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Abstract 

Over the past decade, the growing field of microsampling has changed the way bioanalysis 

and preclinical studies are conducted. A variety of microsampling techniques have been 

adopted by the pharmaceutical industry and embedded into preclinical workflows. A 

technique known as solid phase microextraction (SPME) offers a distinctive advantage of 

measuring free drug concentrations within living organisms without the need for blood 

withdrawal. Despite its promise and potential advantages, SPME has not been extensively 

explored for preclinical use within the pharmaceutical industry. In this research, the 

application of SPME for quantitative bioanalysis and toxicokinetics was investigated for the 

first time within a pharmaceutical setting. This was performed through parallel in vitro and in 

vivo experiments. 

Initially three test compounds were selected (metoprolol, propranolol and diclofenac) and 

LC-MS/MS methods were validated for all three. These were employed throughout the 

project to support quantitative analysis during the SPME in vitro and in vivo evaluation. 

SPME fibre blood exposure profiles and desorption profiles were constructed for the three 

tool compounds and parameters such as the impact of hematocrit levels, the effect of blood 

flow rate and on-fibre stability were investigated in vitro. SPME was then implemented in 

vivo. Practicalities of inserting the SPME fibre into the veins of animals was assessed using 

anesthetised rats and fibre blood exposure times were also determined during this first in vivo 

experiment. 

Since SPME measures free drug concentrations, its potential benefits as a tool to determine 

protein binding values of drugs were examined and compared to a gold standard approach for 

protein binding experiments known as rapid equilibrium dialysis (RED). The three tool 

analytes were studied as they cover a range of plasma protein binding levels (~ 30 - 99%) at 

three different physiologically relevant concentrations (10, 100 and 500 ng/mL).  This was 

followed by an in vivo experiment to identify whether SPME measures free drug 

concentrations in conscious rats. In vivo SPME samples were compared with whole blood 

samples withdrawn from the same rats and analysed using the RED device. A full toxicology 

study was subsequently conducted in conscious rats for seven days to mimic a typical 

preclinical rodent study. SPME was compared with conventional caudal venipuncture whole 

blood sampling for generating toxicokinetic data. The impact and biocompatibility of SPME 

was studied through pathological endpoints and using an Irwin behavioural study. 
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It was demonstrated that it may take up to 3 h for an analyte to reach equilibrium between the 

sample matrix and the SPME coating. This is not viable for in vivo applications due to ethical 

reasons and therefore pre-equilibrium conditions are more suited. Analyte desorption time of 

the SPME fibre was achieved between 15- 30 min. Levels of blood hematocrit had no impact 

on analyte response while blood flow rates may have an effect on analyte response and 

concentration. On-fibre stability was established for all three tool analytes for up to six 

weeks. 

It was found that consistent results were obtained by SPME when measuring protein binding 

values of all three analytes across three concentrations. The percentage difference between 

protein binding values determined by SPME and RED was within recommended limits for 

bioanalysis (<15 %) across all analytes and concentrations. The time required to obtain 

plasma protein values using SPME was considerably quicker than by using the RED device 

(1 h compared to 8 h). It was demonstrated that SPME provides a compelling alternative 

platform for the efficient generation of high quality plasma protein binding values.  

Pre-equilibrium conditions illustrated that using 2 min fibre exposure to systemic circulation 

was sufficient to produce reliable quantitative analysis. However, it was noted that current 

C18 fibre coatings did not detect metoprolol metabolite which exhibits a polar moiety. Mixed 

phase fibre coatings are required for metabolic analysis. The potential capacity of SPME to 

generate meaningful toxicokinetic data of free drug concentrations was shown. 

Biocompatibility of SPME was established by comparing pathological endpoints observed 

between SPME sampled and control rat groups. 

Finally, a novel approach was described for quantitative bioanalysis by direct SPME-MS. 

SPME was coupled to a mass spectrometer to enable direct elution of analytes from the 

SPME fibre onto the MS. This was characterised with two test analytes, metoprolol and 

propranolol, spiked into control rat blood. The data indicated the significance of this 

approach to enable rapid, selective and highly sensitive (10 ng/mL lower limit of 

quantification) qualitative and quantitative chemical analysis. 

Overall this research demonstrated that SPME could potentially provide a compelling 

alternative microsampling platform for preclinical studies. 
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Chapter 1 

Introduction 
 

1.1 Modern Drug Discovery and Development Processes 

The roots of the modern era of drug discovery and development lie back in the 19th century. 

Although human civilisation has been experimenting and consuming drugs for many 

centuries, it is only in the past hundred years that the foundation was laid for the systematic, 

industrial research and development of drugs and medicines. The industrialization of 

pharmaceutical development has revolutionised medical therapy in terms of identifying new 

drug targets, synthesising active drug candidates and ensuring drug safety and efficacy for 

human use 1. 

Today, the task of developing new drugs is a lengthy process taking 10-15 years for a drug to 

progress from the research lab to the patient (Figure -1.1-).  The average cost to identify and 

develop each drug that reaches the market is estimated to be between 800 million to 1 billion 

dollars1. This number includes the cost of unsuccessful NMEs (New Molecular Entities) that 

do not reach the market. Around 97% of preclinical candidates fail prior to reaching phase I 

trials2. In the early 1990’s this lower rate of success could be accounted for by common 

causes such as physiochemical properties and bioavailability, but by the year 2000, these had 

been reduced and the main issues became safety and lack of efficacy during both pre-clinical 

and clinical phases2. Attrition is further contributed to the complexity of diseases, enhanced 

standard of care and the high expectations and demands from regulatory authorities. Testing 

for potential liabilities includes focusing on various drug metabolism and pharmacokinetic 

characteristics and paying particular attention to toxicity of major organ systems. A recent 

review of reasons for drug attrition identified cardiovascular toxicity and hepatotoxicity as 

the major contributors to drug attrition prior to clinical studies3. The current focus in the 

pharmaceutical industry is to exclude undesired compounds at the early stages of the 

discovery and development process rather than project closures at clinical phases which have 

a detrimental impact on resource.  

The drug discovery and development process for small molecules can be divided into three 

major steps; discovery, preclinical development and clinical development. Early stages of 

drug discovery begin with understanding the disease or the clinical condition. Usually an 
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unmet clinical need is determined, and this is followed by target identification and choosing a 

biochemical mechanism which is putatively amenable to an interaction with a drug molecule. 

A target is a biological entity such as a gene or a protein, an intracellular enzyme or an 

extracellular receptor that has an affinity to bind to a drug i.e. a “druggable” moiety4.   Once 

identified, the target is validated and assays are developed to enable characterisation of novel 

compounds. Such assays need to have a robust signal change with a measurable activity 

indicating compound potency. Transgenic animals and knockout studies form an attractive 

validation tool where gene manipulation is used to generate a range of phenotypic endpoints1. 

Designer mice are created with a targeted gene mutation to determine the in vivo function of 

various genes. Characteristics of mutant animals are identified in comparison to normal 

controls4. While transgenic and knockout models offer important scientific platforms to 

define the potential action of drugs, the cost of generating such unique species is an 

expensive process and therefore it is crucial to determine as much information 

as possible from these genetically engineered animals. The approach has always suffered 

from the strict regulations on the availability of blood volumes, terminal blood samples are 

usually collected to study various parameters5,6. 

 

 

 

 

 

 

 

 

 

 

 

Figure -1.1- The drug discovery and development process 7 

 

 

Lead identification is the next stage of drug discovery where a large collection of molecules, 

being a chemical library of either small molecules or larger biologicals, undergo high 

throughput screening and a lead is selected based on the physiochemical characteristics, 
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binding properties to the putative target and the ability to elicit a biological response4. 

Thermodynamic evaluation of the mechanisms of interaction and the subsequent functional 

effects are assessed to give a better understanding of the mode of action of the active 

compound. 

Lead optimisation is the final phase in the drug discovery process. The aim of this is to 

modify the lead structure to improve deficiencies in the pharmacodynamic (PD), 

pharmacokinetic (PK) or biopharmaceutical behaviour of the drug. Structure-activity 

relationship (SAR) and structure-kinetics relationships are evaluated to enhance various 

characteristics such as solubility, permeability, bioavailability and clearance8. In general, 

molecules are assessed using mechanistic in vitro screens to understand potential genotoxic 

liabilities, such as the Ames test which employs bacteria to identify the mutagenic potential 

of the chemical entity and its carcinogenic tendencies. Neurotoxicity behaviour is evaluated 

using in vivo models such as the Irwin test and metabolic profiling is carried out using repeat 

dosing PK.  Other PK/PD studies are designed to test dose linearity and maximum tolerated 

dose9.  

Surviving molecules which meet the challenges of preliminary pharmacology and toxicology 

testing often become suitable for drug candidate selection. Once a lead candidate is identified 

and declared as a preclinical candidate, it enters preclinical development, a stage which 

encompasses studies that link laboratory drug discovery with clinical trials in human subjects. 

Discovery work continues to find potential back-up molecules from the same series or other 

follow-up series which exhibit similar properties. This strategy ensures a flow of the pipeline 

in case candidate leads fail during preclinical development or clinical phases. 

