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SETS OF UNIVERSAL SEQUENCES FOR THE SYMMETRIC GROUP
AND ANALOGOUS SEMIGROUPS

J. HYDE, J. JONUŠAS, J. D. MITCHELL, AND Y. H. PÉRESSE

Abstract. A universal sequence for a group or semigroup S is a sequence of words
w1, w2, . . . such that for any sequence s1, s2, . . . ∈ S, the equations wi = si, i ∈ N,
can be solved simultaneously in S. For example, Galvin showed that the sequence
{a−1(aiba−i)b−1(aib−1a−i)ba : i ∈ N} is universal for the symmetric group Sym(X) when
X is infinite, and Sierpiński showed that (a2b3(abab3)n+1ab2ab3)n∈N is universal for the
monoid XX of functions from the infinite set X to itself.

In this paper, we show that under some conditions, the set of universal sequences for
the symmetric group on an infinite set X is independent of the cardinality of X . More
precisely, we show that if Y is any set such that |Y | ≥ |X |, then every universal sequence
for Sym(X) is also universal for Sym(Y ). If |X | > 2ℵ0 , then the converse also holds. It is
shown that an analogue of this theorem holds in the context of inverse semigroups, where
the role of the symmetric group is played by the symmetric inverse monoid. In the general
context of semigroups, the full transformation monoid XX is the natural analogue of the
symmetric group and the symmetric inverse monoid. If X and Y are arbitrary infinite
sets, then it is an open question as to whether or not every sequence that is universal for
XX is also universal for Y Y . However, we obtain a sufficient condition for a sequence
to be universal for XX which does not depend on the cardinality of X . A large class of
sequences satisfy this condition, and hence are universal for XX for every infinite set X .

1. Introduction

Let F be a free group, let w ∈ F , and let G be a group. We say that the word w is
group universal for G if for all g ∈ G there exists a group homomorphism φ : F −→ G
such that (w)φ = g. Perhaps one of the most well-known examples is that of Oré [21]
who showed that every element of the symmetric group Sym(X) on an infinite set X is a
commutator. In other words, for all p ∈ Sym(X), there exists a, b ∈ Sym(X) such that
p = a−1b−1ab. More generally, every element is a commutator in any Polish group with a
comeagre conjugacy class [15]. There are many such groups in addition to the symmetric
group; for example, the automorphism group of the countable random graph; see [15] for
further examples.

Something much stronger than Óre’s Theorem holds for the symmetric group: any
word w, which is not a proper power of another word, in any free group F is group
universal for Sym(X). Silberger [24], Droste [6], and Mycielski [20] proved some special
cases of this theorem, the proof of which was completed by Lyndon [16] and Dougherty and
Mycielski [4]. Droste and Truss [5] proved that certain classes of words are group universal
for the automorphism group of the countably infinite random graph.
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Roughly speaking, if w is a group universal word for G, then the equation w = g can
be solved for all g ∈ G. It is natural to extend this to solving simultaneous equations.
If F is a free group and w1, w2, . . . ∈ F , then given any sequence g1, g2, . . . ∈ G, is it
possible to find a homomorphism φ : F −→ G such that (wi)φ = gi for all i ∈ N? The
sequence w1, w2, . . . ∈ F is group universal for G if such a homomorphism exists for all
g1, g2, . . . ∈ G. In [11], Galvin showed that (a−1(anba−n)b−1(anb−1a−n)ba)n∈N is universal
for the symmetric group on an infinite set. Truss [26] showed that Galvin’s proof works
essentially unchanged for the groups of homeomorphisms of the Cantor space, the rationals
Q, and the irrationals R \Q. If G is a group, and a, b ∈ G, then the commutator a−1b−1ab
is denoted [a, b] and the conjugate a−1ba is denoted ba. In [14], the present authors showed
that




3n(n+1)−1
∏

i=3n(n−1)

[ab
−8i−1

, ab
8i+2c]f

2

· [ab
−8i−3

, ab
8i+4c]f

4

· [ab
−8i−5

, ab
8i+6c]f

3

· [ab
−8i−7

, ab
8i+8c]f

5





n∈N

is a universal sequence for the group Aut(Q,≤) of order-automorphisms of the rationals Q,
and that there exists a universal sequence for Aut(Q,≤) over a 2-letter alphabet. In [7],
Droste and Shelah consider a more general notion of universality than that defined here.
As a special case, it follows from the result in [7] that if X and Y are sets such that
|X|, |Y | > 2ℵ0, then a finite sequence is universal, in our sense, for Sym(X) if and only
if it is universal for Sym(Y ). In Corollary 3.2, we extend this result to infinite universal
sequences.

Let A be a finite set, called an alphabet, and let A+ denote the free semigroup consisting
of all of the non-empty words over A with multiplication being simply the concatenation
of words.

Definition 1.1. Let S be a semigroup and let A be any alphabet. Then a sequence of
words w1, w2, . . . ∈ A+ is semigroup universal for S if for any sequence s1, s2, . . . ∈ S there
exists a homomorphism φ : A+ −→ S such that (wn)φ = sn for all n ∈ N.

Suppose that G is a group. Since the free semigroup on a finite alphabet A is a subsemi-
group of the free group on A, it follows that every semigroup universal sequence for G is
also a group universal sequence for G. On the other hand, every group universal sequence
over A for G is a semigroup universal sequence for G over A ∪A−1. So, broadly speaking,
the notion of semigroup universal sequences includes the corresponding notion for groups,
and as such we will restrict ourselves to considering only semigroup universal sequences.

The existence of a universal sequence over a finite alphabet for a semigroup S implies
that S has several further properties. For instance, if S is such a semigroup and X is any
generating set for S, then there exists an n ∈ N such that every element of S can be given
as a product over X of length at most n. This is known as the Bergman property after
Bergman’s seminal paper [2]; see also [17, 19]. A group G with the Bergman property
automatically satisfies Serré’s properties (FA) and (FH); see [15]. There are, of course,
many groups which have no universal sequences. For example, since every group with a
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universal sequence has property (FA), any group with Z as a homomorphic image has no
universal sequences (see also Corollary 2.4(i)).

The question of whether a universal sequence exists for a given semigroup has a long his-
tory, which predates Óre’s Theorem [21]. In 1934, Sierpiński [22] showed that (abn−1cdn−1)n∈N
is a universal sequence for the semigroup of continuous functions on the closed unit inter-
val [0, 1] in R, and in 1935, [23] showed that (a2b3(abab3)n+1ab2ab3)n∈N is universal for the
semigroup XX of functions from the infinite set X to itself where the operation is com-
position of functions. Several further universal sequences are known for XX when X is
infinite, such as (aban+1b2)n∈N; see Banach [1].

It was shown in [19] that every countable subset of the semigroup consisting of all
surjective functions on an infinite set is contained in a finitely generated subsemigroup, but
that this semigroup has no universal sequences. Some recent results include [8, Theorem
31], [9, Theorem 37], and [10, Theorem 6.1]. See [19] and the references therein for further
background on universal sequences for semigroups.

