chapter 10. 
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2  Literature review  

 

This chapter reviews existing research studies, theories, engineering concepts and 

application related to the work carried out during this project. The understanding of 

these will yield more damage tolerant aluminium alloys for industries (including aircraft 

and automotive industries). Damage philosophies against fatigue failure, fracture 

mechanics and fatigue concepts are summarised first. Fatigue crack growth under 

both constant amplitude (CA) and variable amplitude (VA) loading has then been 

discussed. A detailed description of plasticity induced crack closure (PICC) follows. 

The concept of identification of threshold stress intensity factor for fatigue crack 

growth, ∆𝐾𝑒𝑓𝑓  has been presented. Finally, a relatively new approach for improving 

fatigue resistance using electromagnetic treatment (ET) has been thoroughly 

reviewed.   

 

2.1 Design approaches for structures against fatigue failures 

 

DTD is one of the key tasks for ensuring aircraft airworthiness. Damage tolerance is 

the ability of the structure to resist fracture from pre-existent damage for a given period. 

Fatigue crack growth is one of the critical structural failure modes. To control this 

failure mode, the damage tolerance design (DTD) approach is widely used in industry. 

With time, structural design concepts have evolved to the current industrial standard 

DTD approach, starting from safe-life design and passing through fail-safe design. 

 

2.1.1 Safe-life design 

 

In safe-life design, the structure needs to be free of cracks during its design life. As 

soon as the crack initiates in the structure, it is considered to be out of order. To 

measure the fatigue life of the structure, extensive fatigue tests are performed on 

prototypes due to considerable scattering found in the results of fatigue life. Using the 

obtained mean stress and ultimate load capacity of the material, the maximum life is 
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predicted for the corresponding mean stress. The safety factor used here is usually 3-

5 [17] because uncertainty in the loading spectrum requires larger safety factor. 

According to the Defence Standard (DEF STAN) 00-970  [18], safe life exceeds the 

service life by a factor of at least 2.0 for compact aircraft  for safe-life design. The safe-

life design is formed based on Miner’s rule and S-N (Stress vs number of cycles) curve 

[19]. Under this design philosophy, fatigue crack growth life, which is sometimes 

greater than the fatigue crack initiation period, is not considered. So, the fatigue life of 

the structure remains short in this case. There are many limitations in S-N curves and 

Miner’s rule assumptions and results, which make this design approach more 

vulnerable to use. Fatigue crack initiation which is a very random process and the 

presence of unanticipated structural damage, which caused a historical disaster, e.g. 

Comet disaster (Figure 2.1.1), lead to the downfall of this methodology [20]. As a 

result, the design of aircraft fuselage now follows a more advanced design approach. 

In spite of this, the safe-life design approach is still in use for aircraft landing gears, 

missiles and many helicopter components [19] where other design philosophies are 

not suitable.  

  

 

Figure 2.1.1 The wreckage of the first Comet  G-LYP, showing the lack of crack arrest 

features and crack growth from window corner [21, 22]. 
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2.1.2 Fail-safe design 

 

The fail-safe design was introduced in late 1950’s in order to address the issues 

related to the safe-life design approach [19]. In fail-safe design, the structure may 

possess cracks. However, multiple load paths and/or crack arrest features are 

employed so that single component failure does not lead to immediate loss of the 

whole structure [23]. Periodic inspection and structural repair are necessary to 

maintain the fail-safe condition under this methodology. This design approach does 

not consider the crack growth rate in defining the structural life. The major 

disadvantage of this design approach is that it requires the redundant structure to cope 

with the damage. This may lead to a severe weight penalty and fatigue life reduction 

[19, 24]. Also, redundancy [25] only increases the reliability of the structure, however, 

it does not always guarantee full safety such as in the case of structures subjected to 

multiple site damage (MSD), e.g. the accident with the Aloha Airlines Boeing 737 

(Figure 2.1.2). However, the continued use of the ageing aircraft in the civil aviation 

beyond typical design life leads to growing concern relating to the airworthiness of the 

structures designed under the fail-safe methodology [19]. 

 

 

Figure 2.1.2 (a) B-737 aircraft operated by Aloha Airlines, after landing in Maui, (b) Multiple 

site damage (MSD) at a B-737 fuselage lap joint [18]. 
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2.1.3 Damage tolerance design  

 

The current damage tolerance design philosophy in the aerospace industry was 

introduced in the 1970s in response to the perceived limitations on weight saving and 

safety of the safe-life and fail-safe design approaches [24]. Also, the 45th amendment 

of the Federal Aviation Administration (FAA), Advisory Circular (AC) 25.571 [26] and 

the Civil Aviation Authority (CAA) Notice 89 [27] proposed the periodic inspection for 

aircraft. These regulation changes led to the realisation that the safe-life and fail-safe 

approaches have to be combined with damage tolerance design in the development 

of a new aeronautical structure [19]. Under this design approach, a crack may remain 

in the structure. However, the crack growth rate is monitored based on fracture 

mechanics. The inspection periods are also set up in a way so that the crack does not 

go beyond the critical limit starting from a detectable initial crack length. The planning 

of the period of the inspection and its implementation are the most important criteria 

under this methodology. Extensive emphasis is necessary on the non-destructive 

inspection (NDI) to maintain the reliability of the damage detection in this design 

methodology. An example of DTD methodology is explained in the details below 

(Figure 2.1.3). 

 

 

Figure 2.1.3 Illustration of damage tolerance design philosophy. 
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This Figure 2.1.3. shows the principle of DTD in which an understanding of the fatigue 

crack growth behaviour is required to predict the crack propagation life (CPL) from a 

detectable crack size (𝑎𝑑𝑒𝑡) to the final critical crack length (𝑎𝑐𝑟𝑖𝑡) in the structure, with 

an inspection programme being set up to ensure that fatigue cracks are detected 

before the critical length is reached. The inspection interval is determined by dividing 

the CPL by a safety factor. This safety factor is usually 2-3 for detectable flow growth 

[17] and accounts for the uncertainties in the design for material properties, 

assumptions in the stress calculation, and loading estimations, etc. 

Under the DTD approach, aircraft component cracks should grow in a controlled and 

predictable way. Therefore, the success of the DTD approach depends mostly on the 

accuracy of the fatigue crack growth life prediction under CA and VA loading. 

 

2.2 Fracture mechanics theories in fatigue crack growth 

 

In the nineteenth century, with the industrial revolution, there was a certain increase 

in the use of metals in different structures. Unfortunately, several devastating 

accidents took place in boilers, railways, ships, etc. and caused great loss of life and 

property. Design flaws and poor material selection were found to be the main reason 

behind these accidents. Scientists and engineers have endeavoured to find solutions 

to these problems and developed fracture mechanics theories. Fracture mechanics 

considers the effect of inherent flaws in the performance and durability of structures.  

 

2.2.1 Structural discontinuity effect 

 

Due to structural discontinuity, the stresses near the discontinuity such as a circular 

hole, elliptical hole (Figure 2.2.1) and crack, etc. become higher compared to the 

applied stress [28]. Kirsch [29] first calculated the stress level near a circular hole in 

1898. The maximum stress, 𝜎𝑚𝑎𝑥  near the hole was three times bigger than the far 

field applied stress, 𝜎.  Inglis [30] measured the maximum stress, 𝜎𝑚𝑎𝑥  near the 

elliptical hole of a tension strip in 1913 and found that it can be calculated by the 
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expression,  𝜎 (1 +
2𝑎

𝑏
), where, 𝜎 is far field stress and 𝑎 and  𝑏 are major and minor 

axis of the elliptical hole, respectively (Figure 2.2.1). Griffith [31] developed an energy 

theory for crack propagation for brittle material in 1920 in which crack will grow 

provided that the total energy of the system is lowered by its growth.  

 

 

Figure 2.2.1 Stress distribution near the elliptical hole. 

 

2.2.2 Linear-elastic fracture mechanics (LEFM)  

 

The development and application of LEFM derived from Irwin’s work [32] in the 1950s  

have proved to be powerful in understanding fatigue crack growth. In LEFM approach, 

the material is considered to be an elastic continuum. Moreover, the intensity of the 

stress field around the tip of a crack is characterised by a parameter called stress 

intensity factor, 𝐾, which is a function of the applied stress, crack length, and a 

geometrical factor [33]. LEFM theory is valid for elastic-plastic material provided that 

the crack tip plastic zone size is much smaller than the crack length itself, a condition 

called small-scale yielding (SSY) condition. High strength steel, precipitation hardened 

aluminium, polymers below glass transition temperature, ceramics, etc. are the 

materials (at room temperature), where LEFM is applicable when the SSY condition 

holds. Fatigue problems, which consider the stress of less than 30 % of yield stress 

are suitably analysed by it [28]. The effect of significant plastic deformation near the 
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crack tip beyond SSY can be accounted for by elastic-plastic fracture mechanics 

(EPFM) (Figure 2.2.2). Then, plastic collapse [34] occurs when the plastic deformation 

becomes excessive [35] and displacement becomes unbounded. 

 

 

Figure 2.2.2 The transition of LEFM to plastic collapse through EPFM. 

 

2.2.2.1 Modes of fracture and plane stress/strain condition 

 

Crack faces in a specimen, move with respect to each other due to loading. It is 

described using three independent modes or a mixture of two different modes (mixed 

mode) or a combination of all three modes (combined mode). The three independent 

modes are mode- I  or opening mode, mode II or sliding mode, and mode III or tearing 

mode (Figure 2.2.3). Based on these modes, stress intensities are written as 

𝐾𝐼 , 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 , and the corresponding fracture toughness values are written as 

𝐾𝐼𝐶 , 𝐾𝐼𝐼𝐶 and 𝐾𝐼𝐼𝐼𝐶. 
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Figure 2.2.3 Modes of loading [7]. 

 

In Figure 2.2.4, normal stress and shear stress are denoted as σ and 𝜏, respectively. 

Here, corresponding normal strain and shear strain are denoted as ε and 𝛾, 

respectively. 

 

 

Figure 2.2.4 Stress components in a 3D coordinate system. 
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In plane stress, normal stress, 𝜎𝑧 and shear stresses, 𝜏𝑧𝑦 and 𝜏𝑧𝑥  are zero.  

The stress tensor is then : 

 [𝜏] = [
𝜎𝑥 𝜏𝑥𝑦
𝜏𝑦𝑥 𝜎𝑦

] (2.2.1) 

 

 

 

 

 

and strain tensor, 

 

[𝛾] = [

𝜀𝑥 𝛾𝑥𝑦 0

𝛾𝑦𝑥 𝜀𝑦 0

0 0 𝜀𝑧

] 

(2.2.2) 

 

In plane strain, normal strain, 𝜀𝑧 and shear strains, 𝛾𝑧𝑦 and 𝛾𝑧𝑥  are zero. 

 

The stress tensor is then: 

 

 [𝜏] = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑦𝑥 𝜎𝑦 0

0 0 𝜎𝑧

] 

 

 

(2.2.3) 

and strain tensor, 

 [𝛾] = [
𝜀𝑥 𝛾𝑥𝑦
𝛾𝑦𝑥 𝜀𝑦

] 

 

 

(2.2.4) 
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2.2.2.2 Stress, displacement field and stress intensity factor (SIF) 

ahead of the crack tip  

 

The stress intensity factor (SIF) is used to describe the intensity of the stress field near 

the crack tip due to far-field loading. It depends on the specimen geometry, applied 

stress and the crack length. 

 

 

Figure 2.2.5 2D stress components ahead of the crack tip [7]. 

 

Irwin coined the term SIF [32]. If 𝑍(𝑟) is a stress component with respect to the crack 

tip (Figure 2.2.5), then the SIF is defined as,  

 

 𝐾 = lim
𝑟→0

√2𝜋𝑟 Z(𝑟) (2.2.5) 

where, 𝑟 is considered to be the distance of the stress component from the crack tip. 

 

For different modes, SIFs in terms of stress components, distance, 𝑟 and angular 

distance, 𝜃 are, 

 𝐾𝐼 = lim
𝑟→0
 (𝜎𝑦√2𝜋𝑟|𝜃=0)  (2.2.6) 
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 𝐾𝐼𝐼 = lim
𝑟→0
 (𝜏𝑥𝑦√2𝜋𝑟|𝜃=0)  (2.2.7) 

 

 𝐾𝐼𝐼𝐼 = lim
𝑟→0
 (𝜏𝑦𝑧√2𝜋𝑟|𝜃=0)  

 

(2.2.8) 

If 𝐾 reaches a critical value, fracture occurs. This critical SIF is called fracture 

toughness, 𝐾𝑐. 

 

Based on the Westergaard approach [36] the stress components, very near to the 

crack tip, become 

 

(

𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
) =

𝐾𝐼

√2𝜋𝑟
cos

𝜃

2

(

 
 
 
1 − sin

𝜃

2
sin
3𝜃

2

1 + sin
𝜃

2
sin
3𝜃

2

sin
𝜃

2
sin
3𝜃

2 )

 
 
 

 

 

 

 

 

(2.2.9) 

When, r→0, the stress field near the crack tip has a singularity of 1/√𝑟. It should be 

noted that Equation 2.2.9 is only valid for the stress of the part of the material very 

close to the crack tip. For the part of the material away from the crack tip, Irwin [37] 

added an experimental stress term, −𝜎0𝑥 [7] to 𝜎𝑥. So, the modified Westergaard 

equations become 

 

(

𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
) =

𝐾𝐼

√2𝜋𝑟
cos

𝜃

2

(

 
 
 
1 − sin

𝜃

2
sin
3𝜃

2

1 + sin
𝜃

2
sin
3𝜃

2

sin
𝜃

2
sin
3𝜃

2 )

 
 
 
+ (

−𝜎0𝑥
0
0
) 

 

 

(2.2.10) 

 

For evenly spaced collinear cracks in an infinite strip subjected to tensile load, SIF [7] 

(Figure 2.2.6) is 



17 
 

   

𝐾𝐼 = 𝜎√𝜋𝑎 (
𝑤

𝜋𝑎
tan

𝜋𝑎

𝑤
)

1
2
 

 

(2.2.11) 

where, 𝑎 is the half crack length, and 𝑤 is the width of the strip. 

 

 

Figure 2.2.6 Collinear cracks in an infinite strip subjected to remote tension [7]. 

 

If there is a crack in a plate of finite strip, then SIF [38], 

   

𝐾𝐼 = 𝜎√𝜋𝑎𝐹𝐼(𝛼)  

 

(2.2. 12) 

 

where, 

  𝛼 =
2𝑎

𝑤
 (2.2.13) 

According to secant formula SIF,  

 
 𝐾𝐼 = 𝜎√𝜋𝑎 [sec (

𝜋𝑎

𝑤
)]

1

2
 

 (2.2.14) 

Accuracy: ±0.3 %  for 𝛼 < 0.7 and 1 % for 𝛼 = 0.8 

A more accurate solution is the Tada solution, 
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𝐹𝐼(𝛼)  = (1 − 0.025𝛼

2 + 0.06𝛼4) [sec (
𝜋𝑎

𝑤
)]

1
2
 

         (2.2.15) 

which has an accuracy of less than 0.2 %  for all 𝛼 values. 

 

2.2.2.3 Evaluation of plastic zone near the crack tip for mode 𝑰 

loading 

 

It is not easy to describe the shape and size of the plastic zone near the crack tip. The 

material is assumed to be elastic-perfectly plastic for simple models (Figure 2.2.7).  

 

Figure 2.2.7 Stress vs strain curve of elastic-perfectly plastic material. 

 

Figure 2.2.7 shows an elastic-perfectly plastic material model assuming no strain 

hardening or softening. The size of the plastic zone can be determined by locating a 

point along the crack axis, which satisfies the yield criteria to describe the range of 

plastic zone (Table 2.2.1) [28]. 
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Table 2.2.1 Summary of the plastic zone size for different models. 

  Plastic zone size (𝒓𝑷) 

Plane stress Plane strain (𝜶 =
𝟏

𝟑
) 

Simplistic model 1

2𝜋
(
𝐾𝐼
𝜎𝑦𝑠
)

2

 
1

18𝜋
(
𝐾𝐼
𝜎𝑦𝑠
)

2

 

Irwin model (the crack tip is in the 

middle of the plastic zone. Therefore, 

the correction factor= 
𝟏

𝟐
) 

1

𝜋
(
𝐾𝐼
𝜎𝑦𝑠
)

2

 
1

3𝜋
(
𝐾𝐼
𝜎𝑦𝑠
)

2

 

Dugdale’s model 𝜋

8
(
𝐾𝐼
𝜎𝑦𝑠
)

2

 
 

- 

 

2.3 Fatigue  

 

Fatigue of materials refers to the changes in properties resulting from the application 

of cyclic loads [39] and this change occurs in the form of degradation of material due 

to progressive and localised damage. Due to fatigue, failure of the structure occurs 

before the ultimate strength is reached. Fatigue failure often occurs suddenly without 

any noticeable warning, which explains why most of the mechanical failure is fatigue 

related. Mechanisms of fatigue failure need to be understood properly to improve the 

structural integrity of engineering components. 

 

2.3.1 What is fatigue resistance? 

 

The change in loading produces fluctuating stresses in the components, which leads 

to dislocations (i.g. dislocations are areas where the atoms are out of position in the crystal 

structure) [40] within the material. Dislocations pile-up created by this fluctuating 

loading produce persistent slip band (PSB) [41] as shown in Figure 2.3.1. This leaves 

tiny steps in the surface that serve as areas of high-stress concentration where fatigue 

cracks can initiate. If left untreated, these cracks within the microstructure of the 

material will propagate until fracture. Fatigue is considered to be a problem which can 
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affect any part or component that experiences variable or cyclical stresses [6]. As such, 

fatigue resistance is defined as a material’s ability to endure cyclic stresses associated 

with fatigue.  

 

Figure 2.3.1 Slip band [41]. 

 

Fatigue can be classified into two main categories; low cycle (<100,000 cycles) and 

high cycle (>100,000 cycles) [42]. Low cycle fatigue occurs when materials undergo a 

high-level of stress which causes plastic deformation within the material [43]. The high 

stress causes dislocation movement [44] which prevent the material from returning to 

its original shape/form through the accumulation of dislocation density. On the other 

hand, high cycle fatigue is low-stress fatigue situation where the material deforms 

primarily elastically [43]. In this, fatigue is caused by elastic strains under a high 

number of load cycles before failure occurs [45]. The number of stress cycles until 

failure is used for measuring the fatigue life which is usually expressed using a stress 

vs number of cycles (S-N) semi-logarithmic graph as shown below (Figure 2.3.2). 
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Figure 2.3.2 Stress vs number of cycles graph (semi-log scale) [46]. 

 

It is desirable to prolong the life of the material, which can be accomplished by 

reducing the effect of fatigue. This can involve reducing the magnitude of cyclic stress 

that the material experiences or using materials with enhanced fatigue resistance. The 

larger the number of fatigue cycles to failure, the larger the fatigue resistance of the 

material. A single stress application of the ultimate tensile stress (UTS) allows for one 

stress cycle before the material fails. As the stress decreases, the number of cycles 

to failure increases until a point where an infinite amount of repeated stresses will not 

cause the material to fail. This point is known as the fatigue limit or endurance limit 

(Figure 2.3.2). The fatigue limit is an important parameter during product design as it 

is assumed that a material will not fail due to fatigue when subjected to stresses below 

this limit. However, aluminium alloys have no such limit while steel has a fatigue limit 

(Figure 2.3.2). 

In order to increase the service life of the components, it is essential to improve the 

fatigue resistance of the material. Fatigue resistance can be related to multiple factors. 

In Boardman’s review [47], it is emphasised that the variation of microstructure, macro-

structure, chemical composition, mechanical properties and their effect on fatigue life, 

should be taken into account when choosing the correct material for the application. 

Some scholars believe that there is a linear relationship between the fatigue strength 
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of metals and the hardness or tensile strength. However, this generalisation is not 

entirely true. Some other factors such as fabrication, surface treatments, finishing, 

service environment and heat treatment can also affect the fatigue resistance of 

material. In general, the fatigue crack initiation period is the most significant one, 

however, using the advanced technique of detecting a crack, it is found that a crack 

often develops at the early stage of the fatigue life (i.e. after as little as 10 % of the 

total lifetime) [47]. Eventually, the crack will continually propagate until fracture takes 

place. Fatigue resistance includes both the crack initiation and crack growth. The 

fatigue crack growth can be modelled as a sigmoidal curve which will be discussed in 

details in the later section.  

 

2.3.2 Mechanical parameters of the fatigue loading 

  

Repeated loading is normally idealised as cyclic loading in fatigue analysis as shown 

in Figure 2.3.3. Different stress parameters are used to describe the fatigue cycle. 

These are maximum stress,  𝜎𝑚𝑎𝑥, minimum stress, 𝜎𝑚𝑖𝑛, alternating stress or stress 

amplitude, 𝜎𝑎, mean stress, 𝜎𝑚, stress range, ∆𝜎 and stress ratio, 𝑅. 

 

Figure 2.3.3 Cyclic loading. 
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where,  

 ∆𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 (2.3.1) 

 

 
𝜎𝑚 =

𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛
2

 
(2.3.2) 

 

 
𝜎𝑎 =

∆𝜎

2
 

(2.3.3) 

 

 𝑅 =
𝜎𝑚𝑖𝑛
𝜎𝑚𝑎𝑥

 (2.3.4) 

 

The minimum stress, 𝜎𝑚𝑖𝑛 increases with the increase of 𝑅 at constant maximum 

stress, 𝜎𝑚𝑎𝑥. When 𝜎𝑚𝑎𝑥=-𝜎𝑚𝑖𝑛, the cyclic loading is termed as fully reversed loading 

cycle. 

 

2.4 Fatigue crack growth behaviour 

 

Fatigue crack starts from cyclic slip (Figure 2.4.1). Then, it grows to a certain limit 

before the final fracture occurs. Stress concentration factor (SCF), stress intensity 

factor (SIF) and fracture toughness, 𝐾𝐶 are relevant parameters in these three stages, 

respectively.  

 



24 
 

 

Figure 2.4.1 Crack growth process. 

 

2.4.1 Fatigue crack propagation process 

 

During fatigue loading, the surface of the component starts to become rough. 

Persistent slip bands (PSBs) are created including intrusion and extrusion profiles [28]. 

These initiate the fatigue crack. The radius of the curvature of the crack tip also 

influences the crack growth. In cyclic loading, during loading, the high plastic 

deformation near the crack tip due to the high-stress concentration advances the crack 

tip. Plastic deformation also makes the crack tip blunt. On the other hand, the crack 

tip sharpens during unloading. This process of blunting and re-sharpening continues 

while the crack advances. From the fractographic observation, striations or closely 

spaced ridges are usually found on the fracture surface caused by fatigue failure. 

When the fatigue load is interrupted, there is a formation of beachmarks, which are 

microscopically visible. In between the beach marks, there are several thousands of 

striations available (Figure 2.4.2.). 
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Figure 2.4.2 (a) Fracture surface due to fatigue [48] and (b) striation in aluminium alloy 2014-

T6. 

 

In mode I loading, the crack grows perpendicular to loading from the crack tip in a self-

similar manner [8]. In mode II loading, the crack grows at a certain angle with the crack 

axis. According to Erdogan and Sih [49], this angle is approximately 70 ° from the plane 

of the crack which is very nearly the direction perpendicular to the maximum tangential 

stress at the crack tip (70.5 °). Unlike for Modes I and II, there is no plausible 

micromechanistic model explaining a pure Mode III crack growth in ductile metals [50]. 

In the mixed mode (mode I and mode II) loading, the crack grows in the maximum 

normal stress (MTS) direction 𝜎𝜃𝜃 [49] or in the direction of minimum strain-energy-

density factor [51]. Non-destructive testing (NDT) is used to monitor the fatigue crack 

growth. The fatigue loading is not fully reversed if the minimum load is kept zero during 

the fatigue crack growth test. For various loads, the test is repeated and crack length 

vs number of cycles (𝑎 vs 𝑁) graph is obtained (Figure 2.4.3). 
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Figure 2.4.3 Crack length, a vs number of cycles, 𝑁 curves for different loading, 𝑆 on a single 

material. 

 

After the crack growth period, ultimate fracture comes in effect. Fracture occurs in 

brittle/ cleavage fashion or ductile/rupture fashion depending on the material. The 

velocities of these two types of fracture are around 1060 𝑚/𝑠  and 500 𝑚/𝑠, 

respectively [28]. 

 

2.4.2 Paris law and sigmoidal curve approach 

 

In 1961, Paris [52] first introduced the role of 𝐾 on fatigue crack growth of a physically 

large crack. To represent all the different curves of the 𝑎-𝑁 graph in a single curve, he 

came up with a new idea and introduced a graph of log-log plot of  
𝑑𝑎

𝑑𝑁
  vs ∆𝐾 (SIF 

range) (Figure 2.4.4). This is considered the kernel of all fatigue crack growth models. 

In 1963, based on empirical observation Paris and Erdogan [53] established a fatigue 

crack growth model for different load conditions using the power law. This model takes 

the consideration of stress intensity factor range, ∆𝐾, and is commonly known as Paris 

law (Equation 2.4.1). 
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 𝑑𝑎

𝑑𝑁
= 𝐶(∆𝑘)𝑚 

 (2.4.1) 

 

  ∆𝑘=𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛  (2.4.2) 

where, 𝐶 and 𝑚 are experimentally determined material constants and 
𝑑𝑎

𝑑𝑁
 is the crack 

growth increment per cycle (𝑎 being the crack length and 𝑁 the number of load cycles),  

∆𝐾 is stress intensity factor range,  𝐾𝑚𝑎𝑥 is the maximum stress intensity factor and 

𝐾𝑚𝑖𝑛 is the minimum stress intensity factor. 

The Paris law [53]  is only applicable in the intermediate linear segment of region II. 

(Figure 2.4.4).  This model is purely empirical. The crack growth rate was properly 

modelled by a single parameter, ∆𝐾 taking the effect of applied stress and crack 

length. The environmental effect (e.g. heat, humidity, etc.) is not considered here. The 

stress ratio, 𝑅 which is ignored in this law, has an impact on the curve as 𝐶 changes 

with the stress ratio, 𝑅. Only region II of the sigmoidal curve can be described by it 

[28]. For a wider range of ∆𝐾, Equation 2.4.1 cannot be used to correlate experimental 

data effectively. 

The plot of log
𝑑𝑎

𝑑𝑁
 vs log ∆𝐾 for metal fatigue crack growth is a sigmoidal curve with 

three distinct regions which is shown below (Figure 2.4.4). It provides all the 

information of fatigue crack growth rate from the crack initiation to final fracture. The 

curve deviates from linearity both at high and low ∆𝐾 values. This curve moves left 

with the increase of 𝑅 which indicates that the crack growth rate increases at high 𝑅. 
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Figure 2.4.4 A Typical sigmoidal curve of representing fatigue crack growth rate [7]. 

 

Region I 

This is the region of microcrack growth. The crack length becomes of the order of 

nanometers starting at the threshold SIF, ∆𝐾𝑡ℎ. This region occupies most of the crack 

growth life compared to the other two regions. The crack growth rate is of the order of 

10−6-10−4 
𝑚𝑚

𝑐𝑦𝑐𝑙𝑒𝑠
 typically [28]. Here, the crack growth approaches zero value 

asymptotically at the threshold value of ∆𝐾𝑡ℎ. Microstructure, mean stress and 

environment have a large influence in this region. The load ratio, 𝑅 is the most 

important factor controlling the magnitude of the threshold, ∆𝐾𝑡ℎ [54, 55]. The 

threshold value, ∆𝐾𝑡ℎ decreases with increase of 𝑅. This region follows the modified 

Paris law as proposed by Donahue et al. [56]. According to this, 

  
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝑘 − ∆𝐾𝑡ℎ)

𝑚  (2.4.3.) 

 

 ∆𝐾𝑡ℎ = 𝐶(1 − 𝑅)
𝛾∆𝐾𝑡ℎ(0)  (2.4.4) 

∆𝐾𝑡ℎ(0)  is the threshold value of ∆𝐾 at 𝑅 = 0, 𝐶, 𝑚 and 𝛾 are material constants. 
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Region II 

The crack growth rate in this region is of the order of  10−4 
𝑚𝑚

𝑐𝑦𝑐𝑙𝑒𝑠
 to  10−2

𝑚𝑚

𝑐𝑦𝑐𝑙𝑒𝑠
 [28]. 

Striations are only formed in this region of crack growth. The environment, mean stress 

and frequency have significant effects, while microstructure only has a small effect in 

this region. The curve follows a linear relationship between log 
 𝑑𝑎

𝑑𝑁
  and log ∆𝐾 as Paris 

law is applicable in this region. When the change in 𝑅 is considered, closely spaced 

parallel lines are created. The plastic zone ahead of the crack tip is bigger than the 

mean grain size, but smaller than the crack length [57, 58].  

Region III 

The crack growth rate in this region is of the order of  10−2 
𝑚𝑚

𝑐𝑦𝑐𝑙𝑒𝑠
 to  10−1

𝑚𝑚

𝑐𝑦𝑐𝑙𝑒𝑠
 [28]. The 

environment has no significant effect in this region. At high ∆𝐾 values, the crack growth 

rate accelerates as the log 
 𝑑𝑎

𝑑𝑁
  vs log ∆𝐾 curve becomes steep and asymptotic, while 

approaching fracture toughness, 𝐾𝑐. With the change of 𝑅, the curves get scattered  

and 𝐾𝑐  can be reached early when 𝑅 is increased. Microstructure, mean stress and 

thickness have a greater influence in this region. The component fails in this region. 

The curve in this region follows the Forman Law (1972) [57, 59] as follows, 

  
𝑑𝑎

𝑑𝑁
=

𝐶(∆𝑘)𝑚

(1−𝑅)𝐾𝐶−∆𝑘
  (2.4.5) 

where,  𝐾𝑐 is the fracture toughness, 𝐶 and 𝑚 are material constant. This law is also 

applicable in the stable intermediate growth of region II. 

 

Many researchers [56, 60, 61] have attempted to generate models to explain all the 

parts or a specific portion of the sigmoidal curve. One of the mathematical 

representations of the complete sigmoidal curve by Hartman and Schijve [57, 61] in 

1970 is; 

  
𝑑𝑎

𝑑𝑁
=
𝐶𝐻𝑆(∆𝑘−∆𝐾𝑡ℎ)

𝑚𝐻𝑆

(1−𝑅)𝐾𝐶−∆𝑘
  (2.4.6) 

where, the threshold, ∆𝐾𝑡ℎ is included, 𝐶𝐻𝑆 and 𝑚𝐻𝑆 are material constant. 
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Because of the aggressive environment such as liquid environment, the sigmoid graph 

changes and the crack growth rate increases. For corrosion, the threshold ∆𝐾𝑡ℎ can 

be increased because of the crack closure effect to be detailed later [28]. 

 

2.4.3 Overload effect on fatigue crack growth 

 

Figure 2.4.5. shows three basic load sequences of overloads: a single overload, a 

block of overloads and periodic blocks of overloads. 

 

 

Figure 2.4.5 (a) A single overload, (b) a block of overloads and (c) periodic blocks of 

overloads. 

 

When a single overload is applied to a structure with a crack, it initially accelerates the 

crack growth. Then, there will be a prolonged retardation of crack growth and 

eventually, crack growth rate will go back to the pre-overload condition. This effect is 

known as the post-overload transient effect [62-66].  

Crack  growth retardation was found more pronounced under a higher overload ratio 

(OLR) [9, 24, 62, 67].  

 
𝑂𝐿𝑅 =

∆𝐾𝑂𝐿
∆𝐾𝐵𝐿

=
𝐾𝑂𝐿 − 𝐾𝑚𝑖𝑛
𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛

 
(2.4.7) 

 

where, 𝐾𝑚𝑎𝑥, 𝐾𝑚𝑖𝑛, and 𝐾𝑂𝐿 are the maximum, minimum and peak overload stress 

intensity factors. Therefore, ∆𝐾𝑂𝐿 and ∆𝐾𝐵𝐿 are the overload and the baseline stress 

intensity factor range. According to some studies [68, 69], it was found that there was 

no overload ratio (OLR) effect for OLR of 1.2-1.5, however, others [63, 70] found 
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decreased crack growth rate for OLR of 1.5 . Intermediate values of OLR cause the 

number of delay cycles to increase. For example, in the case of  OLR of 2.0, there was 

immediate retardation at plane strain condition, and  delayed retardation occurred after 

initial acceleration in plane stress condition [69]. High value of OLR (typically 2.5-3) 

caused crack arrest [69]. 

With the increase of 𝑅, the crack growth rate increased [71]. Reduced retardation with 

the increase of 𝑅 was reported in some research works [24, 67]. The thickness of the 

specimen and the microstructure influenced the overload retardation effect [9]. The 

evidence found for the influence of the baseline stress intensity factor range, 

(𝛥𝐾)𝐵𝐿 was inconsistent [72]. On the one hand, intermediate (𝛥𝐾)𝐵𝐿 value or increase 

in (𝛥𝐾)𝐵𝐿 above a certain level diminised the retardation effect, while on the other 

hand, decreasing (𝛥𝐾)𝐵𝐿 led to the initial acceleration effect to be more pronounced. 

According to Borrego et al. [63], the crack growth retardation effect increases 

significantly with (𝛥𝐾)𝐵𝐿 . More severe crack growth retardation was found when 

constant amplitude (CA) loading was incorporated with the block of overloads rather 

than a single overload [73]. Periodic single overload or block of overloads may 

enhance the retardation effect. However, there is an optimum distance between the 

two overloads or block of overloads [62]. Closely spaced overloads may lead to crack 

growth acceleration rather than retardation.  

 

2.4.4 Evaluation of fatigue crack growth models under overload 

 

In 1972, Wheeler [74] considered the overload effect and introduced a fatigue crack 

growth model [8, 57] as shown in Figure 2.4.6. The post-overload crack growth can be 

described as: 

  
𝑑𝑎

𝑑𝑁
= 𝜑𝑟𝑓(∆𝐾, 𝑅)   (2.4.8) 

 

𝜑𝑟 = {
(
𝑅𝑦

𝑎𝑃 − 𝑎
)
𝑚

;  (𝑎 + 𝑅𝑦) < 𝑎𝑃

   1               ;  (𝑎 + 𝑅𝑦) ≥ 𝑎𝑃

 

 (2.4.9) 
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where, 𝑓(∆𝐾, 𝑅)  denotes the function of stress intensity factor range, ∆𝐾 and load 

ratio, 𝑅, 𝜑𝑟 =retardation parameter or, knock-down parameter, 𝑅𝑦=Normal plastic zone 

size, 𝑦=shape factor, 𝑎𝑃=crack length plus the overload plastic zone size and 

𝑚=adjustable calibration factor, which is a material dependent exponent, which is used 

to account for the effect of load sequence on fatigue crack growth rate.  

 

 

Figure 2.4.6 Crack tip yield zone [74]. 

 

According to beden et al.  [57], the plastic zone size proposed by Wheeler is, 

 
𝑅𝑦 =

𝜋

4√2
(
𝐾𝐼
𝜎𝑦
)

2

 
  

(2.4.10) 

 

In 1971, Willenborg [75] modified the stress intensity factor by taking the effect of the 

overload [8]. AFGROW [8] uses the generalised Willenborg model. According to this, 

 ∆𝐾𝑒𝑓𝑓 = 𝐾max( 𝑒𝑓𝑓) − 𝐾min(𝑒𝑓𝑓)  (2.4.11) 

 

 
𝑅𝑒𝑓𝑓 =

𝐾min(𝑒𝑓𝑓)

𝐾max(𝑒𝑓𝑓)
 

 (2.4.12) 
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 𝐾max(𝑒𝑓𝑓) = 𝐾𝑚𝑎𝑥 − 𝐾𝑟𝑒𝑑  (2.4.13) 

 

 𝐾𝑚𝑖𝑛 (𝑒𝑓𝑓) = 𝐾𝑚𝑖𝑛 − 𝐾𝑟𝑒𝑑  (2.4.14) 

𝐾𝑟𝑒𝑑 corresponds to the reduction of applied stress, 𝜎𝑟𝑒𝑑 = 𝜎𝑝 − 𝜎𝑚𝑎𝑥, due to progress 

through the plastic zone [8, 75]. Here, the applied stress is the stress required to reach 

the distance, 𝑎𝑝 (Figure 2.4.6). In this model, 

 
𝑅𝑦 =

1

2𝜋
(
𝐾𝑝

𝜎𝑦
)

2

 
  

(2.4.15) 

 

 

𝐾𝑟𝑒𝑑 = 𝜑(𝐾𝑚𝑎𝑥(𝑜𝑙)√1 −
(𝑥 − 𝑥(𝑜𝑙))

𝑅𝑦(𝑜𝑙)
− 𝐾𝑚𝑎𝑥) 

  

(2.4.16) 

 

 

 𝜑=(
1−∆𝐾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐾𝑚𝑎𝑥
) /(𝑆𝑂𝐿𝑅 − 1)  (2.4.17) 

where, 𝑥=crack length, 𝑥(𝑜𝑙)=crack length at overload, ∆𝐾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=threshold value of 

∆𝐾 at 𝑅 = 0 and SOLR=Shutoff overload ratio [Ratio of the overload to the nominal 

load which is required to effectively stop further fatigue crack growth under nominal 

loading (
𝐾max (𝑜𝑙)

𝐾max 
)]. For aluminium, titanium and steel, the SOLRs are 3.0, 2.7 and 2.0, 

respectively [8]. 

 

Based on this, the Forman equation [59] (Equation 2.4.5) becomes, 

 𝑑𝑎

𝑑𝑁
=

𝐶(∆𝐾𝑒𝑓𝑓)
𝑚

(1 − 𝑅𝑒𝑓𝑓)𝐾𝐶 − ∆𝐾𝑒𝑓𝑓
 

 (2.4.18) 

 

In the main Willenborg model [75], 𝜑 was not included. However, in 1974 Gallagher 

and Hughes [76] proposed this generalised Willenborg model, where this term is 
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included [57] (Equation 2.4.17) . In their proposal, the effective stress intensity factor 

range and the apparent stress intensity factor range are the same. According to their 

model,  

 𝑑𝑎

𝑑𝑁
=

𝐶(∆𝐾)𝑚

(1 − 𝑅𝑒𝑓𝑓)𝐾𝐶 − ∆𝐾
 

  

(2.4.19) 

 

 

 
𝑅𝑦(𝑜𝑙) = (

𝐾max (𝑜𝑙)

𝜎𝑦
)

2

(
1

𝑃𝑆𝑋𝜋
) 

 (2.4.20) 

where, 𝑃𝑆𝑋=stress state for given crack length (2- plane stress, 6- plane strain). 

 

NASGRO (i.g. Fatigue crack growth prediction software developed by National 

Aeronautics and Space Administration(NASA)) [77] modified the generalised 

Willenborg model, where the acceleration effect due to the underload is being 

considered [57]. According to this model, 

 𝜑 = 2.523𝜑0/(1.0 + 3.5(2.5 − 𝑅𝑈)0.6, 𝑅𝑈

< 0.25 𝑜𝑟, 1.0, 𝑅𝑈 ≥ 0.25 

 (2.4.21) 

 

  𝑅𝑈 =
𝜎𝑈𝐿

𝜎𝑚𝑎𝑥 (𝑂𝐿)
  (2.4.22) 

𝜑0=0.2 to 0.8 which is calculated experimentally. This model is used mainly in aircraft 

structures. 

 

2.5 Effect of crack closure on fatigue crack growth 

 

Fatigue crack closure is the phenomenon, which is widely considered to cause a 

reduction in fatigue crack growth driving force due to the contact of crack faces at the 

presence of positive load level during cyclic loading. In 1970, Elber [78] first observed 

this crack closure.  He mentioned the striation peaks become flattened due to 
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deformation during the crack closure. According to this study, crack faces got closed 

at about half of the maximum load of a cyclic load as shown in Figure 2.5.1. 

 

 

Figure 2.5.1 Crack closure results for fatigue crack growth [79]. 

 

2.5.1 Crack closure mechanism  

 

During the fatigue loading, the crack does not actually open uniformly. There is a 

continuous transition from closed to open form. Therefore, it is very difficult to 

determine opening stress. Elber explained fatigue crack closure by the compliance 

curve observed in the thin sheets of cracked aluminium alloy 2024-T3 [78, 79]. At high 

loads fatigue crack compliance (dΔ dP⁄ , where Δ is crack flank displacement, and P is 

load) (Figure 2.5.2) showed the properties of cracked bodies, however, in low loads, 

it acted as the compliance of uncracked specimen.  He explained the change in 

compliance in low loads is due to the contact of the cracked faces which is linked to 

the presence of residual strains left in the crack wake during fatigue crack growth. As 

a result, the reduction of fatigue crack growth occurs as the crack tip does not 

experience the full unloading considering the fact that crack advance only arises from 

cyclic plastic deformation at the crack tip when the crack face is open [10] (Figure 

2.5.2). In other words, from 𝜎 = 𝑜 to 𝜎 = 𝜎𝑜𝑝 crack remains closed, at 𝜎 > 𝜎𝑜𝑝 crack 

opens. 
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Figure 2.5.2 Change in compliance curve due to crack closure [7]. 

Elber [78, 79] first put forward the idea and modified the Paris law, substituting ∆𝐾 by 

effective stress intensity factor range, ∆𝐾𝑒𝑓𝑓 which reduces with the occurrence of 

fatigue crack closure. The crack closure is illustrated below (Figure 2.5.3) which 

indicates that crack can only grow at higher portion of the loading when the crack is 

open. 

 

Figure 2.5.3 Definition of the effective stress intensity factor range (∆𝐾𝑒𝑓𝑓) [10]. 
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Elber defined the ∆𝐾𝑒𝑓𝑓  as; 

 ∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑐𝑙  (2.5.1) 

where, 𝐾𝑚𝑎𝑥  is the maximum SIF of the cycle and 𝐾𝑐𝑙   is the SIF at which closure takes 

place during unloading. Effective SIF range, ∆𝐾𝑒𝑓𝑓 , closure SIF range, ∆𝐾𝑐𝑙 and SIF 

for fully open crack, 𝐾𝑜𝑝 have been introduced based on this concept (Figure 

2.5.3).  𝐾𝑜𝑝 and 𝐾𝑐𝑙 are quite similar with some exception due to experimental 

condition. 𝐾𝑜𝑝 differs in different alloys and loading conditions.  

As such; 

 ∆𝜎𝑒𝑓𝑓 = 𝜎𝑚𝑎𝑥 − 𝜎𝑐𝑙  (2.5.2) 

 

 

 ∆𝐾𝑒𝑓𝑓 = 𝛽∆𝜎𝑒𝑓𝑓√𝜋𝑎  (2.5.3) 

where, 𝛽 = geometry factor. 

 

For aluminium alloy 2024-T3, Elber [79] reported effective stress intensity range ratio 

as, 

 𝑈 =
∆𝐾𝑒𝑓𝑓

∆𝐾
=

𝐾𝑚𝑎𝑥−𝐾𝑜𝑝

𝐾𝑚𝑎𝑥−𝐾𝑚𝑖𝑛
= 0.5 + 0.4𝑅;  0 ≤ 𝑅 ≤0.7  (2.5.4) 

 

According to Schijve [80], for the same material, 

 𝑈 =
∆𝐾𝑒𝑓𝑓

∆𝐾
= 0.55 + 0.33𝑅 + 0.12𝑅2 ; −1 ≤ 𝑅 ≤0.54  (2.5.5) 

 

And the corresponding modified Paris law is; 
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 𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾𝑒𝑓𝑓)

𝑚
= 𝐶(𝑈∆𝐾)𝑚 

 (2.5.6) 

where, 𝐶 and 𝑚 are material constants that are determined experimentally. 