Following evaluation of candidates in preclinical animal models, an investigational new drug 

(IND) application is filed to the regulators such as the Food and Drug Administration (FDA) 

to ensure that the preclinical package supports the plan for phase I clinical trials4. 

Research in human subjects adheres to the principles of good clinical practice (GCP), 

regulations for the conduct of clinical trials, and compliance with these regulations is 

monitored by the FDA and the European Medicines Agency (EMA) (for conduct of trials in 

Europe). Clinical trials are categorized into four distinct phases I-IV investigating the safety 

and efficacy of the drugs by measuring certain outcomes in the participants at each stage of 

the trials. Phase I is the initial safety trial also known as first time in human study (FTIH) to 

establish a tolerated dose range in healthy volunteers using a single and multiple dose 
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escalation intervention. Phase II clinical trials are larger studies which include 100-300 

subjects to explore efficacy and safety in selected populations of patients. The objective of 

this is to demonstrate proof of concept and show evidence of disease prevention or treatment 

in the target population10. 

Phase III trials are pivotal studies performed to support drug registration and licence to 

market. Bioequivalence studies comparing the bioavailability of the final manufactured 

product to existing treatments are monitored in large scale (1000-3000 patients). Long term 

safety and potential side effects are usually examined at this stage; the new product is 

required by the national regulatory authorities to demonstrate significant advantage over 

other approved treatments to progress into the market. Following drug approval, phase IV is 

usually conducted to gather information on the drug effects in various populations and side-

effects associated with certain populations or with long-term use10. 

 

1.2 Toxicity Testing, Pharmacokinetics and Toxicokinetics 

Rigorous testing is carried out to refine chemical and biological characterisation during the 

early stages of the development process but safety and toxicity are determined as part of the 

preclinical package to support clinical studies. Rodent and non-rodent models are used to 

delineate the PK profiles and toxicokinetic (TK) parameters prior to the conduct of human 

clinical studies11.  

Preclinical PK studies are usually conducted during early phases of drug discovery, the major 

emphasis of such studies being to obtain information on the absorption, distribution, 

metabolism and excretion (ADME) of the drug and to compare it to other candidate 

molecules. PK evaluation typically comprises of one day studies using suitable doses to 

provide preliminary data for pharmacologic or therapeutic events and hence, give an 

appreciation of the drug’s PK-PD relationship.  

In contrast, the discipline of TK is executed during preclinical development phases. 

Regulatory guidelines specify the need for pharmacology and toxicology information as part 

of the IND application submitted by sponsors to illustrate that the product is reasonably safe 

prior to initial use in humans. This section includes a description of the mechanism of drug 



5 
 

action in animals and also requires an integrated summary of the toxicologic effects of the 

drugs i.e. the adverse effects in animals and in vitro12. 

The International Conference of Harmonization (ICH) has also noted “the need for TK data 

and the extent of exposure assessment in individual toxicity studies”11.  TK evaluation forms 

an integral part of the pharmaceutical safety assessment; it is defined as the generation of PK 

data either as an integral part in the conduct of non-clinical toxicity studies or in specially 

designed supportive studies. TK evaluation provides a detailed description of the systemic 

exposure and its relationship to toxicologic dose levels and the time course of the toxicity 

study 13. Such information defines the potential of a compound to cause adverse effects and 

help in assessing the disposition and accumulation capacity upon repeated dosing 14. 

The generation of exposure data in the animal species and its relationship to the administered 

dose is an FDA requirement and is well defined in the FDA guidelines for industry 

“...exposure to the parent substance and its major metabolites should be similar to or greater 

than that achieved in humans when such information is available”12.  “Carefully designed and 

conducted in vivo studies allow evaluation of parent substance and metabolites and can 

enable estimation of safety margins”13.  

Selection of suitable toxicological species and dosage forms, as well as evaluation of between 

sex effects and inter-animal variability needs to be established and these data are used to set 

limits for clinical exposure and to calculate safety margins. Depending on the therapeutic 

indication of the drug being developed, a ratio of systemic exposure between animals and 

humans may be required to help predict the first clinical dose and provide a ‘comfort zone’ in 

assessment of risk prior to conducting clinical trials 16. 

Various animal toxicity studies including single dose studies, repeat dose toxicity studies, 

safety pharmacology, reproductive, genotoxicity and carcinogenicity studies are typically 

performed and supported by TK measurements 12. Table -1.1- shows a selection of the 

common toxicity studies performed in mice, rats and dogs. Other species such as mini-pigs, 

rabbits and monkeys are also utilised depending on compounds and indications.   

TK measurements of the test drug and where appropriate metabolites, are usually made at 

appropriate time points during the course of individual studies. These measurements usually 

consist of plasma, whole blood or serum concentrations, where common parameters such as 

area under the concentration vs time curve (AUC) and maximum concentration (Cmax) are 
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most commonly used to calculate exposure data.  The AUC i.e. the area under a concentration 

versus time curve is a measure of the total drug exposure while Cmax indicates the maximum 

concentration of compound observed in the matrix of interest. Other parameters such as 

clearance (the volume of fluid from which the drug is completely removed per unit time) and 

half-life (the time it takes for the concentration of compound to decrease by half) are also 

important indicators that are sometimes measured as part of TK studies. TK is generally 

integrated within toxicity studies, however such data can be generated in either all, or a 

representative subset of animals. For example, satellite groups may be used in the case of 

smaller rodents. Satellite animals are additional animals dosed as per protocol, but not 

subjected to toxicological and pathological observations and tests. Instead, they are used 

exclusively for the evaluation of PK characteristics of the test compound in blood, tissue or 

other body fluids17. The number of satellite animals commonly used is around 50 - 60% of 

the number of animals used in each main toxicity study17. 

This approach is necessary due to strict regulations on the availability of blood volumes; UK 

Home Office guidelines allow only 10% of the circulating blood volume to be sampled. Each 

sample size usually consists of 0.25 - 0.50 mL day-1 in rodents and up to 2 mL day-1 in non 

rodents13. These are taken at a series of time points after dose administration, typically from 

shortly after dosing up to 24 hours. The matrix for determining drug concentration could be 

blood, plasma or serum, however plasma samples have traditionally been used for generation 

of TK data due to the difficulties associated with handling whole blood 18. This requires 

relatively large volumes (up to 500 μL) of blood in order to produce the required volume of 

plasma for analysis.  

In rodent studies, 500 µL represents a relatively large volume of blood, the removal of which 

could cause anaemia or other secondary effects such as bone marrow and haematological 

changes which could confound interpretation of primary drug biological effects14. For this 

reason, blood samples are often taken from satellite animals which are employed for TK 

analysis only. The major drawbacks of this design are the large number of animals required to 

provide adequate information on both toxicology and PK data, and the inability to correlate 

toxicological effects with drug concentrations observed in the same animal, because 

pathology or functional effects are measured in the main study animals, while drug exposure 

is measured in TK satellite animals 19. 

 



7 
 

 

 

Table -1.1- Examples of toxicity study types performed during drug development  

Species Study Type Non-GLP or GLP* 

Mouse 
7 Day Dose Range Finding Non-GLP 
14 Day Repeat dose GLP 
3 Months Repeat Dose GLP 

 
Rat 

7 Day Candidate Selection Non-GLP 
7 Day Dose Range Finding Non-GLP 
Single Intravenous (IV) Dose Non-GLP 
1 Month Repeat Dose GLP 
4 Day IV study GLP 
3 Months Repeat Dose GLP 
6 Months Repeat Dose GLP 
2 Years Carcinogenicity GLP 

Dog 

Single Escalating Dose (Maximum Tolerated 
Dose) 

Non-GLP 

7 Day Dose Range Finding Non-GLP 
1 Month Repeat Dose GLP 
3 Months Repeat Dose GLP 
6 Months Repeat Dose GLP 
2 Years Carcinogenicity GLP 

*GLP = Good Laboratory Practice is a set of principles intended to assure the quality and integrity of 

non-clinical laboratory studies regulated by government agencies. Non-GLP studies do not require the 

entire rigor of GLP studies.   

 

1.3 3Rs and Microsampling   

Although the use of in vivo experiments is essential to understand the fundamental 

mechanisms underpinning biological behaviour during drug development in the industry, 

particular attention must be paid to animal welfare. Strict regulations govern the use of 

animals in research to ensure that animals are only used when necessary. Russell and Burch 

proposed a 3Rs concept in 1959 for ethical principles; the replacement, refinement and 

reduction of animals in research15. Replacement refers to techniques that can avoid or replace 

the use of animals such as computer modelling and use of animal cell lines. Refinement 

involves the use of scientific techniques that decrease levels of potential pain, suffering or 

distress caused to the animal with a view to ultimately improve animal well-being 21. 
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Reduction, on the other hand, is defined as obtaining equivalent amounts of information 

using fewer animals, or generating more data from the same number of animals13. 