In the context of clones of polymorphisms, the natural equivalent of words are terms.
In [18], McNulty gave a sufficient condition for such a sequence of terms to be universal.
A special case of our main result in Section 4 and of McNulty’s result, is Corollary 4.4.
Taylor [25] showed that the question of whether or not a term is universal for the clone of
polymorphisms is undecidable.

Given that a universal sequence for a given semigroup S exists, it is natural to attempt to
classify all of the universal sequences for S. For instance, given that universal words for the
symmetric group Sym(X) on any infinite set X are completely classified, we might ask for
a classification of universal sequences for Sym(X). We do not provide such a classification,
but in Section 3, we show that if X is any infinite set and Y is any set containing X ,
then every sequence that is universal for the symmetric group Sym(X) on X is universal
for Sym(Y ). The converse holds when |X| is greater than 2ℵ0. We also show that the
analogous results hold for the symmetric inverse monoids.

The question of describing universal words for XX , and whether or not such words
depend on the cardinality of X , is Problem 27 in [3]. As a partial result in the direction
of solving this problem in Section 4, we give a natural sufficient condition under which a
sequence over a 2-letter alphabet is universal for XX . A special case of this condition is
any sequence of distinct words w1, w2, . . . where no wi is a subword of any wj , i 6= j, and
no proper prefix of any wi is a suffix of any wj . We will show in Proposition 2.5 that the
apparent restriction to 2-letter alphabets is, in fact, not a restriction at all.

2. Preliminaries

In this section, we present some preliminary material about semigroups and universal
sequences. Throughout the paper we use the convention that a countable set can be finite
or infinite.

A monoid is a semigroup M with an identity, that is an element 1M ∈ M such that
1Mm = m1M = m for all m ∈ M . A submonoid of a monoid M is a subsemigroup
containing the identity 1M of M . Any semigroup can be made into a monoid by adjoining
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an identity as follows. If S is a semigroup and 1S /∈ S, define an operation on S1 = S∪{1S}
which extends the operation of S by s1S = 1Ss = s for all s ∈ S1. The set S1 with this
operation is a monoid. An element 0S of a semigroup S is called a zero if 0Ss = s0S = 0S
for all s ∈ S. A zero can be adjoined to a semigroup S in much the same way as an
identity; we denote this by S0. The free monoid A∗ is obtained from A+ by adjoining an
identity ε, usually referred to as the empty word. If w = a1 · · · an is a word in A∗ and
i, j ∈ {1, . . . , n} are such that i ≤ j, then a1 · · · ai−1 is a prefix of w, aj+1 · · · an is a suffix

of w, and ai · · · aj is a subword of w. The empty word ε is a prefix and a suffix of every
word. The free groups are the free objects in the category of groups, see, for example, [13,
Chapter I, Section 9].

The analogue of the symmetric group in the context of semigroups is the full transfor-

mation monoid XX consisting of all functions from the set X to X under composition of
functions. Every semigroup is isomorphic to a subsemigroup of some full transformation
monoid; see [12, Theorem 1.1.2].

An inverse semigroup is a semigroup S such that for all x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. A partial permutation on a set X is
a bijection f : A −→ B between subsets A and B of X . The set A is called the domain

of f and is denoted dom(A); the set B is called the range and is denoted ran(B). If
f : X −→ Y is a partial permutation and Z ⊆ X , then the restriction of f to Z is
the partial permutation f |Z : Z −→ Y defined by (z)f |Z = (z)f for all z ∈ Z. Under
the usual composition of binary relations, the set I(X) of all partial permutations on X
is an inverse semigroup; I(X) will be referred to as the symmetric inverse monoid on
X . The Wagner-Preston Representation Theorem [12, Theorem 5.1.7] states that every
inverse semigroup is isomorphic to an inverse subsemigroup of I(X) for some set X . There
exist free objects in the category of inverse semigroups, which are called the free inverse

semigroups ; see [12, Section 5.10] for more details. It is possible to define the notion of
an inverse semigroup universal sequence, which is analogous to the notions defined above
for groups and semigroups. Semigroup and inverse semigroup universal sequences can
be compared in the same way as group and semigroup universal sequences were in the
introduction. More precisely, if S is an inverse semigroup, then the free semigroup on
a finite alphabet A is a subsemigroup of the free inverse semigroup on A. Hence every
semigroup universal sequence for S is also an inverse semigroup universal sequence for S.
On the other hand, every inverse semigroup universal sequence over A for S is a semigroup
universal sequence for S over A ∪ A−1. So, in some sense, semigroup universal sequences
encompass group and inverse semigroup universal sequences, and as such we will only
consider semigroup universal sequences in the remainder of this paper. For the sake of
brevity we may refer to semigroup universal sequences as simply universal sequences.

We conclude this section with some observations about universal sequences and the
nature of semigroups with a universal sequence over a finite alphabet.

The existence of a universal sequence for any semigroup S, immediately implies the
existence of 2ℵ0 universal sequences for S, by permuting the terms, or taking subsequences.
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Proposition 2.1. Let S be a semigroup and let α > 0 be some cardinal number. Then a

sequence is universal for S if and only if it is universal for Sα.

Proof. The case when α is countably infinite is [14, Proposition 2.1(ii)], and we note that
the proof given in [14] also works for arbitrary cardinals both infinite and finite. �

The next proposition shows that universal sequences are preserved by surjective homo-
morphisms.

Proposition 2.2. Let S and T be semigroups, let ζ : S −→ T be a surjective homomor-

phism, and let A be any alphabet. If w1, w2, . . . ∈ A+ is universal for S, then w1, w2, . . . is
universal for T .

Proof. Let t1, t2, . . . ∈ T be arbitrary. Then there exists a homomorphism φ : A+ −→ S
such that (wi)φ ∈ (ti)ζ

−1 for all i ∈ N. Hence φζ : A+ −→ T is a homomorphism and
(wi)φζ = ti for all i, and so w1, w2, . . . is universal for T . �

Next, we show that a semigroup for which there exists a universal sequence over a finite
alphabet must be at least of cardinality continuum.

Proposition 2.3. If S is a semigroup, |S| > 1, and there exists a universal sequence for

S over finite alphabet, then |S| ≥ 2ℵ0.