 

2.5.2 Different types of crack closure effect  

 

If a specimen with a crack is subjected to a fatigue loading, during loading the plastic 

zone forms at the crack tip. This plastic zone remains surrounded by the material. At 

unloading, the plastic zone is compressed by the elastic zone. In this process, residual 

stress including tension and compression is formed ahead of the crack tip. The 

compressive part of the residual stress retards the growth of the crack. After several 

number of cycles, the crack goes through the plastic zone and behind the crack tip, a 

plastic wake is formed. Elber [79] mentioned the crack closure happens due to the 

residual strain formed in this plastic wake (Figure 2.5.4). The plastic wakes, which are 

the permanent elongation of the crack lips/faces due to the plastic deformation, get 

closed before the minimum load is reached. This type of the crack closure is known 

as plasticity induced crack closure (PICC) [28, 81]. 

 

 

Figure 2.5.4 Plasticity induced crack closure (PICC) [28]. 
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Phase transformed crack closure is quite similar to PICC. Here, residual strain is 

developed due to phase transformation, which is formed by the applied stress [7, 28, 

81]. In the case of wedge induced (oxide/roughness) crack closure, the specimen with 

a fatigue crack is exposed to aggressive weather, corrosion products are formed in 

between the crack faces and these act as wedges. As a result, oxide induced crack 

closure (OICC) [7, 28, 43] is formed. On the other hand, the microscopic roughness 

due to fatigue fracture which becomes wedge between the crack surfaces is known as 

roughness induced crack closure (RICC). Microstructural heterogeneity can exist at a 

microscopic level. It raises the mixed mode condition at that particular point. The effect 

of Mode II of the mixed mode condition may create a mismatch between the two faces 

of the crack which also causes RICC [7, 28, 43, 81]. 

 

2.5.3 Applications of crack closure model 

 

In crack closure approach, the crack tip becomes shielded when the first contact 

behind the crack tip occurs during unloading. This crack closure effect is capable of 

reducing the number of sigmoidal curves under different stress ratios to one sigmoidal 

curve. Numerous experimental (e.g. [9]) and modelling (e.g. [10, 24]) research works 

been published on the incidence of crack closure with a variety of fatigue phenomena 

related to its occurrence (i.e. micromechanical influences on fatigue and the behaviour 

of small fatigue crack). It has become very important with time to measure, 

characterise and predict crack closure to evaluate its effect on the crack growth rates. 

It is, however, very challenging to experimentally evaluate the crack closure as it is not 

easily measurable. At the same time, it is hard to analyse the displacement histories 

at the mid-section of a thick specimen. More appropriate numerical models are 

necessary to examine the effect of crack closure on fatigue crack growth. The study 

of 𝑇-stress is also becoming important in this case, which is being investigated by 

using the finite element method (FEM) [82]. The retardation effect due to overload is 

more influenced by the deformed plastic material behind the crack tip than the plastic 

zone ahead of the crack tip [57]. Moreover, the calculation of 𝜎𝑜𝑝 requires a large 

computational programme and long running time [57].  
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Air force growth (AFGROW) software uses closure factor, 𝐶𝑓 in the crack closure 

model [8]. According to this, 

  𝐶𝑓 =
𝜎𝑜𝑝

𝜎𝑚𝑎𝑥
= 1.0 − [(1 − 𝐶𝑓0)(1 − 0.6𝑅)(1 − 𝑅)]  (2.5.7) 

 

  𝐶𝑓 = 𝑅;  𝑅 > 𝑅ℎ𝑖  (2.5.8) 

 

 𝑅 = 𝑅𝑙𝑜;  𝑅 < 𝑅𝑙𝑜  (2.5.9) 

where, 𝐶𝑓0 is 𝐶𝑓  for 𝑅=0 which is taken as the material property and it ranges from 0.3 

to 0.5.  𝑅ℎ𝑖 is defined as the R-value above which the crack is always open and 𝑅𝑙𝑜 is 

defined as the 𝑅-value below which 𝐶𝑓 is constant. Here, for  𝑅 > 𝑅ℎ𝑖  and 𝑅 < 𝑅𝑙𝑜,  𝑅 

shifting [8] or crack growth rate shifting as a function of  𝑅 (Figure 2.5.5) is not possible. 

 

 

Figure 2.5.5 Crack growth rate shifting as a function of 𝑅 [8]. 

 

Once the 𝐾𝑜𝑝 is calculated, ∆𝐾𝑒𝑓𝑓 can be calculated by the following equations. 

 ∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝;  𝐾𝑜𝑝 ≥ 𝐾𝑚𝑖𝑛  (2.5.10) 
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 ∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛;  𝐾𝑜𝑝 < 𝐾𝑚𝑖𝑛  (2.5.11) 

 

Figure 2.5.6(a) is showing 𝐶𝑓 vs 𝑅 curve. Below 𝑅=-1/3, 𝐶𝑓 becomes minimum and 

opening level cannot decrease below this value. When 𝐶𝑓 reaches 𝐶𝑓 = 𝑅, 𝐶𝑓 

increases with 𝑅 values and the crack is considered fully open. During overload, the 

𝜎𝑜𝑝 increases upto one fourth of the overload plastic zone (Fig. 2.5.6(b)). Underload 

effect is ignored in this model. 

 

 

Figure 2.5.6 The schematically shown crack closure mechanism in AFGWROW model [8]. 

 

Newman models [83, 84] which were given between 1981 to 1982 is based on crack 

closure concept [57]. In these models, the detailed finite element method (FEM) was 

used to calculate cycle-cycle crack closure measurement by utilising an iterative 

solution procedure. According to the model which was given in 1981, 

 
𝑑𝑎

𝑑𝑁
= 𝐶1 [

∆𝐾𝑒𝑓𝑓

1−(
𝐾𝑚𝑎𝑥
𝐶3

)
2]

𝐶2

  

  

(2.5.12) 
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  ∆𝐾𝑒𝑓𝑓 = (𝜎𝑚𝑎𝑥 − 𝜎𝑜𝑝)𝑌√𝜋𝑎  (2.5.13) 

where, 𝐶1, 𝐶2 𝑎𝑛𝑑 𝐶3  were calculated using least square regression at constant 

amplitude (CA) loading. 

 

He modified the equation to 

 

 
𝑑𝑎

𝑑𝑁
= 𝐶1∆𝐾𝑒𝑓𝑓

𝐶2 [
1−(

∆𝐾𝑂
∆𝐾𝑒𝑓𝑓

)

2

1−(
𝐾𝑚𝑎𝑥
𝐶5

)
2 ] 

 

 

 

(2.5.14) 

 

 ∆𝐾𝑂 = 𝐶3 (1 − 𝐶4
𝜎𝑂
𝜎𝑚𝑎𝑥

)  (2.5.15) 

 

  𝐾𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥𝑌√𝜋𝑎  (2.5.16) 

where, 𝑌 is geometry factor, 𝐶 denotes material constant, and 𝑎 is the half crack length.  

 

It was seen that the retardation and acceleration cancel each other for most of the load 

spectra. In 1997, Newman [85] came up with much more realistic finite element (FE) 

model to predict the fatigue crack growth rate.  It uses Dugdale’s strip yield model [86]. 

Strip yield type plastic zone is considered on the plastic wake which is left as residually 

stretched material. Beden et al. [57] considered this model as one of the best models 

to predict fatigue crack growth rate. 

 

2.6 Plasticity induced crack closure under constant amplitude and 

variable amplitude loading  

 

A short overview concerning plasticity induced crack closure (PICC) under CA and  VA 

loading for the application of damage tolerance design (DTD) approach is presented 
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in this part of the thesis. The topics covers state of the art of PICC in metal fatigue 

research. Reviews of mechanics of PICC in plane stress and plane strain conditions, 

effects of specimen geometry and effects of VA loading on PICC in engineering 

materials (e.g. Aluminium Alloy 2024) are highlighted based on experimental and 

numerical studies available in the literature. Issues related to PICC are also presented 

here. 

 

2.6.1 Background to the plasticity induced crack closure  

 

The Linear elastic fracture mechanics (LEFM) approach was proved to be a revolution 

in the understanding of fatigue crack growth in the 1950’s. In 1960’s, the introduction 

of Paris law and the subsequent sigmoidal curve has simplified the analysis of fatigue 

crack growth. However,  it is widely believed that any direct relation between ∆𝐾 and 

crack growth rates must take into account not only those phenomena occurring at a 

particular crack tip due to applied load but also micromechanical phenomena occurring 

behind and around the crack tip: in particular the incidence of crack flank contact 

during the load cycle or ‘crack closure’ [10]. This is taken as PICC which occurs due 

to residual plastic strain left in the crack wake [9, 87].  

 

2.6.2 Mechanics of plasticity induced crack closure  

 

During fatigue loading in ductile structures, materials near the crack tip undergo plastic 

deformation which does not fully reverse during unloading. When the crack advances 

to a certain distance, it leaves behind a reasonable amount of plastic stretch in the 

wake of the crack face. However, the surrounding elastic material which constrains 

the plastic stretch attempts to return to the original position as the load is removed. 

The resulting plastic stretch leads to premature contact of crack faces or plasticity 

induced crack closure (PICC) [79, 88]. Figure 2.6.1 shows schematically the 

developed plastic zone envelope for a fatigue crack which propagates under a 

constant ∆𝐾 magnitude. 
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Figure 2.6.1 Schematic illustration of the development of plastic zone envelops for a 

propagating fatigue crack [7]. 

  

2.6.3 Plasticity induced crack closure in plane stress and plane 

strain conditions 

 

Under a plane stress condition, plasticity induced crack closure (PICC) takes place 

due to the transfer of plastic material in the thickness direction from the axial direction 

(i.e. from the original surface to subsurface region). In this case, the volume 

conservation of material during plastic deformation has been maintained. This causes 

the material at the crack tip and the crack wake to become thinner and longer during 

crack growth. Moreover, each crack growth increment produces a part of this ‘extra’ 

material which eventually extends over the entire crack length [24, 89]. Models by [10, 

90] are able to describe this situation. It is generally agreed that ‘extra’ material behind 

the crack tip can resist reversed deformation during unloading causing a reduction in 

the crack growth rate. Elber [79] noted that for his thin sheet specimens, the surfaces 

contacted only at discrete points or asperities on the fracture surfaces which was 

expressed as 'microcompatibility'  [33]. From a rough calculation of crack surface area, 
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which is required to transmit the compressive crack closure load, he concluded that 

the surface compatibility should be of the order of 33 %.  

Both the thin plate and the surface of a thick specimen usually act in a ‘‘generalised 

plane stress state’’ by definition [91, 92]. If the plastic zone size is small compared to 

the length of the crack then it is called ‘small-scale yielding (SSY)’. At SSY fatigue 

crack growth when the crack is small, the stress state near the crack tip can behave 

as in a plane strain situation. The plastic zone at the crack tip is constrained against 

contraction along the crack front by the elastic material surrounding it. From a metal 

fracture and fatigue point of view, this can create a plane strain situation near the crack 

tip area even though the elastic part of the material may remain in plane stress 

situation. As a result, the ratio of the crack tip plastic zone size to plate thickness has 

been used as the main parameter in differentiating plane stress and plane strain 

conditions [10, 93]. 

Out-of-plane deformation under plane strain conditions is not allowed (e.g. middle 

plane of the thick specimen). There is no volume change of the material under plastic 

deformation by definition. Hence, various researchers (e.g. [94, 95] ) are of the view 

that PICC cannot occur under these conditions [10, 96]. However, both experimental 

[9, 97, 98] and numerical [99, 100] studies have been reported to suggest that PICC 

can occur under plane strain condition. Thus, the issue of the occurrence of plain strain 

PICC is still controversial [100].  

As the crack grows bigger, the plastic zone becomes higher, and the corresponding 

increase in plastic zone size results in a transition from plane strain to plane stress. 

This change of stress state has a significant influence on PICC via its effects on crack 

tip plastic zone sizes and crack opening displacement. Several researchers [9, 10, 

101] studied the comparison of PICC in plane stress and plane strain condition and 

found higher PICC in the plane stress condition. Figure 2.6.2. shows one of these 

comparisons by Solanki et al. [101] which indicates that for the same centre cracked 

tension specimen at constant amplitude (CA) loading with 𝑅=0 , plane strain closure 

(0.15) is much more lower than plane stress closure (0.55). 
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Figure 2.6.2 Comparison of PICC level in plane stress and plane strain condition [101]. 

 

The three dimensional investigation reported by Chemahini et al. [102] has revealed 

that a crack front may first close on a free surface (exterior) plane on the specimen, 

and closes last on the interior plane, showing that fully three dimensional closure 

behaviour corresponds to a continuous variation between two dimensional behaviour 

for plane stress on the specimen surface, and plane strain in the mid-plane  [10]. 

 

2.6.4 Effects of specimen geometry on plasticity induced crack 

closure  

 

The influence of fatigue specimen geometry upon closure response was studied by 

Fleck et al. [103, 104] and also reported by Solanki et al. [105]. The plane strain 

analysis was conducted for centre cracked tension (CCT), and single edge notched 

bend (SENB) specimens. At a load ratio of 0, PICC was observed for centre-cracked 

panels but not for bend specimens. PICC was not observed for CCT specimens for 

𝑅 ≥ 0.3 under plane strain condition. For a transient period of crack growth, as the 

crack evolved from the state of a stationary crack to the steady state of a growing 

fatigue crack, PICC was enhanced for the CCT specimen format. The influence of 

crack specimen geometry upon closure was explained in terms of the 𝑇-stress (Figure 

2.6.3). It is the second non-singular term of Williams’s series expansion [106] for linear 

crack-tip stress field which acts parallel to the crack surface. A decrease in PICC has 
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been particularly observed for increasing 𝑇 -stress (
𝑇𝑚𝑎𝑥

𝜎0   
where, 𝑇𝑚𝑎𝑥  is the maximum 

value of 𝑇 -stress and 𝜎0 is the flow stress) (Figure 2.6.3).  

 

 

Figure 2.6.3 Geometry effects on PICC stabilisation in terms of normalised crack opening 

value  [103, 105]. 

 

According to Roychowdhury et al. [82], the magnitude of the 𝑇-stress influences the 

closure process through two factors––the stationary crack opening displacement and 

the residual plastic deformation left (which is actually PICC by definition) in the SSY 

condition. It explained geometric effect on PICC using 𝑇-stress concept at 𝐾 = 1  and 2 

(𝐾 = 𝐾𝑜/𝜎0√𝐵, where 𝐾 is a non-dimensional scaling measure for fatigue loading 

[107], 𝐾𝑚𝑎𝑥 is maximum stress intensity factor and  𝜎0 is flow stress and 𝐵 is thickness 

of the specimen) and found: (i) In the absence of 𝑇-stress,  plastic contraction in the 

thickness direction compensated primarily for permanent stretching in the direction 

normal to the crack plane required for PICC (Figure 2.6.4(a)), (ii) negative 𝑇 -stress ( 

𝑇𝑚𝑎𝑥

𝜎0
< 0 ) facilitated plastic contraction in the in-plane transverse direction which 

contributed to the larger share of material flow into the normal direction (Figure 
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2.6.4(b)), and (iii) for positive 𝑇-stress ( 
𝑇𝑚𝑎𝑥

𝜎0
> 0 ), both in-plane directions experience 

permanent stretching and the thickness direction alone undergoes plastic contraction 

(Figure 2.6.4(c)). Due to these processes, the crack opening level in the centre plane 

of the specimen increased for both positive and negative 𝑇-stress, however, it did not 

increased for absence of 𝑇-stress (Figure 2.6.5).  

 

Figure 2.6.4 Effect of T-stress on evolution of crack face contraction over the symmetry 

plane during loading for 𝐾=1 [82]. 
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Figure 2.6.5 Effect of 𝑇-stress on steady-state values of normalised opening load for  𝐾=1 

[82]. 

 

2.6.5 Plasticity induced crack closure to rationalise the variable 

amplitude loading 

 

VA loading gives more insights of the fundamentals of fatigue crack growth of 

structures than the constant amplitude CA loading as the VA loading is more relevant 

to the practical situation. Therefore, the PICC effect due to VA loading is more 

significant in residual life assessment. The CA loading spectrum along with overloads 

is considered as a simple form of VA loading. Various researchers have made 

contributions to understanding the fatigue crack growth behaviour under VA loading 

using PICC (e.g. [9, 108, 109]). Load interaction/sequence effects due to periodic 

overloads have also been explained by PICC in several studies (e.g. [10, 110]).  

In mode I or ‘opening mode’ (see Figure 2.2.3) loading of the ductile material, when 

tensile overload is applied during the constant amplitude (CA) loading, this tensile 

overload usually leads to immediate but brief acceleration of crack growth, followed by 

prolonged retardation or crack arrest and then crack growth tends to reach pre-

overload period crack growth level [9, 24] (Figure 2.6.7). However, there are also 

reports which suggest the absence of an initial acceleration in crack growth rates [111]. 
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Figure 2.6.6 Schematic illustration of the effect of a spike (single) tensile overload, showing 

(a) loading nomenclature, (b) crack length vs number of cycles behaviour, and (c) crack 

growth rate vs crack length behaviour [10]. 

 

According to the study of Shin and Hsu [67], for higher 𝑅 (e.g. 0.5, 0.7), the post 

overload crack growth rate shows: i) no brief acceleration, ii) a relatively short 

retardation period and iii) higher crack growth rate compared to the baseline crack 

growth rate after retardation. The retardation of crack growth is quantified by the delay 

distance, 𝑎𝑑, or affected distance, 𝑎𝑎𝑓𝑓, or the number of delay cycles, 𝑁𝑑 (Figure 

2.6.7). The delay behaviour is typically a function of the baseline stress intensity range, 

∆𝐾(𝐵𝐿), load /stress ratio, 𝑅, overload, % 𝑂𝐿 (Equation 2.6.1), sequence of loading and 

specimen thickness for a given material, microstructure and environment. 
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Overload is defined as,  

 
% 𝑂𝐿 =

𝐾𝑂𝐿 − 𝐾𝑚𝑎𝑥
𝐾𝑚𝑎𝑥

× 100% 

 

   

(2.6.1) 

where, 𝐾𝑂𝐿 is the maximum value of 𝐾  during the overload cycle and 𝐾𝑚𝑎𝑥 is maximum 

value of  𝐾  during the CA loading.  

 

The occurrence of a minimum in the crack growth rate at some distance after the 

application of a tensile overload is generally termed as ‘delayed retardation’. Von Euw 

et al. [112] reported the distance between the application of the overload point and the 

delayed retardation is of one eighth to one quarter of the overload plastic zone size. 

The surface of the thick plate contains greater retardation distance than the middle 

plane which can be explained by the different level of PICC formed in plane stress and 

plane strain condition (see Figure 2.6.2). It has also been observed that the minimum 

crack growth in the middle of a thick plane occurs immediately after the application of 

the overload [113]. Several researchers [9, 10, 24] explained the post-overload 

retardation behaviour using PICC and reported that the post-overload retardation 

increased with the increase of the level of PICC.  

In the literature, various mechanisms have been proposed to account for the post-

overload phenomena, however, the precise mechanical origins remain open to 

discussion [114]. Some of the experimental observations suggest PICC alone cannot 

explain the retardation effect after the overload [115]. However, according to Fleck et 

al. [116], some of these controversies are due to i) the use of the insensitive closure 

measuring equipment and ii) different response between the bulk of a thick specimen 

and the surface during the post overload condition. Based on Dugdale’s original work 

[86], using the concept of PICC, a modified ‘strip yield’ model was developed by 

Newman [85] which was used for fatigue life predictions during VA loading. The 

predicted fatigue crack growth life of this model under VA loading was compared with 

the experimental one for notched aluminium alloy 2024-T3 sheet. The predicted lives 

agreed well with the test data via the use of a fitting constraint factor to account for the 

influence of the finite thickness of the sample.  
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2.6.6 Issues related to plasticity induced crack closure in fatigue 

crack growth resistance 

 

PICC has a great impact in reducing the crack growth driving force under VA loading. 

However, it cannot explain the influence of various mechanical, structural and 

environmental effects alone. For ductile engineering alloys, along with PICC, factors 

thought to influence the fatigue crack growth driving force include crack tip blunting, 

residual stresses ahead of the crack tip, static tearing, crack deflection and associated 

RICC processes, variations in crack front profile, and strain hardening, mean stress 

relaxation, the activation of near-threshold crack growth mechanisms [9, 81]. 

Therefore, the separation of the PICC from other factors is a challenge. 

From the experimental study of Shin and Hsu [67], PICC was identified to be the 

primary cause of  crack growth retardation during the overload effect. This study also 

reported that the crack-tip blunting and residual compressive stress became significant 

only when the PICC was inhibited from occurring at high 𝑅 values (e.g. 0.65 and 

above). By using high 𝑅 values (e.g. 0.8), Land et al. [117] observed crack growth 

retardation even though there was no PICC behind the crack tip. It was explained that 

the post-overload behaviour can be governed by residual compressive stresses in 

front of the crack tip. However, Mcevily et al.  [118] reported that the relaxation of 

residual compressive stresses as the crack moves into the overload plastic zone 

actually gives rise to the enhanced PICC level, leading to the crack growth retardation. 

As a result, both of these processes are closely linked or ‘equivalent’. It is to be worth 

noting here that the crack also needs to grow a certain distance before the PICC 

becomes enhanced and starts to retard fatigue crack growth [10, 24].  

Issues related to the presence of PICC mainly in the plane strain condition and crack 

tip opening level measurement in defining PICC are also open for debate [9]. The 

different types of measurement techniques such as compliance, electrical potential, 

optical, acoustic, etc. along with intrinsic limitations have produced scattered results 

in crack opening/closing point measurement which eventually contribute to issues in 

PICC research [9, 119, 120]. The quality of raw load-displacement data has often been 

questioned in this case. According to McClung [88], during crack growth, 𝜎𝑂𝑃 refers to 

the stress at which the crack is fully open and 𝜎𝐶𝐿 refers to the stress at which any part 
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of the crack faces come into contact with each other. However, Donald [121] observed 

significant crack tip strain occurring below the conventionally defined 𝜎𝑜𝑝. This kind of 

approach raises two questions [24] : 

I. Will the crack grow when it is fully open? 

II. Will the crack stop growing when its surfaces first come into contact? 

As such, Wu and Ellyin [122] modified the conventional approach and proposed that 

the crack is fully open when the compressive stress at the crack tip becomes tensile 

and the crack closes when the crack tip stress becomes compressive from tensile. 

 

2.7 Experimental procedure of measuring Plasticity induced crack 

closure  

 

There are many experimental techniques available which are used so far to measure 

plasticity induced crack closure (PICC). Some of these are described briefly below. 

 

2.7.1 Compliance techniques 

 

The Compliance technique [98, 123-125] is the most widely used technique to 

measure the PICC. Here, the closure load is associated with the initial deviation from 

the compliance curve during unloading. An illustration of the compliance measurement 

using different types of gauges is shown in figure 2.7.1  
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Figure 2.7.1 Mechanical compliance measurement with different types of gauges [98]. 

 

According to Lugo et al. [124], there are two main ways to determine the crack opening 

load using the compliance technique. These are load-displacement curve based and 

load-differential displacement curve based. The PICC has also been measured based 

on the slope variation of the upper and lower part of the compliance curve and curve 

fitting of the linear and second-order polynomial part of the compliance curve [9]. 

Different strain gauges may vary in measuring the closure point [121]. Considering this 

issue, the PICC has also been measured by a compliance ratio method near the crack 

tip and an adjustable compliance ratio method, which are taken as the location-

independent methods where compliance does not depend on the position of the strain 

gauge [121, 126]. 

 

2.7.2 Direct measurement techniques 

 

In-situ Scanning electron microscopy (SEM) was used to measure the PICC directly 

by measuring the variation of crack tip opening displacement (CTOD) and comparing 

it with the stress level used [127, 128]. High-resolution SEM improves the direct 
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observation of the PICC. However, this technique is limited to surface observation of 

the specimen only. The Moiré interferometry PICC measurement provides sub-micron 

accuracy and a full-field displacement map [129, 130]. The drawbacks of using this 

technique are as follows: it is limited to zero stress ratio, prone to unwanted loading 

during movement of the specimen and it is time-consuming. Moreover, like the in-situ 

SEM technique, Moiré interferometry can only be used to observe the surface 

behaviour of the PICC. The photoelastic technique is used mainly on transparent 

materials like polycarbonate [131]. The advantage of using the photoelastic technique 

is that this can investigate both the two-dimensional and three-dimensional effect of 

PICC. The optical method of caustics is used to measure the PICC by remotely 

measuring the stress intensity factor from the stress field near the crack tip [132]. An 

out of plane displacement field is determined by means of a virtual caustic onto a 

screen in front of the specimen. In the replica observation technique, replica material 

(i.e. Acetate) is used to attach to the surface of the specimen in the vicinity of the crack 

tip after spraying of acetone so that the image of the crack is reproduced on the replica 

to measure PICC [133]. Thermoelasticity has been used to quantify the crack closure 

mechanism is some materials [134, 135]. This technique measures the ∆𝐾𝑒𝑓𝑓 around 

the crack tip region rather than inferring a value from the applied load. X-ray 

tomography has also been used to investigate the PICC mechanism [136, 137]. The 

sub-micron resolution of this technique provides insight into the internal behaviour of 

the crack closure while most of the other techniques are limited to the surface 

behaviour of the crack closure.  

 

2.7.3 Indirect measurement techniques 

 

The electrical potential drop (PD) technique has been used to measure plasticity 

induced crack closure (PICC) [137, 138]. A constant current is passed through the test 

specimen during the fatigue load cycle, and electrical potential over the crack surface 

is measured. The potential drop (PD) technique is capable of measuring PICC in high-

temperature conditions [138]. This technique is only useful for an electro-conductive 

specimen like a metal. There are some drawbacks in this technique. For instance, 

mechanical contact between the crack faces due to oxidisation may lead to electrical 
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isolation. Also, the electrical isolation of the mounting of the test rig, which is necessary 

for this process, is quite difficult to achieve. The eddy current technique is based on 

electromagnetic induction [139, 140]. Like the potential drop (PD) technique, this 

technique is limited to electro-conductive materials. The acoustic emission (AE) 

technique is becoming popular in measuring the PICC [141, 142]. It is a phenomenon, 

where sound and ultrasonic wave radiation in the material are used. Noise from other 

sources such as the noise from the mounting of the test rig during the fatigue test may 

lead to a discrepancy in crack closure measurement. 

 

2.8 Finite element study of plasticity induced crack closure  

 

Finite element analysis is one of the most commonly used methods of analysing 

plasticity induced crack closure (PICC). Several key aspects related to finite element 

modelling are highlighted including element type, mesh refinement, stabilisation of 

crack closure, crack closure monitoring, crack advance scheme, etc. which are mainly 

considered during the analysis to achieve more reliable plasticity induced crack 

closure (PICC) results.  

 

2.8.1 Element type configuration 

 

Higher order elements perform better in computing the stress-strain field near the 

crack tip, but they demand more computational cost. There is always a compromise 

required in using the element during PICC simulation. In a two-dimensional model, 

constant strain triangular (CST) elements or 4-noded quadrilateral elements or higher 

order quadrilateral elements are generally used to simulate PICC [105, 143]. During 

plane-strain analysis, the incompressibility requirement associated with plastic strains 

may not be met by these elements. This can lead to plane-strain locking [144] where 

the finite element method (FEM) result shows stiffness far greater than would be 

expected, rendering the results useless. When locking occurs, the stresses oscillate 

from one element to the next. Using a “Union-jack” arrangement in CST and reduced 

integration scheme for both CST and quadrilateral element may avoid this plane-strain 
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locking [105, 143]. In the three-dimensional analysis, 8-noded or 6-noded element are 

usually used. The reduced integration scheme may also reduce the plane-strain 

locking in this case. It should be noted that the �̅� element formulation can replace the 

volumetric strain at Gauss integration points with the average volumetric strain of the 

element [105, 145]. It may also solve this plane-strain locking. 

 

2.8.2 Mesh refinement 

 

During crack growth, the plastic zone forms just ahead of the crack tip due to the 

change of stress. The plastic zone due to plastic deformation at maximum loading is 

considered as a forward-plastic zone whereas the one, which is found at minimum 

loading due to compressive yielding, is considered as a reversed plastic zone. To 

model plasticity induced crack closure (PICC), a mesh convergence study based on 

element size, 𝐿𝑒 , and plastic zone size, 𝑅𝑝 (𝑅𝑝=2𝑟𝑝) is necessary. Additionally, proper 

discretisation of the plastic zone size enables the measurement of the crack 

increment, 𝛥𝑎, which is of the order of small fraction of the plastic zone [10]. This 𝛥𝑎 

is also equal to the element size, 𝐿𝑒 , near the crack tip. This type of convergence study 

differs from the typical mesh convergence study where the finite element results at 

one point are compared [105]. 

Newman [146] used higher stress in a mesh convergence study based on forward and 

reversed plastic zone to simulate PICC. Discretisation of the plastic zone may have 

been performed with an insufficient number of elements here. Solanki et al. [101] 

recommended that convergence is a consequence of the number of elements existing 

in the reversed plastic zone during lower stress applied. For that, 3-4 elements are 

necessary within the reversed plastic zone. It was observed that the reversed plastic 

zone is one thenth of the forward plastic zone. This differs from the result of typical 

stationary crack, where the reversed plastic zone is one fourth of the forward plastic 

zone [147]. However, this can be due to the plastic wake formed behind the crack tip 

during the crack growth. McClung [148] suggested that mesh refinement should be 

based on a number of elements present in the forward plastic zone, and that adequate 

refinement to capture the reversed plastic zone is also important. Dougherty [149] 

proposed that the aspect ratio (ratio of the length and width of the element) of 2 should 
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be used in mesh refinement ahead of the crack tip. Several studies [24, 105, 143] 

advised that mesh density of  
𝐿𝑒

𝑟𝑝
 ≤ 0.1 criteria should be satisfied ahead of the crack 

tip to simulate PICC. Park and Song [150] recommended using the mesh refinement 

which is based on the crack opening value comparable to the experimental value. 

 

2.8.3 Stabilisation of plasticity induced crack closure  

 

During the fatigue loading, a crack has to propagate a certain distance away from the 

stress field of the initial crack length to obtain the stabilised level of PICC. McClung 

[148] showed that this distance should be equal to the forward plastic zone size of the 

first loading cycle. Fleck and Newman [104] contradicted to this concept and found 

unstable crack closure even after the crack has propagated the distance of the forward 

plastic zone of the first loading cycle. According to Ward-Close and Ritchie  [151],  

PICC stabilised when the crack has grown to 3-4 forward plastic zone sizes from the 

application of overload. However, McClung [148] found initial stabilisation of PICC 

followed by the subsequent decrease in PICC due to loss of elastic constraints results 

from extensive yielding around the crack tip. A Similar observation was observed in 

the study of Daniewicz and Bloom [152] due to less ligament size left ahead of the 

crack tip during crack growth. 

 

2.8.4 Crack closure monitoring 

 

As the crack grows, the boundary condition near the crack tip needs to be updated to 

simulate crack extension and the contact surfaces of the crack need to be free of 

penetration. Several mechanisms are employed to prevent the crack surface 

penetration and to simulate crack surface contact. Spring elements, truss elements, 

contact elements and cohesive elements have been used between the crack faces to 

prevent the penetration [105, 143]. The stiffness of the element is made high to prevent 

the crack from penetration, and it is made zero when the crack is open. The contact 

element is considered the more elegant approach, however, it has some issues 
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including convergence problems and long execution time [105]. The large stiffness of 

the spring element may lead to a source of numerical difficulty [105]. To overcome 

this, Solanki [153] used a more direct approach. Under this approach, nodal 

displacement is monitored during unloading. When it becomes positive to negative, a 

nodal fixity is applied to prevent the penetration, and nodal displacement is set to zero. 

The nodal displacement is then removed while loading when it becomes positive. In 

this study, an increment equal to 1 % of the maximum stress increment was used to 

monitor crack closure, as it provides a negligible variation of the contact forces along 

the closed surface. McClung [154] used a truss element together with two contact 

elements. The ‘element death’ option was used so that an element can be released 

anytime during loading irrespective of the magnitude of the deformation caused by the 

release of the node. As a result, fewer convergence problems were found in this case. 

The location of the crack opening assessment point in the model varies in different 

studies. The node at the crack tip, node behind the crack tip or 2nd node behind the 

crack tip are used to predict the crack the opening value [105, 143]. Dill amd Saff [155] 

used a contact stress method to calculate opening of the crack, which is independent 

of any single assessment location. This includes the entire crack surface nodal force 

distribution under the minimum loading. This method provided a slightly higher 

opening value than the value obtained from the node just behind the crack tip. On the 

other hand, the 2nd node behind the crack tip gives a comparatively lower opening 

value. Considering this issue, the use of this node is discouraged by [105].  

 

2.8.5 Constitutive model used 

 

The bilinear hardening stress-strain relationship was employed to model PICC due to 

its simplicity [96, 104]. A more complex model referred to as the Ramberg-Osgood 

power law was also as shown in Equation 2.8.1 used to generate PICC in order to 

investigate more detailed near-tip crack behaviour. 

 
𝜀 =

𝜎

𝐸
+ 𝐾 (

𝜎

𝐸
)
𝑛

 

 

 (2.8.1) 
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where, 𝜀 is strain, 𝜎 is stress, 𝐸 is Young’s modulus, and 𝐾 and 𝑛 are constants that 

depend on the material being considered. 

 

Both these constitutive models gave a satisfactory result when compared with the 

experimentally measured PICC [143]. The PICC that was observed using bilinear 

material agreed well with the experimental results [78, 79] when low-stress level was 

implemented. On the other hand, the PICC generated using the power law was 

consistent with the experimental results of Lankford et al. [156] when high stress was 

used. Moreover, a multilinear hardening stress-strain curve was also used to generate 

PICC in the plane stress condition [149]. Here, the dependence of yield stress on 

increasing plastic strain was taken in consideration. In the study of Antunes et al. [157], 

both isotropic and kinematic hardening models were used to analyse PICC. The 

isometric model gave a higher level of PICC due to the extensive plastic deformation 

available in this model while the kinematic model gave a lower level of PICC. However, 

the PICC found from the kinematic model was more consistent with the experimental 

results.  

 

2.8.6 Crack advance scheme 

 

The most popular method used in fatigue crack growth simulation is the crack tip node 

release scheme [10, 24]. Here, to simulate the crack growth, the node at the crack tip 

is released every cycle so that the crack can propagate about one element size near 

the crack tip. The conventional node release scheme has nothing to do with the crack 

propagation life. Hence, it does not depend on the stress and strain condition near the 

crack tip. The node is usually released at any of the following situations: at maximum 

load level, at minimum load level, after the maximum load level, during the 

loading/unloading or during every 2nd load cycle, at the 98 % of the maximum load 

cycle, etc. [10, 105]. Solanki et al. [101] found no difference in crack opening value 

results when using either the maximum or minimum load node release scheme. 

However, McClung et al. [96] reported a significant difference in results. It was 

concluded that these differences were the consequence of using truss elements for 
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crack surface node fixity and that changing the boundary conditions on the crack 

surface nodes directly yields approximately the same results for any of the different 

crack advance scheme. Results presented by [101] showed good agreement between 

the minimum and maximum load node release schemes by using a suitably refined 

mesh. Moreover, Newman [158] used a critical strain to advance the crack, Palazotto 

and Bednarz [159] proposed a stress criteria to advance the crack, and Nguyen et al. 

[160] used the cohesive element to simulate the crack growth. The extended FE 

method (X-FEM) [161] is becoming popular in crack growth simulation. These are 

considered as more physical-based methods of crack growth simulation [143].  

 

2.9 Identification of the threshold of stress intensity factor range 

for fatigue crack growth, ∆𝑲𝒕𝒉 

 

The identification of the threshold of stress intensity factor range depends on different 

aspects. These are described in detail in the following sections. 

 

2.9.1 Background to the  ∆𝑲𝒕𝒉 

 

FCG threshold, ∆𝐾𝑡ℎ, is one of the key parameters representing material resistance to 

fatigue crack growth (FCG). Newman [162, 163] referred to the Federal Aviation 

Administration (FAA) by mentioning that traditionally, the threshold is used as a limit 

for the damage tolerance design (DTD). The ∆𝐾𝑡ℎ has been used over the past 40 

years in numerous FCG models available in the literature [55, 57, 61, 164-169]. 

However, the identification of ∆𝐾𝑡ℎ and its application in a structure’s residual life 

prediction is not quite straightforward, as it varies both qualitatively and quantitatively 

due to various experimental, numerical and analytical methods and corresponding 

assumptions used [11]. Whilst FCG curves of physically small cracks and 

microstructurally small cracks have different shapes [170], FCG can be represented 

by the sigmoidal curve of the log(∆𝐾) – log(
𝑑𝑎

𝑑𝑁
) for long cracks [7] as described before 

(see Figure 2.4.4). It depicts three regions, region I, region II and region III. Region I 
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is taken as either a very slow crack growth region or near-threshold region since the 

SIF range of the sigmoidal curve in this region asymptotically approaches ∆𝐾𝑡ℎ. The 

Paris Law [53] is normally applicable to the crack growth in region II. There are several 

models available to represent the whole sigmoidal curve covering all three regions. 

One of the models developed by NASA and represented by Forman and Mettu [166] 

is the most popular (see Equation 2.4.1). 

 
𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚

(1 −
∆𝐾𝑡ℎ
∆𝐾 ) 

𝑝

(1 −
𝐾𝑚𝑎𝑥
𝐾𝐶

) 𝑞
 

 (2.9.1) 

 

where, 𝐶, 𝑚, 𝑝 and 𝑞 are material constants, SIF range (∆𝐾) = maximum SIF (𝐾𝑚𝑎𝑥) − 

minimum SIF (𝐾𝑚𝑖𝑛) , 𝐾𝐶 =SIF at fracture and ∆𝐾𝑡ℎ = SIF range at threshold. 

 

Ideally, ∆𝐾𝑡ℎ is the value of SIF range, ∆𝐾, below which fatigue crack will not grow [7]. 

However, it has been shown [171] that cracks propagate even below the large-crack 

threshold measured by the ASTM test procedure [162, 172]. Therefore, ∆𝐾𝑡ℎ is also 

defined to be a value of ∆𝐾 at which the crack growth rate,
da

𝑑𝑁
 is below 10-10 

m

𝑐𝑦𝑐𝑙𝑒
 [162, 

173]. This is sometimes experimentally determined by extrapolation to 
da

𝑑𝑁
 =0 from the 

lower tail of the sigmoidal curve of raw data when the linear-linear scale is considered 

[11]. The residual life of a structure can be highly influenced by variation of the ∆𝐾𝑡ℎ. 

As reported by Molent [55] and mentioned by Zerbst and Vormwald [11, 12], a variation 

in the threshold SIF range of 1 𝑀𝑃𝑎 𝑚0.5 can result in a variation about 18 % of the 

residual life. This also provides important insights into how relevant and essential it is 

to determine ∆𝐾𝑡ℎ accurately in a DTD approach. 

 

2.9.2 Different methods of determining ∆𝑲𝒕𝒉 

 

There are several experimental methods available to determine ∆𝐾𝑡ℎ. These are:  

 Load reduction method (LRM); 
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 𝐾𝑚𝑎𝑥 constant method; 

 Far-field cyclic compression method [11]. 

 

The load reduction method is standardised by American Society for Testing and 

Materials (ASTM) 647 [172] or International Organization for Standardization (ISO) 

12108 [174]. The load is reduced stepwise to find ∆𝐾𝑡ℎ in a pre-cracked specimen at 

a constant 𝑅. In the 𝐾𝑚𝑎𝑥 method, the same stepwise reduction of the load range is 

followed, but at the same time 𝑅 is increased by maintaining the same maximum SIF 

value. The far-field compression method can be divided into three sub-methods 

including: 

I. Compression pre-cracking constant amplitude (CPCA); 

II. Compression pre-cracking load reduction (CPLR); 

III. Cyclic 𝑅 curve method. 

A detailed review of all these methods is given by Zerbst in [11]. 

 

The ∆𝐾𝑡ℎ values obtained with the above mentioned methods can, however, be quite 

different due to the different mechanisms involved. These mechanisms are related to 

the plasticity induced ahead of the crack tip as well as the conditions of the fracture 

surfaces. Comparatively lower threshold values have been found using the far-field 

cyclic compression method rather than using the load reduction method [162, 163, 

175-177]. This is due to the fact that the far-field cyclic compression method is not 

affected by the compressive yielding at the crack-starter notch and more “steady-state” 

constant amplitude data in the near threshold regime are achieved with this method 

[176]. Crack surface roughness and grain size near the crack tip also influence the 

overall ∆𝐾𝑡ℎ [162, 178]. In general, the greater size of grains promotes roughness 

induced crack closure (RICC), and oxide-induced crack closure (OICC) is enhanced 

simultaneously [179]. The above phenomena increase the ∆𝐾𝑡ℎ values when 

measured. Consequently, in LR Method crack-faces can produce rough-surface or 

fretting debris which contributes to the early crack closure and higher ∆𝐾𝑡ℎ.  
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2.9.3 Factors influencing ∆𝑲𝒕𝒉 

 

The ∆𝐾𝑡ℎ varies with mechanically short and long cracks. Linear-elastic fracture 

mechanics (LEFM) is normally only applicable in long cracks under small scale 

yielding conditions. According to Newman [180], the ∆𝐾𝑡ℎ is not valid in the giga-cycle 

fatigue region for short cracks as there is no continuous crack propagation below 

da

𝑑𝑁
 = 10−7

mm

𝑐𝑦𝑐𝑙𝑒
, which is smaller than one lattice spacing per cycle [11]. In general 

terms, it is possible to find in the literature [181] two different  ∆𝐾𝑡ℎ levels; a 

microstructural threshold for short cracks and a mechanical threshold for long cracks 

[182]. The difference is related to the advancement of a short crack at microstructural 

level and stable propagation of a longer crack having a plastic zone which covers 

several grains. Moreover, at low SIF, the FCG rate is more sensitive to microstructure, 

load ratio and environment for long cracks [170]. However, there is a minimum value 

independent of 𝑅, which can be considered as a material property and for this reason 

it is called the intrinsic threshold, also known as the effective or true threshold [181]. 

Moreover, the intrinsic threshold can be increased by the increase of stiffness and 

strength of the material [11, 183, 184]. Another important effect is related to the 

specimen geometry. ∆𝐾𝑡ℎ seems to be lower in an M(T) specimen than a C(T) 

specimen for the same ∆𝐾 condition [185, 186]. The justification should be related to 

the geometrical constraint or 𝑇-stress, which is found to be lower in an M(T) specimen 

(𝑇-stress<0), compared to C(T) specimen (𝑇-stress>0) even though 𝑇-stress has 

different effects (e.g. PICC) which might contradict this observation. However, the 

lowest stress triaxiality at the crack tip associated with the M(T) specimen, produces 

a much bigger plastic zone near the crack tip than the geometry with a high level of 

the constraint like the C(T) specimen [187]. 
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2.9.4 𝑹 ratio effect on ∆𝑲𝒕𝒉 

 

As discussed above, the ∆𝐾𝑡ℎ value usually decreases with the increase of 𝑅 [188]. 

Two types of 𝑅-dependency have been reported in the literature [181]. In some cases, 

∆𝐾𝑡ℎ decreases up to a critical value of 𝑅 and then it becomes constant beyond that 

value [11]. In other cases, ∆𝐾𝑡ℎ continues to decrease beyond that critical value of 𝑅 

[189]. Klensil and Lucas [164] used the Equation 2.4.4 to identify ∆𝐾𝑡ℎ in a steel 

alloy.However, other approaches have been adopted such as the one reported by 

Kwofie [190] in which an equivalent stress approach based on the 𝑅 ratio is used to 

identify the fatigue threshold value. In general, it has been recognised that crack 

closure is found to be the controlling factor in this case [54, 55]. For this reason, a 

different parameter has been introduced ∆𝐾𝑡ℎ𝑟, which is an FCG threshold value that 

depends on 𝑅 and the crack length value. In the literature, the scatter in fatigue life is 

explained by the variation of ∆𝐾𝑡ℎ𝑟 values [55]. Further methods to experimentally 

identify the threshold condition have been recently developed using plain fretting crack 

arrest analysis [191]. Here, the dispersion between long crack ∆𝐾𝑡ℎ fretting estimations 

and conventional fatigue data was found to be less than 10 %. 