The idea gained significant momentum during the 1980s when governments, academia and 

industry became more involved. However, it was only when a UK government sponsored 

scientific organisation named the National Centre for Replacement, Refinement and 

Reduction of Animals in Research (NC3Rs) was established in 2004 to support animal 

research in the UK through application of the 3Rs principals, that the 3Rs developed a 

widespread interest and had a growing recognition of benefits. Since then, the NC3Rs has 

collaborated with the pharmaceutical industry, being one of the major users of animals in 

research, to identify and develop opportunities to minimize animal use and apply a range of 

3Rs programmes to pharmaceutical strategies15. 

This has resulted in the development of new ways that allow for the use of animal in research 

to be replaced, reduced and refined without compromising the drug development process, 

regulatory requirements, or human safety.   

One strategy that has been a focus point for this partnership is the use of microsampling 

techniques to assess drug levels in biological matrices. Microsampling refers to the collection 

of very small sample volumes, typically less than 50 µL16 for the determination of drug 

concentrations and other biological entities such as biomarkers. The sample volume required 

for analysis is dictated by the analytical method, which is developed based on the expected 

level of exposure and the required lower limit of quantification. Highly sensitive methods are 

required to achieve lower limits of quantification (in the pg/mL to ng/mL range) to measure 

very low levels of the substance. Such methods have often involved the use of large sample 

volumes. However, advances in bioanalytical technology, specifically the sensitivity of 

detection techniques (e.g. mass spectrometry) have enabled the use of a decreased sample 

volume without a detrimental impact on the analytical range.  

The method of sampling from a living organism, together with the method of bioanalysis 

form important pillars to obtaining reproducible and good quality data. For this reason, 

approaches that interfere minimally with the investigated organism are highly desirable. 

Microsampling techniques for blood and plasma analysis is a paradigm shift for bioanalysis 

and a leap forward for toxicology and so it has recently been adopted by many 
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pharmaceutical companies. A recent survey demonstrated that almost 81% of 33 European 

based pharmaceutical companies are using microsampling techniques in their PK studies17.  

Improvements in both ethical and scientific aspects including of study design have been 

associated with the use of microsampling techniques. Small sample volumes allow 

serial/repeat sampling from the same animal, eliminating the need to use composite bleeds 

where timepoints are collected from several animals to obtain a profile over the full time 

course. In rodent TK studies, microsampling strategies facilitate the removal of satellite 

groups as shown in Table -1.2-.  

Blood sampling can occur directly from the main study rodents without impacting clinical 

parameters or toxicological endpoints18. This not only helps to reduce animal usage in 

toxicology studies, it also enhances the quality of data generated by providing a direct 

correlation between drug exposure and toxicity observed in the same animal which in turn 

will enhance the reliability of the results and eliminates inter-subject variability17. Taking 

smaller volumes of blood avoids the need to pre-warm animals which is routinely performed 

in conventional analysis to encourage blood flow and collection of the necessary large blood 

volumes to generate plasma samples19,20. Microsampling consequently offers refinement and 

decreases levels of animal distress which causes fewer disturbances to critical physiological 

parameters such as heart and respiratory rates.  Another significant benefit of microsampling 

is enabling juvenile toxicokinetic and paediatric studies where small blood volume is crucial 

as well as clinically facilitating studies to be performed in developing countries21. Analysis of 

rare matrices such as tears and other translucent fluids is another area where microsampling is 

of great interest. Furthermore from a business perspective such techniques provide potential 

advantages to cost reductions in terms of reduced compound and resource (dosing, handling 

and care) requirements, easier methods of sample shipping and storage as well as notable cost 

saving in the number of animals22. 
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Table -1.2- Potential for reduction in animal numbers if study designs use 

microsampling techniques  

Study Type Conventional design with 
satellite animals 

Microsampling 
design 

Animal 
reduction 

Dose Range Finding 
–rat 

3M + 3F per group, plus 3M + 
3F per group (dose level) for 

TK sampling 

3M + 3F per 
group 50% 

 Typical numbers = 48 Typical numbers 
= 24  

One month GLP 
toxicity study - rat 

10M + 10F per group plus 3M 
+ 3F per group for TK sampling

10M + 10F per 
group 23% 

 Typical numbers = 104 Typical numbers 
= 80  

Three month GLP 
toxicity study mouse

10M + 10F per group plus 6M 
+ 6F per group for TK sampling 

at beginning and end of study 

10M + 10F per 
group 50% 

 Typical numbers = 158 Typical numbers 
= 80  

Study design comparison between conventional studies and microsampling studies for rats during drug 

development. The number of male (M) and female (F) main study animals and satellite animals are shown. The 

reduction in animal use ranges from 23% to 50% depending on the numbers of satellite animals used and this 

differs between organisations and studies17. 

 

1.4 Types of Microsampling Techniques 

Over the past few years, the benefits of microsampling in both nonclinical and clinical 

environments have been recognized throughout the pharmaceutical industry. In response, a 

number of microsampling techniques have recently been established and employed in the 

drug development process including dried blood spots (DBS), capillary microsampling (CM), 

plasma separation capillary (PSC) and volumetric absorptive microsampling (VAMs). 

The main focus for microsampling techniques has been within the non-GLP arena as shown 

in Figure -1.2-. Due to the accumulation of evidence that microsampling can increase the 

amount of nonclinical safety information available17, improve validity of those data by 

linking toxic effects to drug exposure in individual animals and that microsampling 

represents the most significant opportunity to reduce animal use in toxicology studies, more 

and more companies across the pharmaceutical industry have started to adopt such 

techniques. For this reason, the number of miscrosampling techniques has increased over the 
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past number of years which is starting to shape the future of regulatory within safety 

assessment and bioanalysis.  

Although there is now a widespread use of microsampling in discovery and early pre-clinical 

studies, the diffusion of this extensive use has been limited in regulated studies21. Despite the 

encouraging feedback received from regulators for the use of microsampling in GLP studies, 

there still is a general perception in the industry that regulatory acceptance issues could still 

be a barrier to adoption. Employing new technologies in regulated studies requires scientists 

to file an educational component to build and support the innovation. This is usually 

established through collaborations and by building a working relationship between the 

vendors, scientists and regulators with a view to showcase the benefits of a technique if 

established data confirms that the benefit to risk ratio is favourable23. 

 

 

 

Figure -1.2- The number of companies out of 22 pharmaceutical companies, employing 

microsampling in non-Good Laboratory Practice (GLP) (discovery, dose range finding 

and pharmacokinetics) and GLP (general toxicology, safety pharmacology and genetic 

toxicology) studies17. 
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1.4.1  Dried Blood Spot (DBS) Analysis 

Dried blood spot analysis has been known for more than five decades, originally used for 

newborn screening and subsequently re-introduced in 2008 for bioanalytical support of drug 

development24. DBS provided a major breakthrough in the bioanalytical field, used by 

various pharmaceutical companies to support pre-clinical toxicokinetic studies and 

pharmacokinetic clinical phase I, II and III studies 24. The technique relies on utilising filter 

paper or adsorbent cards onto which small volumes of blood (10 µL -20 µL) from animals or 

humans are spotted. Cards are air dried, stored and subsequently shipped to the analytical 

site. Circular discs are punched out of the DBS and the analyte is extracted using appropriate 

solvents (Figure -1.3-).  DBS conveys many microsampling benefits particularly when 

coupled with sensitive and selective HPLC-MS/MS techniques 25. 

 

 

 

 

 

 

Figure -1.3- Dried Blood Spots25, image on the left showing sampled blood being applied 
onto a DBS card and image on the right showing punching of blood spot for analytical 
determination.  

 

 

GlaxoSmithKline (GSK) and many companies consequently chose to utilize DBS sampling 

as the technique of choice for the evaluation of TK and PK for all new oral small molecule 

drugs selected as drug development candidates. A large body of high quality research was 

published and presented supporting the use of this technique26-29. 

Despite its many proven advantages, DBS has been challenged by regulators for its 

hematocrit effect limitations30,31. Hematocrit is a measure of the volume of blood occupied by 

red blood cells. Blood samples from various preclinical animals as well as clinical human 
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samples have a range of hematocrit levels32. This variability causes changes in blood 

viscosity which in turn leads to differences in blood diffusion on the card used for DBS 

sampling. This has a direct impact on the size of blood spot formed and will therefore affect 

the accuracy of analytical results 32. This led to a period of reassessment of the 

implementation of DBS in the quantitative arena33. For this reason the quest for new 

microsampling techniques providing practical alternatives to DBS and maintaining the 

benefits of the 3Rs in animal use began30,32. 

 

1.4.2  Volumetric Absorptive Microsampling (VAMs) 

With a view to overcoming the hematocrit issues associated with DBS, various approaches 

have been employed for a potential path forward for DBS. Most of these solutions rely on 

spotting an accurate volume of blood onto the sample collection card and subsequently 

sampling the entire spot; unfortunately, an aspect which current technologies could not 

readily support at the point of collection. For this reason a novel dried blood sampler, termed 

volumetric absorptive microsampler and marketed as “Mitra” has been designed and recently 

tested as described by Denniff et al28 for collection of dried blood samples. 