Proof. Let (w1, w2, . . .) be a universal sequence for S over some finite alphabet A. Suppose
that s1, s2, . . . , t1, t2, . . . ∈ S are such that there exists i ∈ N such that si 6= ti. Then there
exist homomorphisms φs, φt : A

+ −→ S such that (wn)φs = sn and (wn)φt = tn for all
n ∈ N. Since (wi)φs = si 6= ti = (wi)φt, it follows that φs 6= φt. There are |S|ℵ0 distinct
sequences of elements of S, each of which gives rise to a distinct homomorphism from A+

to S by the above. Hence there are at least |S|ℵ0 distinct homomorphisms from A+ to S.
On the other hand, any homomorphism from A+ to S is determined by its values on the

set A, and hence there are at most |S||A| such homomorphisms. Therefore |S||A| ≥ |S|ℵ0 ≥
2ℵ0 and since A is finite, it follows that |S| ≥ 2ℵ0 . �

Corollary 2.4. Let S be a semigroup. Then the following hold:

(i) if S has a non-trivial homomorphic image of cardinality less than 2ℵ0, then S has no

universal sequences over any finite alphabets;

(ii) if S can be partitioned into an ideal and a subsemigroup, then S has no universal

sequences over any finite alphabets;

(iii) if S is non-empty, then the semigroup obtained from S by adjoining an identity, or a

zero, has no universal sequences over a finite alphabet.

Proof. (i). By Proposition 2.2, any sequence over any alphabet that is universal for S
is also universal for every homomorphic image of S. Thus, by Proposition 2.3, S has no
infinite universal sequences over any finite alphabet.

(ii). The partition of S into an ideal and a subsemigroup defines a congruence on S,
and so S has a homomorphic image of size 2. This part then follows by part (i).

(iii). Let S1 = S ∪ {1} and S0 = S ∪ {0} be the semigroups obtained by adjoining an
identity and a zero to S, respectively. Then {1} is a subsemigroup, and S is an ideal, of
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S1. Similarly, S is a subsemigroup, and {0} is an ideal, of S0. In either case, this part
follows by part (ii). �

Part (iii) of the previous corollary shows that we may not, and so we do not, assume
without loss of generality that every semigroup is a monoid.

If our ultimate goal is to classify all of the universal sequences for a given semigroup S,
then the next result shows that, in some sense, it suffices to classify all of the universal
sequences for S over an alphabet with as few letters as possible.

Proposition 2.5 (cf. Problem 27 in [3]). Let S be a semigroup such that there ex-

ists a universal sequence for S over a finite alphabet, and let A be such an alphabet of

minimum cardinality. If B is an alphabet and |B| ≥ |A|, then there exists a function

φ : (B+)N −→ (A+)N such that (w1, w2, . . .) ∈ (B+)N is universal universal for S if and

only if (w1, w2, . . .)φ ∈ (A+)N is universal for S.

Proof. By assumption, there exists a universal sequence (w1, w2, . . .) ∈ (A+)N for S. If
(u1, u2 . . .) is a sequence over B = {b1, . . . , bn}, then for every m ∈ N we define vm ∈ (A+)N

to be the word obtained by replacing every occurrence of every letter bj in um ∈ B+ by
the word wj ∈ A+. We define φ by (u1, u2, . . .)φ = (v1, v2, . . .).

If (u1, u2, . . .) is universal for S over B, then for any choice of s1, s2, . . . ∈ S there is a
homomorphism Φ : B+ −→ S such that (ui)Φ = si for all i. Since (w1, w2, . . .) is universal
there is a homomorphism Ψ : A+ −→ S such that (wj)Ψ = (bj)Φ for all j ∈ {1, . . . , n}.
Then (vi)Ψ = (ui)Φ = si for all i, and so (v1, v2, . . .) is universal also.

On the other hand, if (v1, v2, . . .) is universal, then for every choice of s1, s2, . . . ∈ S there
is a homomorphism Φ : A+ −→ S such that (vi)Φ = si for all i. If Ψ : B+ −→ S is the
natural homomorphism extending (bj)Ψ = (wj)Φ for all j, then (ui)Ψ = (vi)Φ = si for all
i, and thus (u1, u2, . . .) is universal. �

3. The role of |X| for universal sequences in Sym(X) and I(X)

In this section, we consider a class of semigroups which includes the symmetric groups
and inverse symmetric monoids on arbitrary infinite sets. In particular, let α be either
an arbitrary infinite cardinal or 0, and let X be any set. Then we denote by I(X,α) the
inverse subsemigroup of I(X) consisting of all the partial permutations f of X such that
|X \ dom(f)|, |X \ ran(f)| ≤ α. Note that I(X, 0) = Sym(X), the symmetric group on X ,
and that I(X,α) is the whole of I(X) for any α ≥ |X|.

The main theorem of this section is the following.

Theorem 3.1. Let X and Y be sets, and let α be any infinite cardinal number or 0. Then
the following hold:

(i) if ℵ0 ≤ |X| < |Y | and α ∈ {0, |Y |}, then every sequence that is universal over a

countable alphabet for I(X,α) is universal for I(Y, α);
(ii) if 2ℵ0 < |X| < |Y |, α < |X| or α = |Y |, and |X| is a regular cardinal, then every

sequence that is universal over a countable alphabet for I(Y, α) is universal for I(X,α).
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Before proceeding with the proof of Theorem 3.1 we give two immediate corollaries for
the symmetric group and the symmetric inverse monoid.

Corollary 3.2. Let X and Y be infinite sets such that |X| < |Y |. Then the following hold:

(i) every sequence that is universal over a countable alphabet for Sym(X) is universal for
Sym(Y );

(ii) if 2ℵ0 < |X|, then every sequence that is universal over a countable alphabet for

Sym(Y ) is universal for Sym(X).

In particular, if 2ℵ0 < |X| ≤ |Y |, then the universal sequences over a countable alphabet

for Sym(X) coincide with those for Sym(Y ).

Proof. Part (i) follows immediately from Theorem 3.1(i), when α = 0.
For part (ii), it suffices to show that the regularity condition in part (ii) of Theorem 3.1

can be removed. Let w1, w2, . . . be a universal sequence for Sym(Y ), let λ denote the
successor cardinal of 2ℵ0 , and let Z be any set of cardinality λ. Then λ is a regular
cardinal, and so Theorem 3.1(ii) implies that w1, w2, . . . is universal for Sym(Z). Therefore
since |X| ≥ λ = |Z|, it follows from part (i) that w1, w2, . . . is universal for Sym(X). �

The proof of the next corollary is analogous to that of Corollary 3.2, if α = |Y | and we
observe that I(X,α) = I(X) and I(Y, α) = I(Y ).

Corollary 3.3. Let X and Y be infinite sets such that |X| < |Y |. Then the following hold:

(i) every sequence that is universal over a countable alphabet for I(X) is universal for

I(Y );
(ii) if 2ℵ0 < |X|, then every sequence that is universal over a countable alphabet for I(Y )

is universal for I(X).

In particular, if 2ℵ0 < |X|, then the universal sequences over a countable alphabet for I(X)
coincide with those for I(Y ).

We now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. (i). Let w1, w2, . . . be a universal sequence for I(X,α) over some
countable alphabet A, and let s1, s2, . . . ∈ I(Y, α) be arbitrary. By Proposition 2.1, it
follows that w1, w2, . . . is also universal for I(X,α)|Y |.