 

2.10 Electromagnetic treatment (ET) effect on fatigue resistance  

 

The effect of electromagnetic treatment (ET) on metallic materials is reviewed, with 

focus on fatigue resistance and crack repair of the metallic alloy. While a growing body 

of literature and research exists focusing on the topic of ET, the mechanisms 

governing the treatment are not entirely understood. Furthermore, the optimal 

parameters for ET to enhance fatigue resistance are not yet clearly defined. This 

review seeks to summarise the existing literature of various ETs used to enhance the 

fatigue resistance. ET and fatigue resistance will be explained briefly; the parameters 

of the ET used, the subsequent benefits of fatigue life enhancement of different 

materials will be highlighted. The rearrangement of the microstructure of the materials 

and crack healing mechanisms due to ET will also be demystified. In addition, issues 

related to the effectiveness of this treatment on fatigue resistance and the threats and 
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challenges of this topic will be discussed. Therefore, the purpose of this section is to 

help develop a more optimised research method to investigate the effect of 

electromagnetic treatment (ET) on fatigue resistance of metals in the near future. 

 

2.10.1 Background to electromagnetic treatment effect on 

fatigue resistance 

 

Fatigue, alongside corrosion and wear, are the main causes of damage in metallic 

members and structures [192]. If ignored, fatigue can lead to catastrophic failure with 

financial and economic costs. About 90 % of all metallic failures are estimated to be 

due to fatigue [193]. In order to deal with this problem, a new concept known as 

‘remanufacturing’ [194-198] is becoming adopted in many types of industry, including 

aerospace and automotive. The idea of ‘remanufacturing’ is to recycle and restore the 

product to its original manufactured conduction. Remanufacturing is also necessary 

for the sustainable development of mechanical equipment manufacturing, and it 

depends highly on the application of fatigue crack repairing [198]. It can potentially 

save energy, materials cost and as well as avoid the unnecessary pollution [195].  

Fatigue is known as an inevitable and irreversible process in metallic components 

subjected to repetitive stresses over time [7, 43, 199]. These repeated stresses create 

micro-flaws within the microstructure leading to fatigue damage. It is, therefore, 

desirable to improve the fatigue life of metallic structures because of the requirement 

for sustainable raw materials and the high cost of production and processing. Metal 

fatigue is a problem which is constantly affecting many types of industry including 

aerospace, biomedical, marine and automotive because it reduces the lifetime of 

structures. Improving fatigue life can be accomplished by reducing the magnitude of 

stress the material endures or alternatively by increasing the number stress cycles that 

the material can withstand. Reducing the magnitude of the induced stress can be 

easily achieved by increasing the size of the structural component. However, this can 

cause high production and operational costs, as well as a weight penalty. In the case 

of a vehicle, for example, this can lead to higher fuel consumption and further 

greenhouse emissions. Therefore, today’s challenge is to increase the number of 
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cycles while keeping an optimised structural design and maintaining costs to a 

minimum.  

There is currently growing interest in research on fatigue, to improve the number of 

stress cycles that a material can endure by altering material properties/characteristics. 

Such methods include nitriding, carburising, high-frequency quenching and shot-

peening which are commonly used in industry. These techniques increase the fatigue 

life by increasing surface hardness and producing compressive residual stresses at 

the material surface without added weight penalty [14, 16]. However, some of these 

methods such as heat-treatment can be expensive and time-consuming [200]. 

One of the potential developments for improvement in fatigue resistance is the use of 

electromagnetic treatment (ET) [16, 201-203]. The interaction between electricity and 

magnetism is known as electromagnetism while the interaction of the magnetic field 

with electrons (or vice-versa) is known as the electromagnetic effect [204, 205]. 

Exposing a material to the effects of electromagnetism is known as an electromagnetic 

treatment (ET). According to Bose [203], Winterton is considered to be the first person 

to investigate the effect of a saturated magnetic field on the fatigue behaviour of carbon 

steel in 1959. Since then, there have been intensive investigations using ET in the 

form of static magnetic fields in metallic materials [206]. The technique has shown to 

be successful in relaxing stresses, improving fatigue resistance and changing other 

mechanical properties. ET has also been applied in the form of electropulsing [207] 

and pulsed magnetic field treatment [13]. Pulsed magnetic field treatment is 

considered to be more economical in generating a high energy magnetic field than a 

static magnetic field treatment [206, 208]. High current density can be achieved 

through the application of electropulsing in the material. The current density can be 

defined as 

 
𝐽 =

𝐼

𝐴
 

(2.10.1) 

where, 𝐼 is current and  𝐴 is cross-sectional area of the sample. 

 

This high current density has been shown to transfer input energy from the external 

environment to reorganise the fatigue damage within the microstructure [209]. Troitskii 

[210, 211] pioneered the use of electropulsing for metallic alloys. Subsequent studies 
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have shown that electropulsing could enhance the fatigue life of steel [14, 207, 212-

215], copper [201], titanium [216, 217] and aluminium alloys [218].  

Aeroplanes, high-pressure vessels, steel bridges, engineering machinery and nuclear 

power plants are some of many structures which need to cope with high fluctuating 

stresses and are highly prone to fatigue failure. The use of ET looks to be promising 

for extending the fatigue life of these structures [206, 219, 220]. In comparison to 

conventional treatments like heat treatment, for example, magnetic field treatment is 

easy-to-produce and easy-to-control fields [221] and the treatment time is significantly 

shorter [222].  

The improvement of fatigue life by ET has been attributed to various mechanisms 

including dislocation movement [16], Joule heating [14, 209, 216], stress relaxation 

[213, 216, 223] and crack healing mechanisms [207, 215, 224]. However, there are 

also several studies that have shown that the fatigue life can be reduced by the use of 

ET [215, 225, 226]. To explain this phenomenon, it was suggested that excessive 

treatment caused melting damage due to overheating. Hence, to maximise the effect 

of ET on fatigue properties optimum parameters need to be identified and 

implemented.  

Much of the early research on the use of electropulsing and magnetic field treatment 

took place in the former Soviet Union. Owing to their potential, both techniques are 

nowadays under investigation in the USA, China and Europe. The present review will 

outline the benefits of the two techniques as reported in the literature and discuss the 

mechanism by which the treatment has been reported to affect the fatigue resistance 

of metal alloys. As a result of its potential importance, the effect of the two treatments 

on fatigue crack healing will be specifically addressed. In the final section, the 

challenge that remains before this type of technology is commercialised are discussed.  
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2.10.2 Quantified electromagnetic treatment and its benefits on 

fatigue resistance  

 

A number of research investigations have reported that electromagnetic treatment 

(ET) can have beneficial effects on the fatigue life of metal alloys. These studies have 

shown that after ET, the fatigue life (average) has substantially increased compared 

to alloys in the untreated state. An inspection of the literature has revealed that there 

are two main types of treatment that have been used for this purpose. These are: 

I. magnetic field treatment, also in the form of static [16, 199] and alternating [16] 

(This treatment also referred as eddy current treatment field [224]) and  

II. electropulsing [14, 15, 207, 209, 213-217, 223, 227, 228] in which a pulse of 

high-density current passes through a material.  

In some research work, ET has been applied at different stages of the alloy’s fatigue 

life. These research investigations can be further categorised into four types 

depending on the stage of application of the treatment. These are: 

i. Prior to fatigue test testing [216],  

ii. at a specific prefatigue level [13-16, 207, 209, 213-217, 223, 227, 228], 

iii. at several intervals of fatigue test [13, 218] and  

iv. during a period of fatigue test [199]. 

The  prefatigue level can be defined as percentage of prefatigue as shown below 

 

 
% 𝑃𝑟𝑒𝑓𝑎𝑡𝑖𝑔𝑢𝑒 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑡𝑖𝑔𝑢𝑒 𝑐𝑦𝑐𝑙𝑒𝑠

𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑎𝑡𝑖𝑔𝑢𝑒 𝑙𝑖𝑓𝑒
× 100 

(2.10.2) 

 

A summary of the findings of these investigations showing improvement in fatigue life 

due to ET is given in the Table 2.10.1. 
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Table 2.10.1 Summary of the beneficial effect of electromagnetic treatment on fatigue life 

enhancement. 

Alloy 

name 

ET type ET 

Parameters 

ET application 

period 

Maximum 

improvement 

in fatigue life 

Ref. 

Low carbon 

steel 

Alternating 

magnetic field 

360 𝐺𝑠 

for 210 𝑠 

At 50 % 

prefatigued, 

and after every 

100,000 cycles 

Over 2 times 

at 360 𝑀𝑃𝑎 

and 420 𝑀𝑃𝑎 

(Rotating-

bending 

fatigue) 

[13] 

Medium 

carbon steel 

Alternating 

magnetic field, 

static magnetic 

field 

900~3650

 𝐺𝑠 

for 

20~240 𝑚𝑖𝑛 

At 55 % 

prefatigued 

34 % 

at 549 𝑀𝑃𝑎 

(Rotating-

bending 

fatigue) 

[16] 

Steel, AISI 

4140 

Static 

magnetic field 

800 𝐺𝑠, 

1300 𝐺𝑠 

During 30 %, 

30-60 % and  

100% fatigue 

life (untreated) 

20 % at 

630 𝑀𝑃𝑎 

(Rotating-

bending 

fatigue) 

[199] 

Titanium alloy 

(6.1 % Al, 2.2 

% Cr, 2.7 % 

Mo) 

Electropulsing  150 
𝑀𝐴

𝑚2, 

50 𝜇𝑠 

Before fatigue 

test 

25-50 % 

at 300-

600 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

[216] 

Austenite 

steel, 

08H18N10T 

Electropulsing  8 𝑘𝐴, 20 𝑠 

(no 

geometry 

provided) 

At 62 % 

prefatigued 

54 % 

at 80 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

[213] 
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Austenite 

steel, 

45G17Yu3 

Electropulsing  9.3 𝑘𝐴, 70 𝑠 

(no 

geometry 

provided) 

At 69 % 

prefatigued 

76 % 

at 20 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

[213] 

Steel, Fe-

0.6C-1Mn-2Si 

Electropulsing  290  
𝑀𝐴

𝑚2, 15 𝑠 At 70 % 

prefatigued 

54 % at 

115 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

[228] 

Stainless steel 

(SUS31) 

Electropulsing  82.76 
𝑀𝐴

𝑚2, 

0.5 𝑚𝑠 

 

At 87 % 

prefatigued 

26% 

at 115 𝑀𝑃𝑎 

(Tension-

tension 

fatigue) 

[14] 

Stainless steel 

(SUS31) 

Electropulsing  92.31 
𝑀𝐴

𝑚2, 

0.5 𝑚𝑠 

 

At 85 % and 

43 % 

prefatigued 

21 % and 6 % 

At 115 𝑀𝑃𝑎 

(Tension-

tension 

fatigue) 

[227] 

Stainless steel, 

0.45C17Mn3Al 

Electropulsing  232.5 
𝑀𝐴

𝑚2, 

25 𝜇𝑠 

 

At 49 % 

prefatigued 

72 % at 

20 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

 

[223] 

Medium 

carbon steel, 

steel 40 & 

steel 45 and 

titanium alloy, 

VT1-0 

Electropulsing  280 
𝑀𝐴

𝑚2, 

0~135 𝑠 

Prefatigued 

samples 

28 % at  

20 𝑀𝑃𝑎 

(Ultrasonic 

fatigue) 

 

[217] 

Cast hot work 

die (CHWD) 

steel 

Electropulsing  54 
𝑀𝐴

𝑚2, 

120 𝜇𝑠 

80 % 

prefatigued 

(Thermal 

fatigue) 

140 % 

(Thermal 

fatigue) 

[214] 
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2.10.2.1 Magnetic field treatment 

 

There has been a considerable amount of research to suggest that magnetic field 

treatment has extended the fatigue life of various alloys. Fahmy et al. [13] treated low 

carbon steel using an alternating magnetic field strength of 360 𝐺𝑠  for a total of 210 𝑠. 

The fatigue tests were conducted, using a rotating-bending fatigue machine, at 

360 𝑀𝑃𝑎 and 422 𝑀𝑃𝑎 stress amplitude. At the lower stress amplitude, an alternating 

magnetic field treatment was applied at half the estimated fatigue life. For the higher 

stress amplitude, the treatment was applied at 100,000 cycles intervals. Due to this 

treatment, the fatigue life of low carbon steel increased by more than two times in 

comparison to the untreated samples. Despite achieving substantial improvement in 

fatigue life, the authors did not analyse experimentally the exact mechanisms, which 

contributed the fatigue life increase. Furthermore, this study only suggested some 

possible explanations for the increase in fatigue life due to magnetic field treatment 

and did not attempt to estimate the exact magnitude of the increased fatigue life. 

According to these explanations, the magnetic field had some effect on the strain (i.e. 

magnetostriction which is a property of ferromagnetic materials that causes them to 

change their shape or dimensions during the process of magnetisation) and the 

dislocation motion and/or the dislocation density of the steel alloy. On the other hand, 

Bao-Tong et al. [16] used a comparatively higher magnetic field intensity to treat 

medium carbon steel after a prefatigue level of 55 %. Both alternating and static 

magnetic fields were used in this study. Their study showed that the alternating 

magnetic field was found to be more effective than static magnetic field in improving 

the fatigue life. This study revealed that the correct combination of treatment intensity 

and treatment time are critical parameters for achieving the optimal fatigue life 

enhancement. For example, when a static magnetic field was used for 60 𝑚𝑖𝑛𝑠, a 

magnetic field intensity of 900 𝐺𝑠 had no effect at all, while at 1350 𝐺𝑠 an increase in 

the fatigue life by 34 % was reported. However, application of 3650 𝐺𝑠  increased 

fatigue life by only 14 %. This indicates that there was a possible saturation effect due 

to the excessive magnetic field treatment. This study also suggested that the 

improvement in the fatigue life was due to the effect of magnetostriction, which has 

good agreement with the proposed mechanism by Fahmy et al. [13]. To explain the 

deterioration of fatigue damage, Boa-Tong et al. [16] referred to the heavy oxidisation 
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effect which can be caused as a result of excessive heat generated by the eddy 

current. However, these authors presented no microstructural evidence for this. 

Celik et al. [199] used a slightly different technique from other authors [13, 16] to treat 

AISI 4140 steel. The alloy was exposed to a static magnetic field treatment with a 

treatment intensity higher than that of Fahmy et al. [13] while the fatigue test was 

ongoing. It was observed that the magnetic field treatment was more effective at initial 

stage when applied during first 30 % prefatigue. However, the treatment was not as 

effective when applied at the later stage of the fatigue life. This study also suggested 

that the length of the fatigue life was enhanced when the magnetic field intensity 

increased to 1300 𝐺𝑠 from 800 𝐺𝑠. Using Atomic force microscopy (AFM), alignment 

of the magnetic domains was observed in a treated alloy that has been exposed to a 

magnetic field treatment of  800 𝐺𝑠. It was proposed that the alignment of the domain 

walls reduced the obstacles for dislocation movement and assisted the dislocation 

motion. Therefore, the time for the formation of slip bands was prolonged and this 

consequently delayed fatigue crack initiation. Recently, an analytical model of the S-

N Curve was proposed by Zhao-Long et al. [229] to correlate the fatigue life with 

magnetic field intensity [229]. This model was developed by using the non-equilibrium 

statistical theory of fatigue fracture. The obtained curves were consistent with the 

experimental data [13, 199]. These studies argued that the fatigue life increased with 

increasing magnetic field intensity. However, the work was focused entirely on the use 

of static magnetic field treatment and did not consider any possible adverse effects by 

the treatment due to the application of excessive treatment intensity.  

 

2.10.2.2 Electropulsing effect 

 

Levitin et al. [216]  examined the effect of electropulsing on the fatigue resistance of 

titanium alloy (Ti - 6.1 %, Al - 2.2 %, Cr - 2.7 % Mo). The specimens had been treated 

using ultrasonic frequency to produce compressive residual stresses on the surface 

and then electropulsed before the fatigue testing. By using this approach, the fatigue 

life was reported to increase by 25-50 %. For this treatment, the electric pulse 

generated was from an electric capacitor of 200 𝑚𝐹. A current density of 150 
𝑀𝐴

𝑚2
 was 

recorded with pulse time of 50 𝜇𝑠. To investigate the improvement further, Levitin et 
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al. [216]  measured the macroscopic residual stress, the microscopic stress and the 

resistivity of the sample before and after the treatment. The results showed a decrease 

in the macroscopic residual stress. In addition, a decrease in the resistivity was 

observed and this was proposed to occur via homogenisation of the microstructure. 

An increase in the microscopic stress was also recorded due to stress relaxation of 

the material. The combination of all these effects was thought to aid restoration of the 

fatigue damage.   

Sosnin et al. [213] researched the fatigue life of austenitic stainless steels 08H18N10T 

and 45G17Yu3 using electropulsing. They applied the electropulsing treatment, at 

prefatigue levels of 62 % and 69 %, respectively. The study found that using a 

treatment of 8 𝑘𝐴 for 20 𝑠 on 08H18N10T austenitic stainless steel, the fatigue life 

improved by 54 % at a stress amplitude of 80 𝑀𝑃𝑎. However, with the 45G17Yu3 

austenitic steel there was a higher improvement of 76 % at a stress amplitude of  

20 𝑀𝑃𝑎 using 9.3 𝑘𝐴 for 70 𝑠. The current density was not identified as the geometrical 

details of the sample are not provided in this study. To examine the healing effect of 

electropulsing, the authors used scanning and transmission electron microscopy. In 

the case of 08H18N10T austenitic stainless steel, electropulsing improved fatigue 

resistance by retarding dislocation substructure growth, curbing the development 

of martensitic transformation, [𝛾 → 𝜀 or, austenite (Face-centred cubic) to martensite 

(body-centred tetragonal) transformation], inducing disintegration of the solid solution 

by precipitation of TiC particles, and reducing the internal field stress amplitude. For 

the 45G17Yu3 austenitic steel, electropulsing enhanced the fatigue life by (i) stress 

relaxation due to the combined effect of reconstruction of grain structure; (ii) the 

annihilation of dislocation, and reconstruction of dislocation substructures; (iii) 

formation of micro-twins (probably as the result of thermal-stress); (iv) healing of stress 

concentrator; and (v) suppressing martensitic transformation. 

A further study [228] from the same authors involved the use of electropulsing at 70 

% prefatigued notched steel (Fe-0.6C-1Mn-2Si). The current density applied to the 

specimens was 290  
𝑀𝐴

𝑚2
 for 15 𝑠. The recorded improvement in the fatigue life was 54 

%. The microstructural analysis showed that the fatigue life increased due to relaxation 

of stress concentrators through the dissolution of cementite particles at grain 

boundaries. As a result, there was a state change of the interphase boundaries 
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between the matrix and second-phase particle. This caused the mean and maximum 

subcritical crack length for fatigue to increase. The layer of the steel which was 

involved in the strain of the material and the zone of fatigue crack growth, also 

enhanced. 

Tang at al. [14] recently investigated the effects of electropulsing on the restoration of 

fatigue damage on a notched stainless steel (SUS31) plate with a focus on the time to 

crack initiation (i.e. the number of cycles required for the crack to grow) at the notch 

area using a tensile-tensile fatigue test. The study showed that at a stress level of 

115 𝑀𝑃𝑎, the crack initiation period delayed by 26 % due to electropulsing of 82.76 

𝑀𝐴

𝑚2
 for 0.5 𝑠 after  87 % of the crack initiation period of the sample. According to this 

study, electropulsing led to a decrease in the residual plastic strain parallel to the 

loading direction (𝜀𝑦𝑦) and in the dislocation density. The reduction in the dislocation 

density is accompanied with a decrease in the microhardness to the nominal level in 

order to restore fatigue damage.  In another study, the same authors [227] varied the 

prefatigue level to examine its effect on the amplitude of the fatigue crack initiation 

period (crack growth up to 25 𝜇𝑚). By using a current density of 92.31 
𝑀𝐴

𝑚2
 for 0.5 𝑚𝑠 

was used. They observed that treatment at the fatigue crack initiation period of 85 % 

and 43 %, improved the fatigue crack initiation period by 21 % and 6 %, respectively. 

They further investigated the effect of electorpulsing treatment on dislocation and slip 

band.  From TEM observations, it was concluded that the delaying effect of the electric 

current on the fatigue crack initiation period was related to the decrease of the 

dislocation density. It was also observed that when the treatment was applied at 85 % 

of the crack initiation life, the dislocation density reduction was greater than that for 

treatment at 43 % of the crack initiation period. This also supported the fatigue crack 

initiation model of Tanaka and Mura [230] which attributes the delay of fatigue damage 

to the reduction of the dislocation density. The AFM results indicated that the step 

height of the slip bands formed during the cyclic loading was decreased following 

electropulsing.  Dislocation motion due to electron wind drag and thermal stress due 

to high-speed heating were suggested to be the reasons behind these changes. 

However, in this study, the authors could not explain why the treatment was more 

prominent when applied at a later stage of the fatigue crack initiation life. 

Electropulsing has also been shown to enhance the fatigue life of stainless steel 
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(0.45C17Mn3Al) by Konovalov et al. [223]. A treatment of 232.5  
𝑀𝐴

𝑚2
 for 25 𝜇𝑠, at a 

prefatigue level of 49 % produced an increase in fatigue life by 72 %. Diffraction 

electron microscopy was used to investigate the effects of electropulsing. The study 

revealed that the electropulsing treatment led to one of the most powerful stress 

concentrators in the crystal lattice structure to relax and this was thought to delay 

fatigue crack initiation. In another study, the same researchers [217] varied the pulse 

time of the treatment from 0-135 𝑠 to examine the effect of the duration of the treatment 

of the fatigue resistance. Using a current density of 280 
𝑀𝐴

𝑚2
, the electropulsing 

treatment was applied to prefatigued samples of medium carbon steel (steel 40, steel 

45) and titanium alloy (VT1-0). The maximum increase in the fatigue life of steel 45 

was recorded at 28 %, when the pulsing time was set to between 45-70 𝑠. The authors 

suggested that the electro-plastic effect was most prominent when the treatment 

duration reached 70 𝑠. However, when increasing the treatment time to 135 𝑠, the 

fatigue life decreased by 10 %. This observation was attributed to the increase in the 

thermal effect. Electropulsing was used as a means to enhance the thermal fatigue 

life of cast hot work die (CHWD) steel by Zhao et al. [214] . Using a lower current 

density of 54 
𝑀𝐴

𝑚2
 at a pulse time of 120 𝜇𝑠 and treating at 80 % fatigue crack initiation 

life, there was an improvement of 140 % in the fatigue crack initiation life. In this study, 

electropulsing induced a circular heat affected zone (HAZ) at the notch root of the 

sample due to high-speed heating and cooling, in other words, high-speed quenching 

took place. The microstructures of the HAZ was composed of superfine martensite 

and of a fine-grained carbon compound. It was proposed that this microstructural 

change could promote the energy required for crack nucleation and supress crack 

growth. However, the authors did not study the temperature rise due to electropulsing 

; this would have been useful to predict the energy required to induce the HAZ and 

optimise this treatment. 
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2.10.3 Mechanisms of electromagnetic treatment on fatigue 

resistance 

 

A variety of mechanisms have been documented in the literature to explain the 

increase in fatigue life using electromagnetic treatment (ET). These are based on quite 

complex phenomena, which take place due to this treatment, and depend on the ET 

intensity, the extent of prefatigue damage, material properties, etc. These mechanisms 

are mostly explained by a single factor or combination of factors including dislocation 

movement [13, 14, 16, 199], Joule heating [14, 216], stress relaxation [216, 223, 228], 

homogenisation of microstructure [214, 216], phase transformation [209, 214, 228], 

restoration of hardness [14, 209, 214], and healing of slip bands [14]. 

It was proposed that electro-magneto-plasticity influences the dislocation movement 

based on the magneto-plastic theory [231]  and electro-plastic theory [232]. In the case 

of the pulsed magnetic field treatment, it can provide a condition for dislocation 

depinning to occur in alloys. It has been well-documented that magnetic field treatment 

can cause a magnetostriction effect in steels and enable dislocation movement to 

occur. This dislocation movement can thus initiate a delay in fatigue crack initiation by 

increasing the time to form slip bands within the alloy [13, 16, 199] and as a result, 

fatigue resistance can be enhanced. It has also been reported that magnetic domain 

walls affect the plastic flow by hindering dislocation movement [13, 225]. In 

magnetostriction, the magnetic domains rotate and the domain walls shift in such a 

way that the orientation randomness decreases. Consequently, resistance to 

dislocation motion by domain walls is reduced [13, 16, 199, 225]. The movement of 

dislocation  has been reported by Babutskyi et al. [233] who examined the effect of 

pulsed magnetic field treatment on titanium alloy (TA2). Using transmission electron 

microscopy (presented in Figure 2.10.1), it was shown that the dislocations became 

untangled and uniformly dispersed within the alloy.  
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Figure 2.10.1.Transmission electron microscope (TEM) micrograph of untreated (a) and 

treated (b,c) samples [233]. 

 

The alignment of magnetic domains at 800 𝐺𝑠 magnetic field treatment was shown by 

Celik et al. [199] using atomic electron microscopy.  Due to the magnetic domain 

alignment the weakly pinned dislocations were relieved in the process of 

magnetostriction [16, 232]. The application of a magnetic field led to the 

disappearance of densely populated areas of dislocations  and the dislocation 

distribution became more uniform [199]. Apart from this, the application of magnetic 

field increased the energy of dislocations [199, 234] thus enabling dislocations to 

overcome obstacles. By this means the application of  magnetic field can increase the 

dislocation motion  [199, 235].  

Electropulsing has also been observed to alter the dislocation substructure and thus 

help improve fatigue life [14, 213, 217, 223, 227, 228]. Tang et al. [14, 227] observed 

a reduction in the dislocation density following electropulsing. According to their 

studies [227], the electron wind force generated by electropulsing assisted in the 

annihilation of dislocations and eventually caused healing of the slip bands formed 

during the fatigue process and restored the microhardness to values prior to fatigue 

loading. Electropulsing also led to healing of the fatigue damage near the notched 

area of the sample due to the current becoming concentrated at the vicinity of the 

defect [216]. This process causes Joule heating to occur leading to a heat release at 

the crystal lattice defects because of the high electrical resistance of the defects. As 

the surrounding unheated area constrains the heated area, thermal compressive 

stresses occur. Eventually, this heals the microstructural defects. It was also proposed 

that stress relaxation takes places due to a decrease in the electric current resistance 

caused by the high current density imposed by electropulsing [216, 236, 237]. This 
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stress relaxation helps enhance the fatigue life. The phase transformed heat affected 

zone (HAZ) near the notch of a steel sample due to electropulsing has been shown to 

be able to delay fatigue crack initiation [209, 214]. This HAZ contains a more 

homogeneous microstructure with higher hardness compared to the other parts of the 

material and also has high ductility and wear resistance. All these factors increase the 

energy required for the crack to nucleate. The electropulsing treatment has been 

reported to relieve residual stresses, on a macro level [238-241] which can lead to the 

higher fatigue life of material.  

 

2.10.4 Electromagnetic treatment effect on fatigue crack 

repairing  

 

The effect of electromagnetic treatment (ET) on fatigue crack repairing or healing has 

been investigated by a number of researchers. A recent study by Jung et al. [218] 

examined the effect of electropulsing on the fatigue crack growth behaviour of 

aluminium alloy 6061-T6 using two different current density pulses of 90 
𝑀𝐴

𝑚2
 and 150 

𝑀𝐴

𝑚2
 

of duration of 0.5 𝑚𝑠. The treatment was applied at a prefatigue level of 70 % and was 

further applied at 10 % intervals.  The 90 
𝑀𝐴

𝑚2
 treatment with yielded the maximum 

fatigue life improvement with a 55 % increase in the fatigue life. However, at the higher 

current density of 150 
𝑀𝐴

𝑚2
, the fatigue life decreased by 10 % compared to the untreated 

specimens. The use of scanning electron microscopy (SEM), showed that crack 

propagation with cyclic slip deformation in the untreated sample appeared to start from 

the surface of the specimen. However, in the treated specimen with a current density 

of 90 
𝑀𝐴

𝑚2
, there were sites of local melting near the crack tip. This induced the crack 

shielding effect [242] effect which enabled crack growth retardation. It was also 

proposed that the healing process occurred in two steps by: 

i. The high-density electric current concentrated around the crack tip followed by  

ii. Joule heating caused by the electric current which led to local melting and thus 

healed the fatigue crack. 
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In the case of the treated sample at 150 
𝑀𝐴

𝑚2
, brittle fracture was observed in addition 

to the melted sites. The authors suggested that the electric current became too high 

and thermal damage occurred at the crack tip hence causing the reduction in fatigue 

life. Another interesting observation made suggested that the effect of electropulsing 

in fatigue crack growth retardation existed only at the lower maximum stress intensity 

factor, K𝑚𝑎𝑥. The results indicated that when K𝑚𝑎𝑥 became larger than 0.91 𝑀𝑃𝑎√𝑚, 

the concentration of current was not high enough to induce the melting effect. In a 

different study by Yang et al. [224], the eddy current treatment was used to treat a 

fatigue crack in 1045 steel. Induction heating caused by the treatment was used to 

treat the fatigue crack in the axial and radial direction. The eddy current treatment was 

generated using a copper coil connected to a 60 𝑘𝑊 high-frequency induction-heating 

apparatus. The duration of the eddy current treatment varied from 1 𝑠 to 3 𝑠 and the 

corresponding fatigue crack healing increased up to 8.4 times compared to the initial 

improvement at lower treatment duration. The study showed that eddy current 

treatment led to heating of the fatigue crack along the axial direction, while there was 

no healing of the crack along the radial direction. Observations using optical 

microscopy revealed that the crack tip along the axial direction healed due to bridging 

between the crack faces. The authors proposed that for the sample with an axial 

fatigue crack, crack face bridging occurred due to voltage breakdown [243] and 

subsequent local melting. In addition, they also suggested that the reason for the radial 

crack not being unaffected by the eddy current treatment was due to the lack of 

electron detouring around the crack surfaces. 

Hosoi et al. [15, 207, 215, 226] showed that electropulsing of high current density had 

a beneficial effect on fatigue crack growth of Austenitic stainless steel (SUS316NG) 

by investigating several research works. The authors used electropulsing  ranging 

from 0.5-10 𝑘𝐴 with a pulse time between 0.5-10 𝑚𝑠 to treat pre-cracked specimens 

[207, 215]. The treatment led to fatigue crack growth retardation, and finally to fatigue 

crack healing. Like in other two research work [218, 224], it was shown that local 

melting benefited the crack healing process and crack growth retardation. SEM 

observations displayed evidence of crack surface bridging, annealing at the crack tip 

and crack tip blunting. Furthermore, these studies [207, 215]  showed that the 

compressive residual stress due to Joule heating also enabled crack closure to occur 

which delayed the rate of crack growth. In another study by Hosoi et al. [15], 6-9 𝑘𝐴 
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electropulsing for 2-3 𝑚𝑠 with 20-30 applications were used to repair fatigue cracks. It 

was also demonstrated that by using 4 𝑘𝐴 for 2 𝑚𝑠 with 12 applications, cracks would 

gradually heal after each application and repaired between 75-97 % of the original 

crack [226].  In the research work of [215], crack growth behaviour by measuring the 

stress intensity factor, 𝐾, using the digital image correlation (DIC) method. A drop in 

the stress intensity factor range, ∆𝐾, also reported due to the crack closure effect, 

while the crack growth rate slowed down. However, there was evidence of crack 

growth acceleration when a long crack was treated by electropulsing. The reason for 

this observation was proposed to be due to higher current density that was caused by 

the longer crack length leading to excessive thermal stress. Once the excessive 

thermal compressive stress is applied at the crack tip, tensile residual stress is formed 

due of the restriction of plastic strain around the crack tip created by the unheated 

elastic area. This tensile residual tensile stress exceeded the compressive residual 

stress imposed in the crack closure area, and thus, accelerated the crack growth. 

Electropulsing also showed promising effects on the crack growth retardation and 

fatigue life improvement during thermal fatigue of cast hot work die (CHWD) steel [209, 

214]. The average current density used by Lin et al. [209] was 80 
𝑀𝐴

𝑚2
 at pulse discharge 

duration of 100 𝑚𝑠, 120 𝑚𝑠 and 140 𝑚𝑠. The results showed that the crack growth 

propagation rate decreased with discharging duration up to 120 𝑚𝑠. However, when 

the discharging duration increased to 140 𝑚𝑠 the effect of retardation was less 

compared to 120 𝑚𝑠 discharging time. Using both X-ray diffraction analysis and SEM 

observation, it was shown that the subgrain refinement due to the formation of 

superfine martensite and an otherwise unidentified fine grained carbon compound in 

the heat affected zone (HAZ) resulted in the reduction of the fatigue crack growth rate. 

In the case of discharging duration of 140 𝑚𝑠, there was evidence of melting damage 

at the surface ahead of the notch of the sample due to the conversion of excessive 

electric energy to heating energy. In this study, an increase in microhardness and 

dislocation density was observed which was made linked to the enhanced fatigue 

resistance. However, there was no further explanation given on how the increased 

dislocation density can help improve the fatigue resistance. On the other hand, Zhao 

et al. [214] used 54 
𝑀𝐴

𝑚2
  at a pulse duration of 120 𝜇𝑠 in order to retard fatigue crack 

growth in addition to the delay of fatigue crack initiation  for CHWD steel, leading to a 
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reduction in crack propagation velocity by 1.9 times. From the optical microscopy 

observation, it was suggested that the superfine martensite and fine grain carbon 

compound formation was the reason behind the crack growth retardation. This 

observation was similar to that reported by Lin et al. [209]. Furthermore, an analytical 

study by Zhao-Long et al. [244] revealed that the average crack length decreased with 

the  increase of magnetic field intensity. 

 

2.10.5 Mechanism of electromagnetic treatment on fatigue 

crack repairing  

 

The mechanisms by which electromagnetic treatment can lead to improvement in 

fatigue resistance have been the subject of several investigations. The main 

mechanisms that have been identified for fatigue enhancement can be classified as 

follows: 

I. Crack healing [15, 207, 215, 224, 226], 

II. Crack closure [207, 215],  

III. Crack arrest [198, 245] and 

IV. A variety of microstructural changes leading to enhanced yield strength and 

microhardness [209]. 

The beneficial effect of electromagnetic treatment on metal fatigue resistance can be 

related to the phenomenon of the natural concentration of current in the vicinity of a 

crack tip and to subsequent Joule heating at that location. Joule heating plays a key 

role in healing fatigue cracks [15, 207, 226]. In addition, as a result of Joule heating, 

the material in the vicinity of the crack tip expands permanently which leads to crack 

closure. Microscopic analysis has shown that due to electropulsing, the current density 

formed at the crack tip caused Joule heating to occur [218]. The heating led to melting 

around the crack tip and this enables the crack healing by crack shielding and bridging. 

This Joule heating can help retard crack growth as a result of sub-grain refinement in 

the circular/elliptic heat affected zone (HAZ) formed ahead of the notched tip [209]. 

Electropulsing has been shown to lead to fatigue crack arrest in UNS S 31600 

stainless steel [198, 245]. The electron detour effect and Joule heating by 
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electropulsing treatment introduced an elliptical hole formed ahead of the crack tip. 

Local recrystallization occurred in fusion zone and heat affected zone (HAZ) around 

the crack tip, and around the radius of the curvature of the hole. The curvature of the 

hole along with thermal compressive stress led to fatigue crack arrest. Due to 

electropulsing, there was an enhancement in the yield strength and microhardness of 

the material. As a result, these improvements increased the resistance to plastic slip 

formation, and inevitably resisted crack initiation and propagation [209]. The 

enhancement of fatigue crack growth retardation by electromagnetic treatment can 

also be explained by other factors such as structure-phase states, the evolution of 

dislocation substructures and partial restoration of resource durability [228]. 

Furthermore, fatigue crack can also be repaired by local recrystallization, local 

homogenisation, refinement of grains around the crack tip [246, 247] and 

disappearance  of slip bands [248]. 

Hosoi et al [15] presented a schematic illustration of the fatigue crack repairing process 

as shown in Figure 2.10.2 and the corresponding result on steel is shown in Figure 

2.10.3. When high-density current flows around the fatigue crack surface, it causes a 

concentration of current at the crack tip (Figure 2.10.2(a)). This concentration of 

current causing Joule heating (Figure 2.10.2(b)) leads to rapid expansion of the area 

around the crack tip (figure 2.10.2(c)). However, the area away from the crack tip 

remains intact as there is no concentration of current. Eventually, the restricted 

expanded area along with its thermal compressive stresses triggers crack closure 

(Figure 2.10.2(d)). This further forms bonding between the crack surfaces near the 

crack tip due to energisation (Figure 2.10.2(e)). As a result, after several pulses of 

high-density electropulses the crack tip shifts to the opposite direction of the crack 

growth (see Figure 2.10.3). 
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Figure 2.10.2 Schematic illustration of fatigue crack healing process due to electropulsing: 

(a) high-density current concentration, (b) Joule heating, (c) rapid expansion of crack faces 

in the vicinity of the crack tip, (d) crack closure and (e) bonding of the crack [15]. 

 

 

Figure 2.10.3 Progressive crack healing due to continued application of electropulsing [15]. 
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This study [15], has shown that electropulsing can lead to both crack growth 

retardation and crack growth acceleration. In one experiment, electropulsing of 8 𝑘𝐴 

with 4 𝑚𝑠 was applied for 20 times, and fatigue crack was grown at constant amplitude 

(CA) loading of stress intensity factor range, ∆𝐾 = 25𝑀𝑃𝑎√𝑚 and load ratio, 𝑅=0.05. 

The crack growth rate decreased to 3.01 × 10−8
𝑚

𝑐𝑦𝑐𝑙𝑒 
 from 4.171×10−8

𝑚

𝑐𝑦𝑐𝑙𝑒 
 right after 

the application of the electropulsing. Then, crack growth gradually returned to the pre-

electropulsing condition. However, when electropulsing of 6 𝑘𝐴 of 2 𝑚𝑠 was applied 

for 25 times and the fatigue crack was grown at constant amplitude (CA) loading of 

stress intensity factor range, ∆𝐾 = 15𝑀𝑃𝑎√𝑚 and load ratio, 𝑅=0.05, the result was 

the opposite. After the application of electropulsing crack growth rate increased to 

1.46 × 10−8
𝑚

𝑐𝑦𝑐𝑙𝑒 
 from 1.03×10−8

𝑚

𝑐𝑦𝑐𝑙𝑒 
 before it gradually reverted to the pre-

electropulsing condition. Yang et al. [224] reported a quite similar process of crack 

healing by eddy current detouring due to eddy current treatment as shown in Figure 

2.10.4. An additional mechanism is introduced here if compared to the previous one 

[15] which is the bridging in several areas between the crack surfaces due to a voltage 

breakdown effect [243].  

 

 

Figure 2.10.4 Schematic illustration of fatigue crack healing process due to eddy current 

treatment: (a) the detour of eddy current, concentration, (b) appearance of compressive 

stress and crack face bridging (c) appearance of voltage breakdown and  the crack tip 

healing, (d) crack closure and (e) continuous crack healing  [224]. 
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Yang et al. [224] explained that the breakdown voltage (𝑢) effect depended on the gap 

between been the crack surfaces and become more effective when the gap was lower. 

As a result, bridging was only found in the fatigue crack where there is less gap 

compared to the cutting line (slit) used to initiate fatigue crack. According to this study, 

thermal compressive stress aided reduction in the fatigue crack length. The same 

study has mentioned the ‘skin effect’ [249] which is explained as the penetration depth 

of the electric current increases higher with the intensity of the electric current in a 

conductor. This also contributes to the effectiveness of the fatigue crack repairing.  

 

2.10.7. Threats and challenges in the electromagnetic treatment to 

enhance fatigue resistance  

 

Despite the many positive impact of electromagnetic treatment (ET) outlined in this 

literature review, there are still concerns with regard to the correct treatment 

parameters that need to be addressed. Furthermore, the main question concerning 

many researchers in this field is:  

 Does the application of an external magnetic or electric energy improve the 

fatigue of metals and alloys [199, 250, 251]?  

While several investigations have indicated that ET can extend fatigue resistance, 

there is also evidence in the literature that detrimental effects are possible due to ET 

[13, 213, 218, 224, 225, 252]. The observation of adverse effects has been attributed 

by some researchers to the excessive time and level of ET intensity. while others have 

argued that exceeding a critical point during treatment can lead to microstructural 

damage and reduced fatigue life. Some studies have also shown that ET can only 

repair fatigue damage if the initial damage prior to the treatment does not exceed same 

critical level or the intensity of the treatment does not approach a certain “saturation 

limit” [16, 199, 225, 253]. There is also evidence that the treatment needs to reach a 

minimum level or threshold point [16, 225] before it starts to extend fatigue life.  It is 

also important to know about the optimum level of treatment [16, 225] in order to 

maximise the fatigue life. Therefore, the real issue faced is to identify the ideal 
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parameters of treatment regarding type, intensity, time, number of applications and 

frequency, etc. for the optimisation of fatigue resistance of a given alloy.  

There have been reports in the literature that have documented adverse effects of 

both magnetic field treatment and electropulsing on the fatigue life of metal alloys. For 

example, there was a reduction of 10 % in the fatigue life of low carbon steel 

specimens following magnetic field treatement [16]. The samples were exposed to a 

higher alternating magnetic field treatment at 3200 𝐺𝑠 for 20 𝑚𝑖𝑛𝑠. The explanation 

given was that excessive overheating took place by the resulting eddy currents which 

caused heavy oxidation leading to the deterioration of the fatigue properties of the 

material. There was also decrease in fatigue life of mild steel as the magnetic field 

increased [13]. In another study, electropulsing was applied to aluminium alloy 6061-

T6 using a current density of 150 
𝐴

𝑚𝑚2
  [218]. This treatment led to the decline of fatigue 

life by 10 % which was caused by melting damage or thermal damage due to 

excessive current density. This study also indicated that at a higher maximum stress 

intensity factor, 𝐾𝑚𝑎𝑥 of 0.91 𝑀𝑃𝑎𝑚𝑚1/2, the current density of 90 
𝐴

𝑚𝑚2
 did not have 

any effect on fatigue life. The reason was given that the current density was not 

sufficient high enough to achieve melting. 

Zhipend et al. [254] have reported that the effects of magnetic field treatment may be 

related to the field orientation. Applying a magnetic field perpendicular to the direction 

of maximum stress has the potential to release more residual stresses. Thus, this can 

be useful for fatigue life enhancement. The fatigue life has a minimum value when the 

magnetic field reached or exceeded the critical field strength and induced magnetic 

saturation as mentioned before. This behaviour has further led to crack tip plastic 

deformation which accelerated the fatigue crack growth and diffusion of carbon to the 

free surface for steel [13, 225]. This has caused surface defects and fatigue crack 

initiation. Levitin et al [216] have compared the direct current effect with electropulsing 

effect on fatigue resistance of titanium alloy and found no effect of direct current  on 

fatigue life of titanium alloy. 

Celik et al [199] found that prefatigue level has an substantial effect on the 

effectiveness of ET. The fatigue life of AISI 4041 steel did not improve when the 

magnetic field was applied between 60 % and 100 % of the untreated fatigue life in 

AISI 4041 steel. It was explained that when fatigue crack propagation plays the leading 
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role in controlling fatigue life in a notched specimen, there was no effect of the 

application of magnetic field treatment. Tang et al. [227] observed that by 

electropulsing at 43 % of fatigue crack initiation with 3 𝑘𝐴 for 5 𝜇𝑠, there was only 6 % 

improvement in fatigue crack initial life. However, when it was applied at 85 % of the 

fatigue crack initiation life, there was 21 % improvement in the fatigue crack initiation 

life. In their work, the time of treatment plays an important role in improving the fatigue 

life. For instance, when an electropulsing treatment of 280 
𝑀𝐴

𝑚2
 was applied for a 

duration of 135 𝑠 instead of 70 𝑠, the beneficial improvements of the fatigue life in 

titanium alloy were reversed. The study found that the fatigue life was reduced by 10 

% due to the excessive time of treatment [217]. Hosoi et al.  [15] showed that for a 

high number of electropulses crack acceleration took place. It was mention that 

electropulsing can lead to crack growth acceleration by inducing tensile residual stress 

around the crack tip [215]. No beneficial effect was observed on fatigue crack repairing 

when eddy currents were applied in the radial direction of fatigue crack as there was 

no eddy current detouring effect [224]. This observation indicated that the treatment 

works best when applied perpendicular to the crack defect within the material. All these 

results suggest that there is a need for controlling the ET parameters to achieve fatigue 

life enhancement. 

