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Abstract The Weather Research and Forecast (WRF) numerical model is used to charac-6

terize the influence of a thermally-driven down-valley flow on a developing cold-air pool7

in an idealized alpine valley decoupled from the atmosphere above. Results for a three-8

dimensional (3D) valley, which allows for the formation of a down-valley flow, and for a9

two-dimensional (2D) valley, where the formation of a down-valley flow is inhibited, are10

analyzed and compared. A key result is that advection leads to a net cooling in the 2D valley11

and to a warming in the 3D valley, once the down-valley flow is fully developed. This differ-12

ence stems from the suppression of the slope-flow induced upward motions over the valley13

centre in the 3D valley. As a result, the downslope flows develop a cross-valley circulation14

within the cold-air pool, the growth of the cold-air pool is reduced and the valley atmo-15

sphere is generally warmer than in the 2D valley. A quasi-steady state is reached for which16

the divergence of the down-valley flow along the valley is balanced by the convergence of17

the downslope flows at the top of the cold-air pool, with no net contribution of subsiding18

motions far from the slope layer. More precisely, the inflow of air at the top of the cold-air19

pool is found to be driven by an interplay between the return flow from the plain region20

and subsidence over the plateaux. Finally, the mechanisms that control the structure of the21
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cold-air pool and its evolution are found to be independent of the valley length as soon as22

the quasi-steady state is reached and the down-valley flow is fully developed.23

Keywords Cold-air pool · Downslope flow · Numerical simulation24

1 Introduction25

The representation of the stable atmospheric boundary layer in complex terrain, ranging from26

rugged lowlands with valley incisions to the highest mountains, constitutes a significant fore-27

casting challenge. Small-scale processes in such complex terrain remain largely unresolved28

by current numerical weather prediction models and so are their impacts on weather, climate29

and air quality (see for instance Zardi and Whiteman 2013). Specifically, large temperature30

variations may occur over short distances, especially during clear nights when radiative cool-31

ing of the surface leads to a strong ground-based inversion (GBI). In areas sheltered from the32

atmosphere above, particularly from flow where high wind speeds and consequent intense33

turbulent mixing conspire to reduce vertical temperature gradients towards zero (e.g. Vosper34

and Brown 2008; Lareau and Horel 2015), or under quiescent synoptic conditions, cold-air35

pools (CAPs) form. CAPs are associated with a strong GBI, and so weather hazards and pol-36

lution episodes are more likely in CAPs than over flat terrain in the same region, especially37

when they are intense, shallow and long lasting as this may occur in winter.38

Under these conditions, thermally-driven slope and valley winds are key to maintaining39

some degree of ventilation (e.g. Largeron 2010; Nadeau et al. 2012). Slope flows develop as40

a result of the horizontal thermal imbalance between the layer of air adjacent to the slope and41

the air at the same altitude far from the slope. At night, the radiative cooling of the ground42

produces downslope flows. Along-valley flows are also thermally driven and are triggered by43

the thermal imbalance in the down-valley direction, for instance between the valley interior44

and an adjacent plain.45

The role of downslope flows in CAP formation under decoupled conditions depends46

on the scales of the terrain. Burns and Chemel (2014, 2015) and Vosper et al. (2014) dis-47

cussed results from numerical model simulations of the formation of a CAP in valleys of48

very different depths. Vosper et al. (2014) considered the Clun Valley, England, a narrow49

valley with depth between 75 and 150 m. In such a shallow valley, the sheltering provided50

by surrounding terrain allowed a CAP to form. The strong atmospheric static stability of the51

simulated developing CAP rapidly suppressed downslope flows. The cooling of the air ad-52

jacent to the ground was dominated by parametrized subgrid-scale (SGS) turbulent mixing,53

while the cooling above was dominated by transport of cold air from the valley sides or from54

down-valley drainage. By contrast, Burns and Chemel (2014, 2015) considered an idealized55

1-km deep narrow valley, not subject to down-valley winds. In such a deep valley, downs-56

lope flows were found to play a major role in the development of a CAP. As the cold-air57

region engulfed the slopes, a 100-m deep strongly stratified GBI was left above the valley58

floor. The downslope flows then detrained largely above the GBI layer, thereby mixing the59

upper part of the CAP. The valley-atmosphere instantaneous cooling was eventually driven60

by a complex interplay between radiative cooling and dynamical cooling.61

Although widely observed (e.g. Neff and King 1987; Banta et al. 2004; Pinto et al.62

2006; Schmidli et al. 2009), the influence of down-valley flows on the evolution of CAPs63

under decoupled conditions is not well characterized, presumably owing to the challenges in64

simulating CAPs (Baker et al. 2011) and collecting extensive observations. Numerical mod-65

elling studies investigating CAP processes have generally considered two-dimensional (2D)66



Interactions between the Nighttime Valley-Wind System and a Developing Cold-Air Pool 3

valley geometries that are invariant in the down-valley direction (referred to as 2D valleys67

hereafter), thereby preventing any thermally-driven down-valley flow from developing (e.g.68

Vosper and Brown 2008; Catalano and Cenedese 2010; Katurji and Zhong 2012; Burns and69

Chemel 2014, 2015). Numerical simulations considering valleys with a three-dimensional70

(3D) geometry that is varying in the down-valley direction (referred to as 3D valleys here-71

after) have generally focussed on convective situations (e.g. Rampanelli et al. 2004; Schmidli72

et al. 2011). Only a few studies have examined pooling and draining processes in 3D valleys.73

Zängl (2005) investigated processes promoting the formation of extreme CAPs in an ideal-74

ized elevated sinkhole (i.e., closed basin). O’Steen (2000) examined the impact of tributaries75

on the nighttime down-valley flow and on the associated mass transport outside idealized val-76

leys. Schmidli and Rotunno (2010) examined the mechanisms leading to the formation of77

a thermally-driven along-valley flow in a 3D valley. The importance of the geometry of the78

valley with respect to the other mechanisms in the development of a valley–plain tempera-79

ture difference, was quantified using the concept of a topographic amplification factor (see,80

for instance, Whiteman 1990). Results indicated that the along-valley flow induce a heating81

of the valley atmosphere during the night and a cooling of the valley atmosphere during the82

day. Similar conclusions were reported during daytime by Rampanelli et al. (2004) in a study83

of an idealized valley, and by Weigel et al. (2006) in a real-case study of the Riviera Valley in84

southern Switzerland. For nocturnal conditions, the heating of the valley atmosphere was ex-85

plained by subsidence motions from the atmosphere above the valley, due to the divergence86

of the down-valley flow.87

The overall aim of the present work is to characterize the influence of a thermally-driven88

down-valley flow on a developing CAP in an idealized alpine valley under decoupled condi-89

tions. For this purpose, we analyze and compare results from numerical model simulations90

of a developing CAP in a 3D valley and in the counterpart 2D valley. The set-up of the91

numerical simulations is presented in Sect. 2, and the development of the thermally-driven92

down-valley flow is discussed in Sect. 3. In Sect. 4, the influence of the down-valley flow93

is quantified by contrasting the 3D and 2D valley cases, and in Sect. 5 we investigate the94

sensitivity of the results to the valley length. Finally, conclusions are given in Sect. 6.95