The VAMs sampler consists of an absorbent tip attached to a plastic handle as shown in 

(Figure -1.4-), the polymeric tip wicks up a fixed volume of blood (approximately 10 µL) 

upon exposure to wet blood, regardless of the blood hematocrit. In order to avoid overfilling, 

the tip of the sampler is not completely submerged into blood and the device is held at an 

angle to allow the tip to touch the surface of the blood pool. The wet tip is then left to dry for 

approximately 2 hours and is removed for desorption with an appropriate solvent29.  

This technique has the potential to displace DBS since it retains the microsampling 

advantages without the issues associated with haematocrit however it is notable that these 

benefits may not necessarily translate into the bioanalytical laboratory34. This is due to 

current lack of automation in addition to the complexity of method development and 

validation of the technique.      
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Figure -1.4- Volumetric Absorptive Microsampling28. Image on the left showing blood 

specimen collection and image on the right showing the clamshell packaging of the 

device to ensure sample protection. 

 

1.4.3  Blood Capillary Microsampling (CM) 

Reverting back to the use of wet sampling with reduced blood volumes rather than a dried 

matrix has received much recent attention within the pharmaceutical industry. A technique 

consisting of capillary microsampling allows the collection of a predefined volume of blood 

(< 35 µL) in a microcapillary35. A glass capillary coated with EDTA is filled end to end by 

capillary action (Figure 1.5); the filled capillary is placed inside a sample tube where the 

sample is washed out by an appropriate extraction solvent30. The diluted sample is then 

processed using conventional extraction techniques to measure drug concentrations. The 

bioanalytical method for CM samples is very similar to the validation of traditional large-

volume methods. Multiple studies have been reported on the application of capillary samples 

used for analysis of samples from rodents, all of which indicate the robustness of the 

technique30,31. CM maintains the benefits of microsampling in addition to other important 

qualities such as stabilization of unstable compounds through fast sample collection and 

immediate addition of extraction solvent. 

The drawback however is the difficulty of blood handling and the higher demand for 

bioanalytical methods to reach lower limits of quantification for lower systemic exposures, 

for which such low volumes of blood pose a hurdle. This technique also requires frozen 

sample shipment and storage.     
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Figure -1.5- The exact blood volume collected in an EDTA-coated glass capillary 

micropipette, handled with a capillary holder35. 

 

1.4.4  Plasma Separation Capillary  

Although blood is an acceptable matrix for exposure determination, plasma remains the 

matrix of choice among pharmacokineticists. This is due to the fact that unbound fractions of 

drug are usually determined in plasma, though conversions from blood to plasma can always 

be obtained through blood/plasma ratios established in vitro36. Also, plasma is considered 

easier to store and analyse. 

A relatively new microsampling technique for wet plasma has been investigated and 

implemented in preclinical settings within the pharmaceutical industry37. The technique 

involves microcapillary tubes specifically designed to separate plasma from whole blood. 

Each EDTA treated capillary contains a thixotropic gel located in the middle of the empty 

tube with one end fitted with a self-sealing plug which swells to prevent “blow out” when 

centrifuging. Microvolumes of whole blood (< 75 µL) are withdrawn through capillary force 

and upon centrifugation, the gel provides a stable barrier between erythrocytes microvolumes 

of plasma (< 35 µL) based on density. Aliquots of plasma are dispensed with a prototype 

device (Drummond Scientific Co., Inc.; PA, USA) inserted into the capillary tube by pushing 

the plug end to eject the plasma out (Figure -1.6-). The recovered plasma is then stored frozen 

until it is received at the bioanalytical laboratory33.  
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Figure -1.6- Novel capillary tube in carious process steps (A) empty capillary tube, (B) 

Blood filled capillary tubes, (C) centrifuged capillary tubes showing plasma separation 

and (D) Capillary tube filled fitted into a Micronic tube for centrifugation17.  

 

Following several successful implementations of the technique described by Jonsson and co-

workers38 as well as Bowen et al.33, the utility of this technique for regulated preclinical 

studies and clinical applications is currently under investigation across several 

pharmaceutical companies.  

Despite the notable shift towards using smaller volumes with recently established 

microsampling techniques, bioanalysts have not been able to completely move away from, or 

avoid using blood withdrawal. The quest for finding a “magic bullet” that can address both 

sampling and sample preparation issues has led to the development of a novel technique that 

has recently been applied to the field of in vivo bioanalysis. The technique moves 3Rs 

innovations a step further and allows for analyte extraction without the need for a defined 

sample volume, it also combines sampling, sample preparation and extraction in one step. 

This exciting concept is known as Solid Phase Microextraction (SPME)39. 
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1.5 Solid Phase Micro-Extraction 

Solid Phase Micro-Extraction, first established in the early 1990s by Pawliszyn at the 

University of Waterloo/Canada is a novel and effective sampling and extraction technique. It 

was introduced to fill several gaps in the current analytical approaches by addressing 

numerous issues, such as the need to reduce the volume of sample used and the size of typical 

extraction instrumentation to facilitate rapid and suitable laboratory and direct on-site 

analysis 40. 

The technique is based on the use of a small amount of extracting phase dispersed on a solid 

support which is exposed to the sample matrix for a defined period of time 41. An equilibrium 

process takes place in which the analyte partitions between the SPME coating and the sample 

matrix. The amount of analyte extracted by SPME is directly proportional to the 

concentration of analyte present in the sample matrix 41. 

SPME is often mistakenly considered another form of solid-phase extraction (SPE) or micro-

SPE41, however there are significant differences between the two methods. SPE utilizes a 

large sorbent bed and a relatively large sample volume in which analytes are exhaustively 

extracted from the sample matrix. A selective desorption approach is employed to wash away 

any unwanted endogenous analytes, leaving the analyte of interest retained on the stationary 

phase. An additional step is required to remove the analyte of interest from the sorbent by 

using an appropriate eluent41. 

SPME, on the other hand, is a non-exhaustive approach i.e. the technique does not extract the 

total amount of analyte in the sample. Analytes are extracted with minimal disturbance to the 

system using a very small extracting phase relative to the sample volume. The selectivity of 

the coating phase and partitioning equilibria of the analyte are important factors for SPME. 

Both features facilitate selective extraction of the desired analyte and provide efficient on-site 

clean up without the need for intermediate steps41. 

In addition, the miniature size and the geometric configuration of the SPME device prohibits 

adhesion of macromolecules onto the extraction particles and limits access of unwanted 

substances present in the sample matrix. This is significantly different to the nature of SPE 

instrumentation where a large volume of sorbent is used with a void volume which may aid 

retention of non-adsorbed matrix components and in turn impact efficiency of sample clean 

up39.  
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1.5.1 Theory of Solid Phase Microextraction   

SPME makes use of equilibrium extraction. In one approach, a partitioning equilibrium 

between the coating/stationary phase and the sample matrix is reached, while a second 

method uses short pre-equilibrium extraction times and the amount of analyte extracted is 

related to exposure time if agitation of the system is kept constant. Quantification is then 

relatively calculated based on timed accumulation of the analyte in the coating42. 

The first approach relies on the fact that maximal extraction is achieved when equilibrium is 

reached between the extracting phase and the sample matrix. Using the law of mass 

conservation, this equilibrium can be described by Equation 1.143. C଴Vୱ =   CୱஶVୱ  +  C୤ஶV୤                                                 Equation 1.1 

Where C0 is the initial concentration of analyte in the sample, Cf∞ is the equilibrium 

concentration in the fibre coating, Cs∞ is the equilibrium concentration in the sample, Vs and 

Vf are the volume of sample and the fibre coating, respectively.  

Kfs is the distribution coefficient of the analyte between the fibre coating and the sample 

matrix. It can be described by the following equation;   

௙௦ܭ  = ௦ஶܥ௙ஶܥ                                                                         Equation 1.2 

Equations 1.1 and 1.2 can be combined and rearranged as follows, 

௙ஶܥ = ଴ܥ    ቆ ௙௦ܭ ௦ܸ ܭ௙௦ ௙ܸ + ௦ܸቇ                                              Equation 1.3 

The above can then be used to calculate the number of moles of analyte (n) extracted by the 

SPME fibre as shown in Equation 1.4 below,  

݊ = ௙ஶܥ  ௙ܸ = ଴ܥ     ቆ ௙௦ܭ ௦ܸ ௙ܸܭ௙௦ ௙ܸ + ௦ܸቇ                         Equation 1.4  
The amount of analyte extracted (n) is directly proportional to the concentration of the 

analyte in the sample (C0). When the volume of the sample is greater than the capacity of the 

fibre, Equation 1.4 can be expressed as, ݊ = ଴         given that    ௦ܸܥ௙௦ ௙ܸܭ ≫ ௙௦ܭ   ௙ܸ            Equation 1.5 
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Equation 1.5 indicates that analyte extraction is independent of sample volume when the fibre 

is exposed to a sample volume larger than the coating capacity. This means that SPME can be 

directly exposed to various matrices without the need to collect a defined sample volume, 

eliminating the sampling step facilitates direct exposure to ambient air, rivers, flowing blood, 

etc. This simplified equation further illustrates that the amount of analyte extracted is directly 

proportional to the initial concentration of the sample43.  