The research works demonstrate that the increase in the magnitude of ET can 

introduce a desirable fatigue resistance in metals. However, very little research has 

been carried out which isolates variable parameters, such as the intensity of treatment, 

the number of treatment applications and the pre-treated conditions of the alloy. 

Isolating the variable parameters would establish how the factors and mechanisms 

within the ET change the properties of the metal. By varying the parameters 

associated with ET, a relationship between the variables and fatigue resistance may 

be derived to identify the optimal treatment parameters. Another factor not mentioned 

in literature that need to be consider are the alloys initial condition. Understanding if 

the treatment works best for alloys that are annealed, cold worked or pre-stressed are 

key points that must be considered when trying to determine the optimal treatment 

parameters.  
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2.10.6 Summary 

 

In the light of the findings mentioned from this review, it seems that there are several 

types of electromagnetic treatment (ET) used and with varying parameters. The results 

have mainly shown beneficial effect of ET on fatigue properties of the metallic alloys. 

However, the problems now faced with ET is the understanding of the optimal 

treatment parameters, e.g. current density, pulse time, the number of applications of 

pulses, which will produce the maximum fatigue improvement of a given alloy. As 

mentioned in this review, excessive treatment can cause premature failure in fatigue 

life of the metallic alloy. Other factors such as treatment during the different stages of 

the fatigue life need to be taken into consideration as this may accelerate fatigue failure 

of the alloys. In terms of treatment for fatigue cracks, the orientation of the crack 

relative to the ET is crucial for achieving crack closure and crack retardation. There 

seems to be a maximum stress intensity factor, 𝐾𝑚𝑎𝑥, up to which ET can heal cracks. 

Consequently, a comprehensive investigation is required to understand fatigue 

damage that occurs due to excessive treatment intensity. Furthermore, a reliable 

correlation is needed to be established between fatigue resistance and microstructural 

characterisation, microhardness, thermodynamics, residual stress, dislocation 

density, etc. due to ET. Isolation of different parameters is also required to 

investigating individual parameter effect along with the specific mechanism of fatigue 

resistance related to it. Hence, this review can be considered as a stepping stone for 

summarising the different treatment parameters, its effect on several stages of fatigue 

life and the changes in the materials characteristics. 
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3 Research Strategy 

 

The aims of this PhD project are to further understand and develop capability of fatigue 

crack growth assessment and fatigue life enhancement of engineering aluminium 

alloys. To achieve these aims, a research strategy has been taken in consideration 

which will be discussed in this chapter. The purpose of the chapter is to give the reader 

a brief view of the research method used. Furthermore, the feasibility and rationality 

of the research methods is highlighted. The more detailed technical aspects including 

the experimental setup, construction of the models and analytical analyses are 

explained in their corresponding chapters. 

 

3.1 Flowchart of research strategy 

 

A research strategy was adopted to conduct a series of investigations based on the 

coordinated experimental, numerical and analytical approaches as shown in the 

flowchart (Figure 3.1.1). A brief description of these approaches is given in the 

following sections.  

 

Figure 3.1.1. Flowchart of research strategy used for this project. 
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3.2 Analytical approach 

 

From the literature review, it can be seen that overload can lead to fatigue crack growth 

retardation. The plasticity induced crack closure (PICC) can be used to rationalise the 

overload transient fatigue crack growth behaviour. The reliability of plasticity induced 

crack closure (PICC) depends on the accuracy of the crack closure measurement. 

Loading and geometrical effects can also control the PICC. Furthermore, the fatigue 

crack growth threshold, ∆𝐾𝑡ℎ can influence the overall estimation of fatigue crack 

growth life. 

The first purpose of the analytical approach was to investigate fatigue crack growth 

under variable amplitude (VA) loading using the strip yield model. To achieve this, only 

one-quarter of the centre cracked tension (CCT) specimen was considered. The 

nonlinearity of the compliance curve without the fatigue crack growth was investigated 

and compared with the experimental and numerical results using the material 

properties of aluminium alloy 6082-T6. The crack profiles, overload ratio (OLR), 𝑅 

ratio, baseline stress intensity factor range, (∆𝐾)𝐵𝐿, and constrain factor, 𝛼, effects 

were also investigated using the material properties of aluminium alloy 2024-T4. 

These results were further validated by comparing them with the literature. FORTRAN 

code was developed to perform strip yield modelling for this purpose. 

 

Secondly, an analytical model was optimised to identify the fatigue crack growth 

threshold, ∆𝐾𝑡ℎ, of different aluminium alloys including aluminium alloy 2024-T3, 

aluminium alloy 2024-T351 and aluminium alloy 7075-T6. Here, different experimental 

databases were used to fit the analytical fatigue crack growth curves. Finally, the 

obtained analytical fatigue crack growth threshold, ∆𝐾𝑡ℎ, values were compared with 

the literature in order to provide the validation. Matlab was used to write and run the 

code of the model. 
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3.3 Experimental approach 

 

One of the purposes of the experimental approach was to investigate the fatigue crack 

growth behaviour under variable amplitude (VA) loading.  For that, the effect of plastic 

deformation on the compliance curve based crack closure measurements were 

analysed. Overload ratio (OLR) and 𝑅 ratio effects on fatigue crack growth were also 

analysed. In this study, a servo-hydraulic fatigue test machine along with strain 

gauges, PicoScope, plastic replica and microscope were used. The replica technique 

was utilised to measure the crack during fatigue loading. The crack length from the 

plastic replica was measured under a microscope. The crack closure was measured 

using the compliance technique. These compliance curves were obtained from the 

strain gauge measurement around the fatigue crack tip. Centre cracked tension (CCT) 

specimens of aluminium alloy 6082-T651 were chosen for these analyses which were 

designed using CATIA V6 and manufactured using the machining and fabrication lab 

facilities at the university. These were prepared from metal sheet. The samples were 

also polished when required. The results obtained were compared with the numerical 

results and also with the literature where necessary to validate it. 

The other purpose of the experimental study was to investigate the beneficial effect of 

electromagnetic treatment (ET) on fatigue resistance. For this, the samples were 

prepared by designing of the samples using CATIA V6, manufacturing using computer 

numerical control (CNC) machine, and polishing using the rotating polishing rig. Some 

of the parts of the ET rig including the specimen holder embedded in the circuit of ET 

rig were also designed and manufactured. The ET was conducted using that ET rig 

along with a voltage generator built at the university. Fatigue tests were conducted 

using a rotating bending fatigue machine. Aluminium alloy 2011-T6 and 2014-T6 were 

chosen as the materials for hourglass-shaped samples. These were prepared from 

the bar materials. The fatigue life of the treated and untreated samples were compared 

to establish the increase in fatigue life due to ET. The Taguchi method was used to 

optimise the treatment parameters including pulsed electromagnetic treatment 

intensity, pulse time and the number of pulses based on the experimental results. 

Here, Minitab 17.0 software was used to implement the Taguchi method. A baseline 

stress vs number of cycles (S-N) curve was also generated for the untreated samples 

of aluminium alloy 2014-T6 in order to make it comparable with the fatigue life of the 
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treated samples for different stress ranges. The microhardness test rig and 

conductivity measurement device were also utilised to measure the microhardness 

and conductivity of the samples, respectively before and after the treatment. The 

reason behind this was to correlate the effect of the electromagnetic treatment with 

the microstructural and physical characteristics of the material. The fracture surfaces 

of the treated and untreated alloy were studied using SEM. The mechanisms of 

electromagnetic treatment in aluminium alloy 2014-T6 were investigate using TEM 

technique in order to understand the enhanced fatigue performance of this alloy. 

 

3.4 Numerical approach 

 

The purpose of the numerical approach was to analyse the crack tip plastic 

deformation effect on compliance-based crack closure measurement. Finite element 

(FE) based numerical analysis was performed using commercial-off-the-shelf (COTS) 

software Ansys 16.0. Only one-quarter of the centre cracked tension (CCT) specimen 

of the material properties of aluminium alloy 6082-T6 was utilised for the FE modelling. 

Mesh density studies were performed and the model was built using the options which 

are comparable to the literature. Finally, the FE results were compared with the 

experimental and analytical results in order to validate them. 
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4 Experimental analysis of fatigue crack growth under constant 

amplitude and variable amplitude loading 

 

4.1 Introduction 

 

The overload effect, 𝑅 ratio effect and crack closure effect on fatigue crack growth 

have already been explained in lthe iterature review. The aim of this chapter is to 

investigate experimentally the crack closure effect, overload effect and 𝑅 ratio effect 

on aluminium alloy 6082-T6. Here, the overload effects with OLRs of 1.3, 1.6 and 2.1 

were taken into consideration at 𝑅=0.1. The overloads were applied for fatigue cracks 

of different length. Additionally, the effect of stress ratio on the fatigue crack growth at 

constant 𝐾𝑚𝑎𝑥 condition were also investigated at 𝑅 ratios of 0.1, 0.4 and 0.7. The 

crack closure effect during constant amplitude (CA) loading and variable amplitude 

(VA) loading was also analysed. Two types of technique were utilised during the 

experimental analysis; the replica technique to monitor crack growth and the 

compliance technique to measure crack closure. 

 

4.2 Material selection 

 

The fatigue crack growth test was carried out on a centre cracked tension (CCT) 

specimen. The material chosen was aluminium alloy 6082-T6 which is a solution heat 

treated and artificially aged automotive grade alloy.  The chemical composition and 

material properties of this alloy are shown in Tables 4.2.1 and 4.2.2. 
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Table 4.2.1 Chemical composition of aluminium alloy 6082-T6 [315]. 

AL Mn Fe Mg Si Cu Zn Ti Cr Other 

(Each) 

Others 

(Total) 

Balance 0.4-1.0 0.0-0.5 0.6-1.2 0.7-1.3 0.0-0.1 0.0-0.2 0.0-0.1 0.0-0.25 0.0-0.05 0.15 

 

Table 4.2.2 Material properties of Aluminium alloy 6082-T6 [315]. 

Density 2.7
𝑔

𝑐𝑚3
 

Melting Point 555°C 

Thermal Expansion 24 × 10−6 𝐾−1 

Thermal Conductivity 180 
𝑊

𝑚.𝐾
 

Electric Resistivity 0. 038 × 10−6 Ω.𝑚 

Ultimate Tensile Strength 310 𝑀𝑃𝑎 

Yield Strength 268 𝑀𝑃𝑎 

Young’s Modulus 71 𝐺𝑃𝑎 

 

Due to its high strength, aluminium ally 6082-T6 is replacing aluminium alloy 6061-T6 

[255]. It has good weldability, machinability [255] and corrosion resistance [256]. 

Typical use of this alloy is in highly stressed applications such as truss, bridge and 

transport applications [256].  

 

4.3 Methodology 

 

4.3.1 Specimen geometrical details 

 

The fatigue crack growth test was carried out on a centre cracked tension (CCT) 

specimen. The specimen was 400 𝑚𝑚 in length, 150 𝑚𝑚 in width and 1.6 𝑚𝑚 in 

thickness. A photograph of the saple is shown in Figure 4.3.1.  
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Figure 4.3.1 The test sample with steel clamps. 

 

The length was taken in the longitudinal direction. This is also known as the rolling 

direction or extrusion direction or axis of forging. A 16 𝑚𝑚 slit representing an initial 

crack was introduced with L-T (longitudinal-Transverse) fracture path [257] and 45° 

notch angle. The thickness of the slit was 2 𝑚𝑚.  There were six holes of 6 𝑚𝑚 

diameter at each end with 20 𝑚𝑚 offset from the edge to attach the specimen with the 

clamp. This   clamp was able to withstand the fatigue loading without damaging the 

CCT sample. 

 

4.3.2 Fatigue crack growth test setup 

 

A hydraulic fatigue machine (Servotest 200) was used to run the fatigue crack growth 

test. The actual view of the set-up is shown in Figure 4.3.2 and the schematic view is 

shown in Figure 4.3.3.  
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Figure 4.3.2 Actual test set-up. 

 

Figure 4.3.3 Schematic diagram of fatigue crack growth test set up. 
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The clamped sample was installed within the grip of the fatigue test machine. The 

gripping force was controlled so that the grip was sufficient to hold but not to damage 

the sample. The fatigue load spectrum was generated and controlled using the MTS 

software (MTS 793) in the computer system 2.  Mode I loading (Figure 4.3.3) was 

applied during the test. Two strain gauges were installed to measure the strain near 

the crack tip and these were connected with computer system 1 through a strain gauge 

amplifier and PicoScope. The strain gauges and nearby wires were protected by the 

plastic glue and tape to avoid any damage caused during the test. It is to be noted 

here that 5 𝐻𝑧 cyclic loading was used in this test. 

 

4.3.3 Fatigue crack growth monitoring 

 

To monitor crack growth, the crack length was measured using the replica technique. 

The fatigue crack grew during the test, and the test was paused periodically to 

measure the crack length. The surface of the plastic replica was dipped into acetone 

and quickly pressed onto the crack tip area for a couple of minutes. Then, the plastic 

replica was removed and measured under a conventional travelling microscope. 

Figure 4.3.4 shows the plastic replicas and a microscope, which were used to measure 

crack length.  

 

Figure 4.3.4 (1) Plastic replicas and (2) microscope to measure crack length. 



99 
 

 

During the measurement, the sample was kept under low tension so that the crack tip 

was open and copied onto the plastic replica surface. The advantage of measuring the 

crack with this technique is that it gives an accurate representation of the physical 

crack length, which can then be measured under a microscope.  

Another technique known as the compliance technique was also implemented to 

monitor crack closure. In this case, the crack growth test was paused, and the crack 

was loaded and unloaded between the minimum and maximum fatigue load. The 

loading and corresponding strain values were used to obtain the compliance curve. 

The schematic view and actual view of the compliance curve and corresponding offset 

compliance curve are given below in Figures 4.3.5 and 4.3.6. The offset compliance 

curve was recorded as an offset value from a straight line fit to the upper part of the 

compliance curve. The offset method which is recommended by ASTM E647  [172] 

can improve the sensitivity of the non-linearity of the compliance curve. The closure 

point, 𝑃𝑜𝑝 was identified as the point when the linear line becomes non-linear as shown 

in figure 4.3.5(2). 

 

 

Figure 4.3.5 Schematic view of (1) Compliance curve and corresponding (2) offset 

compliance curve. 
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Figure 4.3.6 (1) Compliance curve from strain gauge near the crack tip, (2) offset compliance 

curve from strain gauge ahead of the crack tip and (3) offset compliance curve from strain 

gauge behind the crack tip. 

 

4.3.4 Load spectrum used  

 

There were three different types of load spectrum used for fatigue crack growth 

analysis under variable amplitude (VA) loading as shown in Figure 4.3.7. Fatigue crack 

growth tests were run with constant amplitude (CA) baseline fatigue load incorporated 

with overloads. For the investigation of overload effect, different overload cycles with 

overload of 30 %, 50 % and 100 % (calculated using Equation 2.6.1) were applied 

during the fatigue crack growth test at load ratio, 𝑅=0.1  of the CA baseline fatigue 

loading with 𝑃𝑚𝑎𝑥=15.03 𝑘𝑁 and 𝑃𝑚𝑖𝑛=1.5 𝑘𝑁. For 30 % overload, the maximum level 

of the overload was 𝑃𝑂𝐿=19.54 𝑘𝑁. For 50 % and 100 % overload, the maximum levels 

of the overload cycles were 𝑃𝑂𝐿=22.54 𝑘𝑁 and 𝑃𝑂𝐿=30.05 𝑘𝑁, respectively. Hence, the 

corresponding load ratios (OLRs) are 1.3, 1.6 and 2.1 (calculated using Equation 

2.4.7), respectively. 
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Figure 4.3.7 Load spectrum for (1) 30 % overload, (2) 50 % overload and (3) 100 % 

overload. 

 

For analysis of the baseline 𝑅 ratio effect, there were three load spectrum used as 

shown in Figure 4.3.8.  Three different  𝑅 values were used during CA loading; these 

were 0.1, 0.4 and 0.7. In this instance, to consider the different load ratio effect, the 

maximum load was kept unaltered, but the minimum load was changed to a nominal 

value of 1.5 𝑘𝑁, 6.01 𝑘𝑁 and 10.52 𝑘𝑁 to achieve a load ratio, 𝑅 of 0.1, 0.4 and 0.7, 

respectively.  
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Figure 4.3.8 Load spectrum for (1) R=0.1, (2) R=0.4 and (3) R=0.7. 

 

4.4 Results and analyses 

 

4.4.1 Crack growth retardation under single overloads 

 

The single overload effect was investigated by applying different level of overloads 

incorporated with constant amplitude (CA) loading. Graphs of crack length vs number 

of cycles are plotted accordingly in Figure 4.4.1.  
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Figure 4.4.1 Half crack length vs number of cycles curves: (1) for 30 % overload, (2) for  50 

% overload and (3) for 100 % overload. 

 

From figure 4.4.1(1), it was observed that for a CCT specimen of aluminium alloy 6082-

T6, when the fatigue cycles were 119157, the half-crack length was 13.6 𝑚𝑚. The 

fatigue crack grew steadily upto a length of 13.9 𝑚𝑚 for 120957 cycles before a 30 % 

overload was applied. After the application of the 30 % overload, there was a 

retardation of fatigue crack growth for some period of cycles, and then it returned to 

the pre-overload fatigue crack growth at a length of 14.6 𝑚𝑚 at 127557 cycles. The 

stress intensity factor range, ∆𝐾 was 19.8 𝑀𝑃𝑎√𝑚 in this case. Due to this overload 

effect, the delay distance, 𝑎𝐷 was 0.7 𝑚𝑚 and number of delay cycles 𝑁𝐷 was 11492 

cycles. These, 𝑎𝐷 and 𝑁𝐷 are defined later in Figure 4.5.1. 

From Figure 4.4.1(2), It is seen that the fatigue crack grew steadily from 16.32 𝑚𝑚 at 

14972 cycles to 16.8 𝑚𝑚 at 151672 cycles in the same sample. After application of an 
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overload of  50 %, the crack growth was retarded until it reached 18.56 𝑚𝑚 at 168172 

cycles. Then, the crack growth returned to a similar trend of preoverload fatigue crack 

growth. Here, the stress intensity factor range, ∆𝐾 was 23.04 𝑀𝑃𝑎√𝑚. For a 50 % 

overload, the 𝑎𝐷 was 0.86 𝑚𝑚 and the 𝑁𝐷 was 20000 cycles. 

In Figure 4.4.1(3), for a different CCT sample of aluminium alloy 6082-T6, crack growth 

started steadily from 14.32 𝑚𝑚 at 60203 cycles and it continued growing in the similar 

fashion before the overload of 100 % was applied when the crack length was 

15.1𝑚𝑚 at 64203 cycles. After the application of the overload there was retardation in 

fatigue crack growth, and then the crack growth returned to the trend of pre-overload 

fatigue crack growth when the crack length was 18.49 𝑚𝑚 at 93203 cycles. Here, the 

stress intensity factor range, ∆𝐾 was 31.27 𝑀𝑃𝑎√𝑚 as the crack length within this 

sample was diffent from the previous one. For this 100 % overload,  the 𝑎𝐷 was  3.18 

𝑚𝑚 and the 𝑁𝐷 was 40500 cycles. 

 

4.4.2 Overload ratio (OLR) effect on fatigue crack growth  

 

The overload ratio (OLR) effect in terms of % OL on fatigue crack growth rate is shown 

in Figure 4.4.2. Here, 30 % OL, 50 % OL and 100 % OL correspond to OLRs of 1.3, 

1.6 and 2.1, respectively. 
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Figure 4.4.2 Comparison of overload ratio effect on fatigue crack growth rate. 

 

The crack growth rate, 
𝑑𝑎

𝑑𝑁 
 was normalised by the baseline crack growth rate at CA 

loading, (
𝑑𝑎

𝑑𝑁 
)
𝑏
. The crack length increment, ∆𝑎 was normalised by the overload plastic 

zone size, 𝑅𝑃.𝑂𝐿 at the crack tip. In every case, the fatigue crack was growing steadily 

before the overload was applied. When the overload was applied, there was an instant 

acceleration for a small period followed by a prolonged retardation period. Finally, the 

fatigue crack growth rate normalised to the baseline fatigue crack growth rate. For a 

30 % overload, the maximum retardation in fatigue crack growth was reached at 10 % 

of the overload plastic zone, and the retardation period finished at 36 % of the overload 

plastic zone. For a 50 % overload, the maximum retardation in fatigue crack growth 

reached at 14 % of the overload plastic zone, and retardation period finished at 50 % 

of the overload plastic zone.  Finally,  for a 100 % overload, the maximum retardation 

point and retardation length were 8 % and 67 % of the plastic zone, respectively. In 

the experimental study of [63], the maximum retardation point was between 4-42 % of 
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overload plastic zone size. The magnitude of the retardation in fatigue crack growth 

increased with the increase of OLRs. 

 

4.4.3 Overload ratio (OLR) effect on fatigue crack growth driving 

force 

 

The overload ratio (OLR) effect was analysed on effective fatigue crack growth driving 

force, ∆𝐾𝑒𝑓𝑓 which was identified using the offset compliance method [172] (Figure 

4.3.5(2)) and normalised by the fatigue crack growth driving force of the constant 

amplitude (CA) loading, (∆𝐾 )𝑏 and shown in Figure 4.4.3. In this study, the fatigue 

crack crack length increment ∆𝑎, was normalised by the overload plastic zone size, 

𝑅𝑃.𝑂𝐿. The crack closure concept was taken into consideration to identify the crack 

growth driving force. It can be seen that the fatigue crack growth driving force followed 

the same trend as the fatigue crack growth rate. The crack growth driving force was 

nearly constant during CA loading before overload was applied. After the overload, 

there was prolonged retardation following a temporary acceleration in the fatigue crack 

growth driving force. Eventually, the fatigue crack growth driving force returned to the 

pre-overload crack growth driving force level when the OLR effect was over. The 

maximum retardation points were 15 %, 12 % and 10 % of the overload plastic zone 

size for 30 %, 50 % and 100 % OL, respectively. The retardation lengths were 41 %, 

53 % and 66 % of overload plastic zone size. The magnitude of the retardation in 

fatigue crack growth driving force increased with the increase of OLR. 
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Figure 4.4.3 Comparison of overload ratio effect on fatigue crack growth driving force. 

 

4.4.4  𝑹 ratio effect on fatigue crack growth rate 

 

To investigate the 𝑅 ratio effect, fatigue crack growth tests were run with 𝑅 ratios of 

0.1, 0.4 and 0.7 at constant 𝐾𝑚𝑎𝑥 condition in a CCT specimen of aluminium alloy 

6082-T6. The crack grew from 19.55 𝑚𝑚 to 20.8 𝑚𝑚 at 𝑅=0.1, from 20.8 𝑚𝑚 to 

21.65 𝑚𝑚 at 𝑅=0.4 and from 21.65 𝑚𝑚 to 21.9 𝑚𝑚 at 𝑅=0.7.  The corresponding log-

log plots of crack growth rate, 
𝑑𝑎

𝑑𝑁
 vs. stress intensity factor range, ∆𝐾 are shown in 

Figure 4.4.4. It was observed that with the increase of 𝑅, the crack growth rate data 

shifted to the left. This observation is consistent with earlier results by [258]. Therefore, 

the crack growth rate reduced as the 𝑅 ratio increased. This may appear to contradict 

findings in literature where crack growth rates are increased at higher 𝑅 ratios [259]. 

It should, however, worth noting that the current crack growth test is conducted under 

fixed 𝐾𝑚𝑎𝑥. The higher 𝑅 ratio is achieved by the increase of 𝐾𝑚𝑖𝑛, which effectively 

reduces the stress intensity factor range, ∆𝐾. As such, the reduction in the crack 
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growth rate is caused by the reduction of the stress intensity factor range, not the 

conventional increase of the 𝑅 ratio. 

 

 

Figure 4.4.4 Comparison of 𝑅 ratio effect on fatigue crack growth rate (all plots are in log-log 

scale). 

 

4.4.5 Crack closure effect on crack growth rate for different 𝑹 ratio 

 

The crack closure effect was considered to explain the 𝑅 ratio effect. This also 

explained the necessity of the crack closure effect on fatigue crack growth. The 

corresponding log-log plot of crack growth rate, 
𝑑𝑎

𝑑𝑁
 vs effective stress intensity factor 

range, ∆𝐾𝑒𝑓𝑓, was shown in Figure 4.4.5. By considering the crack closure for 𝑅 ratio 

values of 0.1, 0.4 and 0.7, the effective stress intensity factor range ratio, 𝑈, became 

0.56, 0.67 and 1, respectively. So, the crack growth rate both for 𝑅=0.1 and 𝑅=0.4 

shifted to the left with a lower factor of 0.56 and higher factor of 0.67, respectively and 
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got closer to the crack growth rate data for 𝑅=0.7. The distance between these two 

crack growth rate data of 𝑅=0.1 and 0.4 also decreased. The crack growth rate data 

for 𝑅=0.7, did not move because there was no crack closure effect. If the data of Figure 

4.4.4 and Figure 4.4.5 are compared, then all three crack growth rate data for the 

effective stress intensity factor range were closer to each other, than the three crack 

growth rate data for the stress intensity factor range without considering the effect of 

crack closure. Therefore, the 𝑅 ratio effect can be explained by the crack closure effect 

and the crack growth rate data contained less scattering when the effective stress 

intensity factor range was considered. 

 

 

Figure 4.4.5 Crack closure effect on fatigue crack growth rate for different R ratios in log-log 

scale. 
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4.5 Discussion 

 

From the replica technique of crack growth monitoring, it was clear that fatigue cracks 

propagated steadily during constant amplitude (CA) loading. Then, there was an 

acceleration of fatigue crack growth right after the overload. An overload retardation 

period was observed afterwards. Finally, the crack growth returned to the same rate 

as in the preoverload crack growth period. This type of transient overload effect was 

also overserved in other studies [62-66]. The delay distance, 𝑎𝐷 and number of delay 

cycles, 𝑁𝐷 also increased with the OLR as suggested in other research work [63]. The 

delay distance, 𝑎𝐷 and number of delay cycles, 𝑁𝐷 are defined in Figure 4.5.1. The 

crack closure measurement using compliance curve also suggested the same trend 

of transient overload effect.  Here, crack growth driving force reduced due to the 

enhanced crack closure after the overload. Therefore, crack closure can be used to 

explain the overload effect.  

 

 

Figure 4.5.1 Showing the delay distance, 𝑎𝐷 and the number of delay cycles, 𝑁𝐷 due to 

overload effect [63]. 
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From both the replica technique and the compliance technique, it can be seen that 

with the increase of the overload ratios (OLRs), the magnitude and extent of crack 

growth retardation increased. This change in crack growth retardation due to OLR 

effect was also found in another study in the same material (aluminium alloy 6082-T6) 

[63]. The retardation distance for all three OLRs including 1.3, 1.6 and 2.1, were less 

than one overload plastic zone size. According to the Wheeler model [8, 57, 74] the 

crack growth retardation is within the fraction of the overload plastic zone. When the 

current plastic zone size reaches the edge of the overload plastic zone, crack growth 

retardation ends. The post-overload crack length increment for maximum crack growth 

retardation (known as ‘delayed retardation’ [81] ) can be found between one eighth to 

one quarter of the overload plastic zone as suggested by [81, 112]. However, it was 

also found between 6-42 % of the overload plastic zone size [63] as mentioned before. 

In this study, the delayed retardation varied between 8-15 % of the overload plastic 

zone size.  

The crack growth rate data shifted to the left with the increase of the 𝑅 ranging from 

0.1, 0.4 and 0.7 when the stress intensity factor range, ∆𝐾, was considered. However, 

when the effective stress intensity factor range, ∆𝐾𝑒𝑓𝑓 , was taken into account based 

on crack closure effect, there was a shift of the crack growth rate data to the left. Crack 

growth rate data for the 𝑅 of 0.1 and 0.4 shifted to the left and nearly merged together 

with the crack growth rate data of 𝑅=0.7 at constant 𝐾𝑚𝑎𝑥 condition. As a result, the 

scattering of the crack growth rate data reduced when effective stress intensity factor 

range, ∆𝐾𝑒𝑓𝑓 was considered. It is clear that 𝑅 ratio effect can be explained by the 

crack closure effect as suggested by other research work [33, 64, 260, 261]. There 

was no sign of crack closure when the crack was propagated at stress ratio of 0.7. 

Experimental effective stress intensity factor range ratios, 𝑈 for 𝑅 of 0.1 and 0.4 are 

quite consistent with the Elber model [78],  the Shijve model [80] and the ASTM model 

[172, 262] as shown in figure 4.5.2. In these models, 𝑈 is a function of 𝑅 which is 

obtained from experimental fatigue crack growth data of aluminium alloy 2023-T3, 

however, these models can be extended to other materials as well. For example, [262] 

used these models to obtain 𝑈 for  P355NL1 steel. Therefore, in this study, the 

comparison of the experimental 𝑈 for aluminium alloy 6082-T6 with these models is 

also valid.  
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Figure 4.5.2 Comparison of R ratio effect on crack closure for different aluminium alloys. 

 

4.6 Summary 

 

From the experimental analysis, it is clear that the application of the overload retards 

the crack growth rate. The retardation can be measured by both the replica and the 

compliance technique. The magnitude and distance of the overload affected zone 

increased with the increase of overload ratio (OLR). With the increase of 𝑅, the crack 

growth rate data shifted to the left. However, the crack growth rate data merged 

together when the effective stress intensity factor range was taken into account. As a 

result, the 𝑅-ratio effect can be explained by the crack closure effect. In conclusion, 

these experimental results will certainly help with the development of new knowledge 

and understanding of underpinning damage tolerance design (DTD). 
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5 Analytical analysis of fatigue crack growth driving force under 

constant amplitude (CA) and variable amplitude (VA) loading 

 

5.1 Introduction 

 

The  plasticity induced crack closure (PICC) and its effects on fatigue crack growth 

driving force under CA and VA loading are explained in detail in the literature review. 

While there have been many experimental analyses on crack closure under fatigue 

loading, there have been comparatively lower analytical studies on this area. The 

development of an accurate analytical model coupled with experimental investigation 

is highly desirable as it will make prediction of the fatigue crack growth behaviour both 

cost and time effective.  

Various researchers have developed analytical models to investigate crack closure 

phenomena [83, 263-265]. These are mostly generated by modifying Dugdale’s ‘strip-

yield’ model [86]. The modelling of the propagation of the crack into the crack tip plastic 

zone and the formation of a plastic wake on the crack faces due to this propagation 

are the basis of these. These models are helpful to understand near-tip crack 

behaviour in detail. These strip yield based models mostly analyse crack closure in 

the plane stress condition. However, crack closure in the plane strain condition has 

also been analysed by this type of model [83, 266] after consideration  of the effect of 

stress state on plastic deformation. FASTRAN code [167], which is based on the ‘strip-

yield’ model, has been developed using ‘constraint factor’ in order to represent the 

three-dimensional crack closure effect when considering plane stress and plane strain 

conditions.  

In this chapter, a modified strip-yield model with FORTRAN coding was used and run 

by Simply Fortran 2 to investigate PICC. It will help understand the fatigue crack 

growth driving force in detail under CA and VA loading through detailed simulation of 

the crack opening profile and the contact stress distribution. Xu [9] developed this 

model based on the physical and mechanical behaviour of centre cracked tension 

(CCT) samples and validated it with the experimental studies. It has already been used 

to investigate near-tip crack behaviour and the overload effect in various studies for 

specific loading conditions [9, 24, 62, 265, 267]. In the present study, this model was 
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investigated further under various loading conditions. Crack closure and the 

corresponding stress distributions around the crack tip for different crack lengths have 

also been investigated.  

There is a great demand for reliable assessments of fatigue crack closure under 

different loading conditions in fatigue research [133, 268, 269]. To fulfil this, a detailed 

investigation of crack closure and corresponding fatigue crack growth driving forces 

have been investigated in this chapter using the analytical technique. The properties 

of aluminium alloy 2024-T351 were considered here. The analysis was performed 

mainly in the plane stress condition. Constant ∆𝐾 loading was selected for this 

analysis. The strip-yield model was first explained. Near-tip crack behaviour during 

fatigue crack growth was then evaluated. The overload effect, stress ratio (𝑅-ratio) 

effect,  baseline stress intensity factor range effect and geometrical constraint factor, 

𝛼 effect on fatigue crack growth driving force were also assessed under different 

loading conditions. 

 

5.2 Methodology 

 

5.2.1 Model Construction 

 

The strip-yield model is based on a modified Dugdale model [86]. It is used to simulate 

crack closure of a centre cracked tension (CCT) specimen under fatigue loading. 

Aluminium alloy 2024-T351 was used for this purpose. The length and width of the 

specimen were 300 𝑚𝑚 and 150 𝑚𝑚. Initial crack length was 40 𝑚𝑚. The Young’s 

modulus, yield strength and ultimate strength of the material were 70 𝐺𝑃𝑎, 372 𝑀𝑃𝑎 

and 483 𝑀𝑃𝑎, respectively. Figure 5.2.1 shows the schematic view of the model. 
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Figure 5.2.1 Schematic view of strip-yield model [62]. 

 

This model (Figure 5.2.1)  consists of 3 regions including a fictitious crack, 2(𝑎0+𝑟𝑝), 

where, a0 is the half crack length and 𝑟𝑝 is the plastic zone size ahead of the crack tip. 

1. Region A is the linear elastic region with the Young’s modulus of 𝐸, 

2. Region B is the area of length, 𝑟𝑝 ahead of the physical crack tip and 

3. Region C is the plastically deformed area along the crack surfaces behind the 

physical crack tip.  

 

In this model, the plastic zone and the crack surface displacement are obtained by 

superposition of two tensile stresses: (i) the remote uniform tensile stress, 𝜎∞, and (ii) 

the contact stress, 𝜎𝑖, on a segment of the crack surface as shown in Figure 5.2.2. The 

segment stress, 𝜎𝑖, is basically caused by premature contact due to the residual 

plastically deformed material behind the crack tip, and crack surface roughness and 

oxide debris (especially at the near-threshold regime).  
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Figure 5.2.2 Superposition of two tensile stresses: (a) remote uniform tensile stress, 𝝈∞   

and (b) uniform stress, 𝝈𝒊 on a segment of the crack surface [62]. 

 

Region B consists of up to 40 elastic-perfectly plastic bar elements whereas region C 

consists of 60 elements of the same type in order to allow enough space for crack 

closure formation (Figure 5.2.1). The length of the elements in region B depends on 

the fictitious crack opening displacement or the plastic zone ahead of the physical 

crack tip at the maximum level of the cyclic loading. However, the lengths of the 

elements in the regions C are kept zero initially and then updated with the crack 

extension. Element widths varied according to their relative positions with the smallest 

elements being located around the physical crack tip and behind the fictitious crack 

tip. In this study, the width of the first 40 elements in region C are of 0.11𝑟𝑃 each 

(Figure 5.2.1). The 10 elements that follow are of 0.5𝑟𝑃 each in region C, the third 

group of 10 elements which are behind the crack tip are of 0.01𝑟𝑃 each, the fourth 

group of 10 elements ahead of the crack tip are of 0.01𝑟𝑃 each, the fifth group of 10 

elements are of 0.03𝑟𝑃 each, the sixth group of 10 elements are of 0.05𝑟𝑃 each and 

the final group of 10 elements are of 0.01𝑟𝑃 each. As a result, the total element width 

behind the physical crack tip in region C is increased up-to 5 times of the value of 𝑟𝑝 
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to properly capture the effect of the plastically deformed material behind the crack tip 

on crack closure. 

 

5.2.2 Governing equations of the strip-yield model for the computer 

coding 

 

Figure 5.2.3 shows the Dugdale model [86] used for determination of the plastic zone 

when the crack is fully open.  

 

 

Figure 5.2.3 Dugdale model for the determination of the plastic zone size (a) and 

corresponding yield stress (b)  [7]. 

 

Since there is no stress singularity at the fictitious crack tip, the stress intensity factor, 

𝐾𝜎∞, due to remote tensile stess, 𝜎∞ will be equal to the sum of the stress intensity 

factor, 𝐾𝜎𝑖 due to uniform compressive stress on element 𝑖 in region B as shown in 

Equation 5.2.1. 

  

𝐾𝜎∞ +∑𝐾𝜎𝑖

40

𝑖=1

= 0 

 

(5.2.1) 
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For the solutions corresponding to Figure 5.2.3(a), and Figure 5.2.3(b), approximate 

finite-width corrections varied with boundary-collocation analyses must be used [83]. 

The stress intensity factor for Figure  5.2.3(a) is shown in Equation 5.2.2. 

 

 

 

𝐾𝜎∞ = 𝜎∞√𝜋(𝑎0 + 𝑟𝑃) sec (
𝜋(𝑎0 + 𝑟𝑃)

𝑊
) 

 

(5.2.2) 

 

where, 𝑊 is the width of the strip-yield model. 

 

The stress intensity factor for Figure 5.2.3(b) is given in Equation 5.2.3. 

 

 

  

𝐾𝜎𝑖 =
2𝜎𝑖
𝜋
√𝜋(𝑎0 + 𝑟𝑃) [sin

−1(
𝑠𝑖𝑛 (

𝜋𝑏2
𝑊 )

sin (
𝜋(𝑎0 + 𝑟𝑃)

𝑊 )
)

−sin−1(
𝑠𝑖𝑛 (

𝜋𝑏1
𝑊 )

sin (
𝜋(𝑎0 + 𝑟𝑃)

𝑊 )
)]√sec (

𝜋(𝑎0 + 𝑟𝑃)

𝑊
) 

 

(5.2.3) 

 

  

Only the quarter of the specimen is analysed to simulate crack closure due to the 

symmetry of the model. Figure 5.2.4 shows the key features of the model.  
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Figure 5.2.4 Key features of the quarter plate model for the crack closure analysis [267]. 

 

Element 𝑗 is connected to the linear elastic region A at point 𝑗 and subjected to a 

uniform stress, 𝜎𝑗 , over the element width, 𝜔𝑗. 𝐿𝑗  is the length of element 𝑗. 𝑉𝑗 is the 

crack surface opening displacement at point 𝑗, which is caused by the remotely applied 

load and the stress from the bar elements. 

The crack surface opening displacement at point  𝑖 is given by Equation 5.2.4. 

  

𝑉𝑖 = 𝜎∞𝑓(𝑥𝑖) −∑𝜎𝑗[𝑔(𝑥𝑖, 𝑥𝑗) + 𝑔(−𝑥𝑖, 𝑥𝑗)]

100

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 100 

 

(5.2.4) 

 

𝑓(𝑥𝑖) and  𝑔(𝑥𝑖, 𝑥𝑗) are given by the Equations: (5.2.5) and (5.2.6). 
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𝑓(𝑥𝑖) =
2(1 − 𝜂2)

𝜋𝐸
√[𝑑2 − 𝑥𝑖

2]sec (
𝜋𝑑

𝑊
) 

 

(5.2.5) 

 

  

𝑔(𝑥𝑖 , 𝑥𝑗) =
2(1 − 𝜂2)

𝜋𝐸
[(𝑏2 − 𝑥𝑖) cosh

−1 (
𝑑2 − 𝑏2𝑥𝑖
𝑑|𝑏2 − 𝑥𝑖|

) − (𝑏1

− 𝑥𝑖) cosh
−1 (

𝑑2 − 𝑏1𝑥𝑖
𝑑|𝑏1 − 𝑥𝑖|

)

+ √𝑑2 − 𝑥𝑖
2 (sin−1 (

𝑏2
𝑑
)

− sin−1 (
𝑏1
𝑑
))] [

sin−1(𝐵2) − sin
−1(𝐵1)

sin−1 (
𝑏2
𝑑
) − sin−1 (

𝑏1
𝑑
)
]√sec (

𝜋𝑑

𝑊
) 

 

(5.2.6) 

 

where, 𝐸 is the modulus of the material, and 𝜂 is the material constant which is zero 

for plane stress and Poisson’s ratio, 𝑣 for plane strain, 𝑑 = 𝑎0 + 𝑟𝑃, 𝑏1 = 𝑥𝑗 −

𝜔𝑗

2
 and 𝑏2 = 𝑥𝑗 +

𝜔𝑗

2
 (Figure 5.2.1), while 𝐵1and 𝐵2are given by 

  

𝐵𝑖 =
𝑠𝑖𝑛 (

𝜋𝑏𝑖
𝑊 )

sin (
𝜋𝑑
𝑊)

 𝑓𝑜𝑟 𝑖 = 1 𝑜𝑟 2 

 

(5.2.7) 

 

 

The crack surface contact stresses used for the calculation of the crack opening stress 

are solved from the linear system of Equation 5.2.4 using the Gauss-Seidel iterative 

method [270] with boundary conditions added. The boundary conditions in region B 

ahead of the current physical crack tip are given in Equations 5.2.8(a-c).  

 

  

 𝐼𝑓, 𝑉𝑖
(𝑘) ≥ 𝐿𝑖

(𝑘−1) (1 + 𝛼
𝜎0

𝐸
) ⟹ {

𝐿𝑖
(𝑘) = 𝑉𝑖

(𝑘) (1 +
𝛼𝜎0

𝐸
)

𝑖𝑓 𝜎𝑖
(𝑘) ≥ 𝛼𝜎0⟹ 𝜎𝑖

(𝑘) = 𝛼𝜎0 
 

 

(5.2.8(a)) 
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𝑉𝑖
(𝑘) < 𝐿𝑖

(𝑘−1) (1 + 𝛼
𝜎0
𝐸
) ⟹ {

𝐿𝑖
(𝑘) = 𝑉𝑖

(𝑘) (1 +
𝛼𝜎0
𝐸
)

𝑖𝑓 𝜎𝑖
(𝑘) ≤ −𝛼𝜎0⟹ 𝜎𝑖

(𝑘) = −𝛼𝜎0 
 

 

(5.2.8(b)) 

 

  

Otherwise, {
𝐿𝑖
(𝑘) = 𝑉𝑖

(𝑘)

       𝜎𝑖
(𝑘) = 𝜎𝑖

(𝑘−1) 
 

 

 

(5.2.8(c)) 

The boundary conditions in region C behind the physical crack tip are given in 

Equations 5.2.9(a-c). 