2 Design of the numerical simulations96

2.1 The numerical model97

The numerical simulations were performed with the Weather Research and Forecasting98

(WRF) model, in its version 3.4.1 of the Advanced Research core formulation (Skamarock99

et al. 2008). The WRF model is a compressible non-hydrostatic model, appropriate for scales100

ranging from metres to global scales. The governing equations are formulated using a terrain-101

following hydrostatic-pressure coordinate and discretized on a staggered Arakawa-C grid.102

For the present work, time integration was performed with a third-order Runge-Kutta scheme103

using a time-splitting technique to integrate the fast acoustic mode (Wicker and Skamarock104

2002). The advection terms were discretized using a fifth-order Weighted Essentially Non-105

Oscillatory (WENO) scheme with positive definite filter. The planetary boundary layer was106

not parametrized and SGS motions were modelled with a standard turbulent kinetic energy107

1.5-order closure scheme, with the Smagorinsky coefficient Cs set to 0.1. We note that in a108

stably stratified atmosphere, Cs may vary with height (Smith and Porté-Agel 2014), limiting109

or enhancing SGS mixing. Dynamical models (see for instance Bou-Zeid et al. 2004; Smith110

and Porté-Agel 2014) allow the variation of Cs with height, depending on the instantaneous111
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Fig. 1 (a) Terrain height for the control case. The topography is symmetric about the origin (x,y) = (0,0),
where the cross-valley direction x is oriented west-east and the down-valley direction y is oriented south-north.
(b) Contours of the terrain height (with intervals of 100 m) for the control case; the light blue box denotes
the valley centre area, i.e. the area within the valley defined by 2 < y < 4 km and |x| ≤ Lx; see Sect. 2.6 for
details. Note that half of the topography along the y-direction is displayed.

flow characteristics. The effect of these variations on the motion at the resolved scales, need112

to be quantified in future work. Radiative transfer was taken into account using the Rapid113

Radiative Transfer Model for longwave radiation (Mlawer et al. 1997) and the scheme pro-114

posed by Dudhia (1989) for shortwave radiation. Shadowing effects were not included, as115

in Burns and Chemel (2014). The interactions with the ground surface were modelled using116

the community Noah Land Surface Model (Chen and Dudhia 2001) using four soil layers.117

2.2 The topography of the valley118

A valley similar to the one used by Schmidli et al. (2011) is considered. It is symmetric119

about the origin at x = 0 and y = 0 (see Fig. 1), and the analytical expression for the height120

of the terrain is given by121

h(x,y) = H hx (x) hy (y)+h0, (1)122

where123

hx (x) =


[1− cos(π (|x|−Lx)/Sx)]/2 for Lx ≤ |x| ≤ Sx +Lx
0 for |x|< Lx
1 for |x|> Sx +Lx

(2)124

and125

hy (y) =


[1+ cos(π (|y|−Ly)/Sy)]/2 for Ly < |y| ≤ Sy +Ly
0 for |y|> Ly +Sy
1 for |y| ≤ Ly

. (3)126

The topography considered is characterized by a valley depth H = 800 m, a width of127

the sloping sidewalls Sx = 4200 m (in the cross-valley direction x) and Sy = 5000 m (in the128

down-valley direction y) and a half-width of the valley floor Lx = 750 m (in the cross-valley129

direction x). The reference height is set to h0 = 1000 m. With this setup, the maximum angle130

α of the slope is about 17◦. The length of the valley Ly (as displayed in Fig. 1) is varied from131

6 to 10 km, with Ly = 6 km for the control case. The total valley length Ltot = Ly + Sy for132

the control case is then equal to 11 km. All the model points were assigned the latitude and133

longitude of the centre of the Chamonix valley located in the French Alps.134
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2.3 Grid design135

Burns and Chemel (2014) have shown that a vertical resolution smaller than a few metres136

is needed to capture the downslope flows and the structure of the valley boundary layer.137

Furthermore, the modelling studies by Rampanelli et al. (2004) and Schmidli et al. (2011)138

have shown that the domain should be large enough for the flow dynamics not to be in-139

fluenced by the lateral boundary conditions. To satisfy these constraints, we relied on the140

nesting capability of the WRF model. Two domains were used: an outer domain (D1) dis-141

cretized with 114× 334× 101 grid points in the x-, y- and z-direction, respectively, with a142

horizontal resolution ∆x|D1 = ∆y|D1 = 270 m, and an inner domain (D2) discretized with143

172×361×101 grid points in the x-, y- and z-direction, respectively, with a horizontal res-144

olution ∆x|D2 = ∆y|D2 = 90 m, both centered on the origin. The nesting between the two145

domains is one-way, in the sense that the boundary conditions of the inner domain are up-146

dated from the outer domain solution every outer-domain timestep, with no feedback from147

the inner domain on the outer domain.148

The vertical coordinate was stretched along the vertical direction using a hyperbolic149

tangent function (Vinokur 1980), providing a vertical resolution ∆z ≈ 1.7 m for the first150

level above the ground surface, and 10 levels in the first 20 m above the ground surface. In151

order to obtain numerically stable results, the vertical grid resolution demanded a timestep152

∆ t|D2 = 0.15 s for the inner domain, and a timestep ∆ t|D1 = 0.45 s for the outer domain.153

It is acknowledged that the grid resolution is too coarse to resolve the full range of154

turbulent motions acting in stable boundary layers and the numerical simulation performed155

in this work shall be referred to as high-resolution mesoscale simulations (Cuxart 2015).156

2.4 Initial conditions157

The simulations were initialized 1 h before sunset, and were run for a 6-h period. Decou-158

pled conditions were considered and so no flow was prescribed at the initial time (t = 0).159

The atmosphere was initialized to be in hydrostatic balance. The vertical lapse rate of vir-160

tual potential temperature ∂θv/∂ z at t = 0 was set to 1.5 K km−1, yielding a temperature161

profile typical of post-convective conditions. For simplicity, θv is referred to as potential162

temperature thereafter. The Brunt-Väisäla frequency N =
√
(g/θv) ∂θv/∂ z, where g is the163

acceleration due to gravity, has then an initial value N0 ≈ 0.71 10−2 s−1 within the valley.164

The potential temperature of the first air layer at the valley floor was set to θ0 = 288 K, and165

the skin temperature was initialized by extrapolating the temperature of the first three air166

layers above the ground surface. A detailed discussion of the soil initialization is given in167

Burns and Chemel (2014). The atmosphere was initialized with a relative humidity of 40%.168

2.5 Boundary conditions169

Lateral boundary conditions for the outer domain were set to periodic boundary conditions170

in the x-direction and to open boundary conditions in the y-direction. The total height of the171

domain is 12 km. A 4-km deep implicit Rayleigh sponge layer (Klemp et al. 2008) was used172

at the top of the domain to damp upward propagating gravity waves; the damping coefficient173

was set to 0.2 s−1. At the ground the usual impermeability condition was used, together with174

the Monin-Obukhov similarity theory, which was applied as the bottom boundary condition175

for the turbulent fluxes. We note that a slope-modified similarity theory (see for instance176
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Łobocki 2014) may be more appropriate to represent the surface layer of a sloping surface.177