For solid sorbent coatings, the number of active sites or the total surface area available for 

analyte adsorption is proportional to the coating volume of the sorbent. However, high 

analyte concentrations can cause saturation of active sites, resulting in non-linear extraction 

performance. Furthermore, the presence of an endogenous analyte at a high concentration can 

cause competitive adsorption of interfering analyte and displacement of the target analyte44. 

 

1.5.2  Environmental Applications of Solid Phase Microextraction 

SPME has been used in several different disciplines including environmental applications. To 

date, the majority of analytical techniques used to detect environmental materials are 

themselves key contributors to pollution and act as a source of significant contamination41. 

SPME has offered simple on-site analytical procedures to detect trace levels of matter from 

various environmental matrices such as soil, water and sediments45,46. Numerous procedures 

have been described for the use of SPME to measure volatile organic compounds produced 

by biogenic sources such as phytoplankton and macroalgae in the marine environment and 

the implications of identifying such contaminants on the marine ecosystem 46. 

Extraction and purification of pesticide residues such as atrazine, clomazone and 

pendimethalin from highly complex media have been enabled by employing headspace-

SPME without the need to consume large solvent volumes as it is the case with traditional 

solid phase extraction methods. Trace amounts have been pre-concentrated prior to detection 

using this selective and efficient technique47. SPME use has facilitated the provision of 

critical soil characterisation data in Turkey allowing the establishment of sanitary landfill 

sites with sufficient rehabilitation to reduce current risks of contaminants45. The 

bioavailability of highly toxic hydrophobic insecticides such as pyrethroids have been 

determined using SPME, quantitative analysis of bifenthrin, cyfluthrin, and fenpropathrin 

were performed using disposable polydimethylsiloxane (PDMS) SPME fibres inserted into 
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sediments at many locations in California (USA) to detect freely dissolved insecticides that 

pose a threat to aquatic organisms 48.  Identification of compounds responsible for critical 

odour components of dairy manure has been possible using headspace-SPME49. Such sensory 

characterisation has a significant impact on livestock operations associated with emissions of 

odour, gases and particulate matter 49.  

Lately, new SPME devices have been designed for sampling live fish for pharmaceutical 

residues without the use of terminal procedures; the device is directly used on living fish 

without the need for anaesthesia50. This has enabled detection of trace compounds to which 

wild fish can be exposed from municipal wastewater which can have major implication on 

consumer’s health.  

Overall SPME coupled to High Performance Liquid Chromatography (HPLC), Gas 

Chromatography (GC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and 

more recently to HPLC-MS has been utilised to measure and verify various volatile and non-

volatile environmental emissions.   

 

1.5.3  Food and Fragrance Applications of Solid Phase Microextraction 

In addition to environmental applications, SPME has been employed intensively in food 

analysis to evaluate nutritional content, impurities, additives and toxic contaminants. 

Headspace SPME-GC analysis of volatile compounds from 65 hybrid citrus fruits such as 

mandarin and clementine has allowed the identification of profound flavours and off-

flavours, in turn permitting the production of hybridised fruits with enhanced taste and 

quality 51.  SPME analysis of aroma- active compounds from milk samples has shown that 

milk from starved cows was of a better flavour quality compared to milk from grass fed cows 

that had tainted off- flavour. SPME provided a simple and reliable analytical technique to 

enable characterization of milk flavours 52.  A number of fungicides and insecticides such as 

pyrimethanil, procymidone and pirimicarb have been extracted and pre-concentrated from 

tomato samples using (PDMS) SPME fibres to analyse pesticide content and verify their long 

term toxicity effects53. 

To date SPME has been applied to various aspects of food analysis including determination 

of flavour compounds in soya sauce, monitoring contaminants causing organoleptic defects 
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of wine 54, identifying food mutagens such as heterocyclic amines in cooked meat products 

and quantifying volatile compounds in dry fermented sausages. 

This rapid and selective technique has also found its way into the fragrance industry where 

SPME has been used to  analyse floral scents where volatile compounds emitted from flowers 

were collected on PDMS fibres and analysed by GC-MS 55.  Extraction of perfume 

compounds from shampoo (aqueous dispersion) and subsequent quantitative analysis have 

been reported using SPME, thus providing a fast efficient method for quantification with 

decreased matrix effects 56. 

 

1.5.4  Forensic and Military Applications of Solid Phase Microextraction   

SPME has become a useful tool in forensic laboratories, where it has been utilised to analyse 

various antidepressant and narcotic compounds in human plasma such as mirtazapine, 

citalopram, paroxetine and amphetamines, drugs that often cause fatal poising due to 

overdose 40. Highly sensitive SPME assays have been developed to enable extraction and 

detection of fentanyl from human plasma, a very potent sedative drug used in surgical 

analgesia but commonly misused with a small dose known to cause sudden death 57. 

Non-invasive SPME has also been used as a sampling device to identify volatile emanations 

from human skin to clarify fingerprint characteristics of human odours that could provide 

valuable and important biomarker information used to identify criminals and diagnose 

diseases 58. 

In addition, SPME methods have been utilised for detecting organophosphorus compounds of 

nerve agents present in military arsenals 59. SPME has enabled analysis of explosives used for 

military purposes, industries, mining and agricultural activities. The chemical nature of 

explosives can cause serious health hazards due to their carcinogenic and toxic character, 

therefore detection of trace level concentrations is vital and of great importance in forensic 

applications. SPME coupled to HPLC has provided reliable and accurate analysis of such 

chemicals allowing effective pre-concentration of explosives and efficient separation60. 
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1.5.5  Preclinical and Clinical Applications of Solid Phase Microextraction 

SPME has recently found its way into the field of in vivo analysis in which devices have been 

inserted into a variety of preclinical species such as mice, rats and dogs to quantify and 

monitor drug concentrations. The first in vivo study of determining drug concentrations in 

beagle dogs was reported in 2003, where full PK profiles of benzodiazepines were obtained 

directly from the peripheral vein without the need to withdraw any blood 61. Since then 

SPME has been implemented in various animal PK studies, with several interfaces such as 

indwelling catheters and adapters designed and developed to enable and simplify the insertion 

of the device into animals, or small rodents 62 63.  

The technique has been further developed for clinical use where in vitro SPME has been 

applied to extract and quantify a diverse range of drugs from urine, plasma and blood samples 

such as use of direct immersion SPME method developed for the determination of 

polynuclear aromatic hydrocarbons in human blood 64 and determination of non-steroidal 

anti-inflammatory drugs (NSAIDs)  using SPME coupled to liquid chromatography 65.  

 

1.5.6 Solid Phase Microextraction for Bioanalysis in the Pharmaceutical 

Industry 

Despite the diverse applications of this novel technique, SPME has not been extensively 

utilised within a pharmaceutical industry setting for the quantitative bioanalysis of drugs, 

metabolites and biomarkers. 

A promising application of SPME, which distinguishes this method from other extraction and 

sample preparation techniques, is its applicability to in vivo and on-site sampling. SPME 

combines sampling, sample preparation and extraction in one step. It gives the results 

reflecting the real condition at the time of sampling, particularly important in the case of 

drugs and metabolites, which are characterized by low in vitro stability or fast turnover. The 

miniaturization of the sampling device dimensions (D = 45 µm, L = 1.5 cm coating phase) 

(Figure-1.7-), allows sampling from small animals, such as rodents, enabling the full PK 

profile of drugs to be obtained 66.  

The first SPME device consisted of an optical fibre covered with a layer of polymeric 

material. This was eventually developed into a metal wire or blade coated with a 
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biocompatible polymer. The biocompatible polymer has been adapted and miniaturized to be 

housed inside a hypodermic needle which can be inserted directly into the animal and the 

fibre is then subsequently retracted into the needle for protection and transport (Figure -1.7-). 

 

 

 

 

 

 

 

 

 

Figure -1.7- SPME Fibre housed inside a hypodermic needle. The coated phase is 

outlined in red67. 

 

 

Once the fibre is exposed to the sample matrix, the transport of analytes from the matrix to 

the coating begins immediately.  SPME extraction is considered to be complete when the 

analyte concentration has reached distribution equilibrium between the sample matrix and the 

fibre coating43. The main advantage of direct in vivo SPME lies in the fact that it does not 

require any blood withdrawal, unlike almost all of the conventional methods where blood 

withdrawal is necessary to extract and quantify drug concentrations. For this reason, SPME 

promises the ethical and cost benefits of microsampling offering a positive future for the 

industry. At the same time, the technique provides numerous advantages to the analyst.  The 

SPME device permits simultaneous sampling and sample preparation directly within the 

living organism of interest. Hence, reducing the overall number of sample processing steps. It 

eliminates the need for aliquoting sub-samples, centrifuging, freezing and defrosting of the 

sample which ultimately will provide increased speed and improved efficiency.  The thin 

layer of biocompatible polymer of the SPME fibre prevents adhesion of large molecules such 

as proteins and phospholipids41 providing effective sample clean-up, which in turn can reduce 

possible interferences and eliminates matrix effects. Ultimately, SPME could reduce overall 

analysis complexity and costs in terms of fewer animals and simplified procedures. 
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1.6  Aims and Objectives  

The use of microsampling within the pharmaceutical industry has evolved over the last 10 

years, leading to increasing use of small sample volumes for quantitative bioanalysis. In the 

quest for identifying new low volume sampling devices, significant attention has been drawn 

to SPME as it has all the attributes to be a new and exciting microsampling tool for the 

pharmaceutical industry. 