  

𝐼𝑓, 𝑉𝑖
(𝑘) ≥ 𝐿𝑖

(𝑘−1)⟹ {
𝐿𝑖
(𝑘) = 𝐿𝑖

(𝑘−1)

𝑖𝑓 𝜎𝑖
(𝑘) ≥ 0 ⟹ 𝜎𝑖

(𝑘) = 0 
 

 

(5.2.9(a)) 

 

  

𝑉𝑖
(𝑘) < 𝐿𝑖

(𝑘−1) (1 + 𝛼
𝜎0
𝐸
) ⟹ {

𝐿𝑖
(𝑘) = 𝑉𝑖

(𝑘) (1 +
𝛼𝜎0
𝐸
)

𝑖𝑓 𝜎𝑖
(𝑘) ≤ −𝜎0⟹ 𝜎𝑖

(𝑘) = −𝜎0 
 

 

(5.2.9(b)) 

 

  

Otherwise, {
𝐿𝑖
(𝑘)
= 𝑉𝑖

(𝑘)

       𝜎𝑖
(𝑘) = 𝜎𝑖

(𝑘−1) 
 

 

(5.2.9(c)) 

 

where, 𝜎0 is the flow stress or average of the yield strength and the ultimate strength 

of the alloy, 𝛼, is the constraint factor with 𝛼 = 1 representing the plane stress state 

and the additional superscripts on 𝜎𝑖, 𝑉𝑖 and 𝐿𝑖 denote the iteration number of the 

iterative process solving the linear system Equation 5.2.4. And Equation 5.2.4 is 

rewritten in the form of Equation 5.2.10.  
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𝜎𝑖
(𝑘) =

[𝜎∞𝑓(𝑥𝑖) − 𝑉𝑖 −∑ 𝜎𝑗
(𝑘) (𝑔(𝑥𝑖 , 𝑥𝑗) + 𝑔(−𝑥𝑖 , 𝑥𝑗)) − ∑ 𝜎𝑗

(𝑘−1) (𝑔(𝑥𝑖 , 𝑥𝑗) + 𝑔(−𝑥𝑖 , 𝑥𝑗))
100
𝑗=𝑖+1

𝑖−1
𝑗=1 ]

𝑔(𝑥𝑖 , 𝑥𝑗) + 𝑔(−𝑥𝑖 , 𝑥𝑗)
 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 100  

 

 

(5.2.10) 

Initial assumptions for the value of 𝜎𝑖 are zero and are inserted into the right side of 

the linear system of Equation 5.2.10. In the Gauss-Seidel iterative method, the newly 

obtained stress 𝜎𝑖
(𝑘)

 is checked against the boundary conditions of Equations 5.2.8(a-

c) and Equations 5.2.9(a-c) once calculated, it is updated accordingly. The newly 

obtained stresses 𝜎𝑖
(𝑘)

 are always used in Equation 5.2.10 to calculate the remaining 

unknown stresses, which makes the solving of the linear system of Equation 5.2.10 

more efficient. The process is repeated until the changes in all the 𝜎𝑖, are less than 1 

% of the flow stress of the alloy. The crack opening stress, 𝜎𝑜𝑝, is calculated based on 

the following criteria; (i) the applied stress increment (𝜎𝑜𝑝 − 𝜎𝑚𝑖𝑛) is used to effectively 

remove all the contact stresses (<1 % 𝜎0) from the bar elements in region C, and (ii) 

the applied stress increment (𝜎𝑜𝑝 − 𝜎𝑚𝑖𝑛) is used to effectively separate the surface 

contact (< 1 % 𝛿𝑡𝑚𝑎𝑥), where 𝛿𝑡𝑚𝑎𝑥  is the physical crack tip opening displacement at 

maximum load of the loading cycle) behind the physical crack tip. An iterative 

procedure is again employed in the crack opening stress calculations. 

Figure 5.2.5 shows the flow chart of the computer code developed to carry out the 

above numerical simulations of the crack closure. 
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Figure 5.2.5 Flow chart of computer code for crack closure solution using strip-yield model. 

 

5.3 Results and analyses 

 

5.3.1 Near-tip crack behaviour under fatigue loading  

 

The strip-yield model was used to investigate near-tip crack behaviour under both 

constant amplitude (CA) and variable amplitude (VA) loading. The build-up of crack 

closure and its influence on fatigue crack growth behaviour are explained here. The 

variation of cyclic crack tip opening displacement, ∆(𝐶𝑇𝑂𝐷), plastic zone size, etc. are 
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used as the parameters to analyse near-tip crack behaviour under the baseline fatigue 

loading of 𝑅=0.  

 

5.3.1.1 Near-tip crack behaviour under constant amplitude (CA) 

loading 

 

Figure 5.3.1(a) shows the crack profiles at maximum and minimum loads of the first 

load cycle of constant amplitude (CA) loading at stress ratio, 𝑅=0, under the plane 

stress condition. A baseline stress amplitude, ∆𝜎=50 𝑀𝑃𝑎 was used to simulate the 

crack profile. The corresponding ∆𝐾 was 12.53 𝑀𝑃𝑎√𝑚. For convenience of the 

comparison, the crack opening displacements, 𝑣(𝑥) were normalised by the elastic 

opening displacement, 𝛿𝑏 at the physical crack tip under the maximum loading, 𝑃𝑚𝑎𝑥 , 

and 𝑥 coordinates in relation to the physical crack tip of the crack surface were 

normalised by the monotonic plastic zone size, 𝑟𝑏 at 𝑃𝑚𝑎𝑥. The physical crack tip was 

set at 
𝑥

𝑟𝑏
=0 with an initial half crack length of 20 𝑚𝑚. It was found that the maximum 

crack tip elastic displacement was 1𝛿𝑏 and the minimum crack tip elastic displacement 

was 0.5𝛿𝑏 which agrees well with the value suggested by [86]. The crack closure level, 

𝑃𝑜𝑝 

𝑃𝑚𝑎𝑥 
 was found to be 0, where, 𝑃𝑜𝑝  is the crack opening load, as no crack growth was 

introduced. The crack tip opening displacement, ∆(𝐶𝑇𝑂𝐷) for this fatigue cycle was 

0.5𝛿𝑏. Figure 5.3.1(b) shows the stress distributions along the crack line around the 

crack tip at 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 (minimum loading).The direct stress in the loading direction 

was normalised by the flow stress of the alloy, 𝜎0. It was found that, the forward plastic 

zone size at at 𝑃𝑚𝑎𝑥 was 1𝑟𝑏 and the reversed plastic zone size due to 𝑃𝑚𝑖𝑛 was  
1

4
  of 

the forward plastic zone size (i.e., 0.25𝑟𝑏)  which agrees well with the Dugdale's model 

[86]. 
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Figure 5.3.1 First fatigue cycle under constant amplitude (CA) loading of 𝑅 = 0: (a) crack 

opening profiles, and (b) near-tip stress distributions. 
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Figure 5.3.2 shows the crack profiles and stress distributions at 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛 and 𝑃𝑜𝑝 as 

the crack was grown by  one quarter of the baseline forward plastic zone size. The 

area between the two lines behind the crack tip, 
𝑥

𝑟𝑏
=0, represents the plastically 

deformed material left behind the crack tip due to crack growth, which causes crack 

closure. The area between the two lines ahead of the crack tip, 
𝑥

𝑟𝑏
= 0, represents the 

plastically deformed material or the plastic zone. At 𝑃𝑚𝑎𝑥 (Figure 5.3.2(a), the crack tip 

opening displacement was unchanged from the first fatigue cycle value, 1𝛿𝑏.  At 

𝑃𝑚𝑖𝑛 (Figure 5.3.2(b)), the elastic opening displacement was 0.817𝛿𝑏 which was higher 

than the first loading cycle value, 0. 5𝛿𝑏 , because of the formation of crack closure. At 

𝑃𝑜𝑝 (Figure 5.3.2(c)), the elastic crack tip opening displacement was 0.821𝛿𝑏. Crack 

closure was found immediately behind the crack tip and the crack closure level was 

𝑃𝑜𝑝 

𝑃𝑚𝑎𝑥 
=0.5. The ∆(𝐶𝑇𝑂𝐷) between 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 was 0.183𝛿𝑏 whereas the ∆(𝐶𝑇𝑂𝐷) 

between 𝑃𝑚𝑎𝑥 and 𝑃𝑜𝑝  had a slightly lower value, 0.179𝛿𝑏. In Figure 5.3.2(d), it can be 

seen that forward plastic zone size at 𝑃𝑚𝑎𝑥  decreased to similar to the first loading 

cycle value, 1 𝑟𝑏 and the reversed plastic zone at 𝑃𝑚𝑖𝑛  was decreased to 0.12𝑟𝑏 from 

the first loading cycle value, 0.25𝑟𝑏. This was due to the formation of the crack closure 

or load shielding caused by the load transfer in the wake, which is linked to the reduced 

fatigue damage associated with the smaller reversed plastic zone size. At 𝑃𝑜𝑝, the 

contact stress was removed from the crack wake in region C and residual deformation 

was raised in region B. 
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Figure 5.3.2 Crack profiles (a-c) and near-tip stress distributions (d) after 0.50rb crack growth 

under constant amplitude loading of R=0. 
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5.3.1.2 Near-tip crack behaviour under a 90 % single overload 

 

Figure 5.3.3 shows the crack profiles and stress distributions, at 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛 and 𝑃𝑜𝑝 at 

90 % overload cycle. At 𝑃𝑚𝑎𝑥 (Figure 5.3.3(a)) the elastic opening displacement was 

3.53𝛿𝑏 which was 3.53 times the first load cycle value, 1𝛿𝑏 , because of the higher 

𝑃𝑚𝑎𝑥 of the overload cycle. At 𝑃𝑚𝑖𝑛 (Figure 5.3.3(b)), the elastic opening displacement 

was 1.88𝛿𝑏 . The ratio of the opening displacement for minimum and maximum was 

approximately 0.56,  which is quite consistent with the first loading cycle with only 12 

% difference. The elastic opening displacement value at 𝑃𝑜𝑝 was the same as for the 

𝑃𝑚𝑖𝑛  (Figure 5.3.3(c)). This indicates that there was no closure during the overload 

cycle. This phenomenon can be explained by the overload blunting effect as shown in 

Figure 5.3.3. From Figure 5.3.3(d), it is apparent that the forward plastic zone size at 

𝑃𝑚𝑎𝑥 was 3.7𝑟𝑏 which was 3.7 times higher than the first loading cycle because of the 

greater plastic deformation ahead of the crack tip due to the higher load applied. The 

reversed plastic zone size at 𝑃𝑚𝑖𝑛 was 0.8𝑟𝑏 which was higher than the first loading 

cycle, indicating greater fatigue damage of the overload cycle. However, the the ratio 

of the plastic zone size for minimum and maximum loading was 0.22 due to the 

absence of crack closure with 12 % difference compared with the 1st loading cycle. At 

𝑃𝑜𝑝 , the plastic zone size is similar to the reversed plastic zone size as no crack closure 

exists  behind the crack tip. 
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Figure 5.3.3 Crack profiles (a-c) and near-tip stress distributions (d) of a 90% single overload 

cycle under plane stress condition. 

 

Figure 5.3.4 shows the crack profiles and stress distributions at 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛 and 

𝑃𝑜𝑝 after crack was grown into the overload plastic zone by  0.63𝑟𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑. The elastic 

opening of the physical crack tip at 𝑃𝑚𝑎𝑥  was 1𝛿𝑏 in Figure 5.3.4(a), which was similar 

to that of under CA loading. At 𝑃𝑚𝑖𝑛 (Figure 5.3.4(b)), the elastic opening of the physical 
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crack tip was 0.95𝛿𝑏, which was quite similar to the elastic opening of the physical 

crack tip value, 0.96𝛿𝑏 at 𝑃𝑜𝑝  (Figure 5.3.4(c)). Again, This value was of the same 

order of the value at 𝑃𝑚𝑎𝑥  with 5 % difference. This difference can be explained by the 

excessive plastic deformation left in the crack wake as shown in Figure 5.3.4. The 

∆(𝐶𝑇𝑂𝐷) between 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 was 0.05𝛿𝑏 whereas the ∆(𝐶𝑇𝑂𝐷) between 𝑃𝑚𝑎𝑥 and 

𝑃𝑜𝑝  was slightly lower value, 0.04𝛿𝑏. Both were lower than the values found under CA 

loading. Here, the crack closure was 0.69 and it was higher than the CA loading 

condition. This crack closure can be used to explain the delayed crack growth 

retardation after the application of overload. From Figure 5.3.4(d), it is observed that 

there was a small forward plastic zone, 0.25𝑟𝑝 at 𝑃𝑚𝑎𝑥 , but there was no sign of the 

reversed plastic zone at 𝑃𝑚𝑖𝑛  and 𝑃𝑜𝑝 due to the large extent of the load transfer behind 

the crack tip on the crack face. 
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Figure 5.3.4 Crack profiles (a-c) and near-tip stress distributions (d) of a cycle 0.63𝑟𝑝𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑  

away from the application of a 100 % single overload under the plane stress condition. 

 

5.3.2 Crack growth driving force under a 90 % single overload 

 

Figure 5.3.5 shows a variation of crack growth driving force based on the crack closure 

effect. Here, with a baseline constant amplitude (CA) loading of 𝑅=0 and 

(∆K)𝐵𝐿=12.53𝑀𝑃𝑎√𝑚, single overload of 90 % (overload ratio, OLR=1.9) was applied 

at 
Δa

(𝑟𝑝)𝑂𝐿 
 =0. The overload plastic zone was (𝑟𝑃)𝑂𝐿=1.36 𝑚𝑚 (calculated using 

Dugdale’s model shown in Table 2.2.1).  The crack growth, ∆𝑎, was normalised by 

overload plastic zone size, (𝑟𝑃)𝑂𝐿 , and the post-overload transient crack growth driving 

force, 
∆𝐾𝑒𝑓𝑓

∆𝐾
, was normalised by the baseline crack growth driving force, (

∆𝐾𝑒𝑓𝑓

∆𝐾
)
𝐶𝐴

. It 

was observed  that the crack growth driving force stabilised initially to 1 prior to the 

application of the overload. It increased to 2.5 immediately after the application of 

overload and then reached a minimum level of 0.33 when the crack was propagated 

by a length of 0.25(𝑟𝑝)𝑂𝐿. It then started to climb up gradually and it recovered to its 
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pre-overload level as the crack propagated about one overload plastic zone size, 

1(𝑟𝑝)𝑂𝐿. 

 

 

Figure 5.3.5 Variation of the crack growth driving force due to the application of 90 % 

overload. 

  

The results indicated that crack growth occurred in four stages which are: a constant 

opening level period corresponding to the constant CA crack growth before the 

overload, a very short immediate acceleration period just after the overload, followed 

by prolonged overload period and finally the stabilised opening level period similar to 

the pre-overload condition. All these are consistent with the results reported in the 

literature [62-66]. 

 

5.3.3 Overload ratio (OLR) effect on crack growth driving force due 

to single overload 

 

Figure 5.3.6 shows the variation of crack growth driving force with respect to the 

overload with different overload ratios (OLRs) of 1.4 (% OL=40%), 1.9 (% OL=90 %) 
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and 2.4 (% OL=140 %). Here, the stress ratio was fixed to 𝑅=0. The normalised 

overload affected distance remained constant at 1(𝑟𝑃)𝑂𝐿  for all three OLRs. Here, the 

crack growth driving force became a minimum value at 0.25(𝑟𝑃)𝑂𝐿 for OLR of 1.4 and 

1.9. However, for OLR of 2.4, closure level reached 1 at a lower than 0.25(𝑟𝑃)𝑂𝐿 due 

to that the fact that the normalised crack growth driving force reached zero at that 

distance. Therefore, the crack arrest occurred where the effective crack growth driving 

force was reduced to zero for OLR of 2.4. It is also evident that with the increase of 

OLR, the crack growth driving force decreased. For, 1.4, 1.9 and 2.4 OLR, the 

normalised minimum crack growth driving force decreased down to 0.74, 0.33 and 0, 

respectively. 

 

 

Figure 5.3.6 Variation of crack growth driving force due to the application of overload with 

different OLRs. 
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5.3.4 Stress ratio (𝑹-ratio) effect on fatigue crack growth driving 

force during single overload effect 

 

Figure 5.3.7 shows the 𝑅 ratio effect on the fatigue crack growth driving force after the 

application of 90 % single overload. It is seen that, with the increase of 𝑅, crack growth 

driving force increased, which is linked to the lower crack closure level at higher stress 

ratios. The overload affected distance remained at 1(𝑟𝑃)𝑂𝐿 independent of the 𝑅 ratio 

effect. However, maximum closure distance shifted to the left with the increase of 𝑅.  

Here, for 𝑅 ratio of 0.0, 0.1 and 0.3, maximum closure distance points were 0.25(𝑟𝑃)𝑂𝐿, 

0.21(𝑟𝑃)𝑂𝐿 and 0.16(𝑟𝑃)𝑂𝐿, respectively. For 𝑅 of 0, 0.1 and 0.3, the normalised 

minimum crack growth driving force were 0.33, 0.38 and 0.46, respectively. 

 

 

Figure 5.3.7 Variation of crack growth driving force due to 90 % overload at different R 

ratios. 
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5.3.5 Baseline stress intensity factor range  effect on fatigue crack 

growth driving force during a single overload 

 

Figure 5.3.8 shows the baseline stress intensity factor range, (∆K)𝐵𝐿 effect on the 

fatigue crack growth driving force under a single overload effect. Here, fixed OLR=1.9 

(% OL=90 %) and 𝑅=0 were used. Firstly, it is apparent that, with the increase of 

(∆K)𝐵𝐿, the crack growth driving force decreased. The closure affected distance and 

maximum closure distance remained independent of the (∆K)𝐵𝐿 effect, this 

observation is similar to the effect of 𝑅 and OLR. Here, for the baseline stress intensity 

factor range, (∆K)𝐵𝐿 of 7.52 𝑀𝑃𝑎√𝑚, 10.03 𝑀𝑃𝑎√𝑚 and 12.53 𝑀𝑃𝑎√𝑚, the 

normalised crack growth driving force were 0.74, 0.58 and 0.32, respectively. 

 

 

Figure 5.3.8  Variation of crack growth driving force due to the application of overload 90% at 

different baseline stress intensity factor range with R=0. 

 

 



140 
 

5.3.6 Constraint factor effect on fatigue crack growth driving force 

during single overload 

 

Figure 5.3.9. shows the effect of the constraint factor, 𝛼 on the fatigue crack growth 

driving force under a single overload. Here, a fixed value of OLR=1.9 (% OL=90 %) 

and 𝑅=0 were used. With the increase of the 𝛼 value, the crack growth driving force 

increased, which is consistent with the decreased crack closure under higher 

deformation contraint.  For an 𝛼 value of 1.0, 1.5 and 3, the normalised minimum crack 

growth driving force were 0.34, 0.52 and 0.8, respectively. 

 

Figure 5.3.9 Variation of crack growth driving force due to the application of 90 % overload at 

different constraint factor, α with R=0. 
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5.4 Discussion 

 

At the first loading cycle, the crack profile and stress distribution in front of the crack 

tip were quite consistent with those predicted by Dugdale model [86].  The ratio of the 

elastic crack tip opening displacements for minimum and maximum loading was 0.5, 

while the ratio of crack tip plastic zone sizes under the minimum and maximum loading 

was 0.25. No crack closure exists for the first fatigue cycle as there is no plastically 

deformed material left behind the crack tip. When the crack grew to a certain distance, 

the stabilised crack closure was developed under CA fatigue loading. Here, due to the 

effect of the plastic wake and crack closure, the ratio of the elastic crack tip opening 

displacements for minimum and maximum loading decreased. The ratio of plastic zone 

size decreased due to load transfer behind the crack tip caused by the crack closure. 

In the presence of an overload, the crack profile and stress distribution exhibit 

distinctive post-overload transient behaviour. Crack tip blunting was also clearly 

observed for the overload cycle, which led to a short period of crack growth 

acceleration after the overload. When the crack grew into the overload plastic zone, 

the reduction in the ratio of the elastic crack tip opening displacements of minimum 

and maximum loading was increased compared with that of CA loading condition, 

which led to the delayed overload retardation on crack growth. This can be explained 

by the higher crack closure effect caused by the overload. 

The Crack growth driving force remained steady at a constant level before the 

overload, but it increased after the application of the overload due to the crack tip 

blunting mentioned earlier. It then started to decrease while the crack propagated 

inside the overload plastic zone. It finally went back to the preoverload level as the 

crack propagated to the edge of the overload plastic zone. This correlated with the 

crack growth retardation effect due to the overload. This overload effect on fatigue 

crack growth is consistent with other studies [62-66]. 

With the increase of the overload ratio (OLR), the crack closure also increased, but 

the crack growth driving force decreased. Therefore, the OLR had a positive effect in 

reducing the fatigue crack growth driving force. This is also supported by other 

research works [62, 63, 71] where the overload retardation effect gets prominent with 

higher OLR. In this present study, an OLR of 2.4 led to crack arrest. On the other hand, 
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the 𝑅 ratio had a negative effect on reducing the fatigue crack growth driving force. 

Borrego et al. [63] also found a decreasing overload retardation effect with the 

increase of 𝑅 ratio. In the present study, at constant 𝑘𝑚𝑎𝑥, crack closure effect 

decreased with the increase of 𝑅 ratio which eventually led to a decrease in the 

transient overload retardation effect. It is also worth noting that, the maximum overload 

retardation point also shifted to the left with the increase of 𝑅 as reported in the 

literature [63]. 

The baseline stress intensity factor range, (∆K)𝐵𝐿 also had a positive effect on the 

fatigue crack growth driving force within the overload affected zone. This can be 

demonstrated by Figure 5.4.1 where the change in the minimum crack growth driving 

force with the change of the baseline stress intensity factor range for different 𝑅 and 

OLR values is shown. The minimum crack growth driving force decreased as the 

baseline stress intensity factor range increased. This result is also supported by 

previous research work [63]. Therefore, the minimum crack growth driving force is a 

function of the OLR, 𝑅 ratio and baseline stress intensity factor range.  

 

 

Figure 5.4.1 Variation of minimum crack growth driving force with the change of baseline 

stress range at different 𝑅 ratio and OLR. 
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The size of the overload affected distance was found to have the same size for all 

cases investigated and this size is equal to the overload plastic zone size. The 

literature results are not conclusive on this as some research has shown that the 

overload affected zone is equal to one overload plastic zone [71, 271] and others found 

it to be much larger than the overload plastic zone [67, 151]. It has been reported [63] 

that the size of the overload affected zone is dependent on the specimen and loading 

conditions. In the present work, the maximum closure distance was a quarter of the 

overload plastic zone size for different OLR and baseline stress intensity factor range 

conditions. However, it gradually shifted to the left as the  𝑅 ratio increased. This kind 

of shift with the increase of R was also observed in other studies [63, 67]. In addition, 

the present study showed that the fatigue crack growth driving force increased and 

crack closure decreased with the increase of constraint factor, 𝛼. As such, this 

constraint factor, 𝛼 can be used to explain three dimensional plasticity induced crack 

closure (PICC) including plane stress, plain strain and mixed of plane stress and plane 

strain conditions. 

 

5.5 Summary 

 

This strip yield model was proven powerful to simulate and predict the near-tip crack 

opening profile and the stress distribution around the crack tip. The crack closure effect 

due to variable amplitude (VA) loading can be explained in detail using this model. The 

OLR and baseline stress intensity factor had a positive effect on retarding the crack 

growth driving force by increasing the crack closure. The 𝑅 ratio at constant 𝑘𝑚𝑎𝑥, had 

a negative effect on retarding the crack growth due to the reduction of the crack 

closure. The maximum crack growth retardation point was also found to shift left as 

the value of  𝑅 increased. The results also showed that the constraint factor, 𝛼 can be 

effectively used to explain three dimensional plasticity induced crack closure (PICC) 

effect. 
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6 Effect of plastic deformation on compliance curve based crack 

closure measurement 

 

6.1 Introduction 

 

The damage tolerance design (DTD) approach is regarded as an improved design 

philosophy which was introduced in the 1970’s due to the limitation of previous 

approaches including fail-safe, and safe life design approaches [19, 22, 24]. Under 

this design approach, a crack may remain in the structure. However, the crack growth 

rate is monitored based on the fracture mechanics approach and an inspection 

program is set up so that the crack does not go beyond the critical limit starting from 

the initial detectable crack length. At the moment, this design philosophy remains 

conservative in its nature [7]. The inclusion of the crack closure concept for accurate 

fatigue crack growth life prediction will make the damage tolerance design more 

practical and reliable. 

It is generally accepted that the crack growth driving force can be influenced by 

intrinsic and extrinsic factors occurring around the crack tip. Intrinsic behaviour is 

affected by deformation heterogeneity, and crack tip plasticity in relation to grain size, 

secondary phase particle separation and/or dislocation cell size. Extrinsic factors 

include crack tip shielding processes (e.g. crack closure), environment and loading 

conditions which may not depend on the microstructure of the material. 

Fatigue crack closure is the phenomenon which is widely considered to cause 

reduction in the fatigue crack growth driving force due to the premature contact of 

crack faces at positive load levels during cyclic loading. The concept of crack closure 

has been successfully used to rationalise various types of crack growth behaviour 

such as overload retardation, underload acceleration, and load sequence effect under 

variable amplitude loading [9, 10, 24, 81, 100, 108, 109, 272]. There are different types 

of crack closure mechanisms available in the literature such as plasticity induced crack 

closure (PICC), roughness induced crack closure (RICC), oxide induced crack closure 

(OICC), etc. [87, 179, 273-276]. Various microstructural and micromechanical factors 

influence the premature contact of the crack surface or crack closure. It is evident that 

separation of intrinsic and extrinsic behaviour in terms of isolating the crack closure 
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effect from the crack tip plasticity effect can further improve the crack growth life 

prediction model. According to Singh et al. [277], it is found that the crack-tip nonlinear 

parameters including the range of cyclic plastic strain, crack tip opening displacement, 

size of reversed plastic zone and total plastic dissipation per cycle are influenced by 

the crack closure mechanism. To obtain these nonlinear parameters accurately, crack 

closure needs to be isolated, and the effective stress intensity factor should be utilised. 

On the other hand, near-tip plasticity may have an influence on crack closure level. 

Hence, discretisation of crack closure and crack tip plasticity will yield more accurate 

fatigue crack growth life prediction.  

In 1970, Elber [78] first observed the crack closure effect on striation of fatigue crack 

growth. The details of this effect are given in Equation 2.5.1. Crack closure 

measurement methods can be divided into four groups: (i) direct observation of the 

crack tip, (ii) indirect observation derived from crack growth observations, (iii) indirect 

observation derived from physical compliance measurement and (iv) indirect 

observation derived from mechanical compliance measurement [9, 133, 265]. Among 

them, mechanical compliance measurement is the most widely used method where 

crack closure/opening point (𝑃𝑐𝑙/𝑃𝑜𝑝) is identified at the initial deviation of the linearity 

in a given compliance curve of the cracked sample. Figure 6.1.1. illustrates a widely 

used method for crack closure measurement where the crack closure point is identified 

as the transition point of the linear part (solid line) representing a fully open crack and 

the non-linear part (dotted line) representing a gradually closed crack. 
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Figure 6.1.1 Schematic illustration of compliance curve based crack closure measurement. 

 

The identification of this 𝑃𝑐𝑙/𝑃𝑜𝑝 is affected by the material, loading and measurement 

technique used [9, 24, 278, 279]. It is perhaps not surprising that there is a large 

discrepancy in the results reported in the literature on crack closure measurement. 

Given the importance associated with the identification of a closure point, it is essential 

to make the mechanical compliance measurement technique more systematic, 

accurate and reliable. More detailed investigation of the compliance curve and factors 

affecting the change in the compliance are therefore needed. 

Fatigue crack growth behaviour depends on localised stress-strain behaviour around 

the crack tip. Many micromechanical and microstructural factors control extrinsic and 

intrinsic behaviour of fatigue crack growth resistance. Plasticity induced crack closure 

is considered as the extrinsic behaviour widely used to rationalise fatigue crack growth 

resistance during variable amplitude (VA) loading. An accurate qualitative and 

quantitative analysis of crack closure is essential for fatigue crack growth prediction 

and damage tolerance design (DTD). On the other hand, crack tip plasticity is often 

controlled by material microstructure and hence related to the intrinsic behaviour of 
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the material. It is therefore possible that the plasticity-induced crack closure detected 

based on the mechanical compliance curve may be influenced by the intrinsic plastic 

deformation at the crack tip. This chapter presents an investigation of the effect of 

crack-tip plasticity on the non-linearity of the compliance curve in the aluminium alloy 

6082-T651. An Experimental technique as well as finite element (FE) modelling and 

Strip yield modelling have been used to demonstrate the non-linearity of the 

compliance curve in the absence of crack closure. The result can be adopted to 

quantify crack closure more accurately when a compliance-based measurement 

technique is used. 

 

6.2 Material and geometry specifications 

 

Damage tolerant aluminium alloy 6082-T651 has been used in this study. The detail 

of this material has already been given at Section 4.2 in Chapter 4. A centre-cracked 

tension (CCT) specimen has been used, with width, 𝑊, of 150 𝑚𝑚, gauge length, 𝐿, 

of 400 𝑚𝑚 and  thickness, 𝑡, of 1.6 𝑚𝑚.  The half crack length, 𝑎, was 8 𝑚𝑚. 

 

6.3 Methodology  

 

6.3.1 Experimental setup  

 

A hydraulic fatigue machine was used to load the specimen from 0 to 19.2 𝑘𝑁 

gradually.  Two near crack-tip strain gauges located at 2 𝑚𝑚 ahead from the crack 

tip, 𝐺1, and 8 𝑚𝑚 ahead from the crack tip, 𝐺2, and one crack mouth strain gauge, 𝐺3,  

were used to capture strain during the loading.  The schematic view of the test rig set-

up is given in Figure 6.3.1 and the actual view is similar to Figure 4.3.2. 
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Figure 6.3.1 Schematic view of the test set-up. 

 

6.3.2 Finite element (FE) model construction 

 

For the FE analysis, Ansys 16.0 was used. The FE modelling procedure was the same 

as in earlier reported work [24, 110]. The following material properties were chosen; 

Young’s modules, 𝐸=70 𝐺𝑃𝑎, Yield strength, 𝜎𝑦𝑠=268 𝑀𝑃𝑎, Poisson’s ratio, 𝑣=0.33 

and kinematic hardening modulus (bilinear model), 𝐻=0, corresponding to aluminium 

alloy 6082-T651 properties. Different values of 𝐻 could possibly be used once this 

model has been developed as a crack closure model to increase the accuracy of the 

closure level as suggested by [280]. 

 

Only one-quarter of the specimen was considered due to the symmetry of the model 

in plane stress condition. Figure 6.3.2 shows the schematic view of the FE model. Q4 
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(4 node quadrilateral) elements were used for cracked specimen modelling as 

suggested by [10, 24, 81, 99, 101, 105]. Higher order elements are computationally 

expensive, and their use might not improve the accuracy of the result as crack tip zone 

modelling is governed by the element size and convergence analysis [272, 281]. 

 

 

Figure 6.3.2 Schematic view of the FE model [110]. 

 

To capture the stress singularity near the crack tip, a dense mesh was used near the 

crack tip and a coarse mesh was used away from the crack tip (Figure 6.3.3.). After 

performing a mesh density study, the element size around the crack tip was selected 

as 24 µ𝑚 which fulfils the criterion, 
𝐸𝑝

𝑅𝑝
≤0.1 (where 𝐸𝑝=Element size around the crack 

tip, 𝑅𝑝=forward plastic zone size at the crack tip) as adopted in previous research 

works [10, 99, 101, 105, 110] according to which this approach is expected to produce 

a more accurate model of crack tip field which is a primary concern for this study.  
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Figure 6.3.3 FE: (a) Mesh of the quarter model, (b) dense mesh around the crack tip. 

 

The specimen was loaded from 0 k𝑁 to 19.2 𝑘𝑁, and corresponding strains were 

measured at four nodes: three near crack-tip nodes including 2 𝑚𝑚 ahead of the crack 

tip,  𝑁1, 0.4 𝑚𝑚 ahead of the crack tip,  𝑁2, 7.6 𝑚𝑚 ahead from the crack tip,  𝑁3 and 

one crack mouth node,  𝑁4. 

 

6.3.3 Strip yield model construction 

 

The strip yield model is based on the modified Dugdale model [62, 86, 133]. It is used 

to simulate crack closure of a centre cracked tension (CCT) specimen under fatigue 

loading [9, 62, 90, 282]. Aluminium alloy 6082-T651 with similar geometry and material 

properties as in the FE study was used. The details of the model are given in Section 

5.2.2 in Chapter 5.  

The model was loaded up to 19.2 𝑘𝑁 with an initial load of zero and corresponding 

vertical displacements at different increments of loading were measured at the near 

crack-tip point,  𝑃1  0.002 𝑚𝑚 ahead of the crack tip. Crack closure was absent as no 
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crack growth was considered and plane stress condition is considered to keep it 

comparable with the FE model. 

 

6.4 Results and analyses 

 

6.4.1 Experimental analysis of nonlinear compliance curve 

 

Figure 6.4.1. shows the compliance curve and offset compliance curve of strain gauge, 

𝐺1. It was evident that, these curves were not quite linear. The shape of the non-

linearity was a ‘sagging’ type. The compliance curve showed a lower gradient of 

0.0874 (
𝜇𝜀

𝑁
) at lower levels of the loading and a higher gradient of 0.0928 (

𝜇𝜀

𝑁
) at higher 

levels of loading (Figure 6.3.1(a)). The gradient difference was 0.0054 (
𝜇𝜀

𝑁
). From the 

offset compliance curve, the non-linearity was quite clear (Figure 6.4.1(b)). A 

‘transition point’ was found at 6 𝑘𝑁 loading, where the curve significantly changed its 

direction (initial deviation) from its initial linearity of zero strain. The compliance curve 

found in the presence of closure has also this type of ‘transition point’ which is 

considered as a  ‘closure point’ [78]. It should, however, be noted that this non-linearity 

and the ‘transition point’ similar to the ‘closure point’ has nothing to do with crack 

closure. There is no crack closure for a stationary crack and the nonlinearity is caused 

by the crack-tip plasticity as 𝐺1 is very close to the crack tip plastic zone. 

 



152 
 

 

 

Figure 6.4.1 (a) Compliance curve of near crack-tip strain gauge, 𝐺1, 2 𝑚𝑚 ahead of the 

crack tip, (b)  offset compliance curve of near crack-tip strain gauge, 𝐺1,  2 𝑚𝑚 ahead of the 

crack tip. 
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Figure 6.4.2. shows the compliance curve and offset compliance curve of 𝐺2. These 

curves were found to be nonlinear as well with a similar ‘sagging’ shape.  [133, 265] 

also showed non-linearity in the compliance curve in strain gauges away from crack-

tip when crack closure was considered. The gradients of the lower part and upper 

parts were 0.0604 (
𝜇𝜀

𝑁
) and 0.0638 (

𝜇𝜀

𝑁
), respectively (Figure 6.3.2(a)). The difference 

between these two gradients was 0.0034 (
𝜇𝜀

𝑁
), which was lower than the gradient 

difference of the compliance curve for 𝐺1. As 𝐺2 was away from the crack tip plasticity, 

the compliance curves were less influenced by the plasticity effect. Non-linearity was 

visually clear in the offset compliance curve (Figure 6.3.2(b)). The offset compliance 

curve showed a ‘transition point’ at 6 𝑘𝑁 loading (Figure 6.4.2(b)), which is consistent 

with the result obtained from strain gauge 𝐺1. 
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Figure 6.4.2 Experimental: (a) compliance curve of near crack-tip strain gauge, 𝐺2  at 8 𝑚𝑚 

ahead of the crack tip, (b) offset compliance curve of near crack-tip strain gauge, 𝐺2  at 

8 𝑚𝑚 ahead of the crack tip. 

 

Figure 6.4.3. shows the compliance curve and offset compliance curve of gauge,  𝐺3. 

The characteristics of the curves were similar to gauge, 𝐺1  curves in terms of shape. 

[133, 265] also showed non-linearity in the crack mouth strain gauge when crack 

closure was considered. In the compliance curve, the gradient of the lower part and 

upper part were 0.0122 (
𝜇𝜀

𝑁
) and 0.0131 (

𝜇𝜀

𝑁
), respectively (Figure 6.4.3(a)). The 

difference between the lower part gradient  and the upper part gradient was 0.0009 

(
𝜇𝜀

𝑁
), which was less compared to other two compliance curves. Therefore, the level 

of non-linearity was less as it was further away from the crack-tip plasticity zone. The 

offset compliance curve showed a ‘transition point’ at 6 𝑘𝑁 loading (Figure 6.4.3(b).) 

which the data obtained from strain gauge  𝐺1 and  𝐺2.   
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Figure 6.4.3 Experimental: (a) Compliance curve of near crack-mouth strain gauge,  𝐺3, (b)  

Offset compliance curve of crack-mouth strain gauge,  𝐺3. 
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6.4.2 Finite element (FE) analysis of non-linearity of the compliance 

curve 

 

Figure 6.4.4. shows the compliance curve and offset compliance curve of 𝑁1. It was 

evident that these curves were not quite linear. There was a certain non-linearity 

existing.  A ‘sagging’ type non-linearity was apparent with a lower part gradient of 

0.0864 (
𝜇𝜀

𝑁
) and an upper part gradient of 0.0937 (

𝜇𝜀

𝑁
). The gradient difference was 

0.0076 (
𝜇𝜀

𝑁
). This value was quite closer to the experimental value of 0.0073 (

𝜇𝜀

𝑁
) 

obtained from gauge, 𝐺1. The ‘transition point’ was at 6 𝑘𝑁 loading. This non-linearity 

in the compliance curves were due to the crack-tip plasticity effect but it was operating 

quite similar to the plasticity induced crack closure (PICC) around the crack tip. 
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Figure 6.4.4  FE: (a) compliance curve of near crack-tip node,  𝑁1  2 𝑚𝑚 ahead of the crack 

tip, (b) offset compliance curve of near crack-tip node,  𝑁1  2 𝑚𝑚 ahead of the crack tip. 
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Figure 6.4.5. shows the compliance curves of nodes 𝑁2,  𝑁3 and  𝑁4. It was evident 

that, these curves were linear, except for the compliance curve of node  𝑁2. As node 

𝑁2 is within the near crack-tip plasticity zone, it experienced the effect of plasticity 

(Figure 6.4.5(a).). The shape of the non-linearity was also of the ‘sagging’ type and 

the intensity of the non-linearity was also more prominent and visible compared to the 

gauge 𝐺1 (Figure 6.4.1) and node 𝑁1 (Figure 6.4.4) compliance curves. The other two 

compliance curves of  𝑁3  and  𝑁4 were not influenced by the crack tip plasticity as 

these were out of the plasticity zone, which is different to the experimental compliance 

curves of gauge, 𝐺2 and gauge, 𝐺3 (Figure 6.4.4 (b, c)). It is also worth noting that the 

‘transition point’ identified by 𝑁2 is different to that identified by 𝑁1  2 𝑚𝑚 ahead of the 

crack tip and the strain gauges in the experimental method. The FE method and 

corresponding assumptions may lead to this difference; only one point was considered 

to calculate the strain in the FE method while strain gauge provided strain values of a 

particular area in the experimental method. 

 

 

Figure 6.4.5 FE: (a) compliance curve of near crack-tip node,  𝑁2 0.4 𝑚𝑚 ahead of the crack 

tip, (b) compliance curve of near crack-tip node,  𝑁3  7.6 𝑚𝑚 ahead of the crack tip and (c) 

compliance curve of crack-mouth node,  𝑁4. 
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6.4.3 Strip yield modelling of the non-linearity of the compliance 

curve 

 

The strip yield model presented in Chapter 5 has been used to obtain the compliance 

curve of a stationary crack loaded from 0 to 19.2 𝑘𝑁. Figure 6.4.6. shows the 

compliance curve of a point 0.002 𝑚𝑚 ahead of the crack tip. The shape of the curve 

is of a ‘sagging’ type and it was quite similar to the compliance curve of  𝑁2, showing 

a significant level of the non-linearity for material very close to the crack tip. It 

demonstrates clearly the influence of near crack-tip plasticity on the compliance curve 

which justifies that the plasticity effect is evident when the point is taken within the 

plasticity zone and it gets more significant as this point of interest gets closer to the 

crack tip.   

 

 

Figure 6.4.6 Strip yield model: compliance curve of near crack-tip node 0.002 𝑚𝑚 ahead of 

the crack tip. 
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6.5 Discussion 

 

Based on experimental, FE and Strip yield model results, there are a few points, which 

can be discussed and are stated below: 

In the experimental study (Table 6.4.1-6.4.3), all the three strain gauges, including the 

one near the crack-tip, the one farther away from the crack-tip and the crack-mouth 

strain gauge, were able to capture the non-linearity of the compliance curve due to 

crack-tip plasticity even though there is no crack closure for the crack concerned. 

According to Xu [9], the strain gauge can measure the non-linearity of the compliance 

curve from a different location aroud the crack tip. In the present study, the near-tip 

strain gauge was more sensitive to the crack-tip plasticity than the other two strain 

gauges. It produced more defined nonlinear features in the compliance curve. Here, 

the ratio of the gradient difference of the lower and upper parts of the compliance curve 

measured by strain gauges 𝐺3, 𝐺2 and 𝐺1 (Figure 6.3.1) is 1:3.7:6. The offset 

compliance curve which is of ‘sagging’ shape was visually more suitable to locate the 

nonlinear ‘transition point’. [7] also suggested that the offset compliance curve 

technique is more sensitive than the unprocessed compliance curve. This type of 

offset compliance was quite consistent with the offset compliance curve found due to 

the closure effect [9]. In that study, a combination of linear and quadratic curve fittings 

were used.  

In FE analysis (Figure 6.4.4), only the near-tip node was able to capture the non-

linearity both in the compliance and offset compliance curves. The results of the near-

tip node was qualitatively consistent with the experimental results (Figure 6.4.1) in 

terms of shape, gradient change and ‘transition point’ although with a few differences 

in values. The other two nodes including the away crack-tip and crack-mouth nodes 

were not capable of capturing the non-linearity because of their position being away 

from the crack-tip plasticity zone. It  was not consistent with the experimental result 

and the reason for that can be explained by the use of different methods and the 

assumptions made. The node, very close to the crack-tip was more sensitive to the 

plasticity effect, and it produced a clear nonlinear compliance curve with a ‘sagging’ 

shape. It was also determined that as the distance from the crack-tip increased, the 

sensitivity of the non-linearity reduced and the compliance curve become more linear. 
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Both the near crack-tip strain gauge in the experimental analysis and the near crack-

tip node 2 𝑚𝑚 ahead of the crack tip in FE analysis were able to capture the same 

‘transition point’ of the nonlinear curve at 6 𝑘𝑁 loading. The experimental and FE 

compliance and offset compliance curves were approximately overlapping with each 

other as shown in Figure 6.5.1.   

 

 

Figure 6.5.1 Comparison of experimental and FE near-tip compliance curves (a) and 

corresponding offset compliance curve measured 2 𝑚𝑚 ahead of the crack tip (b). 
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In the strip yield model during loading (Figure 6.4.6), the point very near to the crack 

tip within the plastic zone produced a ‘sagging’ shaped compliance curve which was 

visually more pronounced. It also verified the FE result which showed quite similar 

characteristics of higher non-linearity in a node very close to the crack-tip. It is, 

however, worth noting that, for the stationary crack investigated in the current study, 

no plastic deformation would be expected behind the crack tip. As such, the non-

linearity is not related to the plasticity-induced crack closure, but it is directly linked to 

the plastic deformation ahead of the notch or crack tip for a fatigue crack. The 

conventional compliance based crack closure measurement method could therefore 

identify false crack closure, causing problems in crack growth life prediction. The fact 

that the compliance curve measured from a node 0.002 𝑚𝑚 ahead of the crack tip 

shows a much higher transition point, demonstrates further that the compliance curve 

obtained from the near tip strain gauge or node should be carefully evaluated to 

identify the correct crack closure level.  

 

6.6 Summary 

 

From the discussion above, it was quite evident that crack-tip plasticity has an effect 

on the non-linearity of the compliance curve in the absence of crack closure. This 

effect decreases with the increase of the distance away from the crack-tip. The offset 

compliance curve was visually more useful to identify the non-linearity than the 

unprocessed compliance curve. This nonlinearity may lead to the identification of a 

false crack closure when using the conventional compliance curve based crack 

closure measurement method. The compliance curve actually contains the information 

of both crack closure and crack-tip plasticity effect. If one of these is isolated, the other 

will still have an effect on the compliance curve. To calculate the effective fatigue crack 

growth driving force, plasticity effects need to be considered carefully so that more 

accurate qualitative and quantitative fatigue crack growth analysis can be achieved. 

The effect of crack tip plasticity on the non-linearity of the compliance curve should be 

separated from that of crack closure to obtain reliable crack closure measurement. 