The aerodynamic roughness length was set to 0.1 m.178

2.6 Definition of control volumes179

Since the valley boundary layer coincides with the CAP, it will be referred to as CAP there-180

after. Following Burns and Chemel (2015), the CAP is decomposed in two parts: the GBI,181

defined as the layer of atmosphere above the ground surface where a temperature inversion182

develops (that is ∂T/∂ z > 0, where T is the absolute temperature), and the part of the CAP183

above the GBI, which will be referred to as CAP↑.184

The height of the GBI, denoted by zGBI, is defined as the height where the absolute tem-185

perature ceases to increase with height. When the atmosphere is not dry, Burns and Chemel186

(2015) have shown that the height of the top of the humid layer can be used to track ac-187

curately the top of the CAP, denoted by zCAP; we use this definition hereafter. Note that a188

more standard definition of the height of the CAP, based on the height where the vertical189

gradient of potential temperature reaches a maximum, will also be used; this definition can190

be equivalently expressed in terms of the height where the Brunt-Väisäla frequency reaches191

a maximum value.192

Different spatial averages will be considered below. We consider the average over the193

area defined by |x| ≤ Lx (i.e. the width of the valley floor) and 2 ≤ y ≤ 4 km (where the194

plateaux are flat and the slope angle does not change along the down-valley direction, see195

Fig. 1b), which will be referred to as the valley centre area hereafter and, for clarity, will196

be written in italics when referring to this area. Volume averages will be performed over197

along-valley sections defined by 2 ≤ y ≤ 4 km and of height range corresponding to the198

GBI or CAP↑. These volumes will be referred to as the GBI volume and the CAP↑ volume,199

respectively.200

2.7 Definition of a counterpart two-dimensional valley201

The atmospheric circulation in the 3D valley will be compared to that developing in a 2D202

valley. The topography of the 2D valley is defined by Eq. 1 with hy(y)= 1. The 2D simulation203

was set up as the 3D ones except that no grid nesting was used, and periodic boundary204

conditions were applied at all lateral boundaries. We recall that the formation of an along-205

valley flow is inhibited in the 2D valley.206

3 Mechanism of down-valley winds207

3.1 Differential cooling between the valley and the plain208

Vertical profiles of the potential temperature above the valley floor and the plain are dis-209

played at different times in Fig. 2. During the first 30 min of simulation, the vertical tem-210

perature structure in the valley is the same as over the plain (see Fig. 2a). After 90 min (i.e.,211

30 min after sunset), a shallow stable boundary layer typical of flat terrain develops over the212

plain; in the valley, by contrast, the boundary layer is deeper and, for a given height, displays213

lower temperatures than over the plain. This differential cooling is linked to the downslope214
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Fig. 2 Vertical profiles of potential temperature θv, averaged over the valley centre (black line, see Sect. 2.6)
and over the plain for 12.4 ≤ y ≤ 14.4 km (red line) at (a) t = 30 min, (b) t = 90 min, and (c) and (d)
t = 330 min. (d) is a zoom of (c) over the first 70 m above the ground surface.

flows, which develop about 30 min after sunset, as follows. The air advected by the downs-215

lope flow, together with the cold air layer over the valley floor due to longwave radiative216

heat loss, are mixed in the vertical by the rising motions resulting from mass conservation217

(see Burns and Chemel 2015, and Sect. 4.1), since the down-valley flow has hardly formed218

at this time.219

After 330 min, the differential cooling between the valley and the plain is maintained,220

except over a thin layer of 10 m or so, where the near-surface air temperature is lower over221

the plain than over the valley floor (see Fig. 2c and 2d). This feature is closely linked to the222

dynamics of the downslope and down-valley flows, which are fully developed at this time,223

as will be discussed in the next sections.224

3.2 Development of the down-valley flow225

The valley atmosphere far from the slope layer, may be assumed to be in hydrostatic bal-226

ance as discussed for example by Rampanelli et al. (2004) and Serafin and Zardi (2011).227

The boundary layer being deeper and colder in the valley than over the plain (except, as228

already discussed, over the first ten metres above ground level, see Fig. 2c and 2d), the re-229

sulting pressure difference drives a down-valley flow from the valley to the plain. Schmidli230

and Rotunno (2010) showed that this pressure difference can be in part explained by the231
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Fig. 3 Time series of (a) the height of the CAP zCAP and (b) the maximum downslope wind speed us,max at
different positions in the along-valley direction y [y = 3 km (red lines), y = 7 km (green lines) and y = 9 km
(black lines)]. (c) Along-valley cross-section of the down-valley wind vectors at t = 150 min averaged over
the width of the valley floor. The reference wind vector corresponds to 1 m s−1. Iso-contours of the square of
the Brunt-Väisäla frequency N2 averaged over the width of the valley floor are superimposed, with intervals
of 10−4 s−2.

topographic amplification factor of the valley. In the next two sections, we investigate the232

role of the valley-wind system on the formation of this pressure difference.233

Figure 3a displays the height of the CAP zCAP versus time for different positions in the234

along-valley direction y. Since the CAP height is partly controlled by the vertical motions235

induced by the downslope flows, the maximum value of the downslope flow speed us,max236

computed at the same y-positions is displayed versus time in Fig. 3b. Figure 3b shows that,237

until 60 min or so, us,max hardly varies in the y-direction. The downslope wind speed de-238

creases from this time on, more so as the y-direction is closer to the valley exit. This is239

associated with the development of the down-valley flow after 1 h into the simulation (see240

Fig. 4). Figure 3b indicates that the downslope flows reach a quasi-steady regime after about241

3 h into the simulation. This is also the time when the along-valley flow becomes quasi-242

steady (see Fig. 4).243

Analyzing now the evolution of the CAP height, three regimes can be distinguished244

(see Fig. 3a). Until the time us,max reaches a maximum value, at about 60 min, zCAP hardly245

increases and varies in the y-direction. The CAP height increases sharply from this time on,246

due to the vertical motions induced by the downslope flows, which are more vigorous as247

the valley exit is farther. From t ≈ 180 min, when the down-valley flow is fully developed248
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Fig. 4 Down-valley component v of the wind field
(dashed line) at y = 9 km and a height of 20 m
above ground level, averaged over the width of the
valley floor, compared to an estimate of v from the
Bernoulli equation (solid line, see text for details).