We define S to be the inverse semigroup generated by {s1, s2, . . .}. Then S is countable
and the sets {(z)s : s ∈ S1}, where z ∈ Y , partition Y into |Y | many countable sets. We
refer to these sets as the blocks of S on Y . Define a partition {Xy : y ∈ Y } of Y such that
each Xy is a union of blocks and |Xy| = |X|, this is possible since the blocks are countable
and X is infinite. For every y ∈ Y , let µy : Xy −→ X be any bijection. It follows that
f : S −→ I(X,α)|Y | defined by (s)f = (µ−1

y sµy)y∈Y is an injective homomorphism.

Define a map g : I(X,α)|Y | −→ I(Y ) by

((by)y∈Y )g =
⋃

y∈Y

µybyµ
−1
y .
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Since the sets Xy partition Y , ((by)y∈Y )g is a well-defined partial permutation of Y . We
will show that if α is either |Y | or 0, then, in fact, g is contained in I(Y, α). If α is |Y |,
then I(Y, α) = I(Y ), as required. Suppose that α = 0. Then for every (by)y∈Y ∈ I(X,α)|Y |

and every y ∈ Y
|Xy \ dom(µybyµ

−1
y )| = |X \ dom(by)| = 0

and similarly
|Xy \ ran(µybyµ

−1
y )| = |X \ ran(by)| = 0.

Hence the domain and range of ((by)y∈Y )g are both Y , and so ((by)y∈Y )g ∈ I(Y, α). Hence
g : I(X,α)|Y | −→ I(Y, α) is a homomorphism, and (s)fg = s for all s ∈ S.

Since w1, w2, . . . is a universal sequence for I(X,α)|Y |, there exists a homomorphism
φ : A+ −→ I(X,α)|Y | such that (wn)φ = (sn)f for all n, and so φ ◦ g : A+ −→ I(Y, α) is a
homomorphism and (wn)φ ◦ g = (sn)fg = sn, as required.

(ii). Let w1, w2, . . . be a universal sequence for I(Y, α) over some countable alphabet A,
and let s1, s2, . . . ∈ I(X,α) be arbitrary.

As in part (i) we denote the inverse subsemigroup of I(X,α) generated by {s1, s2, . . .}
by S, and let Ω be the set of blocks of S on X . We define an equivalence relation ∼ on
Ω as follows: for U, V ∈ Ω we write U ∼ V if there is a bijection φ : U −→ V such that
sn ◦ φ = φ ◦ sn for all n ∈ N. In other words, U ∼ V if and only if the inverse semigroup
S has the same action on U and V , up to relabelling the points.

If U ∈ Ω, then |U | ≤ ℵ0 and since |X| > ℵ0, it follows that |Ω| = |X|. Since a countable
semigroup has at most ℵℵ0

0 = 2ℵ0 distinct (partial) actions on a given countable set, it
follows that there are at most 2ℵ0 equivalence classes of ∼. Since |Ω| = |X| > 2ℵ0 and |X|
is a regular cardinal, Ω cannot be written as a union of 2ℵ0 sets of cardinality strictly less
than |X|. Hence there exists an equivalence class E of ∼ such that |E| = |X|.

For a fixed U ∈ E, we define Y ′ to be the disjoint union of Y × U and X and also for
each n we define tn : Y ′ −→ Y ′ by

(x)tn =

{

(x)sn x ∈ X

(y, (z)sn) x = (y, z) ∈ Y × U.

Obviously tn is a partial permutation, and we will show that tn ∈ I(Y ′, α). There are two
cases to consider, when α = |Y | and when α < |X|. If α = |Y |, then I(Y ′, α) consists of
all partial permutations on Y ′, and so tn ∈ I(Y ′, α). The other case is significantly more
complicated.

Claim 3.4. If α < |X|, then tn ∈ I(Y ′, α) for all n ∈ N.

Proof. We define

Z =
⋃

s∈S

(

X \ dom(s)
)

∪
(

X \ ran(s)
)

.

Since Z is a countable union of sets with cardinality at most α, |Z| ≤ α.
If V,W ∈ E and V ∩ Z 6= ∅, then we will show that W ∩ Z 6= ∅ also. Since V,W ∈ E,

there exists a bijection φ : V −→ W such that snφ = φsn for all n ∈ N. Suppose that
x ∈ V ∩ Z. Then by the definition of Z there exists m ∈ N such that x 6∈ dom(sm) or
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x 6∈ ran(sm). If x 6∈ dom(sm), then x 6∈ dom(smφ) = dom(φsm). But x ∈ dom(φ) = V ,
and so (x)φ 6∈ dom(sm). In other words, (x)φ ∈ W ∩ Z, which is consequently non-empty.
The case that x 6∈ ran(sm) is dual.

So, if V ∩Z 6= ∅ for some V ∈ E, then W ∩Z 6= ∅ for all W ∈ E. Hence since elements
of E are pairwise disjoint it follows that

α < |X| = |E| ≤ |
⋃

V ∈E

V ∩ Z| ≤ |Z| ≤ α

a contradiction. Hence V ∩ Z = ∅, or equivalently,

V ⊆
⋂

s∈S

dom(s) ∩ ran(s),

for all V ∈ E. Hence if s ∈ S, then s|U : U −→ U is surjective, and since every element of
I(X,α) is injective, s is a permutation of U . Since, in this case, sn is a permutation of U ,
it follows that Y ′ \ dom(tn) = X \ dom(sn) for all n ∈ N. In particular, tn ∈ I(Y ′, α) for
all n ∈ N, as required. �

Since w1, w2, . . . ∈ A+ is universal for I(Y, α) and |Y | = |Y ′|, it follows that w1, w2, . . . is
universal for I(Y ′, α) also. Thus there is a homomorphism Φ : A+ −→ I(Y ′, α) such that
(wn)Φ = tn for all n ∈ N. We define X ′ = {(x)f : x ∈ X, f ∈ (A+)Φ} ∪ X ⊆ Y ′. Since
(A+)Φ is countable and |X| > ℵ0, it follows that |X

′| = |X|.
Let T be the inverse subsemigroup of I(Y ′, α) generated by {t1, t2, . . .} and let Ω′ be the

set of blocks of T acting on X ′ \X . Since |E| = |X| and |Ω′| ≤ |X|, there exists a bijection
b : E −→ Ω′∪E. We will show that for every V ∈ E there exists φV : V −→ (V )b such that
tnφV = φV tn for all n ∈ N. If (V )b ∈ E, then this follows immediately from the definition of
E and since tn|X = sn. Suppose that (V )b ∈ Ω′. If (x, y) ∈ (V )b ⊆ X ′\X ⊆ Y ′\X = Y ×U ,
then

(V )b = {(x, (y)s) : s ∈ S} = {x} × U

since U is a block of the action of S onX . Since U, V ∈ E, there exists bijection φ : V −→ U
such that φsn = snφ for all n ∈ N. Define φV : V −→ {x} × U so that (a)φV = (x, (a)φ).
Since φ is a bijection, so too is φV . If n ∈ N and a ∈ V are arbitrary, then

(a)φV tn = (x, (a)φ)tn = (x, (a)φsn) = (x, (a)snφ) = (a)snφV = (a)tnφV .