The results of this study will enable the development of a more accurate crack growth 



163 
 

life prediction for engineering alloys and damage tolerance design (DTD) for the 

transport industry. 
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7 An analytical model for the identification of the 

threshold of stress intensity factor range for crack 

growth 

 

7.1 Introduction  

 

The value of the stress intensity factor (SIF) range threshold, ∆𝐾𝑡ℎ, for fatigue crack 

growth (FCG) depends highly on its experimental identification. The identification and 

application of ∆𝐾𝑡ℎ are not well established as its determination depends on various 

factors including the experimental, numerical or analytical techniques used. Different 

types of identification methods and factors influencing the threshold have been 

discussed in the literature review.  

Due to the high variability of the ∆𝐾𝑡ℎ values, the determination of the FCG threshold 

cannot be certain [11]. Although several models have been proposed to experimentally 

identify the threshold values, all of them suffer with issues related to the plasticity 

induced crack closure (PICC) effects. For this reason, threshold values reported in the 

literature for the same material can vary over a wide range due to the different 

procedures that were followed. This chapter presents a new analytical model which 

can fit the raw FCG experimental data to determine ∆𝐾𝑡ℎ with high accuracy. The aim 

of this model is to present a new procedure to identify the FCG threshold value for a 

long crack; this approach can overcome the problems related to the experimental 

procedures reported in the literature. The analytical model proposed here makes use 

of FCG data obtained from 𝐾-increasing tests, which are used to derive the FCG 

properties of the material under long crack condition, allowing this model to identify 

the three regions of the entire sigmoidal curve, from the threshold condition up to the 

final value of the crack length.  

Considering the fact that it is difficult to separate the extrinsic threshold from the 

intrinsic threshold using the crack growth data [181], the focus of this chapter is to 

develop a model which can reliably predict the overall threshold of the material under 

certain loading conditions. In particular, since the model makes use of raw data 

generated with a given specimen geometry under certain loading conditions, the 
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analysis of raw data includes both the load ratio and the 𝑇-stress effects. The value 

identified with the model can be an intrinsic or an extrinsic value depending on the test 

conditions at which the data has been acquired. A comparison between the threshold 

SIF range identified by the model proposed and those found in the literature is 

presented in this Chapter. The accuracy with which the analytical model is able to fit 

the raw data is also briefly discussed. 

 

7.2 Methodology 

 

7.2.1 Test results for model development 

 

Crack propagation models built on results obtained from a limited number of tests have 

a validity range closely linked to the particular experimentation carried out [283].  

These models are unable to fit all crack growth data with the same accuracy for the 

entire range of number of cycles for each test. In order to overcome these drawbacks, 

several FCG data sets obtained with different materials, loading conditions and types 

of specimens have been collected from the literature. These datasets have been used 

to verify the suitability of the model in fitting the experimental raw data as well as to 

identify the ∆𝐾𝑡ℎ values of the materials at the corresponding 𝑅 values. A short 

description of the datasets collected from literature follows: 

Ghonem and Dore [284] data: 

Ghonem and Dore [284] carried out tests at room temperature using M(T) specimens 

made of aluminium alloy 7075-T6 having a thickness of 3.175 𝑚𝑚. The crack direction 

was perpendicular to the rolling direction and the loading conditions are reported in 

Table 7.2.1. Sixty specimens were tested under each loading condition to obtain crack 

growth curves which were used to compare with their mathematical model. 
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Table 7.2.1 Loading conditions related to Ghonem and Dore [284] tests. 

 𝑃𝑚𝑎𝑥  (𝑘𝑁) 𝑃𝑚𝑖𝑛(𝑘𝑁) 𝛥𝑃(𝑘𝑁) 𝑅 

Test I 22.79 13.68 9.11 0.6 

Test II 22.25 11.13 11.12 0.5 

Test III 15.19 6.08 9.11 0.4 

                                       

Virkler et al. data [285] data: 

The experimental activity reported by Virkler et al. [285] was aimed at determining 

which crack growth rate calculation method yields the least amount of error when the 

crack growth rate curve is integrated back to obtain the original ‘a’ versus ‘N’ curve 

data. Crack growth tests were carried out on 68 M(T) specimens, made of aluminium 

alloy 2024-T3 and having a thickness of 2.54 𝑚𝑚. All tests were conducted under the 

cyclic load with a maximum value of 5.25 𝑘𝑖𝑝/23.35 𝑘𝑁 and a minimum load of 

1.05𝑘𝑖𝑝/4.67 𝑘𝑁 at 𝑅=0.2.  

 

Wu and Ni [286] data: 

The experimental work of Wu and Ni [286] was carried out on compact tension C(T) 

specimens made of aluminium alloy 2024-T351, having thickness, B = 12 𝑚𝑚 and 

width, W = 50 𝑚𝑚. Tests were carried out with variable amplitude (VA) and constant 

amplitude (CA) loading. The two samples marked by the authors as CA1 and CA2 and 

composed of 30 and 10 specimens respectively were tested at constant amplitude 

(CA) loadings reported in Table 7.2.2. 

 

Table 7.2.2 Loading conditions related to Wu & Ni tests [286]. 

 𝑃𝑚𝑎𝑥  (𝑘𝑁) 𝑃𝑚𝑖𝑛(𝑘𝑁) 𝛥𝑃(𝑘𝑁) 𝑅 

CA1 4.5 0.9 3.6 0.2 

CA2 6.118 3.882 2.236 0.63 
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7.2.2 Model implementation 

 

The analysis of experimental data obtained from FCG tests is quite complex due to 

the scatter nature in the raw data which is amplified by the derivation needed to 

compute the FCG rate. Several useful formulae to fit the experimental data with the 

aim of a better, smoother curve have been proposed and reported in the literature. 

Among those, the use of a polynomial function to fit the raw data gives the ability to 

obtain a single numerical expression for the crack growth rate valid in the entire data 

range [283]. The choice of the most appropriate function can be made considering that 

the crack growth is exponential by nature. In mathematical terms, an exponential 

correlation can be represented by introducing logarithmic functions for the crack length 

[287-289]. This linear correlation (log(a) vs N) can be represented on a semi-

logarithmic plane as a straight line. There are models proposed in the literature which 

are developed adopting an exponential structure [290]. However, the trend identified 

using the experimental FCG data changes as the crack length approaches the failure 

condition. This consideration is supported by the presence of three different regions in 

the sigmoidal curve with each of them following a different trend. On the basis of the 

aforementioned observations, the most suitable formula to fit the whole FCG 

experimental data points can be deduced by summating the individual effects of the 

different crack growth regions [291]. Therefore, the following model, on the basis of a 

trial and error method, could be established. 

 
a(τ) = h ∙ τp + ath ∙ e

(
τα

β−τα
)
 

 (7.2.1) 

where 𝛼, 𝛽 𝑎𝑛𝑑 𝑝 are three parameters to be determined by the least-square method. 

The procedure to derive the values corresponding to ℎ and 𝑎𝑡ℎ is described in later 

parts of this Chapter. The proposed model makes use of a non-dimensional fatigue 

crack growth life, which makes it more general. Moreover, the non-dimensional fatigue 

crack growth life allows decoupling the identification of the equation parameters, which 

are meant to be a material property, from the actual total life for the particular test. The 

non-dimensional fatigue crack growth life, 𝜏 is defined as follows; 

 
𝜏 =

𝑁 + 𝑁𝑡ℎ
𝑁𝑓 + 𝑁𝑡ℎ

 
 (7.2.2) 
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The parameter 𝑁𝑡ℎ, which is identified through a best-fit curve together with the three 

parameters (𝛼, 𝛽 and 𝑝) reported above, is related to the nucleation phase and hence 

to the threshold value.  𝑁𝑓 is the final value of the experimental crack growth life, which 

is the number of cycles counted from the initial crack length up to the final failure of 

the specimen, whilst 𝑁 is the generic value of the fatigue crack growth life. 

Useful formulae can be derived for other parameters in Equation 7.2.2 by considering 

some specific data points of the crack growth curve. At 𝑁= 𝑁𝑓, which corresponds to 

the last experimental data point of the test, the crack length is equal to the value of the 

crack length, 𝑎𝑓, in the corresponding final front just before the failure condition of the 

specimen. This gives: 

 
ℎ = 𝑎𝑓 − 𝑎𝑡ℎ × 𝑒

(
1
𝛽−1

)
 

 (7.2.3) 

Similarly, considering the value of Equation 7.2.3 at 𝑁 = 0, which corresponds to the 

first experimental data point, the crack length is equal to the value of the crack length, 

𝑎𝑡ℎ, corresponding to the starting point of the test. This gives: 

 

𝑎𝑡ℎ =

𝑎0 − 𝑎𝑓 × (
𝑁𝑡ℎ

𝑁𝑓 +𝑁𝑡ℎ
)
𝑝

𝑒(

 
(
𝑁𝑡ℎ

𝑁𝑓+𝑁𝑡ℎ
)
𝛼

𝛽−(
𝑁𝑡ℎ

𝑁𝑓+𝑁𝑡ℎ
)
𝛼

)

 

− (
𝑁𝑡ℎ

𝑁𝑓 + 𝑁𝑡ℎ
)
𝑝

× 𝑒
(
1
𝛽−1

)

 

 (7.2.4) 

 

As already stated, the parameter  𝑁𝑡ℎ is related to the threshold condition and 

represents the number of cycles needed by the crack to reach the crack length 

corresponding to the threshold condition. From Equation 7.2.1, the crack length 

corresponding to the threshold condition is equal to the value of the 𝑎𝑡ℎ parameter for 

 𝑁 = −𝑁𝑡ℎ. 

Equation 7.2.1 is a continuous differentiable function in the range 𝑁𝑡ℎ < 𝑁 <  𝑁𝑓. It is, 

therefore, possible to derive the analytical expression of the crack growth rate,  
𝑑𝑎

𝑑𝑁
  as 

a function of 𝑁. This function (Equation 7.2.5) can be used to represent the continuous 

propagation process from the threshold region up to the final fast crack growth region.  
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(7.2.5) 

The parameters in the crack growth rate function are identified by means of linear 

regression using the FCG raw data. The analytical expression for the crack growth 

rate is equal to zero at 𝑁 = −𝑁𝑡ℎ according to the assumption that the crack length at 

this value corresponds to the threshold condition. 

The procedure for applying the formulae of the analytical model to derive the threshold 

SIF range is as follows; 

i. The experimental raw data of crack length versus number of cycles are fitted 

using Equation 7.2.1. The linear regression method has been adopted to fit the 

model with the experimental data and obtain four parameters: 𝑁𝑡ℎ, 𝛼, 𝛽 and 𝑝 

minimising the error. In earlier work [291], the model was adopted to assess the 

accuracy in fitting the raw data produced during FCG tests. In the same work 

[291], the normal distribution of the residuals as well as the distribution of the 

equation parameters have been included. The present work is focused on the 

identification of the threshold SIF range through the use of this analytical model.  

ii. After the identification of the values of the four parameters  𝑁𝑡ℎ, 𝛼, 𝛽 and 𝑝, the 

values of the other two parameters ℎ and 𝑎𝑡ℎcan be computed.  

iii. The values of the six parameters  𝑁𝑡ℎ,  𝛼, 𝛽 , 𝑝, ℎ and 𝑎𝑡ℎ identified from 

Equation 7.2.1 are applied to Equation 7.2.5 which represents the crack growth 

rate as a function of the fatigue crack growth life. 

iv. A vector in the range [−𝑁𝑡ℎ; 𝑁𝑓] composed of n values is then generated. For 

each value of the vector defined above, the corresponding values of the crack 

length and the crack growth rate are determined using Equations (7.2.1) and 

(7.2.5). The crack length values derived from Equation 7.2.1 are used to deduce 

the SIF range values by means of the expressions in accordance with 

international standards [172]. This means that the method requires knowledge 

of the closed form of the SIF for the tested specimen. In this chapter, the 

expressions reported by the ASTM E647 standard [172] have been used to 

compute the SIF values. 
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v. The value of the crack length corresponding to 𝑁 = −𝑁𝑡ℎ is used to derive the 

value of the threshold SIF range which corresponds to a crack growth rate equal 

to zero. 

 

The procedure described above has been implemented using a Matlab code to identify 

the FCG curves and the ∆Kth values using the datasets produced by Ghonem and 

Dore [284], Virkler et al. data [285] and Wu and Ni [286]. A detailed discussion about 

the capability of the model to properly fit the datasets used in this chapter is given in 

earlier work [291]. Figure 7.2.1. shows some examples of fitting results with the 

experimental points related to set I produced by Ghonem and Dore [284]. 

 

 

Figure 7.2.1 Four crack growth data from Ghonem and Dore [284] dataset - raw data (dots) 

analytical model (in lines). 

Moreover, the normality of the residuals obtained from each curve has been verified 

by the χ2 normality tests and the corresponding residuals frequency histograms have 
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also been evaluated. In Figure 7.2.2, the two means of the residuals for set 𝐼 and set 

𝐼𝐼𝐼 of Ghonem and Dore  [284] datasets are shown as an example to highlight that the 

mean value is equal to zero [291]. 

 

 

Figure 7.2.2 Mean of residuals obtained by fitting Ghonem and Dore [284]  set 𝐼 (a) and 

Ghonem and Dore set 𝐼𝐼𝐼 (b). 
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A further version of the Matlab code, which was already implemented for the fitting 

curves, was developed in order to identify the values of the FCG rate as well as the 

SIF range values. In particular, the SIF values in correspondence with 𝑁 = −𝑁𝑡ℎ for 

each curve of all datasets have been computed in order to estimate the threshold 

values and compare these with those reported in the literature. 

 

7.3 Results and analyses 

 

The interpolation of the raw experimental data represents the first step of the analysis. 

The suitability of the equation for fitting the data has been summarised in the above 

section. In particular, the raw data fitting has an average value of 𝑅2 equal to 0.9998 for 

all dataset [291]. The values of the parameters obtained for each dataset are shown 

in Table 7.3.1. 

 

Table 7.3.1 Parameter values for the five datasets. 

 𝛼 𝛽 𝑁𝑡ℎ 𝑝 ℎ 𝑎𝑡ℎ 𝛥𝐾𝑡ℎ  

𝑀𝑃𝑎√𝑚 

Ghonem and Dore 

dataset no. 𝐼 [284] 

1.91 1.34 914314 4.40 6.75 0.81 1.42 

Ghonem & Dore 

dataset no. 𝐼𝐼 [284] 

1.69 1.33 695502 3.43 6.33 0.72 1.63 

Ghonem & Dore 

dataset no. 𝐼𝐼𝐼 

[284] 

4.73 1.53 1635716 4.58 6.38 1.57 1.90 

Virkler et al. [285] 2.93 1.28 2211197 6.59 19.84 0.75 2.79 

Wu and Ni [286] 58.04 1.85 842999 6.45 21.25 3.65 3.61 

 

The values reported in Table 7.3.1. have been computed as an average of the values 

obtained over the total number of tests for each dataset. 
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The crack length as a function of the number of cycles derived in the range [−𝑁𝑡ℎ; 𝑁𝑓] 

is shown for each data set in Figure 7.3.1. In particular, the curve fitting related to the 

three datasets produced by Ghonem and Dore [284] is shown in the top of Figure 7.3.1 

(Set 𝐼 - Set 𝐼𝐼 - Set 𝐼𝐼𝐼), the curves related to the dataset produced by Virkler et al. 

[285] and the curves related to the datasets produced by Wu and Ni [286] are shown 

at bottom row of the Figure 7.3.1. In each dataset, all the fitting curves tended to the 

same asymptotic value as the number of cycles approaches −𝑁𝑡ℎ even though the 

values are different between the various datasets. Log-linear plots have been used in 

order to make possible the comparison between the experimental data points and the 

curves identified by the analytical model. 
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Figure 7.3.1 Comparison of raw (dots) and analytical (lines) crack length vs number of cycles 

for the five datasets: Ghonem and Dore dataset (𝐼-𝐼𝐼𝐼) [284] (a-c), Virkler et al. [285] dataset 

(d) and Wu and Ni [286] dataset. 

 

In order to draw the FCG curve for the entire range, it is necessary to derive the crack 

growth rate together with the SIF range for the corresponding values. The curves 
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shown in Figure 7.3.2 correspond to all of the experimental data of the datasets 

considered in this chapter. These graphs show clearly that the gradient approaching 

𝑁=−𝑁𝑡ℎ was equal to zero, which reflects the asymptotic behaviour in the 𝑎-𝑁 curves. 

As a consequence the FCG rate, as expected, approached zero (Figure 7.3.2).  
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Figure 7.3.2 FCG curve for the five datasets: Ghonem and Dore dataset (I-III) [284] (a-c), 

Virkler et al. [285] dataset  (d) and Wu and Ni [286] dataset. 
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This observation can be used to extrapolate the crack growth rate curve from the lower 

part. The value of the threshold SIF range was found where 𝑁=−𝑁𝑡ℎ. The value of the 

crack length at 𝑁=−𝑁𝑡ℎ can be derived from Equation 7.3.1. In Figure 7.3.3, the values 

of the threshold SIF predicted by the model for each curve of the five data sets 

analysed in this chapter are shown together with the corresponding values gathered 

from the literature [54, 188, 190]. 
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Figure 7.3.3 Threshold SIF range for the five datasets: Ghonem and Dore dataset (𝐼-𝐼𝐼𝐼) 

[284] (a-c), Virkler et al. [285] dataset (d) and Wu and Ni [286]dataset. 

 



182 
 

7.4 Discussion 

 

The crack length vs number of cycle curves obtained from the model correlated well 

with the raw data points (see Figure 7.3.1). As shown in Figure 7.3.2 and Figure 7.3.3, 

in all cases, there was a band of threshold values predicted for the same material with 

the literature showing the same trends. The threshold vs 𝑅 graph provided by [188] 

shows a small range of threshold values with the upper and lower limits indicated for 

aluminium alloy 2024-T3. Different investigations by Newman and Raschau [162, 163, 

175-177] also found a range of threshold values based on different experimental 

methods used, e.g. load reduction (LR) methods, 𝐾𝑚𝑎𝑥 constant methods and far-field 

cyclic compression methods.  

Recently, Molent, et al. [55] used an FCG threshold parameter, ∆𝐾𝑡ℎ𝑟 to explain the 

scatter in the fatigue life prediction and this parameter is known as cyclic stress 

intensity threshold. The ∆𝐾𝑡ℎ𝑟 is used to explain the dependency of the threshold 

values on the material properties, 𝑅 ratio, crack length and loading method. The use 

of the value of  ∆𝐾𝑡ℎ𝑟=0  in order to predict the crack growth data has previously been 

shown to be rather conservative for different aluminium alloys. The fact that there is a 

range of threshold SIF values for same material can be explained by this concept of 

cyclic stress intensity threshold, ∆𝐾𝑡ℎ𝑟. In these studies, for the material used in 

generating Virkler et al. [285] dataset,  a range of ∆𝐾𝑡ℎ𝑟  values between (2.9 - 4.2 

MPa√m) was reported whilst the material related to Wu and Ni [286] dataset , a range 

of ∆𝐾𝑡ℎ𝑟 values between (0 - 4.2 MPa√m) was reported. Moreover, for 7075-T6 

aluminium alloy material at 𝑅 = -1, a range of ∆𝐾𝑡ℎ𝑟 values between (0.6 – 1.13 

MPa√m) was obtained. In other published work [292], it has been shown a threshold 

band; values between (2.8 – 4 MPa√m) at R = 0.33 for 2024-T351 aluminium alloy. All 

these values are in good agreement with those estimated by the proposed model.  

Figure 7.3.3 shows  a comparison between the threshold values obtained using the 

proposed model and the threshold values found in the literature for different materials. 

The values considered from the literature are based on ESDU documents [188] for 

aluminium alloy 7075-T6 (at 𝑅 = 0.4, 0.5 and 0.6) and aluminium alloy 2024-T3 (at 𝑅 

= 0.2). For aluminium alloy 2024-T351 (at 𝑅 = 0.2), the literature value is taken based 

on the ∆𝐾𝑡ℎ value provided by [54] and the normalised threshold SIF range against the 
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𝑅 curve provided by [190]. The average threshold value of the model was used for 

comparison. In Ghonem and Dore (set I-III) [284], Virkler et al. [285], Wu and Ni [286] 

datasets, the threshold values of the corresponding materials from the literature are 

1.5 𝑀𝑃𝑎√𝑚, 1.7 𝑀𝑃𝑎√𝑚, 1.9 𝑀𝑃𝑎√𝑚, 2.85 𝑀𝑃𝑎√𝑚 and 3.6 𝑀𝑃𝑎√𝑚, respectively. 

Comparing these values with those predicted by the proposed model, the percentages 

of error were approximately 5.3 %, 4.1 %, 0.24 %, 2.1 % and 0.3 %, respectively. 

 

 

Figure 7.4.1 Threshold vs load ratio data where thresholds of model and literature are 

compared. 

 

Reporting all the results on the same graph in Figure 7.4.1, it is possible to identify a 

common trend which is useful to compare the results with the literature values. Firstly, 

the threshold line found with declined linear pattern or shape in relation to 𝑅 for the 

aluminium alloy 7075-T6 was qualitatively and quantitatively consistent with the line 

found in the literature [188]. The percentage of error ranges between 0.24 % and 5.61 

%, which is quite low considering the scattering nature of the fatigue test data. These 
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two lines should converge at the higher value of 𝑅, but it was found that the scatter 

was getting bigger and reached 5.61 % at 𝑅 = 0.6. This difference or scatter could be 

attributed to the different experimental methods used and the corresponding crack 

closure effects as referred to by [162, 163, 175-177]. All the predicted threshold values 

of aluminium alloys (7075-T6 and 2024-T6) were lower than the values from literature 

(see for example [188]) except for the threshold value of aluminium alloy 2024-T351 

which overestimated the literature value from [54, 190]. For aluminium alloy 7076-T6, 

the threshold values from the literature [164] at 𝑅 = 0.2 is 2.3 MPa√m, whilst the value 

derived using the analytical model proposed here was equal to 2.3651 MPa√m with 

an error less than 3 %. 

In general, the yield strength of aluminium alloy 2024-T351 (330 𝑀𝑃𝑎) is higher than 

aluminium alloy 2024-T3 (320 𝑀𝑃𝑎) even though they are the variant of same material 

[293]. The threshold values obtained from the model for aluminium alloy 2024-T351 

and 2024-T3 alloys at 𝑅 = 0.2, are  3.6 𝑀𝑃𝑎√𝑚 and 2.8 𝑀𝑃𝑎√𝑚, respectively. This 

indicated a correlation between the yield strength and threshold of this alloy; the 

threshold of aluminium alloy increase with the strength of the alloy and vice versa. This 

supports the statement of previous investigations which found the same type of 

correlation between the strength and threshold of materials [11, 183, 184]. 

It should be added that, the values of the 𝑎𝑡ℎ in Equation 7.2.4 are found to influence 

the threshold value since it is the crack length corresponding to the fatigue life value 

equal to 𝑁 = −𝑁𝑡ℎ. Therefore, 𝑎𝑡ℎ values can be further considered to correlate with 

the material properties, the load ratio as well as the geometry of the cracked 

component. As stated before, there is a linear relationship between the threshold and 

the strength of a material [11, 183, 184]. Further research should be carried out to 

properly address this correlation, which could help in both identifying the parameter 

values and giving them a more physical understanding. 
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7.5  Summary 

 

An analytical model for the interpolation of crack propagation data has been 

developed. The threshold SIF range has been derived for different materials and 

different specimen geometries. The new model has been shown to fit, with the needed 

accuracy, to a wide range of experimental data produced with different specimen 

geometries, different materials and different loading conditions. Moreover, it has been 

highlighted that it is possible to identify, by means of the above model, the value of the 

threshold SIF range with an error, as compared to the values reported in the literature, 

of less than 6 %. The relation between ∆𝐾𝑡ℎ and 𝑅 ratio predicted by the model agrees 

well with the literature results. The proposed model is, therefore, valuable in identifying 

the threshold of stress intensity factor range for fatigue crack growth. 
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8 Electropulsing treatment increasing fatigue resistance of 

aluminium alloy 2014-T6 and its optimisation 

 

8.1 Introduction 

 

Electromagnetic treatment has been shown to enhance fatigue life of metals. While 

the research work on this topic is growing with time, the mechanisms of effect of this 

treatment are not entirely understood yet. The literature review in Chapter 2 

summarises the research work on this effect of electromagnetic treatment effect on 

fatigue life, which include background knowledge of electromagnetic treatment and 

fatigue resistance, parameters of the electromagnetic treatment, the rearrangement of 

the microstructure of the materials due to electromagnetic treatment, crack healing 

mechanisms and fatigue life enhancement. Issues related to the effectiveness of this 

treatment on fatigue resistance, threats and challenges of this topic were also 

discussed.  

It is well-documented that microhardness can be used to predict the mechanical 

properties of aluminium alloy [350]. Some authors believe microhardness and fatigue 

life are proportional to each other [47]. This statement may not be quite correct but the 

change in microhardness is closely linked to the change in microstructure which has 

a direct effect on fatigue life. There has been effort by different researchers to enhance 

fatigue life by increasing the microhardness. For instance, fatigue life of cutting tools 

made up of 0.4 % carbon steel was enhanced by increasing microhardness and 

compressive residual stress on the surface [294]. By increasing microhardness using 

different methods, fatigue life was also improved in steels [295], titanium alloys [296] 

and aluminium alloys [297, 298]. It is also worth noting that cracks orthogonal to weld 

line of aluminium alloy 2024-T351 exhibited a lower growth rate due to higher 

microhardness [297]. 

Electromagnetic treatment has been used mostly during the casting stage to improve 

the microhardness of the aluminium alloys [299, 300]. It is described that due to the 

treatment the microstructure of the material gets more refined and more 

homogeneous. Thus, the material becomes harder compared to untreated material. 
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Stoicanescu et al. [301] studied magnetic field treatment effect during artificial ageing 

of an aluminium alloy (AlCu4Mg1,5Mn alloy) by applying an alternating/stationary 

magnetic field. They found that this magnetic field treatment, particularly in the form of 

the alternating magnetic field, enhanced the microhardness. The reason was that the 

extra energy provided by this treatment promotes diffusion of precipitated phases and 

the formation of 𝐶𝑢 rich Guinier-Preston (GP) zones, fine coherent 𝐴𝑙2𝐶𝑢 precipitate 

(𝜃𝐼𝐼) and fine semi-coherent 𝐴𝑙2𝐶𝑢 precipitate (𝜃𝐼) which cold hardened the 

microstructure. Herbert [302] used alternating magnetic field treatment  on different 

types of alloys including steel, brass and duralumin. The treatment was applied in 

different time intervals after quenching. It was observed that the applied alternating 

magnetic field was able to improve the microhardness. This study attributed the 

improvement in hardness as the re-arrangement of atoms in the lattice crystal 

structure of these alloys. Recently,  [303] also found increase in hardness in aluminium 

alloy 2219 due to magnetic field treatment during artificial ageing.  

The electrical conductivity of an alloy indirectly provides information about the nature 

and distribution of precipitates as it is highly sensitive to the microstructure of the alloy 

[304]. The addition of any alloying element can reduce the electrical conductivity. The 

alloying of pure aluminium, strain hardening or precipitation hardening which improve 

mechanical properties can also reduce this conductivity [305]. Salazar-Guapuriche et 

al. [306] investigated the microhardness and conductivity in aluminium alloy 7010 

during natural ageing. The increase in microhardness and the corresponding reduction 

of conductivity have been related to the formation of precipitates. It has been 

mentioned that the formation of GP zones and fine coherent and semi-coherent 

precipitates during natural ageing can decrease the electrical conductivity by 

scattering the electrons. However, these can enhance the microhardness by 

increasing precipitate strengthening. This phenomenon is also supported by other 

research work [304]. Conductivity along with microhardness have been correlated to 

the mechanical properties of aluminium alloy [304, 306-308]. 

In the literature, there is no real correlation of different parameters of electropulsing 

treatment with fatigue life enhancement available. The purpose of this chapter is to 

correlate electropulsing treatment parameters with fatigue resistance. This treatment 

is a particular case of electromagnetic treatment when pulsed electric current is 

passed through the sample during the treatment.  The electropulsing treatment 
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intensity, pulse time and number of treatment have been investigated to find the best 

possible fatigue life enhancement. Taguchi technique is used to optimise the 

electropulsing treatment parameters to identify the best parameters, which can 

improve the fatigue life of aluminium alloy 2014-T6 more efficiently. A baseline stress-

number of cycle (S-N) curve of untreated alloy is also presented which has a good 

correlation with the literature.  A systematic approach has been adopted to correlate 

the conductivity and mechanical properties with the beneficial effect of electromagnetic 

treatment on fatigue resistance. The comparison of fatigue life of treated and untreated 

samples is also discussed. The fracture surfaces of treated and untreated sample 

have been studied using the scanning electron microscopy (SEM). Furthermore, the 

mechanisms of electromagnetic treatment on improving the fatigue resistance have 

been investigated using transmission electron microscopy (TEM). 

 

8.2 Aluminium alloy samples 

 

Aluminium 2014-T6 was used in this study. The chemical composition of this alloy is 

shown in table 8.2.1. The ultimate tensile strength of 2014-T6 is 510 𝑀𝑃𝑎. 

Table 8.2.1 The chemical composition of aluminium alloy 2014-T6 [309]. 

Element Al Si Fe  Cu Mn Mg Cr  Zn Ti Others 

Weight 

(%) 

Balanced 0.5-

1.2 

0.7 3.9-

5.0 

0.4-

1.2 

0.2-

0.8 

 

0.1 0.25 0.15 0.15 
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8.3 Methodology 

 

8.3.1 Sample preparation for fatigue test 

 

The geometrical details of the hourglass shaped test sample with nominal cross-

sectional area at its smallest diameter of 12.57 𝑚𝑚2 (i.e., 4 𝑚𝑚 diameter), are shown 

in Figure 8.3.1.  

 

Figure 8.3.1 Geometrical details of the fatigue test samples. 

 

These samples were designed in CATIA V5 and machined using a CNC machine from 

a metal bar. The neck area was polished by carrying out ten circular rotations using 

fine (3000) grit silicon carbide paper to reduce manufacturing defects. These samples 

complied with the requirement of specification RF1020 given by the manufacturer and 

supplier of the rotating-bending fatigue machine SM1090: TechQuipment Ltd [310].  

 

8.3.2 Sample preparation for microhardness and conductivity test 

 

For the microhardness and conductivity tests, samples similar to fatigue test samples 

were machined as shown in Figure  8.3.2.  
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Figure 8.3.2 (1) A sample machined for microhardness and conductivity test and (2) section 

cut & polished for the microhardness test. 

 

The only difference is that it does not have a radius of curvature of 20 𝑚𝑚 although it 

has a small fillet in the corner. For microhardness test, a section was cut from this 

sample revealing the 4 𝑚𝑚 diameter cross-section, which was further polished (Figure 

8.3.2). An automatic polishing machine Motopol 2000 was used to polish the sample 

to obtain a mirror-like surface with different grits of sand papers and polishing agents. 

The top surface was ground using 800 and 1200 grit silicon carbide papers, 

respectively. Then, the surface was gradually polished using 9 𝜇𝑚, 3 𝜇𝑚 and 0.05 𝜇𝑚 

diamond suspensions.  

 

 

Figure 8.3.3  (1) sample within the casted mould of hardener and resin and (2) polishing 

device. 
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8.3.3 Experimental setup rotating bending fatigue test 

 

A SM 1090 rotating-bending fatigue machine was used to undertake the fatigue test. 

It is shown in Figure 8.3.4. with different parts indicated by numbers and named after 

these numbers. It applies a load on the free end of the sample as shown in Figure 

8.3.5. and  the top part undergoes tension, and bottom part undergoes compression. 

A ball bearing allows the sample to rotate freely while loaded. Tension and 

compression alter throughout the cross-section resulting in cyclic loading on the 

sample when the motor of the machine rotates it.  A schematic representation of the 

fatigue loading is shown in Figure 8.3.6. 

 

 

 

Figure 8.3.4 SM1090 rotating bending fatigue test machine with different parts numbered. 
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Figure 8.3.5 Rotating-bending cantilever beam [310]. 

 

 

Figure 8.3.6 Schematic illustration of cyclic loading including tension and compression [310]. 

 

During the test, the steps of the instructions were systematically followed from SM1090 

rotating fatigue machine user guide to reduce test error [310]. Each time, lubrication 

(Ambergrase EXL) was applied to minimize the friction inside the bearing. The load 

was applied on the sample by positioning and applying a dead weight at the start of 

the test. It is to be noted here that this fatigue machine allows a maximum of 80 𝑁 at 

a frequency of 63 𝐻𝑧. Stress, 𝜎, is the function of the distance to the load, 𝑙, shown in 
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Figure 8.3.7, load, 𝐹, and minimum neck diameter, 𝐷.  It can be calculated using  

Equation 8.3.1. 

 
𝜎 =

𝑙𝐹 × 32

𝜋𝐷3
 

 

(8.3.1) 

 

Figure 8.3.7 Distance to load in a standard specimen [310]. 

 

For the fatigue test, the frequency of the fatigue loading was 𝑓=60 𝐻𝑧, which was 

recommended by the Techquipment Ltd [310]. The samples experience fully reversed 

fatigue loading with a stress ratio of 𝑅=-1. Two types of fatigue samples were used for 

the test including untreated and treated samples. The treated samples underwent 

electropulsing at prior to the fatigue test. The effect of electropulsing on the fatigue life 

of aluminium alloy 2014-T6 was investigated by comparing the fatigue life of untreated 

and treated samples.  

 

8.3.4 Experimental setup for electropulsing treatment 

 

The electropulsing rig is shown in Figure 8.3.8. and the corresponding circuit diagram 

of the electropulsing treatment is shown in Figure 8.3.9. 
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Figure 8.3.8 (1) Actual pulsed electropulsing treatment rig and (2) voltage input and output 

interface attached to it. 

 

Figure 8.3.9 Pulsed electropulsing treatment circuit diagram. 

 

As shown in Figure 8.3.9, the pulsed electropulsing treatment rig consists of a high 

voltage supplier which, when switched on, allows the capacitor of 100 𝜇𝐹 to collect 

and hold charge ready to be pulsed through the circuit and induce an electromagnetic 

field around a sample. Using an analogue to digital converter, software can plot how 

the voltage alternates. Then the data point is multiplied by Rogovsky belt calibration 

coefficient (2904.51) to determine the current discharge in the electropulsing. The 
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current density is calculated using this current value and minimum cross sectional 

area. Different levels of electropulsing treatment were applied on the sample and a 

pause of 24 hours or a day was taken before these treated samples were used for 

fatigue, conductivity or microhardness test. The pause was taken in order to avoid the 

transient effect caused by the electropulsing treatment. The time will also help settle 

any precipitation in the aluminium alloy 2014-T6 used in this study. 

 

8.3.5 Experimental setup for microhardness test 

 

The hardness of a solid is the property which measures the resistance of the solid to 

its local deformation. If the harness is measured using micro-indenter, then it is 

referred to as the microhardness. Vickers test [362] can be used to measure 

microhardness of hard metal using square diamond pyramid as the indenter which 

makes an indent on the surface of the material. It can be expressed in Vickers 

Diamond Pyramid Hardness Number (DPH or HV). HV is defined as; 

 
𝐻𝑉 = 1.854

𝐿

𝑑2
 

 

(8.3.2) 

where L =Load in 𝑘𝑔𝑓 and d=length of diagonal in 𝑚𝑚. However,Vicklers hardness 

(HV) should normally be expressed as a number only without the units (
𝑘𝑔𝑓

𝑚𝑚2
). For 

microharness test, DURASCAN20 was used. This machine has the capacity to cover 

complete macro-load ranges around 10 𝑔𝑓 -10 𝑘𝑔𝑓 (0.098 N-98 𝑁) with a position 

accuracy of 0.01 𝑚𝑚. For the test in the current study, 10 𝑔𝑓 load was used with 

indententation time of around 15 𝑠. The microhardness test rig and a reading are 

shown in Figure 8.3.10. The sample was kept under the camera to identify the position 

of the surface. Auto focus option was used to clearly display the surface. The load was 

applied to the indenter, which introduced diamond shaped indent. The microhardness 

was displayed automatically on the display in 𝐻𝑉. It allows to manually adjust the 

measurement when automatic measurement does not work. 
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Figure 8.3.10 (1) Microhardness test machine and (2) microhardness result display in 𝐻𝑉. 

 

Microhardness was measured for 100 points between outer radius and 0.6 𝑚𝑚 depth from the 

outer surface at 0.05 𝑚𝑚. Enough distance was maintained between two measurement in 

order to avoid plastic deformation of each dent. The microhadness of the treated and untreated 

samples were measured in a similar manner. 

 

8.3.6 Experimental setup for conductivity test 

 

In order to measure conductivity, a SIGMATEST 2.069 was used at room temperature 

as shown in Figure 8.3.11. the accuracy of this equipment is +/- 0.5 % of measured 

value at 60 kHz. 4 points were selected in equal distance from each other, around the 

outer surface of 4 𝑚𝑚 diameter cylindrical area. The conductivity was measured 5 

times in one point before and after the treatment (24 hours) and average value was 

taken in consideration to analyse the effect of electropulsing on conductivity of the 

alloy.  
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Figure 8.3.11 Conductivity measurement gauge. 

 

8.3.7 Microstructural study using SEM and TEM technique 

 

Microstructural study was carried out using scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). For SEM study, JEOL JCM-5700 CarryScope was 

used to investigate the final fracture surfaces of treated and untreated samples. For TEM 

study, Phillips CM-20 was used to investigate the microstructure near the surface area of 

treated and untreated samples.  Both thickness and length plane were chosen for this study. 

The TEM samples were cut using TESCAN LYRA3. 

 

8.4 Results and analyses 

 

8.4.1 Stress vs number of cycles (S-N) curve of aluminium alloy 

2014-T6 

 

Stress vs number of cycles curves describe the fatigue behaviour of the material. For 

improved reliability of the S-N cure, a higher number of test data are required; this is 

time consuming and expensive. There are several methods available to achieve this 

curve including a staircase method [311, 312] where a systematic approach is used to 

define this S-N curve to make it more efficient, reliable, and cost and time effective for 

this project.  
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In general, steels have a fatigue limit, but aluminium alloys have no such limits [6]. 

However, there are industrial approaches to define the nominal endurance limits; 

some consider the fatigue strength at 107 cycles as the endurance limit for aluminium 

alloys [312, 313] while others [6] considered this number as 500 million cycles. In this 

study, the fatigue strength for 107 cycles is identified as approximately 100 𝑀𝑃𝑎 for 

aluminium alloy 2014-T6 from Engineering Sciences Data Unit (ESDU) document 

[314] whereas [6] considered the endurance limit of this alloy as 125 𝑀𝑃𝑎 as the 500 

million cycle was considered for endurance limit. 

A sample tested at 75 𝑀𝑃𝑎 has a fatigue life greater than 107cycles and the test was 

terminted to save time and reduce cost. Data for this 75 𝑀𝑃𝑎 is excluded from S-N 

curve investigation but shown in Figure 8.4.1. 

 

 

Figure 8.4.1 Stress vs number of cycles curve (S-N) of aluminium alloy 2014-T6. 
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A  range of stress levels were considered for S-N curve determination starting from 

100 𝑀𝑃𝑎 to 300 𝑀𝑃𝑎. For this, a total of 24 samples were tested at different fatigue 

stresses and corresponding fatigue life was plotted to generate the S-N curve using 

the blue circles as shown in the Figure 8.4.1. It can be seen that the curve fits the raw 

data well with a coefficient of determination, 𝑅2=0.89. It also shows comparatively 

higher scattering in the lower level of stress which is quite common in S-N curve 

determination. This experimental S-N curve is compared with S-N curve provided by 

the literature [314] which  used a sample of similar size (minimum neck diameter of 

6.4 𝑚𝑚). Both curves show similar shape without any plateau. The difference between 

the two curves is quite small considering the difference in the size and shape of the 

sample. So, the same curve fitting procedure of experimental data was used in the 

analysis of the effect of electropulsing treatment on fatigue resistance. A fatigue stress 

of 200 𝑀𝑃𝑎  which is 39 % of the UTS of the material was chosen as a representative 

fatigue stress level for the investigation of the effect of electropulsing treatment.  

 

8.4.2 Optimisation of electropulsing treatment parameters for 

fatigue performance using Taguchi method 

 

The Taguchi method is a systemic approach to design experiments. While the 

reliability of the test data can be improved by increasing the number of test samples, 

the Taguchi method optimises the test matrix by using an orthogonal array [315] to 

reach an optimum with a minimum number of tests at minimum cost. There are several 

research papers available where this approach is used to optimise relevant 

parameters for fatigue performance [316-319].  

In Taguchi method, the loss function, which represents the variation between the 

experimental and desired results, is converted into signal to noise ratio (
S

𝑁
) [316]. (

S

𝑁
) 

can be based on three different types; the nominal-the best situation, the bigger-the 

better situation and the smaller-the better situation. To optimise the electropulsing 

effect on fatigue resistance the bigger-the better situation has been taken in 

consideration as higher fatigue life was desirable. Minitab 17.0 (statistical package) 
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was used to implement this. The (
S

𝑁
) ratios are shown in Table 8.4.1, which is 

calculated based on the bigger-the better situation defined by Equation 8. 4.1. 

 

 𝑆

𝑁
= −10𝑙𝑜𝑔 [

1

𝑛
∑

1

𝑦𝑖
2

𝑛

𝑖=1

] 

 

(8.4.1) 

where 𝑛 is the repeat number and 𝑦𝑖 is the measured variable value. 

 

8.4.3 Electropulsing treatment design using Taguchi method 

 

In order to obtain the optimised effect of electronpulsing, Taguchi method has been 

adopted. Three levels of electropulsing for each treatment parameter were used: low 

(1), medium (2) and high (3) (Table 8.4.1). 

 

Table 8.4.1 Electropulsing treatment parameters. 

Level 

 

Parameters 

Treatment 

intensity (
𝑀𝐴

𝑚2
) 

Treatment 

time (𝑠) 

Number of 

treatments 

 

A B C 

Low 1 58 0.00009 1 

Medium 2 83 0.03 2 

High 3 96 0.1 4 

 

By combining these different levels of treatment, nine sets of experiments were 

designed using Taguchi method the as shown in Table 8.4.2.  
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Table 8.4.2 Orthogonal array, 𝐿9 = 3
3 for Taguchi design of experiment (DoE), 

corresponding experimental fatigue life, average fatigue life and signal to noise ratio (
𝑆

𝑁
). 

Experiment 

number 

Factors Fatigue life (cycles) Average 

fatigue 

life 

(cycles) 

Signal 

to 

noise 

ratio, 

(
𝐒

𝑵
) 

 A  B  C 

i 1 1 1 223245, 260457, 239297 241000 107.640 

ii 1 2 2 223873, 298425, 309542 277280 108.858 

iii 1 3 3 322360, 401833, 326485 350226 110.887 

iv 2 1 2 309125, 249134, 229782 262680 108.389 

v 2 2 3 323484, 253510, 393686 323560 110.199 

vi 2 3 1 384143, 360730, 312150 352341 110.939 

vii 3 1 3 293321, 248464, 229728  257171 108.204 

viii 3 2 1 300648, 323873, 262207 295576 109.413 

ix 3 3 2 

 

460932, 457860, 448647, 

516247, 350492, 597328 

471919 113.477 

 

The electropulsing treatment curves used in the above mentioned nine experiments 

are shown in Figure 8.4.2. These curves were taken using curve fitting of the registered 

pulsed electric current during the treatment of the samples.  
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Figure 8.4.2 Electropulsing treatment curves of the nine sets of experiments with their 

corresponding equations. 

 

Three samples in each category were tested at a stress level of 200 𝑀𝑃𝑎 to obtain the 

average fatigue life which was used to calculate (
S

𝑁
) ratio as shown in table 8.4.2. It is 

to be noted here that the treatment intensity which is represented as pulsed current  

density in Table 8.4.1. was calculated using the maximum current of the electropulsing  

process shown in Figure 8.4.3. and the minimum cross sectional area of the sample. 