This technique offers the potential for measuring free drug concentrations within living 

organisms without the need for blood withdrawal. Despite its promise and advantages, SPME 

has not been extensively explored or standardized for use within the pharmaceutical industry 

that deals with numerous samples at various stages of drug development. In this research, the 

feasibility of utilizing SPME as a microsampling technique within the pharmaceutical 

industry was investigated. The aim of this project was therefore to perform parallel in vitro 

and in vivo evaluation of the factors affecting SPME’s use as a bio-microanalytical method, 

and to assess its potential applications and benefits for performing preclinical studies. The 

introduction detailed an overview of the fundamentals of microsampling techniques along 

with an insight to SPME and its current status and applications. The objectives of the project 

were thus as follows.  

• Select appropriate test compounds based on factors that may impact SPME extraction, 

such as drug binding properties and develop LC-MS/MS methods to enable 

quantification of the chosen compounds.  

• Use in vitro experiments to establish the essential parameters that may impact the 

extraction of small molecules by SPME. These factors include blood exposure 

profiles, desorption time profiles, the impact of hematocrit, the effect of blood flow 

rate and on fibre stability.    

• Evaluate the use of SPME as a tool for measuring plasma protein binding values of 

drugs. Compare its use with a gold standard technique that is currently employed as a 

routine platform for assessing protein binding values. 

• Investigate the in vivo application of SPME using anesthetised rats followed by live 

rodents, to understand the viability of the technique for in vivo use and to determine 

free concentrations from live animals.  

• Design a toxicology study to determine analyte toxicokinetic profiles using SPME 

and perform a full tolerability assessment of the impact of SPME on animal stress 
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levels as well as clinical pathology endpoints. This will require comparison of SPME 

with a conventional sampling technique to identify the compatibility of SPME for 

preclinical studies. 

• Investigate the feasibility of introducing a sample directly from the SPME fibre into 

the mass spectrometer to enable direct SPME-MS analysis without the need for off-

line extraction and chromatographic separation. This will require building a SPME 

MS-inlet and testing the technique using in vitro samples to determine whether 

analytes can be desorbed off the fibre directly into the mass spectrometer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Chapter 2 

Selection of Test Compounds and Validation of 

Bioanalytical Methods 

2.1 Introduction 

An important aspect of the progression of drug discovery and development is the accurate 

quantification of drugs and endogenous components in biological samples. Bioanalysis is one 

of the few disciplines which is required throughout the entire drug discovery and 

development process. Bioanalytical methods are the keys to accurate toxicokinetic and/or 

pharmacokinetic assessment of drug candidates in support of regional or worldwide 

regulatory submissions68. The requirements for assay validation are clearly set-out in 

guidance documents issued by regulatory agencies12,69. Bioanalysis in support of drug 

discovery is not routinely operated to regulatory guidance, or to the exacting standards of 

GLP and Good Clinical Practice (GCP), as the data is used for internal decision making by 

the innovator company and is unlikely to be included in any regulatory submission4. Hence, 

suitably validated generic methods are often used for these studies. However, at the drug 

development stage, rigorous bioanalytical method validation is required to support GLP 

toxicology and clinical studies12,70. Bioanalytical method validation is performed to 

demonstrate whether a particular method is fit for purpose when determining an analyte 

concentration within a specific biological matrix, such as blood, serum, plasma, urine, or 

saliva. This includes assessment of drug selectivity, specificity, sensitivity, linearity, accuracy 

and precision, short term and long term stability, dilution integrity and carryover68.  

The validation criteria and guidance were developed by regulators with a focus on the 

integrity of data derived from later stage bioavailability/bioequivalence studies12. Since then, 

the guidance has been universally implemented across all clinical and toxicological study 

types, regardless of the study type and what such data is being used for. This results in a 

significant resource investment for drug development programmes. However, there is a 

current consensus by bioanalysts that a tailored version of the validation criteria should be 

developed and implemented for PK studies in man and animals71.  
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Recently, an alternative validation approach has been adopted within the pharmaceutical 

industry. This has been known as the tiered or scientific validation approach72,73. The concept 

revolves around selecting the appropriate experiments that are scientifically required to 

adequately define a procedure to support a given endpoint. The idea was initiated for two 

main reasons; the first being the demand to deliver drugs faster and in a more cost effective 

manner to patients and, second, the emerging new applications in support of biological and 

chemical portfolio which require a different bioanalytical method development concept74. 

There is a growing gap between the scientific relevance of the bioanalytical guidelines and 

their applicability to the broadening variety of studies requiring quantitative bioanalytical 

support. Current guidelines for regulated bioanalysis are based on late stage clinical studies 

but from a scientific point of view, these studies are performed in later stages when a lot of 

analyte knowledge has already been established and accumulated throughout the drug’s life 

in development. While some study types do not require these regulatory aspects, bioanalytical 

laboratories invest resource and cost to try and meet these requirements without a real 

scientific need or merit. Some examples include performing full validations for tissue and 

urine samples, biomarkers or the use of regulated bioanalysis standards in novel technologies 

which does not reflect the scientific relevance for such validations. For these reasons, assay 

appropriate scientific validation has been introduced to establish method validation specific 

for each study need72.  Embracing new technologies such as microsampling is a prime 

example where a scientific validation approach can be applied to enable progress more 

rapidly using fit for purpose bioanalytical methods.  

For this reason, the bioanalytical methods utilized for SPME evaluation in this research will 

be scientifically validated methods that will assess linearity, precision and accuracy and 

selectivity.  Other parameters such as matrix effects and recovery will not be assessed during 

method validation because the internal standard response will be monitored during the 

validation and sample analysis. Assessment of dilutions will be performed within study runs 

if needed.  
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2.1.1 Sample Preparation and the Use of Internal Standards  

Sample preparation is the first step encountered in bioanalysis and is often the most critical in 

terms of extracting the required analyte from a complex matrix. Various matrices have 

different challenges and each analyte has its own unique characteristics, both of these aspects 

dictate the type of extraction approach utilised during method development and validation75. 

A biological sample consists of proteins, salts, lipids, acids and numerous other endogenous 

components from which the analyte of interest is retrieved. Relatively low concentrations of 

the target analyte make the task of removing unwanted constituents even more difficult. For 

this reason, sample clean-up is an essential element of bioanalysis68. 

Historically, a small number of extraction techniques have dominated the world of sample 

clean-up for small molecules; these include protein precipitation (PP), solid phase extraction 

(SPE) and liquid-liquid extractions (LLE)76. Since then many other innovative techniques 

have emerged and been applied in bioanalysis such as DBS26 sampling, but protein 

precipitation remains one of the simplest and most widely used sample preparation technique 

and is considered by many as the gold standard technique for measurement of total drug 

concentration of small molecules in bioanalysis, due to its simplicity, costs and ready 

compatibility with LC-MS/MS analysis 68,77. It is a process that achieves analyte separation 

from proteins by conversion of soluble proteins to an insoluble state either through addition 

of organic solvents such as acetonitrile or methanol, or with a change of pH i.e. acidification 

which leads to formation of insoluble salts resulting in protein precipitation78. Another 

effective procedure involves salting out the proteins using agents such as zinc chloride. The 

underlying mechanism of precipitation involves alteration to the solvation potential of the 

sample i.e. precipitation is achieved by lowering the solubility of the solute by using a 

suitable reagent77.  

The reagent usually contains an internal standard (IS). The main purpose of the IS is to 

improve the accuracy and precision of quantitation as well as ensuring the robustness of 

bioanalytical methods79,80.  The IS generally consists of either a structural analogue of the 

analyte or preferably a stable isotope labelled compound (SIL) where selected atoms are 

replaced with 13C, 15N or 2H.  It should have similar physiochemical properties as the analyte 

and behave in a comparable manner to the analyte during sample extraction, chromatography 

and detection. 
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A known and an equal amount of IS is typically added to all samples in a batch and the 

analyte/IS response ratios are used for quantification. The internal standard acts as the analyte 

“shadow”, it tracks the analyte performance through extraction, separation and detection. Any 

changes in the IS response can indicate instrumental issues or no changes in the IS response 

may indicate problems associated with the actual analyte or sample such as sample loss 

through adsorption, evaporation or transfer80. 