(i.e. a quasi-steady state is reached), the growth rate of the CAP becomes linear and nearly249

y-independent. As indicated above, us,max decreases as one moves from the valley to the250

plain and so does the air mass flux that contributes to the build-up of the CAP. As a result,251

the value reached by zCAP after 6 h decreases toward the plain. This is attested by contours252

of the square of the Brunt-Väisäla frequency N2 averaged over the width of the valley floor253

(see Fig. 3c).254

Hence, the flow behaves as ‘a flow in a pipe’, with the cross-sectional area of the pipe255

set by the height of the CAP. The reduction in pressure towards the plain leads to an increase256

in the speed of the down-valley flow, eventually creating a jet at the valley exit. This is257

attested by vectors of the velocity field displayed in Fig. 3c. This result is consistent with258

the observations that a down-valley wind jet can persist for several km (e.g. Vergeiner and259

Dreiseitl 1987; Zängl 2004), eventually reaching a quasi-steady state (Neff and King 1989).260

3.3 A simple model for the down-valley flow261

A model for the down-valley wind component v once a quasi-steady regime has been reached262

can be obtained from Bernoulli’s equation for a steady, frictionless and irrotational fluid, viz.263

v2 =

√
v2

1 +2
(

p1

ρ1
− p2

ρ2

)
, (4)264

where p is the pressure, ρ is the air density, and the subscripts 1 and 2 refer to two positions265

in the along-valley direction, y1 and y2, respectively. Equation 4 expresses that a steady state266

is reached with the pressure force balanced by the advection. For a position y2 close to the267

valley exit, we denote v2 by vexit.268

We computed the value of vexit from Eq. 4 and the WRF model outputs. For v1, p1 and269

ρ1 we used the values of these fields averaged over the width of the valley floor, at a height270

of 20 m above ground level and for y1 = 3 km. For ρ2 and p2, values at y = 9 km are used.271

The value of vexit is displayed in Fig. 4 versus time and compared with the numerical pre-272

diction of the down-valley wind speed at y = 9 km (using the same average along x and for273

z = 20 m), denoted by vWRF. Since a steady assumption is used to compute vexit, this theo-274

retical prediction should be compared to the numerical finding once the quasi-steady state is275
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Fig. 5 Time series of the height of the maximum
downslope wind speed z(us,max) (dashed lines) and
the height of the CAP zCAP (solid lines) at two posi-
tions in the along-valley direction y [y = 3 km (red
lines) and y = 9 km (black lines)].

reached (after 180 min). Figure 4 shows that both values agree well, vexit overestimating the276

mean (temporally averaged) value of vWRF by about 10%. Thus, Eq. 4 is a good model for277

the down-valley wind speed at the valley exit.278

3.4 Along-valley variation of the downslope flows279

As shown in Fig. 3b, the speed of the downslope flows decreases towards the plain. Figure 5280

displays time series of the height of the maximum speed of the downslope flows z(us,max)281

along with those of zCAP at two positions in the along-valley direction. There is a general282

retreat of the downslope flows up the slopes as the CAP engulfs the slopes. This is consistent283

with the findings of Burns and Chemel (2015) for a 2D valley case. However, z(us,max) is284

always lower than zCAP for y = 9 km (i.e., towards the valley exit). This can be explained285

as follows. Towards the valley exit, the depth of the valley is significantly shallower (about286

360 m at y = 9 km), and the downslope flows penetrate well below the height of the CAP.287

They reach their level of neutral buoyancy and detrain just above the GBI, located at about288

100 m above the valley floor towards the valley exit.289

4 Impact of the down-valley flow on cold-air-pooling processes290

In the following we compare results from the 3D valley section defined by 2≤ y≤ 4 km to291

those from the counterpart 2D valley.292

4.1 Changes in the vertical structure of the cold air pool293

Figure 6 displays, for different times, vertical cross-valley sections of potential temperature294

θv and wind vectors ucr ≡ (u,w), where u and w are the components of the wind in the295

cross-valley direction x and vertical direction z, respectively. Both fields are averaged over296

the along-valley section defined above. We recall that the down-valley flow is fully devel-297

oped and reaches a quasi-steady state about 3 h into the simulation, that is 2 h after sunset298

(see Fig. 4). Before this time, the thermodynamics of the valley atmosphere is qualitatively299
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Fig. 6 Cross-valley sections (along the cross-valley direction x) of potential temperature θv averaged over the
along-valley section defined by 2 ≤ y ≤ 4 km at t = 120 min [(a) and (b)] and t = 360 min [(c) and (d)] in
the 3D (left) and 2D (right) valleys. The wind vectors ucr ≡ (u,w), where u and w are the components of the
wind in the cross-valley direction x and vertical direction z, respectively, averaged over the same along-valley
section are superimposed. The reference wind vector is 0.5 m s−1.

the same (see Fig. 6a and 6b for t = 120 min). At t = 360 min, the valley atmosphere is sig-300

nificantly cooler in the 2D valley than in the 3D valley (see Fig. 6c and 6d). This difference301

is closely connected to the dynamics of the valley-wind system, as discussed below.302

Figure 6 suggests that, in the 3D valley, the circulation induced by the downslope flows303

may be subdivided in two regimes, depending on the presence of a down-valley flow or not.304

Before the down-valley flow is fully developed, there is a circulation within the CAP↑, with305

rising motions in the centre of the valley (see Fig. 6a and 6b for 1200≤ z≤ 1400 m). After306

the down-valley flow is fully developed, a cross-valley circulation develops within the CAP↑307

(see Fig. 6c). This cross-valley circulation is not present in the 2D valley.308

Close inspection of the flow features in Fig. 6c reveals that the cross-valley circulation309

is the result of the downslope flows overshooting their level of neutral buoyancy. This corre-310

sponds to the plume regime described by Baines (2008). In this regime, the downslope flows311

penetrate below their level of neutral buoyancy, transporting warmer air inside the CAP. This312

creates an unstable layer immediately above the downslope flows (see the potential temper-313

ature contours in Fig. 6c, for x ≈ 2100 m and z ≈ 1300 m), which forces upward motions,314

and mass conservation constrains the flow to move toward the centre of the valley.315

After the valley-wind system is fully developed (after t = 180 min) the downslope flows316

oscillate (see Fig. 7a). These oscillations result from stratification effects and the slope-317

surface cooling (McNider 1982). Such oscillations are not as clear in the 2D valley (see318

also Burns and Chemel 2015), where the speed of the downslope flows decrease as the CAP319

deepens. The frequency spectrum of the downslope wind speed us at 10 m above ground320

level for the 3D valley shows a clear peak for a frequency f = 0.4 10−3 s−1 (see Fig. 7b),321

corresponding to a period T ≈ 40 min. This frequency is close to that predicted by the model322
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Fig. 7 (a) Time series of the downslope wind speed us at 10 m above ground level, for x = −1500 m and
y = 3000 m, for 120≤ t ≤ 360 min (i.e. when the downslope flows oscillate), in the 3D (red) and 2D (black)
valleys. (b) Spectra |F | of us at the same location, in the 3D (red) and 2D (black) valleys.