The treatment time in terms of pulse time in Table 8.3.1. was also obtained from the 

electropulsing curves in Figure 8.4.3.  The normal probability of residuals of all the 

experimental fatigue life cycles (FLC) results for treated samples are shown in Figure 

8.4.4. This figure demonstrates that for the most part, the data points follow a trend 

line quite closely. However, there are two very large deviations at the top end and this 

phenomenon is known as fat tail (i.e. the residuals are still constant mean equal to 0, 

constant variance and symmetric, etc.). Therefore, for the most part, this distribution 

here is normally distributed. 
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Figure 8.4.3 Normal probability of residuals of all fatigue life cycles (FLC) with best fit line. 

 

8.4.4 Effect of electropulsing treatment parameters on fatigue 

performance 

 

The (
S

𝑁
) ratio can characterise the effect of the parameters of an experiment. To achieve 

higher fatigue life, this ratio needs to be maximised. The average values of (
S

𝑁
)  ratio at various 

parameters at different levels are given in Table 8.4.3. Using these values, in Table 8.4.3, the 

effect of variation in fatigue life with each parameter level is shown as the response curve for 

(
S

𝑁
) ratio in Figure 8.4.5. 

 

 

 



205 
 

Table 8.4.3 Response for signal to noise ratios, (
𝑆

𝑁
) with larger is better criterion. 

Factors  A B  C 

Level 1 109.1   108.1   109.3 

2 109.8   109.5   110.2 

3 110.4 111.8 109.8 

Delta (∆) 1.2 3.7    0.9 

Rank 2 1 3 

 

It has been seen from table 8.4.3 that Delta (∆) value (i.g. measures the size of the 

effect by taking the difference between the highest and lowest characteristic average 

for a factor)  is the highest in level B. As a result, Level B has been ranked (i.g. the 

ranks in a response table help you quickly identify which factors have the largest effect) 

1, and Level A and C are ranked 2 and 3, respectively. Therefore, the time of 

electropulsing has been identified as the most effective parameter among all three 

parameters investigated.  

 

 

Figure 8.4.4 Main effects plot for signal to noise ratio (
𝑆

𝑁
). 
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Figure 8.4.4 shows that the (
S

𝑁
) ratio increases with the increase of levels A and B but 

factor C has a different effect on this (
S

𝑁
) ratio. Factor C increased in levels 2 and 3 

compared to level 1, but the increase is lower in level 3 compared to level 2. As such, 

the beneficial effect of electropulsing increased with the increase of the treatment 

intensity, the pulse time and the number of applications. However, the beneficial effect 

of electropulsing reduced when the number of application reached 4. In other words, 

the 3, 3, 2 array  of (see experiment ix in Table 8.4.3)  of A, B and C factors appears 

to be the optimum treatment condition.  

To check the statistical significance, (
𝑆

𝑁
) ratio was analysed using analysis of variance 

(ANOVA) test as shown in Table 8.4.4.  

 

Table 8.4.4 Analysis of variance (ANOVA) for signal to noise ratio, (
𝑆

𝑁
). 

Source Total 

degrees 

of 

freedom 

(DF)    

Sequential 

sums of 

squares 

(Seq SS)    

Adjusted 

sums of 

squares 

(Adj SS) 

Adjusted 

mean 

square 

(Adj MS)       

F ratio 

(Adj 

MSi/Adj 

MSt) 

P Contribution 

Percent (%) 

(SSi/SSt) 

A   2 2.312    2.312    1.1558      1.13     0.469 8.76 

B    2 20.799   20.799   10.3996     10.19     0.089 78.79 

C     2 1.244    1.244    0.6222      0.59   0.621 4.71 

Residual 

Error    

2 2.041    2.041    1.0203 0.61      7.73 

Total 8 26.396      

 

In general, a higher value of F ratio [320] and lower value of P [317] refer to the higher 

importance of the source or factor. Here, it also confirms that factor or source B which 

is the treatment time is the most important parameter in improving the fatigue 

performance as it projects the highest F ratio (=10.19) and the lowest P(=0.089) (Table 

8.4.4). If 𝛼<0.05 is taken as ‘statistically significant’ value, then P of 0.089> 𝛼 for factor 

B is not conventionally or highly significant but approaching a level of significance.  On 
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the other hand, from the F distribution for 𝛼<0.05, it is confirmed that F ratio of 10.19 

is greater than the critical value of 5.14 (obtained from F-distribution table) which 

means that the factor B or the treatment time is the most significant parameter among 

all the parameters used. Moreover, the percentage of contribution of treatment 

intensity (A), treatment time (B) and number of applications (C) are 8.76 %, 78.79 % 

and 4.71 %, respectively (taken from Table 8.4.4) which are further graphically 

represented by the following pie chart (Figure 8.4.5). 

 

 

Figure 8.4.5 Contributions of electropulsing treatment parameters on fatigue resistance in  

percentage. 

 

Therefore, a current density of 96  
𝑀𝐴

𝑚2
  with 0.1 𝑠 pulse time and 2 applications were 

chosen as the optimum parameters to enhance the fatigue life of aluminium alloy 

2014-T6. Also, the corresponding pulse time of 0.1 𝑠 was found to be the most 

significant one among all the parameters used. For all nine sets of electropulsing  

treatments, the average fatigue life at 200 𝑀𝑃𝑎 is higher than the untreated average 

value of 239095. The average fatigue life of the samples treated with the optimum 

parameters is 471919 which gives a fatigue life enhancement of 97 % compared to 

the untreated one. This improvement of fatigue life due to the electropulsing treatment 

using this optimum parameters will be verified further through the measurement of the 

microhardness and conductivity of this aluminium alloy.  
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8.4.5 Electropulsing treatment effect on microhardness of aluminium alloy 

2014-T6 

 

The optimum electropulsing treatment which produced the highest improvement in 

fatigue life was used to investigate its effect on the microhardness. The treatment 

parameters were: 96 
𝑀𝐴

𝑚2
  treatment intensity, 0.1 𝑠 pulse time and 2 pulses. Figure 

8.4.7. shows microhardness results of both treated and untreated sample of aluminium 

alloy 2014-T6 at points from the surface towards the centre of the minimum cross-

section of the  sample. The microhardness of the treated sample is higher compared 

to untreated one. The average value and standard deviation of the microhardness of 

untreated alloy are 158.10 𝐻𝑉 and  4.16 𝐻𝑉, respectively. On the other hand, the 

increased average value and standard deviation of microhardness for treated alloy are 

162.85 𝐻𝑉 and 2.88 𝐻𝑉, respectively. Consequently, the coefficient of variations (CV) 

of the untreated and treated alloys are 2.63 % and 1.78 %, respectively which suggest 

that the microhardness of untreated sample has more variation relative to its mean 

than the treated sample. In this study, the improvement in microhardness due to 

electropulsing treatment was 3 %.  

 

 

Figure 8.4.6 Electropulsing treatment on microhardness of aluminium alloy 2014-T6. 
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8.4.6 Electropulsing treatment effect on conductivity of aluminium 

alloy 2014-T6 

 

The same optimum electropulsing treatment of 2 pulses  of current density of 96 
𝑀𝐴

 𝑚2
  

with 0.1 𝑠 pulse time were used to investigate the conductivity of the sample. The 

conductivity was measured at 4 reference points A, B, C and D at an equal distance 

from each other and the results of the average five values at each point and  the 

standard deviation are given in table 8.4.5. However, because of the curvature of the 

measuring point, the total contact between the overall surface areas of the probe and 

the sample was not possible. As a result, only partial conductivity of the sample was 

measured. To address this issue, the experimental conductivity values were 

normalised by the average conductivity value of point A of the untreated samples. The 

normalised or relative conductivity values of the untreated and treated sample were 

compared as shown in Table 8.4.5. The results demonstrate that at every reference 

point, the conductivity of the treated samples decreased compared to the untreated 

ones. The maximum reduction of 1.88 % was recorded at reference point C. The 

overall reduction of conductivity in treated sample was 1.19 % compared to the 

untreated one. 

 

Table 8.4.5 Electropulsing treatment effect on the conductivity of the aluminium alloy 2014-

T6. 

Reference point on 

the surface 

Relative conductivity (normalised by the 

average conductivity of point  A of the 

untreated sample) 

Reduction in 

conductivity due to  

PEC treatment (%) 

Untreated  Treated 

A 1+/-0.0096 0.9956+/-0.0126 0.41 

B 1+/-0.0052 0.9904+/-0.0096 0.97 

C 1.0007+/-0.0074 0.9822+/-0.0089 1.88 

D 0.997+/-0.0071 0.9874+/-0.0111 1.46 

Overall 1 0.9874 1.19 
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8.4.7 Effect of electropulsing treatment on fatigue fracture 

characteristics 

 

The features of the final fracture surfaces of the untreated and treated (with optimum 

parameters) samples were observed with SEM as shown in Figure 8.4. The 

corresponding fatigue life of untreated and treated samples were 2666446 and 516247 

cycles, respectively for a stress level of 200 𝑀𝑃𝑎. In this study, both the aluminium 

alloy 2014-T6 samples exhibit a mixture of dimple and cleavage fractures (Figure 

8.4.7). The treated sample contain more ductile dimple features [321, 322] with diverse 

sizes (Figure 8.4.7(2). A few quasi-cleavage fractures available in the treated one 

transformed into the ductile feature called torn edges [323] or peaks [324]. The 

untreated one, one the other hand, includes more quasi-cleavage fracture [325] 

throughout the area (Figure 8.4.7(1). The fracture surface of the untreated one also 

shows more secondary cracks [326] compared to the treated one. 
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Figure 8.4.7 Final fracture surfaces during fatigue: (1) untreated and (2) treated (resolution: 5 

𝑛𝑚). 
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The ductile dimple features can mainly be categorised as equiaxed big and micro-

dimples (Figure 8.4.7(2)). The increased dimples in the treated sample resulted from 

uniformly distributed crystal defects, e.g., dislocations and precipitates. The higher 

amount of precipitates also contributed to this increase. These phenomena further 

reduced the quasi-cleavage fracture which transformed  into  ductile torn edges [323] 

or peaks [324]. A typical mode of quasi-cleavage fracture available in untreated one 

combines a large number of small and shallow dimples [325] (Figure 8.4.7(1)). The 

effect of precipitates is to promote ductile fractures and this is explained in the study 

of [327] which suggests that due to the incompatibility between the precipitates and 

aluminium alloy matrix, during tensile deformation, the precipitates impede the 

dislocation sliding, and thus cause stress concentration in the vicinity. When the 

concentrated stress exceeds a critical value, the interfacial debonding between the 

precipitates and aluminium matrix or the fracture of precipitates occur. The higher 

amount of secondary cracks found in the untreated sample  can be formed by the 

dislocation pile-up.  

 

8.4.8 TEM analysis of the effect of electropulsing treatment on 

dislocations and precipitations  

 

The optimum parameters were also used to treat the material considered in the TEM 

study. All the photographs (Figure 8.4.8) contain dislocations and as well as 

precipitates. From (Figure 8.4.8(1) and 8.4.8(3)) it can be observed that, in the 

untreated samples, dislocations are tangled up forming dislocation pile-up (also known 

as dislocation cell structure or dislocation wall). Dislocation pinning [328] is also found 

in the untreated one (Figure 8.4.8(3)). On the other hand, from Figure 8.4.8(2) and 

8.4.8(4)) it can be observed that, in treated sample, the dislocations are more spread 

out throughout the area. Dislocation depinning can be seen in the treated sample 

(Figure 8.4.8(4)). Precipitation in the treated sample (Figure 8.4.8(2) and 8.4.8(4)) are 

more pronounced compared to untreated ones (Figure 8.4.8(1) and 8.4.8(3)). These 

precipitates are relatively uniformly distributed on the area of the treated alloy. Needle-

shaped precipitates can be seen only in the treated alloy (Figure 8.4.8(4) which is one 

of the earlier phases of the precipitates. 
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Figure 8.4.8 TEM samples taken from the near-surface area of 4 mm diameter bar on the 

length plane (1)(2) and thickness plane (2)(3). Here, (1) and (3) are untreated (1)(3) and  (2)  

and (4) are treated. 
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In the present study (figure 8.4.8), the drift electrons formed during high-density 

electropulsing treatment applied the extra push force on dislocations which enhanced 

the mobility of the dislocations. This force is sometimes taken as the athermal effect 

of electropulsing [329]. The movement of the dislocation further eliminated the 

dislocation pile-up by untangling the dislocations. The magnetic field and 

electromagnetic force associated with the electropulsing treatment also contributed in 

this purpose. Dislocation depinning occurred simultaneously in this process. As a 

result,  the dislocations are dispersed uniformly over the area of the treated sample. 

Zhu et al.  [330] reported that the total Gibbs free energy has two parts; ∆𝐺𝑒𝑝 =

∆𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + ∆𝐺𝑎𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , where the thermal effect of Joule heating contributes to the 

∆𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙 while the athermal effect contributes to the ∆𝐺𝑎𝑡ℎ𝑒𝑟𝑚𝑎𝑙. The athermal effect 

of electropulsing can be 319 times stronger than the thermal effect [330]. Thus, the 

transfer energy directly from the electrons to the atoms can be more effective than that 

in the traditional thermal and thermo-mechanical process. The precipitation process 

of SSSGBP 𝜃′′𝜃′ 𝜃  [304, 327] can be considered for this aluminium alloy 

2014-T6. The T-phase can also be formed in the 2000 series aluminium alloy [331].  

In the present study (Figure 8.4.8), the combination of thermal and athermal effects 

promoted the growth of precipitates by atomic diffusion. Rahanama [329] also 

suggests that the athermal effect of  electropulsing can remarkably increase the atomic 

diffusion flux. Moreover, the solute atoms interact better with the dislocations and the 

dislocations act as a nucleation points of the precipitates [304, 332]. As such, more 

precipitates were formed on the dispersed dislocations in the present study. 

 

8.5  Discussion 

 

A detailed investigation of the optimisation of the electropulsing effect on the fatigue 

resistance of aluminium alloy 2014-T6 has been presented in this chapter.  Promising 

results have been achieved in this research. 

From the Taguchi method (Table 8.4.3) (Figure 8.4.4), the treatment time was found 

to be the most effective parameter used to improve the fatigue performance. At the 

same time, the  ANOVA test (Table 8.4.4) established that the treatment time has the 
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highest statistical significance among all three parameters investigated for the 

electropulsing effect with 78.80 % contribution. Increasing the treatment intensity and 

time also led to fatigue life improvement. However, the increase of the number of 

applications, the improvement in fatigue life did not follow the same pattern as other 

two. There was a saturation of the beneficial effect of electropulsing when the number 

of applications was increased. Moreover, if only the treatment intensity (A) and time 

(B) were considered, the beneficial effect of the electropulsing treatment on the fatigue 

performance can be simply modelled by using a 3D surface and contour plots as 

shown in Figure 8.5.1. In the contour plot (Figure 8.5.1(1)), the darker region shows 

the high fatigue life and the lighter region shows the low fatigue life. This helps identify 

that the fatigue life was maximum for the current density of 96 
𝑀𝐴

𝑚2
  with 0.1 𝑠 pulse time. 

From the 3D surface plot (Figure 8.5.1(2)), it is clear that with the increase of treatment 

intensity and time, fatigue life also increased. 
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Figure 8.5.1 Contour (1) and surface (2) plots of average fatigue life cycles (FLC) vs 

electropulsing treatment intensity (A) and electropulsing treatment time (B). 
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Apart from the test using the optimum treatment parameters, the effect of 

electropulsing treatment with various other settings was investigated in the current 

study. A comparison of fatigue life improvements under different treatment conditions 

is shown in Figure 8.5.2. It is found that all the treatments were able to improve the 

fatigue life. 96 
𝑀𝐴

𝑚2
 with pulse time of 0.1 𝑠 and 2 applications was identified as the 

optimum treatment and gave the highest improvement of 97 %. Second highest 

improvement was found to be 47 % for 83 
𝑀𝐴

𝑚2
 with 0.1 𝑠 and 1 application. Minimum 

improvement of 2.41 % was found for 58  
𝑀𝐴

𝑚2
 with 0.00008 𝑠 and 1 application.  

  

 

Figure 8.5.2 Bar chart of the fatigue life improvement due to different types of electropulsing 

treatment. 

 

Microhardness improved by 3 % due to electropulsing of aluminium alloy 2014-T6 in 

this study(Figure 8.4.6). The microhardness of the treated alloy is less dispersed 

around the mean value. Electromagnetic treatment has shown improvement in 
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microhardness in other studies as well [14, 209, 214, 302]. During the rotating-bending 

fatigue test, maximum fatigue stress occurred near the sample surface and initiated 

fatigue cracks there. However, the crack initiation was delayed in the treated samples 

as the hardness was elevated by the effect of electropulsing. The fatigue life of the 

alloy was, therefore, increased through electropulsing treatment. This is consistent 

with some other studies which correlated the increase in fatigue life to the 

improvement of hardness [14, 209, 214, 227]. 

The effect of electropulsing treatment on microhardness and hence the fatigue 

resistance of the material can be demonstrated by the effect of the treatment on the 

conductivity of the alloy. The conductivity of the aluminium alloy 2014-T6 was reduced 

by 1.19 % after the electropulsing treatment. This can be the indication of enhanced 

precipitation hardening of the material due to the formation of additional GP zones and 

fine coherent and semi-coherent precipitates [304-306]. These extra precipitates are 

capable of scattering electrons further by coherent strain during the current flow and 

therefore reduce the conductivity of the alloy. The Joule heating [305] associated with 

the electropulsing treatment can also be responsible for the formation of these 

precipitates and increase of the microhardness. As a result, there exists a relation 

between the increase of the fatigue resistance and the reduction of the conductivity of 

the alloy. 

From the fractographic analysis (Figure 8.4.7), it is found that there are relatively more 

ductile features, e.g. dimples formed due to the well-distributed precipitates and 

dislocations promoted by the electropulsing treatment. The electropulsing treatment in 

other studies [331, 333, 334] also increased the ductile features. 

The TEM study (Figure 8.4.7) can explain the mechanisms of electropulsing treatment 

on improving the fatigue life. Due to the effect of the high-density electron flow 

generated by electropulsing, the dislocations were dispersed through the aluminium 

alloy 2014-T6 used in this study. The dislocation pile-up also disappeared in this 

process. The dislocation pile-up can sometimes be considered as the precursor of the 

fatigue crack initiation. Therefore, the disappearance of dislocation pile-up delayed the 

fatigue crack ignition and enhanced the fatigue life. This type of dislocation activity 

was also found in the literature where the electropulsing treatment was found to 

promote dislocation movement [335], rearrangement of dislocations [336], elimination 
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of dislocations [227]. The thermal and athermal effect of the present electropulsing 

treatment also promoted uniformly distributed precipitation and thus enabled 

precipitation hardening (Figure 8.4.7).  From the literature, it is also found that the 

electropulsing treatment refined and dispersed the precipitates [337] and promoted 

precipitaion [331, 338] while magnetic field treatment promoted precipitates which 

were fine and dispersed [339]. Additionally, the combined effect of electric and 

magnetic field promoted precipitation as well [303]. The strengthening of the 

aluminium alloy 2014-T6 by precipitation further improved the fatigue resistance by 

delaying the fatigue crack initiation and its growth. 

 

8.6 Summary 

 

The electropulsing treatment is capable of enhancing the fatigue resistance of 

aluminium alloy 2014-T6. The treatment intensity, duration of the pulsed current and 

number of applications of this treatment all can affect the fatigue life enhancement. 

Among these factors, the duration of the pulsed current is the most influential in 

boosting fatigue resistance. However, a higher number of applications can lead to the 

saturation of the beneficial effect of electropulsing on fatigue resistance. The hardness 

of this aluminium alloy can also be improved by the 2 applications of 96  
𝑀𝐴

𝑚2
  treatment 

intensity for 0.1 𝑠 pulsed duration which represents the optimum electropulsing 

parameters to improve fatigue resistance in this study. This increased hardness can 

also be correlated to the reduction of the conductivity of the treated alloy. The 

mechanism of effect of electropulsing treatment involved the change in microstructure 

which enabled the improvement of fatigue resistance and this can be explained by 

dislocation activity and formation of precipitates. Therefore, the results in this chapter 

can potentially help understand the optimisation of the electropulsing treatment on 

fatigue resistance of aluminium alloy 2014-T6. 
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9 Electropulsing treatment effect on fatigue damage repair of 

aluminium alloy 2011-T6 and 2014-T6 

 

9.1 Introduction 

 

Electromagnetic treatment has a positive effect on the enhancement of mechanical 

performance of various prefatigued alloys [13-16, 207, 209, 213-217, 223, 227, 228]. 

This has already been explained in the literature review and supported by the 

experimental investigation presented in Chapter 8. This chapter presents an 

experimental study of the electromagnetic treatment in the form of electropulsing 

treatment on the enhancement of fatigue life of prefatigued samples of aluminium 

alloys. 

For this, both aluminium alloy 2011-T6 and aluminium alloy 2014-T6 have been used. 

Electropulsing was applied to 70 % prefatigued 2011-T6 and 56 % prefatigued 

aluminium alloy 2014-T6 (calculated using Equation 2.10.2). The intensity of the 

treatment and the number of applications were varied while keeping the pulse time 

constant. The optimum treatment condition was identified based on the highest 

improvement of fatigue life of aluminium alloy 2011-T6. This optimum treatment 

condition was also used for aluminium alloy 2014-T6. The change of the fatigue life 

due to electropulsing and its effect on the level of prefatigued damage have been 

explained in detail in this chapter. The possible mechanisms for the change of the 

fatigue life due to electropulsing have also been discussed. 

 

9.2 Methodology 

 

Two types of aluminium alloys were considered in this study as mentioned above. 

These were aluminium alloy 2011-T6 and aluminium alloy 2014-T6.  The details of the 

aluminium alloy 2014-T6 have already been described in Chapter 8. The chemical 

composition of aluminium alloy 2011-T6 is given in table 9.2.1. 
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Table 9.2.1 The chemical composition of aluminium alloy 2011-T6 [309]. 

Element Al Si Fe Cu Pb Bi Zn Others 

Weight (%) Balanced 0.4 0.7 5.0-6.0 0.2-0.4 0.2-0.4 

 

0.3 0.15 

 

 

Aluminium alloy 2011-T6 has a high strength and machinability [357] but poor 

weldability. The ultimate tensile strength (UTS) of this alloy is 395 MPa [373]. Typical 

uses of aluminium alloy 2011-T6 include fasteners, fittings, artillery and the trim of 

vehicles. 

Fatigue samples of aluminium alloy 2011-T6 were supplied by TecQuipment [361], 

and aluminium alloy 2014-T6 was machined as described in Chapter 8 Section 8.3.1.  

The geometry of the sample was as previously described in the same section. The 

samples were prefatigued before the electropulsing treatment was applied. 

 

9.3 Results and analyses 

 

9.3.1 Baseline fatigue life of untreated aluminium alloys 

 

The baseline fatigue life of untreated samples was defined based on the average value 

of fatigue life of four samples of aluminium alloys 2011-T6 and 2014-T6 for 225 𝑀𝑃𝑎.  

Results of the baseline fatigue life have been presented in Table 9.3.1, and Figures 

9.3.1 and 9.3.2. For aluminium alloy 2011-T6, the experimental average fatigue life 

was 153003 cycles and the standard deviation was 18050 cycles. On the other hand, 

for aluminium alloy 2014-T6, the experimental average fatigue life of aluminium alloy 

was 137457 cycles and the standard deviation was 18868. 
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Table 9.3.1 Experimental fatigue life of aluminium alloys at a particular stress level. 

Aluminium 

alloy 

Stress 

level 

(𝑀𝑃𝑎) 

Fatigue life 

(cycles) 

Average fatigue 

life (cycles) 

Coefficient of  

Variation (CV) 

(%) 

Aluminium 

alloy 2011-T6 

225 131467, 

146497, 

152815, 

181234 

153003 11.80 

Aluminium 

alloy 2014-T6 

225 118884, 

129599, 

132397, 

168948 

1374572 13.73 

 

 

Figure 9.3.1 Graph showing endurance of aluminium alloy 2011-T6 samples at stress level 

225 𝑀𝑃𝑎.  
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Figure 9.3.2 Graph showing endurance of aluminium alloy 2014-T6 samples at stress level 

225 𝑀𝑃𝑎. 

 

9.3.2 Electropulsing treatment effect on prefatigued specimen 

 

Electropulsing treatment effect in terms of the intensity of electropulsing and the 

number of applications was investigated on the prefatigued specimens; 3 for 

aluminium alloy 2011-T6 and 4 for aluminium alloy 2014-T6. The work is focused on 

the damage-repairing ability of the electropulsing treatment based on statistical 

analysis. All the results are given in Table 9.3.2.
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Table 9.3.2 Electropulsing treatment parameters and corresponding fatigue life enhancement. 

Aluminium 

Alloy 

Test 

no.  

Stress 

level

(𝑀𝑃𝑎) 

ET treatment 

type 

Prefatigue 

level (%) for 

treatment 

Number of 

applications 

Treatment 

intensity 

(
𝑀𝐴

𝑚2) 

Treatment 

time 

(ms) 

Correlation 

coefficient 

Fatigue 

life 

(Cycles) 

 

Fatigue 

life 

enhance

ment (%) 

Aluminium 

Alloy 

2011-T6 

1, 

2, 

3 

225 Electropulsing 70% 3 

 

1091 

1391 

1691 

16 -0.96 202983, 

179321, 

172123 

32.67, 

17.20, 

12.50 

Aluminium 

Alloy 

2011-T6 

4, 

5, 

6 

225 Electropulsing 70% 2, 

3, 

4 

1091 16 -0.69 197328, 

202983, 

183481 

28.97, 

32.67, 

29.92 

Aluminium 

Alloy 

2014-T6 

7 

 

225 Electropulsing 56% 3 1091 16 - 208787, 

224219, 

259232 

51.89, 

63.12, 

88.59 
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Firstly, three different levels of intensity of electropulsing were used to treat prefatigued 

aluminium alloy 2011-T6. Here, three applications of 1091 
𝑀𝐴

𝑚2
 , 1391 

𝑀𝐴

𝑚2
  and 1691 

𝑀𝐴

𝑚2
 

with 16 𝑚𝑠 pulse time were used. The intensity of the electropulsing was calculated by 

dividing the maximum current value by the minimum cross-sectional area of 2 𝑚𝑚 

radius. The treatment curves with their equations are shown in Figure 9.3.3. These 

curves were taken by filling it with the registered data during the electropulsing 

treatment. The samples were prefatigued to 107102 fatigue cycles before the 

electropulsing treatment was applied. This corresponds to 70 % of the fatigue life of 

the material at 225 𝑀𝑃𝑎.  

 

 

Figure 9.3.3 Electropulsing curves with their corresponding equations. 

 

The electropulsing intensity (current density) effect on fatigue life at 225 𝑀𝑃𝑎 is shown 

in Figure 9.3.4. It has been shown that, in all events, the fatigue life of the treated 

samples increased compared to that of untreated samples. The treatment with 1091 

𝑀𝐴

𝑚2
 led to the highest improvement of 32.67 %. The improvement in fatigue life was 

lower while using higher treatment intensity. For treated samples, the correlation 

coefficient was 𝑟=-0.96 which was close to -1 referring to strong negative linear 
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correlation between the intensity of the treatment and the fatigue life. From this trend, 

it can be explained that the beneficial effect of electropulsing can be negatively 

affected by the higher intensity. This trend also suggest that the sample will get 

damaged beyond a certain level of electropulsing treatment.  

 

 

Figure 9.3.4 Electropulsing intensity effect on fatigue life at 225 𝑀𝑃𝑎. 

 

The most effective intensity of 1091 
𝑀𝐴

𝑚2
 with pulsed duration of 0.016 𝑠  was further 

investigated by changing the number of applications to 2 and 4 in addition to the 3 

applications previously used. The results are shown in Figure 9.3.5. Here, all the cases 

yielded fatigue life enhancement. From the graph, it can be observed that 2 

applications gave quite similar improvement to 3 applications. However, the 

improvement of fatigue life was reduced rapidly for 4 applications. For the treated 

samples, the correlation coefficient was 𝑟=-0.69 which referred to medium negative 

linear correlation between the number of applications of treatment and the fatigue life. 

This means that if the number of applications are increased to a certain level the 

beneficial effect of the treatment will start to decay on fatigue life improvement. 

Therefore, 3 applications of 1091 
𝑀𝐴

𝑚2
  pulsed current density with 16 𝑚𝑠 pulsed duration 

appeared to be the optimum treatment condition as shown in Figure 9.3.6. 
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Figure 9.3.5 Effect of the number of applications of electropulsing on fatigue life at 225 𝑀𝑃𝑎. 

 

These optimum treatment parameters were then applied to the  prefatigued aluminium 

alloy 2014-T6 samples.  The results are shown in Figure 9.3.6. The treatment was 

applied after 76975 fatigue cycles which corresponds to 56 % of the fatigue life of this 

untreated material at 225 𝑀𝑃𝑎. This improved the fatigue life by 67.87 % on average 

when compared to the untreated average. The highest improvement in fatigue life was 

88.59 %.  
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Figure 9.3.6 Electropulsing treatment effect on fatigue life at 225 𝑀𝑃𝑎. 

 

9.3.3 Effect of electropulsing treatment on damage repairing of 

aluminium alloy 

 

In order to investigate the effect of electropulsing on damage repairing, a parameter 

(
∆𝐷

𝐷𝑖
)  referred by the study of Bao-Tong et al. [16] was investigated. According to this 

study, the initial fatigue damage before magnetic treatment is defined as,  

 
𝐷𝑖 =

𝑁𝑖
𝑁𝑓

 

 

 (9.3.1) 

 

where, 𝑁𝑖=Initial number of fatigue cycles before the application of the magnetic 

treatment and 𝑁𝑓=total fatigue life without treatment.  

The residual fatigue life without treatment is denoted by 

 𝑁𝑟 = 𝑁𝑓 − 𝑁𝑖 

 

 (9.3.2) 
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Damage tolerance is defined as 

 
𝐷𝑟 = 1 − 𝐷𝑖 =

𝑁𝑟
𝑁𝑓
=
𝑁𝑓 − 𝑁𝑖

𝑁𝑓
 

 

 (9.3.3) 

 

The difference between the fatigue life of treated and untreated samples is defined as 

 ∆𝑁𝑟 = 𝑁𝑟
′ − 𝑁𝑟 

 

 (9.3.4) 

Where, 𝑁𝑟
′= Residual number of fatigue cycles after the magnetic treatment. 

 

Damage-repairing parameter is defined as 

 ∆𝐷

𝐷𝑖
=
𝐷𝑟
′ − 𝐷𝑟
𝐷𝑖

=
𝑁𝑟
′ − 𝑁𝑟
𝑁𝑖

=
∆𝑁𝑟
𝑁𝑖

 

 

 (9.3.5) 

 

where, 𝐷𝑟
′= damage tolerance of a sample after magnetic treatment. 

∆𝐷

𝐷𝑖
=0 represents no damage-repairing effect and  

∆𝐷

𝐷𝑖
=1 represents the damage is fully 

repaired. 

For this study, It can be observed from the graph shown in Figure 9.3.7 that the 

damage-repairing was more prominent in aluminium alloy 2014-T6 where only 

prefatigued level of 56 % was considered compared to aluminium alloy 2011-T6 where 

a higher prefatigued level of 70 % was considered. The electropulsing treatment used 

in this study led to the complete damage repairing of aluminium alloy 2014-T6 (
∆𝐷

𝐷𝑖
>1) 

but partial repairing of aluminium alloy 2011-T6 (
∆𝐷

𝐷𝑖
<1). It can be illustrated from this 

fact that the higher prefatigued level can cause high damage such as microcracks 

which can’t be fully repaired by this treatment if the damage has exceeded a certain 

limit. This is consistent with the work reported in other study by [16]. 
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Figure 9.3.7 The relationship of  
∆𝐷

𝐷𝑖
 vs. 𝐷𝑖 for the specimens with electropulsing treatment 

(Nos. correspond to the test nos. of Table 9.3.2). 

 

9.4 Discussion 

 

When the effect of treatment intensity on fatigue resistance was considered, the 

number of applications and the pulse time were kept constant at 3 applications and 

16 𝑚𝑠 pulsed duration. Here, the electropulsing intensity was varied between 1091 
𝑀𝐴

𝑚2
, 

1691 
𝑀𝐴

𝑚2
  and 1391 

𝑀𝐴

𝑚2
 for 70 % prefatigued aluminium alloy 2011-T6 samples. The 

maximum increase in fatigue life was 33 % which happened to be the treatment with 

the minimum electropulsing intensity of 1091 
𝑀𝐴

𝑚2
 (Table 9.3.2). With the increase of the 

intensity of the treatment, the improvement in fatigue life decreased linearly. This is 

related to the saturation of the beneficial effect of the treatment when the intensity of 

the treatment has reached certain level.  

On the other hand, when the effect of the number of applications on fatigue resistance 

was considered, the treatment intensity and pulse time were kept constant at 1091 
𝑀𝐴

𝑚2
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and 16 𝑚𝑠. Here, the number of applications of the electropulsing varied between 2, 

3  and 4 applications at 70 % prefatigued level for aluminium alloy 2011-T6 samples. 

With the increase of the number of applications, the beneficial effect of electropulsing 

treatment on fatigue life increased up to 3 applications and then it decreased for 4 

applications (Figure 9.3.6). Therefore, The application of three pulses was found to be 

the optimum choice.  

For aluminium alloy 2014-T6, the optimum electropulsing of 1091 
𝑀𝐴

𝑚2
  pulsed current 

density with 16 𝑚𝑠 pulsed duration and 3 applications was also used at 56 % 

prefatigued level. Here, the average improvement was found to be 68 % . This was 

higher than the improvement in 2011-T6. This indicates that the beneficial effect of 

fatigue life due to electropulsing may depend on the prefatigued level. With the 

increase of the prefatigued level, the beneficial effect is reduced. This can be 

quantified from the analysis of damage repairing parameter, (
∆𝐷

𝐷𝑖
), (Figure 9.3.8) 

proposed in [16]. When the damage was small in aluminium alloy 2014-T6, the 

electropulsing was able to repair the damage fully. However, when the damage 

exceeded a certain limit which is the case of 70 % prefatigued aluminium alloy 2011-

T6 sample, it was only able to partially repair the damage. 

The improvement of fatigue resistance can be explained by the damage-repairing 

mechanism including crack healing. Electropulsing treatment can heal the initial 

damage by dislocation movement and Joule heating [15, 207, 226]. It can annihilate 

dislocations by electron drift. Moreover, the damaged area possesses higher electric 

resistance. When electricity flows around damage, Joule heating is produced due to 

the current concentration at the damaged area of high resistance. This can repair the 

slip bands. The heat can also expand and melt crack faces which leads to crack 

closure and crack healing. The crack growth rate also reduces as a result. On the 

other hand, excessive treatment can result in overheating. This can cause melting 

damage [218]. As a result, the beneficial effect of electropulsing on fatigue resistance 

can be reduced. 
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9.5 Summary 

 

In this study, it was observed that the electropulsing treatment led to improvement in 

fatigue life. This improvement varied depending on the change of the electropulsing 

intensity, duration and number of applications. The intensity and the duration of the 

electropulsing and the number of applications can be optimised in order to achieve 

significant improvement in fatigue resistance of aluminium alloy. The effect of 

treatment also depends on the prefatigued level. The beneficial effect of electropulsing 

reduced with the increase of prefatigued level. Excessive treatment may lead to 

saturation or even have a detrimental effect on fatigue resistance.  This can be related 

to the melting damage due to overheating as reported in the literature. Further 

research is needed to make the best use of this treatment technique for optimum 

fatigue resistance enhancement. 
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10  Conclusions and future work 

 

10.1 Conclusions 

 

A comprehensive literature review has been carried out for a better understanding of: 

fundamental theories of  fatigue and fracture mechanics; constant amplitude (CA) and 

variable amplitude (VA) fatigue crack growth; crack closure effect and measurement; 

factors affecting the stress intensity factor range threshold for fatigue crack growth; 

and the electromagnetic treatment and its effect on fatigue resistance. 

 

From the experimental investigation on the transient post-overload crack growth of 

aluminium alloy 6082-T6, delayed overload retardation widely reported in the literature 

has been observed. Fatigue crack growth accelerated right after the application of the 

overload. There was then a prolonged retardation in fatigue crack growth before the 

fatigue crack growth recovered to the pre-overload level. Both the compliance and the 

replica techniques were able to identify the transient behaviour.  With the increase of 

the overload ratio (OLR), the magnitude and extent of the overload retardation 

increased. When the  𝑅 ratio effect was investigated under CA loading at a fixed 

maximum stress intensity factor, the crack growth rate was reduced with the increase 

of the 𝑅 ratio. This do not contradict findings in literature as the higher 𝑅 ratio is 

achieved by the increase of 𝐾𝑚𝑖𝑛, which effectively reduces the stress intensity factor 

range 𝐾. The results prove that the stress intensity factor range rather than the stress 

ratio is the dominant factor controlling the fatigue crack growth. When crack closure 

effect is taken into consideration by replacing the applied stress intensity factor range 

with the effective stress intensity factor range, the 𝑅 ratio effect can be explained 

further. These results will help understand crack growth behaviour under various 

loading conditions and develop more reliable damage tolerance design (DTD) tools.  

The analysis of fatigue crack growth of aluminium alloy 2024-T351 using the strip yield 

model  also confirmed the transient overload retardation effect. The magnitude and 

extent of overload retardation increased with the increase of the OLR and the baseline 

stress intensity factor range, (∆𝐾)𝐵𝐿, but decreased with the increase of the 𝑅 ratio and 

the constraint factor, 𝛼. This 𝛼 can be used to effectively simulate the plane stress and 
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plane crack closure condition. These outcomes will help understand the near tip crack 

behaviour and hence the behaviour of crack growth under variable amplitude (VA) 

loading in greater detail.  

Based on the experimental, finite element (FE) and strip yield model analysis of 

compliance curves around the crack tip of aluminium alloy 6082-T6, it was shown that 

crack closure measurement can be influenced by the crack tip plasticity. Clear non-

linearity has been identified on the compliance curve at a location close to the tip of a 

stationary crack for no crack closure should exist. The transition point so identified is 

related to the crack tip plastic deformation, not to the crack closure. The accuracy of 

the crack closure measurement can therefore be enhanced if the effect of crack tip 

plasticity on the non-linearity of the near tip compliance curve could be separated. This 

is important in defining accurately the effective crack growth driving force for reliable 

damage tolerance design of engineering components. 

The analytical model which was used to predict the threshold stress intensity factor 

range for fatigue crack growth suggested that ∆𝐾𝑡ℎ is a function of material properties 

and 𝑅 ratio. With the increase of 𝑅 ratio ∆𝐾𝑡ℎ decreased. This analytical model will help 

identify the ∆𝐾𝑡ℎ for different materials in different loading conditions and improve the 

fatigue design of engineering components.  

Electropulsing was shown to have beneficial effects on the fatigue resistance of 

aluminium alloy 2014-T6 and aluminium alloy 2011-T6. Among pulsed current 

intensity, pulse time and number of applications, pulse time is observed to be the most 

effective parameter to improve fatigue resistance. It has been shown that the 

electropulsing treatment enhanced the fatigue life by increasing the microhardness 

which delayed the crack initiation process. By using TEM analysis, the mechanism of 

the treatment in improving the fatigue life has been explained by dislocation movement 

and additional precipitation due to the electron wind force produced during 

electropulsing treatment. The decrease in conductivity also indicated the existence of 

extra precipitates in the treated alloy. The SEM analysis has shown a higher ductile 

fracture in the treated alloy. The beneficial effect of electropulsing treatment on fatigue 

damage repair is dependent on the prefatigued level of the material. The fatigue 

damage can be fully repaired at a lower prefatigued level and may not be fully 



235 
 

recovered once the prefatigued level exceeds a certain limit. There exists an optimum 

electropulsing treatment condition for maximum fatigue resistance enhancement. 

 

10.2 Future work 

 

The recommendations for future work are given as follows: 

 The experimental study of the post-overload transient fatigue crack growth can 

be extended to the loading spectrum with multiple overloads, 

overload/underload combinations, and block loading. This will help understand 

the interactions among different loading cycles and develop a more reliable 

damage tolerance design algorithm.  

 The strip yield model which is used in this project can be developed further to 

incorporate other closure effects including roughness induced crack closure 

(RICC) and oxide induced crack closure (OICC). This will provide an efficient 

method to determine the effective crack growth driving for reliable damage 

tolerance design of engineering components under various loading 

environment.  

 The non-linearity of the compliance curve should be investigated further in order 

to separate the effect of the crack tip plasticity from the effect of crack closure. 

This will improve the accuracy of the crack closure measurement and hence 

provide more reliable determination of crack growth driving force. 

 The investigation of electromagnetic treatment on the fatigue resistance can be 

extended to steel, copper and titanium alloys. Different treatment techniques 

including pulsed magnetic field (PMF) treatment can also be investigated. Effect 

of electromagnetic treatment on fatigue crack growth can also be investigated.  
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Appendices 

 

Appendix A: Code for Strip Yield model 

 

        PROGRAM CRACK_CLOSURE_MODELLING 

        Implicit None 

        Integer :: N, Loadcycle 

        Double Precision :: S1 

!       The dimension of smax and smin equals loadcycle 

        Double Precision :: Smax(2000), Smin(2000) 

!       Data Initialisations 

        Loadcycle=2000 

        Smax=5.0D1; Smin=0.0D1 

        S1=5.0D1 

        Smin(600)=0.0D1 

        Smax(600)=7.0D1 

        Open  (unit=10, file= "result1.out", status= "new") 

        Write (unit=10, FMT=*) "Analytical Crack Closure Modelling" 

        Print *, "Analytical Crack Closure Modelling" 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format (1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)")  

        Call Initialisation(S1) 

        Print *, "Initialisation passed" 

        DO N=1, 1000 

!        Write (unit=10, FMT=*) "*****************************" 
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        Write (unit=10, FMT=*) "Results at N=", N 

        Print *, "*******************************" 

        Print *, "Results at N=", N 

        Call Crack_Extension(Smax(N)) 

        Print *, "Crack Extension passed" 

        Call Smax_Data(Smax(N), N) 

        Print *, "Smax_Data passed" 

        Call Smin_Data(Smax(N),Smin(N),N) 

        Print *, "Smin_Data passed" 

        Call Crack_Opening(Smax(N),Smin(N),N) 

        Print *, "Crack_Opening passed" 

        End DO 

        Write (unit=10, FMT=*) "End of the analysis" 

        Close (unit=10) 

        Print *, "End of the Analysis" 

        END PROGRAM CRACK_CLOSURE_MODELLING 

 

!       Define Module Global_Data 

        Module Global_Data 

        Implicit None 

        Save 

!       This module defines sample geometry, materials properties, 

!       and some parameters. 

        Integer :: N1 
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        Double Precision :: a0, af, rp0, rpmax, rpmax0, rpmax1 

        Double Precision :: Pmax, Pmin, Pmax1, Pmin1 

        Double Precision :: S(100), W(100), X(100), F(100), V(100) 

        Double Precision :: L(100), Y(100), G(100, 100)  

!       width is the whole width while a0 is the half length of 

!       the intial physical crack. 