The bioanalytical methods employed throughout this project were validated in rat whole 

blood with protein precipitation rather than SPME extraction. This was because 

biocompatible SPME fibres were prototypes and in short supply and so not enough fibres 

were available to explore method linearity, precision and accuracy of test compounds with 

enough SPME fibres remaining to perform further in vitro and in vivo SPME experiments. A 

compromise was therefore made to use protein precipitation for bioanalytical method 

validation and these methods were subsequently utilized to quantify samples extracted by 

SPME throughout the project. However, a limited number of SPME fibres were still 

employed during the method validation to investigate which test compounds could be readily 

bound and desorbed off the SPME fibres. 

 

2.1.2 Use of LC-MS/MS 

Since its commercial introduction in the 1980s, liquid chromatography-mass spectrometry 

(LC-MS) or primarily, tandem mass spectrometry (LC-MS/MS) has rapidly become the 

standard separation and detection instrument in any well-equipped bioanalytical laboratory81. 

LC-MS combines the physiochemical separation capabilities of liquid chromatography (LC) 

with the mass separation/detection capabilities of mass spectrometry (MS). Liquid 

chromatography or high performance liquid chromatography (HPLC) is a technique whereby 

pumps are utilized to pass pressurized liquid known as the mobile phase containing the 

sample mixture through a column filled with solid particles (stationary phase) leading to the 

separation of the sample components. Present day liquid chromatography employs ultra-high 

pressure systems (UPLC) enabling analyte separation using columns packed with small 

particles approximately (1.7 – 1.8 µm) to reach high performance and withstand mobile phase 

pressures up to 1000 bar, thus providing better resolution, sensitivity and speed.  
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Combining this with mass spectrometry provides a powerful tool for quantifying the 

concentration of active drug and/or its metabolite. MS is a detection technique based on 

sample ionization and separation of analytes according to their mass/charge ratio. The 

instrument consists of three components; an ion source that converts sample molecules into 

ions, a mass analyzer that separates the ions by their masses and a detector that measures the 

abundance of each ion present82. 

Since the 1980s, liquid chromatography coupled with tandem mass spectrometry (LC-

MS/MS) has been used extensively in pharmaceutical laboratories for small molecule 

bioanalysis, and is favoured for its high throughput, sensitivity and accuracy. LC-MS/MS 

also offers excellent selectivity, being able to distinguish and quantify highly homologous 

isoforms, even at low levels, with accuracy and precision over a wide linear dynamic range. 

2.1.3 Rationale for Selection of Test Compounds  

A number of test compounds must be identified prior to investigating the suitability of SPME 

as a microsampling technique within the pharmaceutical industry. The set of selected small 

molecule compounds must be chosen based on their physiochemical properties and their 

appropriateness for SPME extractions. The selection criteria must take into consideration the 

application of SPME to determine free unbound drug concentrations which suggests that 

plasma protein binding is a vital property that should be accounted for. Such factors will 

impact adsorption and equilibration times. Other aspects including practicalities associated 

with the scope of work, log P values, size (molecular weight), cost and availability of 

compounds and their SILs as well as physiologically relevant concentrations should be 

acknowledged. Overall, a set of small molecules that mimics typical NCE properties are 

required to evaluate SPME.  

A range of compounds with varying chemical and biological characteristics should be 

screened and tested to confirm their potential suitability for SPME investigative work. 

 

2.1.4 Aims and Objectives 

The aims and objectives of this chapter are to select suitable compounds to evaluate the 

SPME technique in vitro and in vivo and also to develop suitable LC-MS/MS bioanalytical 

methods to support these investigations throughout this research project.  
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2.2 Experimental  

2.2.1 Chemicals and Materials  

Amitriptyline, caffeine, chloroquine, diclofenac, diclofenac 13C6 sodium salt 4.5-hydrate, 

fluoxetine, metoprolol tartrate, midazolam, naproxen, propranolol hydrochloride were 

purchased from Sigma Aldrich (Dorset, UK), metoprolol-d7 and propranolol-d7 were acquired 

from Toronto Research Chemicals (Ontario, Canada).  BioSPME silica probes consisting of a 

titanium wire coated with a biocompatible C18 extraction phase, housed inside hypodermic 

needle (medical grade, stainless steel, 22 gauge outer tubes) were supplied by Supelco 

(Bellefonte, PA, USA); each fibre has a thickness of 45 µm and 15 mm length of coating. 

Control rat blood and control rat plasma containing K2-EDTA to prevent coagulation was 

obtained from B&K Universal (Grimston, Hull, UK). Control rat blood was stored at +4oC 

and used within 48 h of collection. Dimethylformamide (DMF) and formic acid (reagent 

grade ≥ 95%) were purchased from Sigma-Aldrich (Dorset, UK). Methanol, acetonitrile, 

propanol and water were of HPLC gradient grade and obtained from Fischer Scientific Ltd 

(Loughborough, UK). 

 

2.2.2 Preparation of Standard Stocks, Working Solutions and Test 
Samples  

Primary stock solutions for each test compound and internal standard (IS) were prepared in 

DMF (1 mg/mL). Serial dilutions of each analyte’s stock solution were performed in 

acetonitrile/water (1:1, v/v) to give working standard concentrations of 1, 10 and 100 µg/mL. 

Internal standard working solutions were prepared from the primary stock solution to give a 

final concentration of 100 ng/mL in acetonitrile.  

Test samples for all compounds were prepared at 10 ng/mL and 500 ng/mL in control rat 

whole blood by spiking a suitable volume of the working solution. Non-matrix volumes used 

to spike the samples were < 5% of the total sample volume12. These were then extracted 

using SPME to determine their extraction suitability and to enable the selection of the final 

set of test compounds.  

 Subsequent to the selection of the final set of compounds (metoprolol, propranolol and 

diclofenac), calibration standards and quality control (QCs) samples were prepared for all 

three compounds to establish linearity and to test assay precision and accuracy. A 
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concentration range of 10 – 500 ng/mL was used. QCs were prepared using an appropriate 

spiking scheme to give nominal concentrations of 10, 30, 200, 400 and 500 ng/mL.  

Selectivity was assessed using total blanks (control samples with no drug) and blank 

containing IS samples from 6 different batches of rat whole blood (B&K Universal, 

Grimston, Hull, UK). 

 

2.2.3 Extraction of Validation Samples  

A set of test compounds were examined for compatibility with the SPME coating phase 

(C18). SPME extraction was performed by conditioning the fibres for 15 min in methanol 

followed by 15 min in water contained within 1.4 micronic tubes (MicronicTM, Aston, USA). 

Fibres were then exposed to the spiked test samples in rat blood for 1 h. Analytes were 

desorbed off the SPME fibres through 15 min exposure to 200 µL of 100% acetonitrile. Fibre 

conditioning, extraction and desorption were performed with 500 rpm agitation using a 

compact laboratory shaker (MS 3 Digital, IKA). Agitation of the sample was applied in an 

attempt to mimic the existence of a ‘stirred’ medium which would surround the fibres 

analogous to intravenous blood flow in a living organism. Extracts were then analysed using 

a generic LC-MS/MS method developed as detailed in Section 2.2.4 below.  

Whole blood samples (calibration standards (n =8) and QCs (n = 6)) assessing linearity, assay 

precision and accuracy, were extracted using protein precipitation. This was performed by 

taking a 25 µL aliquot of standard or QC samples into clean 1.4 micronic tubes (MicronicTM, 

Aston, USA). 200 µL of internal standard working solution was added to all samples while 

200 µL of 100% acetonitrile was added to double blanks. Tubes were capped, vortex mixed 

and then centrifuged for approximately 10 min at 3000 g (5810R, Eppendorf, Germany). 

Following centrifugation, the supernatant was transferred into clean micronic tubes and 

injected into the LC-MS/MS system. 
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2.2.4 LC-MS/MS Method Development  

A generic LC method that could be applied for all three chosen compounds (metoprolol, 

propranolol and diclofenac) was developed. 

Chromatographic separation was achieved using an Acquity UPLC system (Waters, MA, 

USA) equipped with a sample manager, sample organizer, a binary solvent manager and 

column oven. Analytes were separated using an Acquity C18 BEH column 50 x 2.1 mm i.d., 

1.7 µm particle-size (Waters, MA, USA). This was kept at 50oC and a gradient elution was 

applied employing the mobile phases, deionised water containing 0.1% formic acid (mobile 

phase A) and 100% acetonitrile (mobile phase B). Following sample injection (4 µL), the 

mobile phase was held at 95% A for 0.5 min followed by rapid gradient to 10% A at 1.10 

min. The composition was kept at an isocratic period to 1.30 min and was ramped to 95% A 

at 1.50 min and finally held at the same composition to 2.00 min, re-equilibrating the column 

prior to the next cycle. The flow rate was 0.8 mL/min and HPLC effluent was diverted to 

waste for the first 0.5 min of chromatographic run time using a divert switching valve 

(Kinesis, USA). 