We define ψ : X −→ X ′ by

ψ =
⋃

V ∈E

φV ∪ 1X\
⋃

W∈E
W .

Note that ψ is injective, dom(ψ) = X , and ran(ψ) =
(
⋃

W∈E(W )b
)

∪
(

X \
⋃

W∈EW
)

= X ′.
Hence ψ is a bijection. We will show that ψtn = snψ for all n ∈ N. Suppose that x ∈ X .
Then either x 6∈ V for all V ∈ E or x ∈ V for some V ∈ E. In the first case, (x)ψtn =
(x)tn = (x)sn and since (x)sn 6∈ V for all V ∈ E, it follows that (x)ψtn = (x)sn = (x)snψ,
as required. In the second case, (x)ψtn = (x)φV tn = (x)tnφV = (x)snφV , and since
(x)sn ∈ V , (x)snφV = (x)snψ.
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Define Λ : A+ −→ I(X,α) by (w)Λ = ψ(w)Φ|X′ψ−1 for all w ∈ A+. By the definition of
X ′, the partial permutation (w)Φ maps X ′ to X ′, and so (w)Λ is a partial permutation of
X . Also

|X \ dom((w)Λ)| = |X ′ \ dom((w)Φ)| ≤ |Y ′ \ dom((w)Φ)| ≤ α

and similarly |X \ ran((w)Λ)| ≤ α. Hence (w)Λ ∈ I(X,α). Finally, let u, v ∈ A+. Then

(uv)Λ = ψ(u)Φ|X′1X′(v)Φ|X′ψ−1 = ψ(u)Φ|X′ψ−1ψ(v)Φ|X′ψ−1 = Λ(u)Λ(v),

and so Λ is a homomorphism. Furthermore,

(wn)Λ = ψ (wn)Φ ψ−1 = ψtnψ
−1 = sn

and hence wn is universal for I(X,α). �

We conclude the section with an open question.

Question 3.5. Can the assumption that |X| > 2ℵ0 be removed from Theorem 3.1?

4. A sufficient condition for the universality of sequences for XX

In this section, we give a sufficient condition for a sequence over a 2-letter alphabet to be
universal for XX for any infinite X . This might be seen as a small step towards obtaining
a description of the set of all universal sequences for XX , if such a description exists; and
towards resolving the following open question, which was the original motivation behind
the results in this section.

Question 4.1. Let X and Y be infinite sets. Is the set of universal sequences for XX

equal to the set of universal sequences for Y Y ?

Throughout this section, we denote by A a fixed alphabet {a, b}. Let w = (w1, w2, . . .)
be a sequence of elements of A+, and let S be a submonoid of A∗ such that:

(1) if wn = svuvs′ where s, s′ ∈ S, and u, v ∈ A∗, then v ∈ S;
(2) if wm = svt and wn = t′vs′, m 6= n, where s, s′ ∈ S and t, t′, v ∈ A∗, then v ∈ S;
(3) if wn = svt where s, t, v ∈ A∗ and sv, vt ∈ S, then wn ∈ S;

where m,n ∈ N. For every sequence w of elements of A+ there is at least one submonoid
of A∗ satisfying these conditions, namely A∗ itself.

We will show that for every sequence w in A+ there exists a least submonoid of A∗

with respect to containment satisfying (1), (2), and (3). It can be shown that an arbitrary
intersection of submonoids satisfying these three conditions, also satisfies the conditions.
However, we opt instead to give a construction of this least submonoid, which we will make
use of later.

We define S0 = 〈ε〉 where ε denotes the empty word, which is the identity element of
A∗. For some n ≥ 0, suppose that we have defined a submonoid Sn of A∗. We define

Xn = {v ∈ A∗ : wi = svuvs′ for some i ∈ N, s, s′ ∈ Sn and u ∈ A∗};

Yn = {v ∈ A∗ : wi = svt, wj = t′vs′ for some distinct i, j ∈ N, s, s′ ∈ Sn and t, t′ ∈ A∗};

Zn = {wi ∈ A∗ : wi = svt for some i ∈ N and s, v, t ∈ A∗ so that sv, vt ∈ Sn}.
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and set Sn+1 = 〈Sn, Xn, Yn, Zn〉. We define Sw =
⋃

n∈N Sn. Since S0 ≤ S1 ≤ S2 ≤ . . . by
definition, Sw is a submonoid of A∗.

The next proposition is a straightforward consequence of the construction of Sw.

Proposition 4.2. Let w = (w1, w2, . . .) be an arbitrary sequence of elements of A+. Then

Sw is the least submonoid of A∗ satisfying conditions (1), (2), and (3).

The main result of this section is the following.

Theorem 4.3. Let w = (w1, w2, . . .) be a sequence of words in A+ such that wn /∈ Sw for

all n ∈ N. Let pn, sn, un ∈ A∗ be such that wn = pnunsn, and pn and sn are respectively

the longest prefix and the longest suffix of wn so that pn, sn ∈ Sw. Suppose that un is a

subword of wm if and only if n = m and that un is not a subword of pn for all n. Then

(w1, w2, . . .) is a semigroup universal sequence for XX , where X is any infinite set.

As a corollary to Theorem 4.3 we obtain the following result.

Corollary 4.4. Let X be an infinite set and let w1, w2, . . . ∈ A+ be such that no proper

prefix of wn is a suffix of any wm and wn is not a subword of wm, m 6= n. Then (w1, w2, . . .)
is a universal sequence for XX .

Proof. It follows from the construction of Sw where w = (w1, w2, . . .), that X1 = Y1 =
Z1 = ∅. Hence Sw = 〈ε〉, and so we are done by Theorem 4.3. �

Examples of sequences satisfying the hypothesis of Corollary 4.4 are (aban+1b2)n∈N and
(a2b3(abab3)n+1ab2ab3)n∈N of Banach and Sierpiński mentioned in the introduction. There
are further sequences satisfying the hypothesis of Theorem 4.3 but not that of Corol-
lary 4.4. For example, it can be show that if wn = aba(ab)n+1bab ∈ A+ for all n ∈ N, then
(w1, w2, . . .) satisfies the hypothesis of Theorem 4.3, even though ab is both a prefix and a
suffix.

Before presenting the proof of Theorem 4.3 we prove a technical result about Sw.

Lemma 4.5. Let w = (w1, w2, . . .) be an arbitrary sequence of elements of A+ such that

a, b /∈ Sw. Then either w1, w2, . . . ∈ aA∗b and Sw ⊆ aA∗b ∪ {ε}; or w1, w2, . . . ∈ bA∗a and

Sw ⊆ bA∗a ∪ {ε}.