Fig. 8 Time series of the height of the ground-
based inversion zGBI (solid line) and cold-air pool zCAP

(dashed line) in the 3D (red) and 2D (black) valleys,
averaged over the over the x and y ranges of the valley
centre.

of McNider (1982), namely fMcNider =N sinα/(2π). Indeed, using N =N0 ≈ 0.71 10−2 s−1
323

and the maximum slope angle α = αmax ≈ 17◦ , one gets fMcNider ≈ 0.33 10−3 s−1. This re-324

sult is consistent with the findings of Largeron et al. (2013) for a 3D valley.325

Times series of the heights of the GBI and of the CAP are displayed in Fig. 8. The326

heights of the CAP in the 2D and 3D valleys diverge from one another already after 1 h or327

so into the simulation, when the down-valley flow develops (see Fig. 4). It is worth noting328

that the growth of the CAP in the 3D valley is significantly reduced, when compared to that329

in the 2D valley, after this time, that is when vertical motions over the centre of the valley330

are suppressed. This result suggests that vertical advection due to slope-flow induced mass331

convergence over the centre of the valley is the key process controlling the growth of the332

CAP. The height of the GBI zGBI, is similar in the 2D and 3D valleys before the down-valley333

flow is fully developed (after t = 180 min). Later on, zGBI decreases with time in the 3D334

valley, as a result of advective processes associated with the down-valley flow development.335

This will be discussed in the next subsections.336

Figure 9 displays vertical profiles of N2, where the overbar indicates an average over the337

x and y ranges of the valley centre and over time intervals of 40 min (corresponding to that338

of the oscillations of the downslope flows). The stratification in the GBI is similar for both339

the 2D and 3D valleys with a stratification two orders of magnitude larger than the initial340

stratification by the end of the simulated time period (not visible on Fig. 9a and 9b). However,341

the temporal evolution of the stratification above the GBI is more complex for the 3D valley342

(see Fig. 9a) than for the 2D valley (see Fig. 9b). For the 3D valley, prior to t = 180 min343

N2 presents two local maxima at z ≈ 1100 m and z ≈ 1250 m, which are associated with344
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Fig. 9 Vertical profiles of the Brunt-Väisäla frequency N2, averaged over the x and y ranges of the valley
centre and over time intervals of 40 min for the 3D (a) and 2D (b) valleys.

the strong shear that develops over the centre of the valley because of the detrainment of the345

downslope flows above the GBI. After t = 180 min, the vertical profile of N2 is layerized346

as a result of the interaction between the cross-valley circulation and the down-valley flow,347

which generates locally shear mixing, thereby decreasing atmospheric stability.348

At the top of the CAP, a capping inversion develops in the 2D valley, largely as a result of349

the continuous upward transport within the CAP of air colder than the air above, and contin-350

uously increases in height with time (see Fig. 9b and Fig. 8). This inversion is not as marked351

in the 3D valley by the end of the simulated time period, because it is destroyed by local352

shear mixing and the advection of potentially warmer air by the cross-valley circulation.353

4.2 Analysis of the time rate of change of potential temperature354

In the absence of any phase change, as is the case here, the equation for the potential tem-355

perature tendency is:356

∂θv

∂ t
=−ui

∂θv

∂xi
− ∂Fi

∂xi
− θv

ρcp T
∂Ri

∂xi
, (5)357

where the common summation notation is used. The terms on the right-hand side (r.h.s.)358

represent the contributions from advection, the divergence of the SGS turbulent heat flux359

F and the divergence of the radiative flux R, cp is the specific heat capacity at constant360

pressure.361

Figure 10 displays vertical profiles of the potential temperature tendency ∂θv/∂ t, aver-362

aged over the x and y ranges of the valley centre and over time intervals of 40 min, for the363

2D and 3D valleys. A striking feature is the near uniformity of the profiles with height after364

t = 240 min, for both the 3D and 2D valleys. By contrast, there are large variations along the365

vertical before that time, which calls for an examination of the different terms contributing366

to the potential temperature tendency.367

Vertical profiles of the different terms contributing to the potential temperature tendency368

(see Eq. 5), averaged in the same way as ∂θv/∂ t, are presented in Fig. 11 for two time in-369

tervals. Before t = 180 min, the advection and SGS turbulent heat flux divergence terms370

dominate the cooling rate (see Fig. 11a and 11b). The contributions of advection in the 2D371
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Fig. 10 Vertical profiles of potential temperature tendency ∂θv/∂ t, averaged over the x and y ranges of the
valley centre and over time intervals of 40 min, for the 3D (a) and 2D (b) valleys.

and 3D valleys are similar, as was already qualitatively described from Fig. 6a and 6b. After372

t = 180 min, the advection contribution in the 3D valley changes from a cooling to a warming373

as the circulation induced by the downslope flows changes (see Fig. 6c). The near unifor-374

mity of the advection contribution with height, above the GBI (of height ≈ 1100 m) in the375

3D valley may be explained as follows: the downslope flows become positively buoyant over376

the slope as they overshoot their level of neutral buoyancy, resulting in a spreading of the377

relatively warmer air vertically by convection. This relatively warmer air is then advected378

horizontally by the cross-valley circulation over the entire CAP. In the 2D valley, vertical379

motions in the centre of the valley are eventually reduced, but not suppressed (see Fig. 6d).380

This vertical transport produces a homogeneous cooling for 1100 ≤ z ≤ 1500 m, with the381

contributions from advection and radiation being almost equal. Hence, the uniform cooling382

rate observed within the 3D and 2D valleys (above the near-surface layer) is the result of the383

circulations induced by the downslope flows for both valleys. Interestingly, a similar conclu-384

sion was reported for daytime conditions by Weigel et al. (2006) for the Riviera valley, and385

by Schmidli (2013) for a 2D idealized valley. This suggests that the effect of the thermally-386

driven slope flows on the vertical structure of the potential temperature tendency is similar387

during daytime and nighttime conditions.388

Figure 11a and 11b indicate that, until t ≈ 120 min, the magnitude of the contribution389

from the SGS turbulent heat flux divergence is comparable to that of the (resolved) advection390

contribution up to 1250 m (that is the height of the CAP at t = 120 min). By the end of the391

simulated time period, for the 3D valley, the SGS turbulent heat flux divergence contribution392

at the valley floor is−2.7 K h−1, that is larger than the contributions from the other terms and393

larger than that for the 2D valley, for which the value at the valley floor is −0.4 K h−1. This394

result is due to the friction induced by the down-valley wind at the ground surface. However,395

apart from the near-surface region, the SGS turbulent heat flux divergence contribution after396

t ≈ 120 min is very small compared to the contributions from the other terms for both the397

2D and 3D valleys, over the x and y ranges of the valley centre (see Fig. 11c and 11d).398

It should be stressed that, by considering vertical profiles horizontally averaged over the399

valley centre, we ignore the atmosphere above the slopes. This important point is discussed400

in the next section.401
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Fig. 11 Vertical profiles of the terms of the r.h.s. of Eq. 5 for the 3D (left) and 2D (right) valleys: advection
(red line), radiative flux divergence (blue line) and SGS turbulent heat flux divergence (green line), aver-
aged over the x and y ranges of the valley centre and over the time periods 80–120 min [(a) and (b)] and
320–360 min [(c) and (d)].