        Double Precision, Parameter :: width=15.0D1, T=0.2D1,E=7.0D4 

        Double Precision, Parameter :: Poisson=0.00D1, alpha=0.1D1 

        Double Precision, Parameter :: epsilon=0.0005D1, pi=0.31415926D1 

        Double Precision, Parameter :: SYS=37.2D1, UTS=48.3D1, R=0.00D1 

        Double Precision, Parameter :: nm=0.01D1, nc=0.018D1 

        End Module Global_Data    

 

 

        

!       Define influence function F1(X1) 

        Function F1(x1) 

        Use Global_Data       

        Implicit None 

        Double Precision :: F1 

        Double Precision, Intent(in) :: x1 

        F1=2.0*(1.0-Poisson**2)*SQRT((af**2-X1**2)/cos(pi*af/width))/E 

        End Function F1 
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!       Define Yield strength function Yield(x1) 

        Function Yield(x1) 

        Use Global_Data 

        Implicit None 

        Double Precision :: Yield  

        Double Precision, Intent(in) :: x1 

        Yield=(SYS+UTS)/2.0 

        End Function Yield 

 

    

!       Define Subroutine G1 

        Subroutine G1 

        USE Global_Data 

        Implicit None 

        Double Precision :: b1,b2,bb1,bb2,a1,a2,a3,a4,a5 

        Double Precision :: c1,c2,c3,c4,c5,c6 

        Double Precision :: c11,c22,c33,c44,a22,a33,t1,t2  

        Integer :: I, J 

 

        DO I=1, 100 

        DO J=1, 100 

        b1=X(J)-W(J)/2.0; b2=X(J)+W(J)/2.0 

        bb1=sin(pi*b1/width)/sin(pi*af/width) 
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        bb2=sin(pi*b2/width)/sin(pi*af/width) 

        If (bb2>(1.0-1.0D-25)) then 

        bb2=1.0-1.0D-25 

        End If  

        a1=2.0*(1.0-Poisson**2)*SQRT(1.0/cos(pi*af/width))/(pi*E) 

        c1=(af**2-b2*X(I))/(af*ABS(b2-X(I))) 

        If (c1<(1.0+1.0D-25)) then 

        c1=1.0+1.0D-25 

        End If    

        c2=log(c1+SQRT(c1**2-1.0)) 

        c3=(af**2-b1*X(I))/(af*ABS(b1-X(I))) 

        If (c3<(1.0+1.0D-25)) then 

        c3=1.0+1.0D-25 

        End If    

        c4=log(c3+SQRT(c3**2-1.0)) 

        a2=(b2-X(I))*c2 

        a3=(b1-X(I))*c4 

        c5=b1/af; c6=b2/af  

        If (c6>(1.0-1.0D-25)) then 

        c6=1.0-1.0D-25 

        End If 

        a4=SQRT(af**2-X(I)**2)*(asin(c6)-asin(c5)) 

        a5=(asin(bb2)-asin(bb1))/(asin(c6)-asin(c5)) 

        t1=a1*(a2-a3+a4)*a5 
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        c11=(af**2+b2*X(I))/(af*ABS(b2+X(I))) 

        If (c11<(1.0+1.0D-25)) then 

        c11=1.0+1.0D-25 

        End If    

        c22=log(c11+SQRT(c11**2-1.0)) 

        c33=(af**2+b1*X(I))/(af*ABS(b1+X(I))) 

        If (c33<(1.0+1.0D-25)) then 

        c33=1.0+1.0D-25 

        End If    

        c44=log(c33+SQRT(c33**2-1.0)) 

        a22=(b2+X(I))*c22 

        a33=(b1+X(I))*c44 

        t2=a1*(a22-a33+a4)*a5 

        G(I,J)=t1+t2 

        End DO 

        End DO    

        End Subroutine G1 

 

 

!       Initialisation of the problem 

        Subroutine Initialisation(S1) 

        Use Global_Data 

        Implicit None 

!       Variable declarations 
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        Double Precision, Intent(in) :: S1 

        Double Precision :: rp1,t1,t2,sum1,b11,b22,b33,b44 

        Integer :: I, J 

        Double Precision, External :: F1, Yield 

 

        a0=2.0D1 

        N1=0 

 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format (1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)") 

        t2=(SYS+UTS)/2.0  

        Rp0=(pi/8.0)*(S1**2*pi*a0/(cos(pi*a0/width)*(alpha*t2)**2)) 

        DO I=1, 1000 

        T1=a0-5.0*rp0; af=a0+rp0 

!       Mesh, 40 in plastic zone and 60 in the wake 

        DO J=1,10 

        W(J)=0.11*rp0;    X(J)=t1+(real(J)-0.5)*0.11*rp0 

        W(J+10)=0.11*rp0; X(J+10)=t1+1.1*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+20)=0.11*rp0; X(J+20)=t1+2.2*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+30)=0.11*rp0; X(J+30)=t1+3.3*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+40)=0.05*rp0; X(J+40)=t1+4.4*rp0+(Real(J)-0.5)*0.05*rp0 

        W(J+50)=0.01*rp0; X(J+50)=t1+4.9*rp0+(Real(J)-0.5)*0.01*rp0 

        W(J+60)=0.01*rp0; X(J+60)=a0+(real(J)-0.5)*0.01*rp0 

        W(J+70)=0.03*rp0; X(J+70)=a0+0.1*rp0+(Real(J)-0.5)*0.03*rp0 
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        W(J+80)=0.05*rp0; X(J+80)=a0+0.4*rp0+(Real(J)-0.5)*0.05*rp0 

        W(J+90)=0.01*rp0; X(J+90)=a0+0.9*rp0+(Real(J)-0.5)*0.01*rp0 

        End DO  

      

        Y=(/((SYS+UTS)/2.0, J=1, 60), (yield(X(J)), J=61, 100)/) 

        S=(/(0.0D1, J=1, 60), (alpha*Y(J), J=61, 100)/) 

        Sum1=0.0D1 

        DO J=61, 100 

        b11=X(J)-W(J)/2.0; b22=X(J)+W(J)/2.0 

        b33=sin(pi*b11/width)/sin(pi*af/width) 

        b44=sin(pi*b22/width)/sin(pi*af/width) 

        If (b44>(1.0-1.0D-25)) then 

        b44=1.0-1.0D-25 

        End IF  

        sum1=sum1+alpha*Y(J)*(asin(b44)-asin(b33)) 

        End DO 

        Rp1=sum1**2*4.0*(a0+rp0)/(pi*S1)**2-a0 

        If (ABS(rp1-rp0)<epsilon*rp0) then 

        Exit 

        End If  

        If (rp1>rp0) then 

        rp0=rp0*0.995 

        Else 

        rp0=rp0*1.005 
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        End If           

        IF (rp0>(a0/4.5)) then 

        rp0=a0/4.5 

        End If  

        End DO 

!       Write total steps for intialisation to result file 

        Write (unit=10,FMT=*) I-1, " iterations for initialisation" 

!       print total steps for initialisation  

        print *, I-1, " iterations for initialisation" 

        Print *, "rp0=", rp0, "    rp1=", rp1 

        Print *, "a0=", a0, "    af=", af 

 

        rpmax=rp0 

        rpmax1=rp0 

        rpmax0=rp0  

 

        F=(/(F1(X(J)), J=1, 100)/) 

        Call G1 

        DO I=1, 100 

        Sum1=0.0D1 

        DO J=61, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=S1*F(I)-sum1 
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        If (V(I)<1.0D-25) then 

        V(I)=1.0D-25 

        End IF  

        End DO 

        L=(/(0.0D1,I=1,60),(V(I)*(1.0-alpha*Y(I)/E),I=61,100)/) 

!       write initialisation results to file 

        Write (unit=10, FMT=*) "rp0=", rp0, "    rp1=", rp1 

        Write (unit=10, FMT=*) "a0=", a0, "    af=", af 

        write (unit=10, FMT=200) 

 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

 

        End Subroutine Initialisation 

  

 

        Subroutine Crack_Extension(Smax1) 

        Use Global_Data 

        Implicit None 

!       Variable declarations 

        Double Precision, Intent(inout) :: Smax1 

        Double Precision rp, rp1, t1, t2, sum1, dmax 

        Double Precision b11, b22, b33, b44 
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        Double Precision d1, d2, d3, d4, d5, d6 

        Double Precision W2(100), X2(100), L2(100) 

        Integer :: I, J, K 

        Double Precision, External :: F1, Yield 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format (1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)") 

        W2=W; X2=X; L2=L 

        N1=N1+1 

        t2=(SYS+UTS)/2.0 

        Pmax1=50.*SQRT(20.*cos(pi*a0/width)/(a0*cos(pi*20./width))) 

        Pmin1=R*Pmax1 

        Pmax=Pmax1*Smax1/50.0 

        rp0=pi/8.0*Pmax**2*pi*a0/(cos(pi*a0/width)*(alpha*t2)**2) 

        DO I=1, 1000 

        T1=a0-5.0*rp0; af=a0+rp0 

!       Mesh, 40 in plastic zone and 60 in the wake 

        DO J=1,10 

        W(J)=0.11*rp0;    X(J)=t1+(real(J)-0.5)*0.11*rp0 

        W(J+10)=0.11*rp0; X(J+10)=t1+1.1*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+20)=0.11*rp0; X(J+20)=t1+2.2*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+30)=0.11*rp0; X(J+30)=t1+3.3*rp0+(Real(J)-0.5)*0.11*rp0 

        W(J+40)=0.05*rp0; X(J+40)=t1+4.4*rp0+(Real(J)-0.5)*0.05*rp0 

        W(J+50)=0.01*rp0; X(J+50)=t1+4.9*rp0+(Real(J)-0.5)*0.01*rp0 

        W(J+60)=0.01*rp0; X(J+60)=a0+(real(J)-0.5)*0.01*rp0 
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        W(J+70)=0.03*rp0; X(J+70)=a0+0.1*rp0+(Real(J)-0.5)*0.03*rp0 

        W(J+80)=0.05*rp0; X(J+80)=a0+0.4*rp0+(Real(J)-0.5)*0.05*rp0 

        W(J+90)=0.01*rp0; X(J+90)=a0+0.9*rp0+(Real(J)-0.5)*0.01*rp0 

        End DO  

 

        Y=(/((SYS+UTS)/2.0, J=1, 60), (yield(X(J)), J=61, 100)/) 

        S=(/(0.0D1, J=1,60), (alpha*Y(J), J=61,100)/) 

        Sum1=0.0D1 

        DO J=61, 100 

        b11=X(J)-W(J)/2.0; b22=X(J)+W(J)/2.0 

        b33=sin(pi*b11/width)/sin(pi*af/width) 

        b44=sin(pi*b22/width)/sin(pi*af/width) 

        If (b44>(1.0-1.0D-25)) Then 

        b44=1.0-1.0D-25 

        End IF  

        sum1=sum1+alpha*Y(J)*(asin(b44)-asin(b33)) 

        End DO 

        Rp1=sum1**2*4.0*(a0+rp0)/(pi*Pmax)**2-a0 

        If (ABS(rp1-rp0)<epsilon*rp0) then 

        Exit 

        End If  

        If (rp1>rp0) then 

        rp0=0.995*rp0 

        Else 
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        rp0=1.005*rp0 

        End If    

        IF (rp0>(a0/4.5)) then 

        rp0=a0/4.5 

        End If  

        End DO 

 

!       Write total steps for Smax calculation at cycle N to result file 

        Write (unit=10, FMT=*) I-1, " iterations for active rp at Smax"  

!       print total steps for Smax calculation at cycle N 

        print *, I-1, " iterations for active rp at Smax" 

 

        If (rp0<rpmax*(1.0-epsilon)) Then 

        W=W2; X=X2; L=L2 

        af=a0+rpmax 

        a0=a0+W(61) 

        rp0=rpmax-W(61) 

        rpmax=rpmax-W(61) 

        t1=a0-5.0*rp0 

 

        DO I=1, 60 

        X(I)=X(I)+W(61) 

        End DO 

        DO I=6, 1, -1 
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        DO J=10, 1, -1 

        K=J+(I-1)*10 

        L(K)=((W(K)-W(61))*L(K)+W(61)*L(K+1))/W(K) 

        End DO 

        End DO 

 

        DO J=1,10 

        W(J+60)=0.01*rp0; X(J+60)=a0+(real(J)-0.5)*0.01*rp0 

        W(J+70)=0.03*rp0; X(J+70)=a0+0.1*rp0+(Real(J)-0.5)*0.03*rp0 

        W(J+80)=0.05*rp0; X(J+80)=a0+0.4*rp0+(Real(J)-0.5)*0.05*rp0 

        W(J+90)=0.01*rp0; X(J+90)=a0+0.9*rp0+(Real(J)-0.5)*0.01*rp0 

        End DO  

 

        DO I=1, 10 

        L(I+60)=(0.0001*(I-1))*L(I+60) 

        L(I+60)=(L(I+60)+(0.0099-0.0001*(I-1))*L(I+61))/0.0099 

        End DO 

        DO I=1, 10 

        L(I+70)=(0.0297-0.009+0.0003*I)*L(I+70) 

        L(I+70)=(L(I+70)+(0.009-0.0003*I)*L(I+71))/0.0297 

        End DO 

        DO I=1, 10 

        L(I+80)=(0.0495-0.006+0.0005*I)*L(I+80) 

        L(I+80)=(L(I+80)+(0.006-0.0005*I)*L(I+81))/0.0495 
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        End DO 

        DO I=1, 10 

        L(I+90)=(0.0099-0.001+0.0001*I)*L(I+90) 

        L(I+90)=(L(I+90)+(0.001-0.0001*I)*L(I+91))/0.0099 

        End DO 

 

        Else If (rp0>(1.0+epsilon)*rpmax1) Then 

        rpmax=rp0 

        rpmax1=rp0 

        a0=a0+W(61) 

        af=a0+rpmax 

 

        DO I=1, 60 

        d1=X(I)-W(I)/2.0 

        d2=X(I)+W(I)/2.0 

        DO J=60, 1, -1 

        d3=X2(J)-W2(J)/2.0 

        If (d1>=d3) Then 

        d5=L2(J) 

        Exit 

        End If 

        d5=0.0D1 

        End DO 

        DO J=60, 1, -1 
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        d3=X2(J)-W2(J)/2.0 

        IF (d2>=d3) Then 

        d6=L2(J) 

        Exit 

        End IF 

        d6=0.0D1 

        End DO 

        L(I)=(d5+d6)/2.0 

        End DO  

        DO I=1, 100 

        X(I)=X(I)+W(61) 

        END DO 

        DO I=6, 1, -1 

        DO J=10, 1, -1 

        K=J+(I-1)*10 

        L(K)=((W(K)-W(61))*L(K)+W(61)*L(K+1))/W(K) 

        End DO 

        End DO 

 

        Else 

        DO I=1, 60 

        W(I)=W2(I); X(I)=X2(I); L(I)=L2(I) 

        End DO 

        DO I=1, 100 



280 
 

        X(I)=X(I)+W(61) 

        End DO 

        DO I=6, 1, -1 

        DO J=10, 1, -1 

        K=J+(I-1)*10 

        L(K)=((W(K)-W(61))*L(K)+W(61)*L(K+1))/W(K) 

        End DO 

        End DO 

        a0=a0+W(61) 

        af=a0+rp0 

        rpmax=rp0 

        End If 

 

        DO I=59, 1, -1 

        If ((X(I)+W(I)/2.0-20.0)<(W(61)/2.0)) Then 

        DO J=1, I 

        L(J)=0.0D1 

        End DO 

        Exit 

        End IF 

        End DO 

 

        Write (unit=10, FMT=*) "rp0=",rp0,"  rp1=",rp1,"  rpmax=",rpmax 

        Write (unit=10, FMT=*) "a0=", a0, "    af=", af 
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        Print *, "rp0=",rp0,"    rp1=",rp1,"    rpmax=",rpmax  

        Print *, "a0=", a0, "    af=", af 

 

        F=(/(F1(X(I)), I=1, 100)/) 

        Call G1 

        END Subroutine Crack_Extension 

 

 

        Subroutine Smax_Data(Smax1,N) 

        Use Global_Data 

        Implicit None 

!       Variable declarations 

        Double Precision, Intent(inout) :: Smax1 

        Integer, Intent(inout) :: N 

        Double Precision t1, sum1, dmax 

        Integer :: I, J, K 

        Double Precision, External :: F1, Yield 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format (1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)")  

        DO K=1, 400 

        dmax=0.0D1 

        DO I=1, 60 

        t1=S(I) 

        sum1=0.0D1 
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        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        S(I)=(Pmax*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>0.0D1) Then 

        S(I)=0.0D1 

        Else If (S(I)<-Y(I)) Then 

        S(I)=-Y(I) 

        Else 

        End If 

        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End DO 

        DO I=61, 100 

        t1=S(I) 

        sum1=0.0D1 

        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 
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        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        S(I)=(Pmax*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>alpha*Y(I)) Then 

        S(I)=alpha*Y(I) 

        Else If (S(I)<-alpha*Y(I)) Then 

        S(I)=-alpha*Y(I) 

        Else 

        End If 

        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End Do 

        If (dmax<=epsilon*SYS) Then 

        Exit 

        End If 

        End DO 

  

!       write iteration number at Smax  

        write (unit=10,FMT=*) K-1," iterations at Smax" 

!       print iteration number for Smax at cycle N at Smax 

        print *, K-1, " iterations at Smax" 

 

        DO I=1, 60 



284 
 

        sum1=0.0D1 

        DO J=61, 100 

        sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Pmax*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25 

        write (unit=10, FMT=*) "Crack surfaces are closed at Smax" 

        Else IF (V(I)<L(I)*(1.0-Y(I)/E)) Then 

        L(I)=V(I)*(1.0+Y(I)/E) 

        write (unit=10, FMT=*) "Crack surfaces are closed at Smax" 

        Else 

        End IF 

        End DO 

 

        DO I=61, 100 

        sum1=0.0D1 

        DO J=61, 100 

        sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Pmax*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25 

        Else IF (V(I)<L(I)*(1.0-alpha*Y(I)/E)) Then 
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        L(I)=V(I)*(1.0+alpha*Y(I)/E) 

        Else If (V(I)>L(I)*(1.0+alpha*Y(I)/E)) Then 

        L(I)=V(I)*(1.0-alpha*Y(I)/E) 

        Else 

        End IF 

        End DO 

 

!       write Smax results at cycle N to file 

        IF (N1<2) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 

        IF ((Real(N1/100.0)-Int(N1/100))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 

        IF (N1<100) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 
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        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 

        End IF 

        IF (N1>600) Then 

        IF (N1<700) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 

        End IF 

        End IF 

        END Subroutine Smax_Data 

 

 

        Subroutine Smin_Data(Smax1,Smin1,N) 

        Use Global_Data 

        Implicit None 

!       Variable declarations 

        Double Precision, Intent(inout) :: Smax1, Smin1 

        Integer, Intent(inout) :: N 

        Double Precision :: rp1, t1 
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        Double Precision :: b1, b2, b3, b4, sum1, dmax 

        Integer :: I, J, K 

        Double Precision, External :: F1, Yield 

        Dmax=0.0D1 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format ( 1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)") 

        F=(/(F1(X(I)), I=1, 100)/) 

        S=0.0D1 

        Pmin=(Pmax1+Pmin1)/2-(Pmax1-Pmin1)*((25.0-Smin1)/25.0)/2 

 

        DO K=1, 400 

        dmax=0.0D1 

        DO I=1, 60 

        t1=S(I) 

        sum1=0.0D1 

        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        S(I)=(Pmin*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>0.0D1) Then 

        S(I)=0.0D1 
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        Else If (S(I)<-Y(I)) Then 

        S(I)=-Y(I) 

        Else 

        End If 

        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End DO 

        DO I=61, 100 

        t1=S(I) 

        sum1=0.0D1 

        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        S(I)=(Pmin*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>alpha*Y(I)) Then 

        S(I)=alpha*Y(I) 

        Else If (S(I)<-alpha*Y(I)) Then 

        S(I)=-alpha*Y(I) 

        Else 

        End If 
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        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End DO 

        If (dmax<=epsilon*SYS) Then 

        Exit 

        End If 

        End DO 

 

        DO I=1, 60 

        Sum1=0.0D1 

        DO J=1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Pmin*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25  

        S(I)=-Y(I) 

        Else IF (V(I)<L(I)*(1.0-Y(I)/E)) Then 

        L(I)=V(I)*(1.0+Y(I)/E) 

        Else 

        End IF 

        End DO 
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        DO I=61, 100 

        Sum1=0.0D1 

        DO J=1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Pmin*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25 

        Else IF (V(I)<L(I)*(1.0-alpha*Y(I)/E)) Then 

        L(I)=V(I)*(1.0+alpha*Y(I)/E) 

        Else If (V(I)>L(I)*(1.0+alpha*Y(I)/E)) Then 

        L(I)=V(I)*(1.0-alpha*Y(I)/E) 

        Else 

        End IF 

        End DO 

 

!       write Smin results at cycle N to file 

        write (unit=10, FMT=*) K-1, " iterations at Smin" 

        IF (N1<2) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 
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        IF ((Real(N1/100.0)-Int(N1/100))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 

        IF (N1<100) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 

        End IF 

        IF (N1>600) Then 

        IF (N1<700) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 

        End IF 

        End IF 
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!       Print iteration step number on screen 

        print *, K-1, " iterations at Smin" 

        END Subroutine Smin_Data 

 

 

 

        Subroutine Crack_Opening(Smax1, Smin1, N) 

        Use Global_Data 

        Implicit None 

        Double Precision, Intent(inout) :: Smax1, Smin1 

        Integer, Intent(inout) :: N 

        Integer :: I, J, K, M, I1, I2 

        Double Precision :: dmax,dmax1, dmin1, sum1, t1, t2 

        Double Precision :: Sopen, U1, U2 

        Double Precision :: Kmax, Kop, b1, b2, b11, b22,b3 

        Double Precision, External :: F1, Yield 

 

100     Format (F10.4, 3(E12.5, 1x)) 

200     Format (1x, "X(I)", T12, "V(I)", T30, "S(I)", T45, "L(I)") 

        Sopen=Pmin1 

 

        Kmax=Pmax1*SQRT(pi*a0/cos(pi*a0/width)) 

        Kop=0.0D1 

        DO I=1,60 
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        b1=X(I)-W(I)/2 

        b2=X(I)+W(I)/2 

        b11=sin(pi*b1/width)/sin(pi*a0/width) 

        b22=sin(pi*b2/width)/sin(pi*a0/width) 

        If (b22>(1.0-1.0D-25)) Then 

        b22=1.0-1.0D-25 

        End IF 

        b3=asin(b22)-asin(b11) 

        Kop=Kop-2*S(I)*b3*SQRT(a0/(cos(pi*a0/width)*pi)) 

        End DO 

        U1=Kop/Kmax 

        print *, "Crack opening level U1=", U1 

 

        DO K=1, 400 

        Dmax1=0.0D1 

        Dmin1=1.0D25 

        DO I=1, 60 

        T1=-S(I) 

        T2=V(I)-L(I) 

        If (t1>dmax1) then 

        Dmax1=t1 

        I1=I 

        End if 

        If (t2<dmin1) then 
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        Dmin1=t2 

        I2=I 

        End if 

        End DO 

        If (dmax1>epsilon*SYS) then 

        Sopen=Sopen+dmax1*G(I1,I1)/F(I1) 

        Else if (dmin1>epsilon*L(60)) then 

        Sopen=Sopen-dmin1/F(I2) 

        Else  

        Exit 

        End If 

 

        S=0.0D1 

        DO M=1, 400 

        dmax=0.0D1 

        DO I=1, 60 

        t1=S(I) 

        sum1=0.0D1 

        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 
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        S(I)=(Sopen*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>0.0D1) Then 

        S(I)=0.0D1 

        Else If (S(I)<-Y(I)) Then 

        S(I)=-Y(I) 

        Else 

        End If 

        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End DO 

        DO I=61, 100 

        t1=S(I) 

        sum1=0.0D1 

        DO J=1, I-1 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        DO J=I+1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        S(I)=(Sopen*F(I)-L(I)-sum1)/G(I, I) 

        If (S(I)>alpha*Y(I)) Then 

        S(I)=alpha*Y(I) 

        Else If (S(I)<-alpha*Y(I)) Then 
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        S(I)=-alpha*Y(I) 

        Else 

        End If 

        If (ABS(t1-S(I))>=SYS*epsilon) Then 

        dmax=ABS(t1-S(I)) 

        End If 

        End DO 

        If (dmax<=epsilon*SYS) Then 

        Exit 

        End If 

        End DO 

 

        DO I=1, 100 

        Sum1=0.0D1 

        DO J=1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Sopen*F(I)-sum1 

        If (V(I)<1.0D-25) then 

        V(I)=1.0D-25 

        End IF  

        End DO 

 

        End DO 
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        DO I=1, 60 

        Sum1=0.0D1 

        DO J=1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Sopen*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25  

  !      Else IF (V(I)<L(I)*(1.0-Y(I)/E)) Then 

  !      L(I)=V(I)*(1.0+Y(I)/E) 

  !      Else 

        End IF 

        End DO 

 

        DO I=61, 100 

        Sum1=0.0D1 

        DO J=1, 100 

        Sum1=sum1+S(J)*G(I, J) 

        End DO 

        V(I)=Sopen*F(I)-sum1 

        IF (V(I)<1.0D-25) Then 

        V(I)=1.0D-25 

  !      Else IF (V(I)<L(I)*(1.0-alpha*Y(I)/E)) Then 
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  !      L(I)=V(I)*(1.0+alpha*Y(I)/E) 

  !      Else If (V(I)>L(I)*(1.0+alpha*Y(I)/E)) Then 

  !      L(I)=V(I)*(1.0-alpha*Y(I)/E) 

  !      Else 

        End IF 

        End DO 

 

        U2=Sopen/Pmax1 

        

!       write crack opening results at cycle N to file 

        write (unit=10, FMT=*) K-1, " iterations for U calculation" 

        write (unit=10, FMT=*) "U1=", U1, " U2=", U2 

        IF (N1<2) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 

        If ((Real(N1/100.0)-Int(N1/100))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 
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        IF (N1<100) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End If 

        End IF 

        IF (N1>600) Then 

        IF (N1<700) Then 

        IF ((Real(N1/25.0)-Int(N1/25))<1.0D-10) Then 

        write (unit=10, FMT=200) 

        DO I=1, 100 

        Write (unit=10, FMT=100) X(I), V(I), S(I), L(I) 

        End DO 

        End IF 

        End IF 

        End IF 

 !       write (unit=10, FMT=*) N1, "  ",a0, "  ", "  ",U1, "  ",U2 

!       print crack opening results at cycle N on screen 

        print *, K-1, " iterations for U2 calculation" 

        print *, "Crack opening level U2=", U2 

        END Subroutine Crack_Opening 

 



300 
 

Appendix B: Code for analytical model to identify threshold fatigue 

crack growth 

 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

        %%%%%%%%%%%%%%%%%%%%%% Carica File 

%%%%%%%%%%%%%%%%%%%%%% 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

  

clear all 

clc 

  

[filename_r, pathname_r] = uigetfile({'*.dat','*.txt'},'Carica i dati','MultiSelect','on'); 

if isequal(filename_r,0)||isequal(pathname_r,0) 

    disp('File non caricato.') 

    clear filename_r pathname_r 

else 

    if iscell(filename_r)==1 

        for l=1:size(filename_r,2) 

            nome{l}=[pathname_r,filename_r{l}]; 

            disp(nome{l}) 

        end 

    else 

        nome0=[pathname_r,filename_r]; 

        disp(nome0) 

        nome{1}=nome0; 

        n=filename_r; 

        clear filename_r 

        filename_r{1}=n; 

        clear n 
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    end 

       %%%%%%%%%%%%%% ghonem %%%%%%%%%%%%%%%%%%% 

      R=0.6; 

      Pmax=22.79; 

      Pmin=13.68; 

%       R= 0.5; 

%       Pmax=22.25; 

%       Pmin=11.13; 

%       R=0.4; 

%       Pmax=15.19; 

%       Pmin=6.08; 

      W=10.16; 

      B=0.3175;  

%%%%%%%%%%%%  virkler %%%%%%%%%%%%%%% 

%         R=0.2; 

%         Pmax=23.35; 

%         Pmin=4.67; 

%         W=12.7; 

%         B=0.254;  

%%%%%%%%%%%%  Wu&Ni %%%%%%%%%%%%%%% 

%         R=0.2; 

%         Pmax=4.5; 

%         Pmin=0.9; 

%         W=5; 

%         B=1.2;  

%%%%%%%%%%%%  MMateriale K %%%%%%%%%%%%%%% 

%         R=0.5; 

%         DP1=5.678; 

%         Pmax=DP1/(1-R); 

%         Pmin=Pmax-DP1; 

%         W=45; 

%         B=20;  

         

    for l=1:size(nome,2) 
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        Dati=importdata(nome{l}); 

      

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

        %%%%%%%%%%%%%%%%%%% Interpolazione 

%%%%%%%%%%%%%%%%%%% 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

%         [m,n]=size(Dati); 

        N=Dati(1:end,1); %t 

        a=Dati(1:end,2); %w y(i) 

        m=length(N); 

        a1=a(1); %r Dati(1,2) y(1) 

        am=a(m); %d Dati(m,2) 

        Nm=N(m); %c x(m) 

         

%         f1=fittype('((c-(((a0-(c*((N0/(N0+r))^esp)))/((-((N0/(N0+r))^esp)*exp(1/(beta-

1)))+(exp(((N0/(N0+r))^alfa)/(beta-((N0/(N0+r))^alfa))))))*(exp(1/(beta-

1)))))*(((x+N0)/(r+N0))^esp))+(((a0-(c*((N0/(N0+r))^esp)))/((-

((N0/(N0+r))^esp)*exp(1/(beta-1)))+(exp(((N0/(N0+r))^alfa)/(beta-

((N0/(N0+r))^alfa))))))*(exp((((x+N0)/(r+N0))^alfa)/(beta-

(((x+N0)/(r+N0))^alfa)))))','problem',{'c','r','a0'},'coefficients',{'alfa','beta','N0','esp'},'ind

ependent',{'x'}); 

%         s = fitoptions('Method','NonlinearLeastSquares','Lower',[1.1 1.8 0 

1.25],'Upper',[50 50 30*Nm 3.7],'Robust','LAR','StartPoint',[1 1.5 2*Nm 

1.5],'Algorithm','trust-region','MaxFunEvals',1e6,'MaxIter',1e6,'TolFun',1e-4,'TolX',1e-

4);         

%         [f2,gof,fitness] = fit(N,a,f1,'problem',{am,Nm,a1},s);         

        f1=fittype('(h*(((x+N0)/(r+N0))^esp))+(k*exp((((x+N0)/(r+N0))^alfa)/(beta-

(((x+N0)/(r+N0))^alfa))))','problem',{'r'},'coefficients',{'alfa','beta','N0','esp','h','k'},'indep

endent',{'x'}); 
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        s = fitoptions('Method','NonlinearLeastSquares','Lower',[1.1 1.1 Nm 1.15 0.8 

0.5],'Upper',[80 80 100*Nm 7 80 1],'Robust','LAR','StartPoint',[1.5 1.9 10*Nm 1.5 10 

0.7],'Algorithm','trust-region','MaxFunEvals',1e6,'MaxIter',1e6,'TolFun',1e-6,'TolX',1e-

6); 

        [f2,gof,fitness] = fit(N,a,f1,'problem',{Nm},s); 

        coeff(l,:)=coeffvalues(f2); 

        alpha(l,:)=coeff(l,1); 

        beta(l,:)=coeff(l,2); 

        N0(l,:)=coeff(l,3); 

        p(l,:)=coeff(l,4); 

        hmod(l,:)=coeff(l,5); 

        kmod(l,:)=coeff(l,6); 

%         kmod(l,:)=(a1-(am*((coeff(l,3)/(coeff(l,3)+Nm))^coeff(l,4))))/((-

((coeff(l,3)/(coeff(l,3)+Nm))^coeff(l,4))*exp(1/(coeff(l,2)-

1)))+(exp(((coeff(l,3)/(coeff(l,3)+Nm))^coeff(l,1))/(coeff(l,2)-

((coeff(l,3)/(coeff(l,3)+Nm))^coeff(l,1)))))); 

%         hmod(l,:)=am-(kmod(l,:)*exp(1/(coeff(l,2)-1))); 

        Nfit(:,l)=linspace(-N0(l,:),Nm,1000); 

        analitici(:,2*l)=f2(Nfit(:,l)); 

        analitici(:,(2*l)-1)=Nfit(:,l); 

        grezzi{:,2*l}=Dati(:,2); 

        grezzi{:,(2*l)-1}=Dati(:,1); 

       for i=1:1000 

        

afit(i,l)=(hmod(l)*(((Nfit(i,l)+N0(l))/(N0(l)+Nm))^p(l)))+(kmod(l)*exp((((Nfit(i,l)+N0(l))/(N

0(l)+Nm))^alpha(l))/(beta(l)-(((Nfit(i,l)+N0(l))/(N0(l)+Nm))^alpha(l))))); 

        end 

        a0(l,:)=kmod(l); 

        Nt{l,:}=N; 

        at{l,:}=a; 

        Nmt(l,:)=N(m); 
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       %%%%% Virkler & Ghonem 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%         

        MM=(Pmax-Pmin)/B; 

        MMmax=Pmax/B; 

        t(l,:)=((2*(a0(l,:)/10))/W); 

        FT(l,:)=(((pi*t(l,:))/(2*W))*(sec((pi*t(l,:))/2)))^0.5; 

        DKth(l,:)=MM*FT(l,:); 

        Kmax(l,:)=MMmax*FT(l,:); 

         

        %%%%% Wu & Ni 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%         MM=(Pmax-Pmin)/(B*(W^0.5)); 

%         t(l,:)=((a0(l,:)/10)/W); 

%         FT(l,:)=0.886+(4.64*t(l,:))-(13.32*(t(l,:)^2))+(14.72*(t(l,:)^3))-(5.6*(t(l,:)^4)); 

%         DKth(l,:)=MM*((2+t(l,:))/((1-t(l,:))^1.5))*FT(l,:); 

%         MMmax = Pmax / (B*(W^0.5)); 

%         Kmax(l,:)=(MMmax*((2+t(l,:))/((1-t(l,:))^1.5))*FT(l,:)); 

        %%%%% Naples Dataset 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

%         DP=Pmax-Pmin; 

%         t(l,:)=a0(l,:)/W; 

%         FT(l,:)=(DP/(B*(W^0.5)))*(10^1.5); 

%         G(l,:)=((6*(t(l,:)^0.5))/((1+2*t(l,:))*((1-t(l,:))^1.5)))*((1.99-((t(l,:)*(1-t(l,:)))*(2.15-

(3.93*t(l,:))+(2.7*(t(l,:)^2)))))); 

%         DKth(l,:)=G(l,:)*FT(l,:); 

%         Kmax(l,:)=G(l,:)*(Pmax/(B*(W^0.5)))*(10^1.5); 

         

         

  

        data{:,l}=(fitness.residuals); 

        R2(l,:)=(gof.rsquare); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

        %%%%%%%%%%%%%%%%%%% test di Normalità 

%%%%%%%%%%%%%%%%%%% 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

  

        %%%%%%%%%%%%%%%%% distribuzione Normale 

%%%%%%%%%%%%%%%%% 

%         [muhat,sigmahat,muci,sigmaci] = normfit(data{:,l}); 

%         [muhat,sigmahat] = normfit(data{:,l}); 

%         med_dev(l,:)=[muhat,sigmahat]; 

%         [hn(l,1),pn(l,1)] = chi2gof(data{:,l},'nbins',20,'cdf',{@normcdf,muhat 

,sigmahat}); 

% %         optimization(:,l)=[coeff,med_dev,R2,hn,pn]; 

  

  

       Ncalc=N; 

       acalc=a; 

  

%         N=N(:,l); 

%         a=a(:,l); 

%%%%% ASTM method to estimate the Crack Growth Rate and the SIF 

%%%%% Incremental Polynominal Method 

%  

       Numr = length(Ncalc); 

       Camp= 7; % Numero di punti su cui campionare 

for i=1:(Numr-Camp+1) 

       NN=Ncalc(i:i+(Camp-1));  

       aa=acalc(i:i+(Camp-1));  
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       C1=(0.5*(NN(1)+NN(Camp))); 

       C2=(0.5*(NN(Camp)-NN(1))); 

       N_centrale(i)=NN((Camp+1)/2); % definizione del punto centrale cui attribuire il 

nuovo valore di cricca. 

       fpar=fittype('(b2*((x-C1)/C2)^2)+(b1*((x-

C1)/C2))+b0','problem',{'C1','C2'},'coefficients',{'b0','b1','b2'},'independent',{'x'}); 

       spar = fitoptions('Method','NonlinearLeastSquares','Lower',[ -inf -inf -inf],'Upper',[ 

inf, inf, inf],'Robust','LAR','StartPoint',[20,0.2,0.2],'Algorithm','trust-

region','MaxFunEvals',1e6,'MaxIter',1e6,'TolFun',1e-6,'TolX',1e-6); 

       [f2par,gofpar,fitnesspar] = fit(NN,aa,fpar,'problem',{C1,C2},spar); 

       coeffpar=coeffvalues(f2par); 

       b0=coeffpar(1); 

       b1=coeffpar(2); 

       b2=coeffpar(3); 

       asec(i)=((b2*(((N_centrale(i)-C1)/C2)^2))+(b1*((N_centrale(i)-C1)/C2))+b0); 

       dadNsec(i)=((b1/C2)+(2*b2*((N_centrale(i)-C1)/(C2^2)))); 

       Nsec(i)=N_centrale(i); 

        

       %%%%% Virkler & Ghonem 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

       MM=(Pmax-Pmin)/B; 

       tsec(i)=((2*(asec(i)/10))/W); 

       FTsec(i)=(((pi*tsec(i))/(2*W))*(sec((pi*tsec(i))/2)))^0.5; 

       DKsec(i)=MM*FTsec(i); 

        

       %%%%% Wu & Ni 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%         MM=(Pmax-Pmin)/(B*(W^0.5)); 

%         tsec(i)=((asec(i)/10)/W); 

%         FTsec(i)=0.886+(4.64*tsec(i))-(13.32*(tsec(i)^2))+(14.72*(tsec(i)^3))-

(5.6*(tsec(i)^4)); 

%         DKsec(i)=MM*((2+tsec(i))/((1-tsec(i))^1.5))*FTsec(i); 
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        %%%%% Materiale K 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

%         DP=Pmax-Pmin; 

%         tsec(i)=asec(i)/(10*W); 

%         FTsec(i)=(DP/(B*(W^0.5)))*(10^1.5); 

%         Gsec(i)=((6*(tsec(i)^0.5))/((1+2*tsec(i))*((1-tsec(i))^1.5)))*((1.99-((tsec(i)*(1-

tsec(i)))*(2.15-(3.93*tsec(i))+(2.7*(tsec(i)^2)))))); 

%         DKsec(i)=Gsec(i)*FTsec(i); 

         

         

     

 end %for i=1:(Numr-Camp+1) 

      Nsect(:,l)=Nsec; 

      dadNsect(:,l)=dadNsec; 

      DKsect(:,l)=DKsec; 

      asect(:,l)=asec; 

      fft=1000; 

      Nr(:,l)=linspace(-N0(l,:),Nm,fft); 

      for i=1:fft 

      

ar(i,l)=(hmod(l)*(((Nr(i,l)+N0(l))/(N0(l)+Nmt(l)))^p(l)))+(kmod(l)*exp((((Nr(i,l)+N0(l))/(N

0(l)+Nmt(l)))^alpha(l))/(beta(l)-(((Nr(i,l)+N0(l))/(N0(l)+Nmt(l)))^alpha(l))))); 

      end 

      for i=1:fft  

%       dadN(l,)=(am(l) + a1(l) / (exp(0.1e1 / (beta(l) - 1)) * (N0(l) / (N0(l) + Nm(l))) ^ 

p(l) - exp((N0(l) / (N0(l) + Nm(l))) ^ alfa(l) / (beta(l) - (N0(l) / (N0(l) + Nm(l))) ^ alfa(l)))) 

* exp(0.1e1 / (beta(l) - 1))) * ((N0(l) + Nr(l,i)) / (N0(l) + Nm(l))) ^ p(l) * p(l) / (N0(l) + 

Nr(l,i)) - a1(l) / (exp(0.1e1 / (beta(l) - 1)) * (N0(l) / (N0(l) + Nm(l))) ^ p(l) - exp((N0(l) / 

(N0(l) + Nm(l))) ^ alfa(l) / (beta(l) - (N0(l) / (N0(l) + Nm(l))) ^ alfa(l)))) * (((N0(l) + 

Nr(l,i)) / (N0(l) + Nm(l))) ^ alfa(l) * alfa(l) / (N0(l) + Nr(l,i)) / (beta(l) - ((N0(l) + Nr(l,i)) / 

(N0(l) + Nm(l))) ^ alfa(l)) + (((N0(l) + Nr(l,i)) / (N0(l) + Nm(l))) ^ alfa(l)) ^ 2 / (beta(l) - 
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((N0(l) + Nr(l,i)) / (N0(l) + Nm(l))) ^ alfa(l)) ^ 2 * alfa(l) / (N0(l) + Nr(l,i))) * exp(((N0(l) + 

Nr(l,i)) / (N0(l) + Nm(l))) ^ alfa(l) / (beta(l) - ((N0(l) + Nr(l,i)) / (N0(l) + Nm(l))) ^ alfa(l))); 

      dadN1(i,l) = hmod(l)*p(l)*((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^(p(l) - 1); 

      dadN2(i,l)=kmod(l)*exp(((((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^alpha(l))/(beta(l) - 

(((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^alpha(l))))); 

      dadN3(i,l)=((alpha(l)*((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^(alpha(l) - 1))/(beta(l) - 

((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^alpha(l)) + 

(alpha(l)*((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^alpha(l)*((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^(alpha

(l) - 1))/(beta(l) - ((N0(l)+Nr(i,l))/(Nmt(l)+N0(l)))^alpha(l))^2); 

      dadN(i,l)=((dadN3(i,l)*dadN2(i,l))+dadN1(i,l))/(N0(l)+Nmt(l)); 

       

      %%%%% Virkler & Ghonem 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%  

      MM=(Pmax-Pmin)/B; 

      teq(i)=((2*(ar(i,l)/10))/W); 

      FTeq(i)=(((pi*teq(i))/(2*W))*(sec((pi*teq(i))/2)))^0.5; 

      DKeq(i)=MM*FTeq(i); 

       %%%%% Wu & Ni 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

%         MM=(Pmax-Pmin)/(B*(W^0.5)); 

%         teq(i)=((ar(i,l)/10)/W); 

%         FTeq(i)=0.886+(4.64*teq(i))-(13.32*(teq(i)^2))+(14.72*(teq(i)^3))-

(5.6*(teq(i)^4)); 

%         DKeq(i)=MM*((2+teq(i))/((1-teq(i))^1.5))*FTeq(i); 

         

        %%%%% Materiale K 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

%         DP=Pmax-Pmin; 

%         teq(i)=ar(i,l)/(10*W); 

%         FTeq(i)=(DP/(B*(W^0.5)))*(10^1.5); 
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%         Geq(i)=((6*(teq(i)^0.5))/((1+2*teq(i))*((1-teq(i))^1.5)))*((1.99-((teq(i)*(1-

teq(i)))*(2.15-(3.93*teq(i))+(2.7*(teq(i)^2)))))); 

%         DKeq(i)=Geq(i)*FTeq(i); 

       

       

      end 

      DKeqt(:,l)=DKeq; 

end 

  

 figure(1) 

 grid on 

      hold on 

      for k=1:size(Nt,1) 

      plot(Nt{k,:},at{k,:},'*r') 

      plot(Nfit(:,k),afit(:,k),'-b') 

      end 

      hold off 

  

pers=[R2,coeff,hmod,kmod,a0,DKth,Kmax,Nmt]; 

% pers=[hn,R2,coeff,hmod,kmod,a0]; 

% [RHOP,PVALP] = corr(pers,'type','Pearson','rows','all'); 

% [RHOk,PVALk] = corr(pers,'type','Kendall','rows','all'); 

% [RHOs,PVALs] = corr(pers,'type','Spearman','rows','all'); 

  

  

  

  

 figure(2) 

      hold on 

      plot(Nr,dadN,'-r') 

      plot(Nsect,dadNsect,'*b') 

      hold off 

 figure(3) 

      hold on 
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      plot(ar,dadN,'-r') 

      plot(asect,dadNsect,'*b') 

      hold off 

 figure(4) 

      hold on 

      plot(Nr,ar,'-r') 

      plot(N,a,'*b') 

      hold off 

 figure(5) 

      hold on 

      plot(DKsect,dadNsect,'*r') 

      plot(DKeqt,dadN,'--b') 

      hold off 

end 
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