Proof. We begin by showing that wn ∈ aA∗b for all n ∈ N or wn ∈ bA∗a for all n ∈ N.
Suppose that wm ∈ aA∗ and wn ∈ A∗a for some m,n ∈ N. Then, by condition (2), a ∈ Sw,
which contradicts the assumption of the lemma. Hence if there exists m ∈ N such that
wm ∈ aA∗, then wn ∈ A∗b for all n ∈ N. Similarly, if wm ∈ bA∗, then wn ∈ A∗a for all
n ∈ N. Hence together these imply that wn ∈ aA∗b for all n ∈ N or wn ∈ bA∗a for all
n ∈ N, as required. Assume without loss of generality that wn ∈ aA∗b for all n ∈ N. Since
S0 = {ε}, it suffices to show that Xn ∪ Yn ∪ Zn ⊆ aA∗b ∪ {ε} for all n ∈ N. Suppose that
n ∈ N is arbitrary.

If x ∈ Xn, then there exists m ∈ N such that wm = sxuxs′ for some s, s′ ∈ Sn and
u, v ∈ A∗. If x ∈ A∗a, then since wm ∈ aA∗b there exists q ∈ A∗ such that wm = aqas′.
Hence a ∈ Sw by (1), a contradiction. Hence x ∈ A∗b, and, by symmetry, x ∈ aA∗, as
required. Suppose that y ∈ Yn. Then there exist distinctm, k ∈ N such that wm = syt = aq
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and wk = t′ys′ where s, s′ ∈ Sn and q, v, t, t′ ∈ A∗. If y ∈ A∗a, then wk = q′as′ for some
q′ ∈ A∗ and so a ∈ Sw by (2), a contradiction. Hence y ∈ A∗b and by symmetry y ∈ aA∗.
By the definition Zn is a subset of {wn : n ∈ N}, and so by assumption Zn ⊆ aA∗b. �

Lemma 4.6. If w = (w1, w2, . . .) is a sequence of words in A+ such that wn /∈ Sw for all

n ∈ N, then wn = pnunsn where un ∈ A+, and pn and sn are the longest prefix and suffix,

respectively, of wn belonging to Sw, for all n ∈ N.

Proof. Suppose there exists n ∈ N such that wn = stv, pn = st, and sn = tv for some
s, v ∈ A+ and t ∈ A∗. Then wn ∈ Sw by (3), which contradicts the assumption. �

Proof of Theorem 4.3. First suppose that a ∈ SW. We consider three cases: there is n ∈ N

such that b does not appear in wn; b appears at least twice in at least one wn; and for all
n ∈ N the letter b appears exactly once. In the first case, wn = ai ∈ Sw for some i ≥ 1, a
contradiction. In the second case, wn = aibubaj for some i, j ≥ 0 and some u ∈ A∗. Then
b ∈ Sw by (1), and so Sw = A∗, a contradiction. In the final case, wn = ainbajn for some
in, jn ≥ 0 and all n ∈ N. Then b ∈ Sw by (2), again a contradiction. Therefore a /∈ Sw

and the symmetric argument shows that b /∈ Sw. For the rest of the proof we assume that
a, b /∈ Sw. By Lemma 4.5 we may assume that w1, w2, . . . ∈ aA∗b and Sw ⊆ aA∗b ∪ {ε}.

Denote by F (A) the free group with A being the set of generators. Let Y be any set
such that |Y | = |X|. Since F (A) is countable and Y is infinite, we may assume that X
is the set of eventually constant sequences over F (A) ∪ Y such that the first element is in
F (A). For convenience write the sequences from right to left, namely

X = {(. . . , x1, x0) : x0 ∈ F (A), xi ∈ F (A) ∪ Y for i ≥ 1, and there isK ∈ N

such thatxK = xk for all k ≥ K}.

We proceed by proving a series of claims.

Claim 4.7. un ∈ aA∗b for all n ∈ N.

Proof. Let n,m ∈ N be distinct. Suppose that un ∈ bA∗. Then un = bu for some u ∈ A∗,
thus wn = pnbusn. Since wm ∈ aA∗b there is some v ∈ A∗ such that wm = avb, and so
condition (2) implies that b ∈ Sw, a contradiction. Hence un ∈ aA∗ and by symmetry
un ∈ A∗b. �

By construction Sw is generated by G =
⋃

n∈NXn ∪ Yn ∪ Zn, a set of subwords of
words in w. Let Gn be the set of all words in G of length at most n. Recall that we
say that a generating set T is irredundant if v is not an element of the monoid generated
by T \ {v} for every v ∈ T . Let T1 = G1. Then T1 is irredundant. For some n ∈ N,
suppose that we defined Tn such that Tn is an irredundant generating set for the monoid
generated by Gn and if n ≥ 2 then Tn−1 ⊆ Tn ⊆ Gn. Since Sw is free and Gn+1 is finite,
there is an irredundant generating set Tn+1 for the monoid generated by Gn+1 such that
Tn ⊆ Tn+1 ⊆ Gn+1. Therefore such Tn exists for all n ∈ N. Let T =

⋃

n∈N Tn. Then it
is routine to verify that T is an irredundant generating set for Sw. We note that T only
needs to be a monoid generating set, and so we may assume that ε /∈ T .
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Claim 4.8. For each v ∈ T , there are t, t′ ∈ Sw and n,m ∈ N such that tv is a prefix of
pn, and vt

′ is a suffix of sm.

Proof. Let Xk, Yk, and Zk be as in the construction of Sw. Note that Zn = ∅ for all n ∈ N,
as otherwise there exists wm ∈ Zn ⊆ Sw for some m ∈ N. Hence T ⊆

⋃

n∈NXn ∪ Yn.
Suppose v ∈ T ∩Xk for some k ∈ N. Then wn = tvuvt′ for some n ∈ N, t, t′ ∈ Sk, and

u ∈ A∗. Hence tv, vt′ ∈ Sw, and so it then follows from the maximality of pn and sn that
tv is a prefix of pn, and vt

′ is a suffix of sn. If v ∈ T ∩ Yk for some k ∈ N, then wn = qvt
and wm = t′vq′ for some n,m ∈ N, t, t′ ∈ A∗, and q, q′ ∈ Sk. Hence tv, vt

′ ∈ Sw, and so tv
is a prefix of pn, and vt

′ is a suffix of sm. �

Claim 4.9. For all v ∈ T and all n ∈ N, a prefix of v is not a suffix of un, and a suffix of
v is not a prefix of un.

Proof. Let v ∈ T and n ∈ N be arbitrary. By Claim 4.8 there are t, t′ ∈ Sw such that
tv is a prefix of pm and vt′ is a suffix of sk for some m, k ∈ N. Then there is r ∈ A∗ so
that wm = tvrumsm. Suppose that q is a non-trivial prefix of v which is also a suffix of
un. First, consider the case where m = n. Then q ∈ Sw by (1) as wm = tqhqsm for some
h ∈ A∗. If m 6= n, then, since wm = tvrumsm and wn = pnunsn where t, sn ∈ Sw, it follows
from (2) that q ∈ Sw. Hence in both cases q ∈ Sw, which contradicts the maximality of
sn.