4.3 Changes in the heat budget402

In this section, we examine the processes that control the evolution of the ground-based in-403

version layer and upper part of the valley boundary layer. Figure 12 compares time series404

of the different terms of Eq. 5 averaged over the GBI or CAP↑ volumes (see Sect. 2.6 for405

the definition of the control volumes). Before t ≈ 120 min, the atmosphere within the CAP↑406

experiences a rapid cooling (see Fig.12a). After this time, a transient regime develops be-407

tween 120 and 270 min into the simulations, which is characterized by a higher cooling of408

the GBI compared to the CAP↑. For the 3D valley, this transient regime is followed by an409

equilibrium regime characterized by an equal cooling rate within the GBI and the CAP↑. By410

the end of the simulated time period, the cooling rates within the GBI and CAP↑ for the 2D411

valley are 3 times larger and 4 times larger, respectively, than for the 3D valley.412

The presence of the down-valley flow in the 3D valley changes the relative importance413

of the processes contributing to the cooling of the valley, when compared to the 2D valley,414

as already discussed. Figure 12b displays the time series of the advection contribution. For415
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Fig. 12 Time series of the terms of the heat budget Eq. 5, volume-averaged over the GBI (solid line) or
over the CAP↑ (dashed line), for the 3D (red) and the 2D (black) valleys: (a) potential temperature tendency
∂θv/∂ t, (b) advection, (c) radiative flux divergence, and (d) SGS turbulent heat flux divergence; see Sect. 2.6
for the definition of the control volumes.

the 2D valley the magnitude of the advection contribution to the cooling rate decreases with416

time and tends to zero by the end of the simulated period within both the GBI and CAP↑.417

For the 3D valley, by contrast, the down-valley flow development leads to a warming within418

both the GBI and the CAP↑; this warming is higher within the GBI than within the CAP↑ by419

the end of the simulated time period.420

Radiative cooling is comparable for both valleys for the entire simulated time period421

and within the CAP↑ is approximately half that within the GBI (see Fig. 12c). Figure 12d422

displays the time series of the contribution from SGS turbulent heat flux divergence, which423

is mostly due to the surface turbulent heat flux. After t ≈ 180 min, because of the slow down424

of the downslope flows as the CAP grows up, its magnitude decreases with time for the425

2D valley and is almost the same within the GBI and CAP↑. For the 3D valley, friction is426

maintained over the valley surface by the fully developed downslope and down-valley flows427

(after t = 180 min). As a result, the contributions from SGS turbulent heat flux divergence428

within the GBI and CAP↑ are almost equal and nearly constant with time, and about 3 times429

larger than for the 2D valley. For the 3D valley, the contribution from SGS turbulent heat430

flux divergence within the GBI by the end of the simulated time period is of the same order431

of magnitude as the radiative cooling. By contrast, it is less than half the radiative cooling432

for the 2D valley. When considering the CAP↑ rather than the GBI, it is about twice the433
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Fig. 13 Cross-valley section (along the cross-valley direction x) of the vertical velocity (colour contours) at
t = 300 min, averaged over the along-valley section defined by 2 < y < 4 km for (a) the 3D valley and (b) the
2D valley. The along-valley wind component v (contour lines, with intervals of 0.1 m s−1) averaged over the
same along-valley section is superimposed. Continuous lines correspond to positive values (i.e. down-valley
flow), dashed lines to negative values (i.e. up-valley flow) and the thick black line corresponds to v = 0.

radiative cooling for the 3D valley and is of the same order of magnitude as the radiative434

cooling for the 2D valley.435

4.4 Changes in the mass budget436

Figure 13 shows vertical cross-sections of the vertical velocity w, with the along-valley ve-437

locity component v superimposed at t = 300 min for the 3D and 2D valleys. The fields are438

averaged over the along-valley section defined by 2 < y < 4 km. The vertical velocity is a439

proxy for the vertical mass flux, as long as the flow is approximately incompressible (as it440

is in the present case). Figure 13a and 13b suggest that the vertical mass flux is associated441

with the downslope flow advection for both the 2D and 3D valleys. The major difference442

between the 2D and 3D cases stems from the suppression of homogeneous vertical motions443

in the valley regions far from the slope for the 3D case. More precisely, no vertical motions444

are observed in the atmospheric region above the CAP (z > 1350 m) for the 3D case. This445

suggests that pure downward vertical motions far from the slope layer, i.e. subsidence, play446

a minor role in the mass conservation within the CAP atmosphere for the 3D valley, for this447

particular setup. The importance of subsiding motions far from the slope layer with respect448

to the cross-valley advection in the mass budget of the CAP, can be quantified by comput-449

ing the mass budget in the control volume defined horizontally by the valley centre, and of450

height equal to that of the CAP. Figure 14 displays time series of the net mass fluxes (de-451

fined positively outwards) associated with the three velocity components u, v and w across452

the surfaces of this volume, scaled by the mass of the CAP, for the 2D and the 3D valleys.453

The contribution of the vertical mass flux far from the slope layer (Mw) to the mass budget of454

the 3D valley is much smaller than that of the cross-valley circulation (Mu), confirming that455

downward vertical motions far from the slope do not play any major role in the conserva-456

tion of mass within the CAP. As a consequence, the horizontal mass fluxes Mu and Mv have457

opposite (and nearly constant) values from t = 180 min. This result also confirms that the458

growth of the CAP is driven by vertical advection (due to slope-flow induced mass conver-459

gence over the centre of the valley). Indeed, for the 3D valley, when Mw becomes negative460

the CAP stops growing, while for the 2D valley the growth rate decreases with time as Mw461

is reduced (see also Fig. 8).462
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Fig. 14 Net mass fluxes across the surfaces of the control volume defined horizontally by the valley centre
and of height equal to that of the CAP, scaled by the mass of the CAP: vertical flux Mw (red), along-valley flux
Mv (blue) and cross-valley flux Mu (black) for (a) the 3D valley and (b) the 2D valley. The grey line shows
the vertical mass flux across the entire upper surface of the CAP (from slope to slope), denoted by M̂w.

While Mw approaches zero by the end of the simulated time period for both the 2D463

and 3D valleys, the vertical mass flux across the entire CAP upper surface (from slope to464

slope, denoted by M̂w) for the 3D valley does not vanish (see the grey line in Fig. 14a), due465

to the advection of air along the slopes. This air must be replenished by air coming from466

other regions. Figure 13a shows that an upper-level return flow (see also Rampanelli et al.467

2004) develops above the CAP for the 3D valley (see Fig. 8 for the height of the CAP).468

This return flow transports air from the plain to the valley, as opposed to the down-valley469

flow underneath. Hence, for the 3D case the inflow of air into the slope layer, is driven470

by a combination of the return flow, the subsidence above the plateaux and the horizontal471

(cross-valley) advection from the plateaux.472

The relative contributions of these processes to the mass budget of the 3D valley can be473

quantified by considering the mass budget for a control volume encompassing the upper part474

of the valley atmosphere and part of the plateaux, defined by zCAP < z < (h0 +H +100 m),475

−(Sx +Lx +1000 m)< x < (Sx +Lx +1000 m) and 2 < y < 4 km. Figure 15 displays time476

series of the net mass fluxes associated with the horizontal velocity components u and v,477

and the mass fluxes associated with the vertical velocity w across the top and bottom sur-478

faces of this control volume, denoted by M̂u, M̂v, M̂w,t and M̂w, respectively. We quantify the479

importance of each of these terms in the mass budget with respect to M̂w by normalizing480

them by M̂w. Before t = 285 min, the subsidence from the free atmosphere (M̂w,t) decreases481

monotonically in absolute value with time. The along-valley mass flux (M̂v) decreases con-482

tinuously and becomes negative from about t = 160 min, as the return flow intensifies. After483

t = 160 min, M̂v increases monotonically in absolute value with a value of −0.75M̂w at484

t = 285 min. At this time, the advection of air along the slopes, across the upper surface485

of the CAP, is mainly replenished by the air from the plain, due to the return flow. After486

this time, M̂w,t increases in absolute value, which is associated with a decrease in absolute487

value of M̂v. By the end of the simulated time period, M̂w,t is equal to −0.35M̂w and M̂u to488

−0.15M̂w, while M̂v is equal to −0.50M̂w. Hence, we conclude that, by the end of the sim-489

ulated time period, the vertical mass flux in the slope layer is driven by a complex interplay490

between the along-valley mass flux from the plain to the valley, resulting from the return491

flow, and the subsidence and horizontal advection from the plateaux.492
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Fig. 15 Mass fluxes across the surfaces of the up-
per control volume defined by zCAP < z < (h0 +H +
100 m), −(Sx + Lx + 1000 m) < x < (Sx + Lx +
1000 m), 2 < y < 4 km, normalized by the vertical
mass flux across the bottom surface, denoted M̂w:
net along-valley flux M̂v/M̂w (blue), net cross-valley
flux from the plateaux M̂u/M̂w (black), vertical flux
across the bottom surface (within the CAP) M̂w/M̂w
(grey), vertical flux across the top surface (subsi-
dence) M̂w,t/M̂w (red), for the 3D valley.

5 Sensitivity to the length of the valley493

The previous discussion shows that the flow characteristics depends on the time when the494

quasi-steady state is reached and the down-valley flow is fully developed, denoted by Tss.495

By changing the length of the valley, we expect Tss to vary. Schmidli and Rotunno (2015)496

suggested that, assuming constant forcing (i.e. a constant surface sensible heat flux), Tss is497

proportional to T` = 2Ltot/(H N0), with a coefficient of proportionality of about 3. T` is498

the timescale associated with the linear wave solution of the along-valley wind equations499

derived by Egger (1990). To examine this proportionality and the sensitivity of the flow500

characteristics to the valley length, an additional simulation was performed by changing Ltot501

only, from 11 to 15 km. Table 1 summarizes the main variables analyzed for the different502

valley lengths Ltot, including that of the 2D valley, which is infinite.503

The coefficient of proportionality between Tss and T` is 2.8 for the two valley lengths504

considered, and therefore is about 3 as was suggested by Schmidli and Rotunno (2015).505

Since for the simulations considered H and N0 are constant as is the ratio Tss/T`, Tss should506

vary in proportion to Ltot, as confirmed from Table 1. This shows that T` is the relevant507

timescale for the approach to the quasi-steady state. The longer is the valley, the longer is508

the time before the quasi-steady state is reached and a cross-valley circulation is established.509

This results in a more gradual transition from the 2D regime and the 3D regime and therefore510

a deeper CAP. Note however that the change of the valley length has no significant effect on511

zGBI, us,max and the volume-averaged temperatures (〈θv〉GBI and 〈θv〉CAP↑ in Table 1).512

Table 1 also shows that the deeper the valley boundary layer, the stronger the down-513

valley wind jet at the same distance from the valley exit. This can be explained by the514

Bernoulli model discussed in Sect. 3.3 and using hydrostatic balance. Writing each of the515

flow variable as the sum of a reference value (denoted by a subscript r), and a deviation from516

this reference value (denoted by a prime), hydrostatic balance within the CAP can be written517

as518

∂ p′/∂ z =−(ρr/θr)θ
′
v g, (6)519

where ρr and θr are the reference density and potential temperature, respectively, outside of520

the CAP, and the usual approximation −ρ ′/ρr = θ ′v/θr is used since density variations due521

to pressure changes are small compared to those due to potential temperature changes (see522

for instance Holton 2004, pp. 198–199). Integrating Eq. (6) from the valley floor altitude,523
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Table 1 Effect of the valley length on the variables discussed in Sect. 5, namely: the total valley length Ltot;
the time when the quasi-steady state is reached Tss; the ratio Tss/T`, where T` is the timescale associated with
of the along-valley wind (see text for details)); the along-valley wind speed at the distance y = Ly−Sy−2 km
from the valley exit, for z = 20 m and averaged over [−Lx,Lx] in the cross-valley direction, denoted by v2;
the maximum downslope wind component us,max at y = 3 km; the height of the ground-based inversion zGBI

and of the cold-air pool zCAP, calculated as in Fig. 8; and the volume-averaged potential temperature within
the GBI and CAP↑, denoted by 〈θv〉GBI and 〈θv〉CAP↑, respectively. The values of the last six variables were
computed at t = 360 min.

Ltot Tss Tss/T` v2 us,max zGBI zCAP 〈θv〉GBI 〈θv〉CAP↑
(km) (min) (m s−1) (m s−1) (m) (m) (K) (K)

11 180 2.8 2.2 2.45 1090 1376 285.8 287.2
15 250 2.8 3.4 2.48 1098 1430 285.6 287.2
∞ ∞ ∞ 0 1.60 1113 1554 284.6 286.6

h0, to the height of the CAP, zCAP, yields524

p′ = ρr

ˆ zCAP

h0

g
θr

θ
′
v dz+ p′ (z = zCAP) = ρr

g
θr

θ ′v dCAP + p′ (z = zCAP) , (7)525

where θ ′v is the layer-averaged potential temperature deficit across the depth of the CAP526

dCAP = zCAP−h0. We now consider Eq. 4; by assuming that ρ1 ≈ ρ2 ≈ ρr (that is density vari-527

ations are only important in the buoyancy term, i.e. the fluid is Boussinesq), Eq. 4 becomes528

v2
2− v2

1 =
2
ρr

(
p′1− p′2

)
, (8)529

where the subscripts 1 and 2 refer to a position within the valley and at the valley exit.530

As in Sect. 3.3 v2 will be denoted as vexit. Using hydrostatic balance written in the form531

of Eq. 7, the difference between the squared down-valley wind speed for two valleys of532

different length may be computed by subtracting Eq. (8) for the two valleys. Assuming that533

the pressure at the valley exit is the same in the two valleys and that the down-valley wind534

speed within the valley is almost the same (as it is in the present case), we obtain535

∆v2
exit = 2

g
θr

θ ′v ∆zCAP, (9)536

where we have also assumed that the potential temperature variations averaged over the537

depth of the CAP (θ ′v) and the pressure perturbations at the top of the CAP [p′(z = zCAP)]538

are the same within the two valleys (as is the case here, not shown). ∆v2
exit and ∆zCAP are the539

differences in the squared along-valley speed at the valley exit and in the height of the CAP540

between the two valleys, respectively.541

Figure 16 shows the comparison between the squared wind speed difference computed542

using Eq. 9 (denoted by ∆v2
exit) with the variables averaged in the range 2 < y < 4 km, and543

from the WRF model outputs (denoted by ∆v2
WRF) at the valley exit (y= 9 km and y = 13 km544

for the shorter and longer valley, respectively). The comparison is made between 150 and545