The case where q is non-trivial suffix of v which is a prefix of un follows in an almost
identical way, using wk = pkukr

′vt′ for some r′, t′ ∈ A∗. �

Claim 4.10. For every v, v′ ∈ T , if a non-trivial prefix q of v is a suffix of v′, then
q = v = v′.

Proof. Let v, v′ ∈ T be arbitrary. Suppose that v = qr and v′ = r′q for some r, r′ ∈ A∗ and
q ∈ A+. By Claim 4.8 there are t, t′ ∈ Sw and n,m ∈ N such that tv is a prefix of pn, and
v′t′ is a suffix of sm. If n = m then there is x ∈ A∗ such that wn = tvxv′t′ = tqrxr′qt′, and
so q ∈ Sw by (1) since t, t′ ∈ Sw. If n 6= m, then wn = tvx = tqrx and wm = x′v′t′ = x′r′qt′

for some x, x′ ∈ A∗. Since t, t′ ∈ Sw, (2) implies that q ∈ Sw. Hence q ∈ Sw in both cases.
Since v ∈ T , by Claim 4.8 there are n,m ∈ N, l, l′ ∈ Sw so that lv is a prefix of pn

and vl′ is a suffix of sm. As in the previous paragraph, if n = m then there is x ∈ A∗

such that wn = lvxvl′ = lqrxqrl′, and so r ∈ Sw by (1) since lq, l′ ∈ Sw. If n 6= m, then
wn = lvx = lqrx and wm = x′v′l′ = x′qrl′ for some x, x′ ∈ A∗. Since lq, l′ ∈ Sw, (2) implies
that r ∈ Sw. Hence r ∈ Sw in both cases. Since T is irredundant, q, r ∈ Sw, and qr ∈ T ,
it follows that r = ε. The same argument for v′ implies that r′ = ε, and so q = v = v′. �

Let f1, f2, . . . ∈ XX . We will construct a homomorphism Φ : A+ → XX such that
(wn)Φ = fn for all n ∈ N. In order to do that we will require the following auxiliary
functions α, β, γ ∈ XX defined as follows:

(. . . , x1, x0)α = (. . . , x0, a) and (. . . , x1, x0)β = (. . . , x0, b).

If xi−1 . . . x0 = v ∈ T for some i ≥ 1, xj ∈ A+ for all j ∈ {0, . . . i− 1}, and xi ∈ F (A), we
define

(. . . , x1, x0)γ = (. . . , xi+1, xiv)
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and otherwise define (. . . , x1, x0)γ = (. . . , x1, x0).
Suppose there are i, i′ ∈ N, such that i ≥ i′, xi−1 . . . x0 = v, and xi′−1 . . . x0 = v′ for

some v, v′ ∈ T , and so that xj ∈ A+ for all j ∈ {0, . . . , i− 1}. Then v′ is a suffix of v. By
Claim 4.10 this is only possible if v = v′. Hence γ is well-defined. Let Ψ : A+ −→ XX be
the canonical homomorphism induced by (a)Ψ = α and (b)Ψ = β ◦ γ. We will later use Ψ
to define the required Φ.

Claim 4.11. For v ∈ aA∗ such that no prefix of v is a suffix of a word in T , there are
z1, . . . , zk ∈ A+ such that z1 . . . zk = v and (. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zk) for
every (. . . , x1, x0) ∈ X .

Proof. Let v ∈ aA∗ be such that no prefix of v is a suffix of a word in T , and let v = y1 . . . ym
for some m ∈ N and y1, . . . , ym ∈ A. Then y1 = a, and so (. . . , x1, x0)α = (. . . , x1, x0, y1)
for all (. . . , x1, x0) ∈ X . Suppose that for some i ∈ {1, . . . , m − 2} there are j ∈ N

and z1, . . . , zj ∈ A+ such that (. . . , x1, x0) ((y1 . . . yi)Ψ) = (. . . , x1, x0, z1, . . . , zj) for every
(. . . , x1, x0) ∈ X and y1 . . . yi = z1 . . . zj .

There are two cases to consider, either yi+1 = a, or yi+1 = b. Suppose that yi+1 = a.
Since Ψ is a homomorphism, (. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj , a) for all
(. . . , x1, x0) ∈ X and z1 . . . zja = y1 . . . yi+1. Hence the condition is satisfied. If yi+1 = b,
since Ψ is a homomorphism, (. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ for
all (. . . , x1, x0) ∈ X and z1 . . . zjb = y1 . . . yi+1. Since y1 . . . yi+1 is a prefix of v, by the
assumption it cannot be a suffix of any word in T . Thus z1 . . . zjb /∈ T and if x0, . . . , xt ∈
A+ then xt . . . x0z1 . . . zjb /∈ T for all t ∈ N. Hence either γ acts as the identity on
(. . . , x1, x0, z1, . . . , zj , b), or there is k > 1 such that zk . . . zjb ∈ T . In the later case

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ

= (. . . , x1, x0, z1, . . . , zk−1zk . . . zjb).

Since z1 . . . zjb = y1 . . . yi+1, the inductive hypothesis is satisfied in both cases. Hence the
claim holds by induction. �

Claim 4.12. Let v ∈ Sw. Then (. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0v) for all (. . . , x1, x0) ∈ X
and (v)Ψ is a bijection.

Proof. Let v ∈ T . Then v ∈ aA∗b as Sw ⊆ aA∗b ∪ {ε}, and so v = v′b for some v′ ∈
aA∗. By Claim 4.10 any proper prefix of v, and hence any prefix of v′, is not a suffix
of any word in T . Hence by Claim 4.11 there exists j ∈ N and z1, . . . , zj ∈ A+ such
that (. . . , x1, x0) ((v

′)Ψ) = (. . . , x1, x0, z1, . . . , zj) for all (. . . , x1, x0) ∈ X and z1 . . . zj = v′.
Since v = z1 . . . zjb, Ψ is a homomorphism, and x0 ∈ F (A), it follows that

(4.1) (. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ = (. . . , x1, x0v).

Suppose that (. . . , x1, x0v) = (. . . , x′1, x
′
0v) where xi, x

′
i ∈ F (A) ∪ Y for all i, i′ ≥ 1 and

x0, x
′
0 ∈ F (A). Then xi = x′i for all i ≥ 1 and x0v = x′0v. Since x0v and x′0v are both

elements of the free group F (A) it follows that x0 = x′0. Hence (v)Ψ is injective by (4.1).
Let (. . . , x1, x0) ∈ X . Then (. . . , x1, x0v

−1) ((v)Ψ) = (. . . , x1, x0), so (v)Ψ is surjective, and
hence bijective on X . Therefore, we are done, as T is a generating set for Sw. �
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In order to define the required Φ, we need a final auxiliary function δ ∈ XX , defined as
follows. If there exists n, i ∈ N, i > 0, such that xi−1 · · ·x0 = un, x0, . . . , xi−1 ∈ A+, and
xi ∈ F (A), then we define

(. . . , x1, x0)δ = (. . . , xi+1, xip
−1
n )fn ◦ (sn)Ψ

−1

and we define (. . . , x1, x0)δ = (. . . , x1, x0) otherwise. Note that (sn)Ψ
−1 is defined by

Claim 4.12. Suppose there are i, i′, n, n′ ∈ N, i ≥ i′ such that xi−1 . . . x0 = un and
xi′−1 . . . x0 = un′ where xj ∈ A+ for all j ∈ {0, . . . , i− 1} and xi, xi′ ∈ F (A). Then un′ is a
suffix of un. On the other hand, if n′ 6= n, then un′ is not a subword of wn (by assumption
in the statement of the theorem) and hence not of un either. Hence n = n′, and so i = i′,
and δ is well-defined.