360 min. Despite the assumptions made to derive Eq. 9, this expression is remarkably ac-546

curate: 74% of the values for ∆v2
WRF are within a factor of 2 of the counterpart values for547

∆v2
exit. It should be noted that Eq. 9 provides an expression for the difference in the squared548

along-valley wind speed between two finite length valleys, provided that ∆zCAP is known.549

This means that an equation for ∆zCAP is still required.550
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Fig. 16 Scatter plot of the difference in the squared
along-valley wind speed between the two finite length
valleys displayed in Table 1, computed from the WRF
model outputs (x-axis, ∆v2

WRF) versus its estimate, us-
ing Eq. 9 (y-axis, ∆v2

exit), between 150 and 360 min. The
dashed lines indicate the range within a factor 2 and the
solid line is the one-to-one line.

Even though the CAP is deeper in the longer valley, the maximum speed of the downs-551

lope flows at the end of the simulation hardly varies, and a steady state is reached, after552

Tss. Furthermore the cross-valley circulation and the structure of the CAP present the same553

characteristics. To conclude, the mechanisms that control the structure of the CAP and its554

evolution are independent of the valley length as soon as the down-valley flow is fully de-555

veloped.556

6 Conclusions557

We have characterized the influence of a thermally-driven down-valley flow on a developing558

cold-air pool in an idealized alpine valley under decoupled conditions. Results from numer-559

ical model simulations of a developing cold-air pool in a 3D valley, which allows for the560

formation of a down-valley flow, and in a 2D valley, where the formation of a down-valley561

flow is inhibited, were analyzed and compared. The main conclusions, along with some562

discussion, are given below.563

• Before the development of the down-valley flow, the thermodynamics of the valley at-564

mosphere in the 3D valley is similar to that in the 2D valley. The downslope flows induce565

upward motions in the centre of the valley, which are responsible for the growth of the566

cold-air pool (CAP). As shown by Catalano and Cenedese (2010) and Katurji and Zhong567

(2012), the depth of the valley is also a key factor controlling the growth of the CAP.568

Shallower valleys will be ‘filled’ more rapidly by the developing CAP, suppressing the569

effect of the downslope flows on the valley atmosphere.570

• The down-valley flow, which forms as a result of the differential cooling between the571

valley and the plain, is fully developed after a time period that increases with the valley572

length. After this time, the down-valley flow reaches a quasi-steady state characterized573

by a balance between the pressure force and advection in the along-valley direction. It574

then behaves as ‘a flow in a pipe’, with the cross-sectional area of the pipe set by the575

depth of the CAP. The value of the down-valley wind speed at the valley exit during the576

steady-state appears to be well predicted by the Bernoulli equation. The time when the577

quasi-steady state is reached is found to be about 3T`, where T` = 2Ltot/(H N0), Ltot is578

the total valley length, H is the valley depth, and N0 is the initial Brunt-Väisäla frequency579

(see also Schmidli and Rotunno 2015).580
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• In the 2D valley, as the CAP deepens and engulfs the slopes, the downslope flows retreat581

back up the slopes and slow down. This is not the case in the 3D valley. When the down-582

valley flow forms, vertical motions induced by the downslope flows cease, and a cross-583

valley circulation develops as a result of the downslope flow advection within the CAP.584

Hence, the growth of the CAP is reduced in the 3D valley, the capping inversion at its top585

is not as marked as in the 2D valley and the valley atmosphere is warmer than that for the586

2D valley. This result has implications for the dilution of pollutants. Indeed, pollutants587

emitted at the valley floor will be spread in the horizontal by the down-valley flow, as was588

observed for instance by Gudiksen and Shearer (1989) from field measurements, instead589

of being diluted throughout the CAP as for a 2D valley configuration (e.g. Chemel and590

Burns 2015).591

• Even though the 2D valley atmosphere is cooler than that of the 3D valley, the stability592

of the CAP is similar for both valleys. By the end of the simulated time period, the593

net cooling rate is uniform in the vertical throughout the upper part of the CAP, above594

the near-surface layer, for both the 3D and 2D valleys. This prevents the stability of the595

upper part of the CAP from increasing with time for both valleys. However, the processes596

involved are different. While radiative flux divergence leads to a cooling in both valleys,597

advection leads to a cooling in the 2D valley and a warming in the 3D valley. These598

processes are found uniform in the vertical throughout the upper part of the CAP for599

both the 3D and 2D valleys, thereby explaining the uniformity of the net cooling rate600

in the vertical. Near-surface cooling from subgrid-scale turbulence flux divergence is601

greatly enhanced for the 3D valley (by more than a factor 6 over the valley centre). Our602

results may explain the findings of De Wekker and Whiteman (2006) as regards the time603

scale for nocturnal cooling, defined as the time when ≈ 63% (namely 1− e−1) of the604

total cumulative nocturnal cooling over one night has occurred, assuming an exponential605

decay for this quantity. It was found by these authors that, for different basins, valleys606

and plains, this time scale is in the range 3 to 6 h, depending on the geometry of the607

basin or valley being considered. This range may be related to the time when cooling608

by advection is suppressed by the developing down-valley flow, or is gradually being609

suppressed by the developing CAP (as for the 2D valley).610

• When considering the CAP volume, the mass budget of the 3D valley is largely driven by611

a balance between the divergence of the down-valley flow in the along-valley direction612

and the convergence of the downslope flows at the top of the CAP. The net contribution613

from downward vertical motions to the mass budget far from the slopes is found negli-614

gible for the 3D valley. When considering the entire valley scale, the return flow above615

the CAP (flowing from the plain to the valley) plays a non-negligible role in the mass616

budget. Indeed, the vertical mass flux at the top of the CAP is driven by an interplay617

between the along-valley convergence of the return flow and the subsiding or horizontal618

convergent motions from the plateau regions. It should be noted that the computation of619

the mass budget in previous work relied on the hypothesis of horizontally-homogeneous620

subsidence from the free atmosphere above the CAP, therefore neglecting the feedback621

of the down-valley flow on the downslope flows (Whiteman and Barr 1986). The re-622

sults of the present paper suggest that unlike daytime situations (Rampanelli et al. 2004;623

Weigel et al. 2006), mass conservation does not imply subsidence over the valley centre624

during the night.625

• The mechanisms that control the structure of the CAP and its evolution are independent626

of the valley length as soon as the quasi-steady state is reached and the down-valley flow627

is fully developed.628
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This work has described the interactions that take place between the nighttime valley-629

wind system and a developing cold-air pool. Even though the physical mechanisms pre-630

sented above are found to be independent of the length of the valley, there are a number of631

other parameters that may affect the results (e.g., the geometry of the valley, the land cover,632

the stratification) and remain to be examined.633
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