Let Φ be the canonical homomorphism induced by (a)Φ = α and (b)Φ = β ◦ γ ◦ δ.

Claim 4.13. If v ∈ Sw, then (v)Φ = (v)Ψ.

Proof. Suppose that v = y1 . . . ym ∈ T where yi ∈ A for all i ∈ {1, . . . , m}. Since Sw ⊆
aA∗b ∪ {ε}, it follows that y1 = a, and so (y1)Φ = α = (y1)Ψ. Suppose (y1 . . . yi)Φ =
(y1 . . . yi)Ψ for some i ∈ {1, . . . , m− 1}. Then (y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ.

If yi+1 = a, then (yi+1)Φ = (yi+1)Ψ, and so the inductive hypothesis is satisfied. Suppose
that yi+1 = b, then (yi+1)Φ = (yi+1)Ψ ◦ δ, and so (y1 . . . yi+1)Φ = (y1 . . . yi+1)Ψ ◦ δ. If
i+ 1 < m, then y1 . . . yi+1 is a proper prefix of v. By Claim 4.10 for any j ∈ {1, . . . , i+ 1}
the proper prefix y1 . . . yj of v is a not a suffix of any word in T . Since y1 . . . yi+1 ∈ aA∗,
by Claim 4.11 there exists j ∈ N and z1, . . . , zj ∈ A+ such that z1 . . . zj = y1 . . . yi+1 and
(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) for all (. . . , x1, x0) ∈ X . If i + 1 = m,
then y1 . . . yi+1 = v ∈ Sw, and so (. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0y1 . . . yi+1) for
all (. . . , x1, x0) ∈ X by Claim 4.12. Hence in any case there are z0, . . . , zj ∈ A+ such that
z0 . . . zj = y1 . . . yi+1 and for all (. . . , x1, x0) ∈ X

(4.2) (. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0z0, z1, . . . , zj).

We will show that δ acts as the identity on (. . . , x1, x0) ((y1 . . . yi+1)Ψ) for all (. . . , x1, x0) ∈
X . Fix (. . . , x1, x0) ∈ X , and let z0, . . . , zj ∈ A+ be as in (4.2). Suppose that there are k ≥
1 and n ∈ N such that xk−1, . . . , x1, x0z0 ∈ A+, xk ∈ F (A), and xk−1 . . . x0z0 . . . zj = un.
Then z0 . . . zj = y1 . . . yi+1 is both a prefix of v and a suffix of un, contradicting Claim 4.9. If
k > 0 and zk . . . zj = un, then un is a subword of v for some n ∈ N. By Claim 4.8 there are
t ∈ Sw and m ∈ N such that tv is a prefix of pm, and so un is a subword of pn, contradicting
by the hypothesis of the theorem. Hence δ acts as identity on (. . . , x1, x0z0, z1, . . . , zj), and
so the inductive hypothesis is satisfied and by induction, that is (v)Φ = (v)Ψ for all v ∈ T .
Since T is a generating set for Sw, it follows that (v)Φ = (v)Ψ for all v ∈ Sw. �

Claim 4.14. (un)Φ = (un)Ψ ◦ δ for all n ∈ N.

Proof. Let n ∈ N, and let un = y1 . . . ym where y1, . . . , ym ∈ A. We will now show that
(y1 . . . ym−1)Φ = (y1 . . . ym−1)Ψ. Since y1 = a, it follows that (y1)Φ = α = (y1)Ψ. Suppose
(y1 . . . yi)Φ = (y1 . . . yi)Ψ for some i ∈ {1, . . . , m− 2}. Then (y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦
(yi+1)Φ. If yi+1 = a, then (yi+1)Φ = (yi+1)Ψ, and so the inductive hypothesis is satisfied.
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Suppose yi+1 = b. Then (yi+1)Φ = (yi+1)Ψ ◦ δ. Hence (y1 . . . yi+1)Φ = (y1 . . . yi+1)Ψ ◦ δ.
By Claim 4.9, for every j ∈ {1, . . . , i + 1} the proper prefix y1 . . . yj of un is not a suffix
of any word in T . By Claim 4.7, y1, . . . yj ∈ aA∗, and so by Claim 4.11 there exists j ∈ N

and z1, . . . , zj ∈ A+ such that (. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) for all
(. . . , x1, x0) ∈ X and z1 . . . zj = y1 . . . yi+1.

Suppose that zk . . . zj = ut for some k ∈ {1, . . . , j} and t ∈ N. Then ut is a subword of
un, and so of wn. Hence t = n by the hypothesis of the theorem, and thus un is a proper
subword of un, which is a contradiction. Suppose that ut = xk . . . x0z1 . . . zj for some k ≥ 0
and t ∈ N such that x0, . . . , xk ∈ A+. Then z1 . . . zj is a prefix of un and a suffix of ut, and
so z1 . . . zj ∈ Sw by the definition of Sw, which contradicts the choice of un. So δ acts as
the identity on (. . . , x1, x0, z1, . . . , zj). Hence the inductive hypothesis is satisfied, and by
induction (y1 . . . ym−1)Φ = (y1 . . . ym−1)Ψ. Finally, (un)Φ = (un)Ψ ◦ δ, as ym = b. �

Let n ∈ N. It follows from Claim 4.12, Claim 4.13, Claims 4.14, and the fact that Φ is
a homomorphism, that for all (. . . , x1, x0) ∈ X

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0) ((pn)Ψ ◦ (un)Ψ ◦ δ ◦ (sn)Ψ)

= (. . . , x1, x0pn) ((un)Ψ ◦ δ ◦ (sn)Ψ) .

It follows from Claims 4.7, 4.9 and 4.11 that there are z1, . . . , zk ∈ A+ such that z1 . . . zk =
un and

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0pn) ((un)Ψ ◦ δ ◦ (sn)Ψ)

= (. . . , x1, x0pn, z1, z2, . . . , zk)δ ◦ (sn)Ψ.

Finally, by the definition of δ

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0pn, z1, z2, . . . , zk)δ ◦ (sn)Ψ

= (. . . , x1, x0)fn ◦ (s)Ψ
−1 ◦ (s)Ψ

= (. . . , x1, x0)fn.

Therefore (wn)Φ = fn, and since n was arbitrary, (w1, w2, . . .) is a universal sequence. �
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