MS detection occurred using an API-5000 tandem quadrupole mass spectrometer (AB Sciex, 

USA) equipped with a heated electrospray ionisation. The tuning parameters of the MS were 

optimized by continuous infusion of 25 ng/mL of each compound and its IS flowing at a 

0.5 mL/min by means of an external infusion pump directly connected to the mass 

spectrometer. A full scan was conducted in both positive and negative ion mode, separately, 

to identify the most suitable ion mode for detection using a scan range of 50 – 400 Da and 

scan speed of 10 Da/s. The ionization of the analytes was carried out using ESI in positive 

mode. The ion spray source temperature was set at 500 oC and an ion spray voltage of 5500 

V. The analysis was performed using multiple reaction monitoring (MRM) mode using 

instrument settings as described in Table -2.1-. All gases used were nitrogen, a dwell time of 

100 ms was employed for ion monitoring and unit resolution was applied to both Q1 and Q3.  
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Table -2.1- Summary of MS/MS parameters for the analysis of test compounds   

Analyte Q1 
Mass 
(amu) 

Q3 
Mass 
(amu) 

Declustering 
Potential 

(V) 

Entrance 
Potential 

(V) 

Collision 
Energy 

(V) 

Cell Exit 
Potential 

(V) 
Metoprolol 268.3 116.2 78 10 26.4 13 

Metoprolol-d7 275.3 191.0 78 10 26.4 13 

Propranolol 260.0 183.0 125 12 28 20 

Propranolol-d7 267.0 183.0 125 12 28 20 

Diclofenac 296.0 214.0 93 12 49 30 

Diclofenac-13C6 302.0 220.0 93 12 49 30 

 

 

LC-MS/MS data were acquired and processed using the proprietary software application 

Analyst™ (Version 1.6.1 Applied Biosystems/MDS Sciex, Canada).  Calibration plots (two 

calibration lines per run) of analyte/internal standard peak area ratio versus analyte 

concentration were constructed and a Linear - Weighted 1/(x*x) regression applied to the 

data.  The choice of weighting was based upon the sum of % residual errors. Concentrations 

of analytes in QC samples (n = 6 per concentration) were determined from the appropriate 

calibration line, and used to calculate the bias and precision of the method. 

To ensure that the LC-MS/MS system performance (which can vary from day to day, 

depending on a number of factors such as maintenance) remained consistent, system 

suitability test (SST) samples utilized as reference mixture were injected prior to study runs. 

These consisted of the tool compounds (metoprolol, propranolol and diclofenac) spiked in 

50/50 acetonitrile/water at 10 ng/mL. When SST fell outside acceptable limits i.e. when low 

sensitivity or poor chromatography were observed, action was taken to identify the cause and 

once rectified the system was used for data acquisition.  
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2.3 Results and Discussion  

2.3.1 Selection of Test Compounds 

In order to select an appropriate set of compounds to investigate the applicability of the 

SPME technique, a range of small drug molecules (shown in Table -2.2-) were screened for 

physiochemical properties, protein binding values and their chromatography characteristics. 

A generic LC separation method (detailed in Section 2.2.4) was developed to facilitate the 

screening and testing of the compounds.  

Selection of suitable compounds largely depended on their protein binding characteristics; 

however other factors such as commercial availability, compatibility with the in vivo SPME 

phase (C18) and applicability of the generic chromatography were taken into consideration 

when choosing appropriate compounds. All compounds were extracted with SPME fibres and 

analysed using LC-MS/MS. The compatibility of the selected compounds with the SPME 

phase was a crucial aspect due to the fact that the C18 coating phase was the only available 

biocompatible phase. Generic extraction conditions were applied for SPME, since it is not 

possible to change any in vivo conditions such as pH levels or apply any other sample 

treatment when using SPME for in vivo extraction directly from the veins of living 

organisms. Below are two selected examples of the rationale for rejecting some compounds. 

Naproxen and chloroquine were rejected based on compatibility with SPME phase and 

chromatography issues, respectively. 

Naproxen was extracted at two concentrations using the in vivo SPME fibres. The analyte 

response at 10 ng/mL was approximately the same as 500 ng/mL as shown in Figures -2.1-

and -2.2-  
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Table -2.2- A range of compounds showing a selection of varied physiochemical 

properties and protein binding characteristics83 

Name Average 
Molecular 

Weight 
(g/mol) 

Log P Plasma Protein 
Binding (% 

Bound) 

pKa 
(Strongest 

Acidic) 

pKa 
(Strongest 

Basic) 

Caffeine 194.2 -0.24 30 - -0.92 
Chloroquine 319.9 5.28 45 - 10.32 
Clotrimazole 344.8 5.48 90 - 6.62 
Diclofenac 296.2 4.98 99 4.00 -2.10 
Fluoxetine 309.3 4.09 87 - 9.80 
Metoprolol 267.4 1.88 30 14.09 9.67 
Midazolam 325.7 3.89 97 - 6.57 
Naproxen 230.6 3.29 1 4.19 -4.80 

Propranolol 259.4 3.03 90 14.09 9.67 
Simvastatin 418.6 4.51 95 14.91 -2.80 

 

 

 

 

 

 

 

 

 

 

 

Figure -2.1- LC-MS/MS chromatogram of naproxen at 10 ng/mL extracted from rat 

blood by biocompatible C18 SPME.  
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Figure -2.2- LC-MS/MS chromatogram of naproxen at 500 ng/mL extracted from rat 

blood by biocompatible C18 SPME.  

 

Despite the 50 fold difference in concentration between the 10 and 500 ng/mL samples, the 

analyte response for naproxen was approximately the same. Initially this was deemed as an 

experimental error and the procedure was repeated for both concentrations. The same results 

were obtained upon re-extraction and re-analysis.  In order to determine whether these results 

were related to the SPME extraction, the same spiked whole blood samples were extracted 

using protein precipitation. The results as expected were linear and analyte response at 500 

ng/mL was approximately 50 fold higher than the 10 ng/mL sample. 

This suggested a problem with the SPME extraction. Naproxen is an acidic molecule and the 

SPME C18 phase is likely to extract un-dissociated/neutral species of analytes and therefore 

the extraction efficiency is largely impacted if the appropriate phase is not utilised during the 

extraction. For this reason, considering sample pH adjustment was executed to test whether 

this will improve extraction efficiency of naproxen. Figure -2.3- shows the analyte response 

of naproxen at 500 ng/mL extracted by SPME, following pH adjustment of the whole blood 

sample to pH 3. This confirmed that low pH values improve the extraction of acidic 

compounds. This enhanced extraction was also observed by Aresta et al.65 when human urine 

samples were pH adjusted in vitro to increase extraction efficiency of naproxen. 
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Figure -2.3- LC-MS/MS chromatogram of naproxen at 500 ng/mL extracted from rat 

blood by biocompatible C18 SPME following sample pH adjustment to pH 3.  

 

 

The adjustment of pH is a viable approach for in vitro samples, however this is not feasible 

for in vivo extraction directly from a living organism’s veins. Other SPME phases, suitable 

for polar molecules were required. For this reason, naproxen was one of the compounds that 

were not selected for the test compounds within this research.  
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Chloroquine is another example of one of the compounds that was excluded from the chosen 

test compounds. The extraction efficiency of chloroquine using SPME behaved in a 

proportional manner, where the analyte response at 500 ng/mL of chloroquine was 

approximately 50 fold higher than the 10 ng/mL analyte response. However, the 

chromatographic separation for chloroquine involved developing a separate method to the 

generic LC-MS/MS method. Figure -2.4- shows a representative chromatogram of 

chloroquine when the extracted sample was analysed using the generic LC-MS/MS method.  

 

 

 

 

 

 

 

 

 

 

 

Figure -2.4- LC-MS/MS chromatogram of chloroquine at 10 ng/mL extracted from rat 

blood by biocompatible C18 SPME and analysed using a generic LC-MS/MS method. 

 

 

As shown above, using the generic LC-MS/MS method resulted in a double peak for 

chloroquine. For this reason, the chromatographic separation for chloroquine was re-

evaluated and achieved using reverse phase and ion pair chromatography. Figure -2.5- 

illustrates a chloroquine chromatogram subsequent to re-development of the LC method. 
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Heptafluorobutyric acid (HFBA), 0.1%, an ion-pairing reagent, was used for mobile phase 

(A) and 100% acetonitrile for mobile phase (B) eluting at an isocratic composition A:B 63/37 

(v/v). A Thermo Hypersil Gold column, 50 x 3mm, i.d. 5 µm, kept at 40oC was used and the 

flow rate maintained at 0.8 mL/min with a sample injection volume of 5 µL.   

 

 

 

 

 

 

 

 

 

 

 

Figure -2.5- LC-MS/MS chromatogram of chloroquine at 10 ng/mL extracted from rat 

blood by biocompatible C18 SPME and analysed using a modified LC-MS/MS method. 

 

 

In order to simplify the process, choosing compounds that require different separation and 

detection methods was not practical. Therefore, such compounds including chloroquine and 

naproxen were eliminated from the selection of the test compounds. Other compounds such 

as midazolam were eliminated due to limited commercial availability, toxicity and the legally 

controlled status.  

The final selected set of compounds consisted of metoprolol, propranolol and diclofenac as 

shown in Table -2.3-. These drug molecules cover a range of protein binding values (approx 
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30%, 90% and 99%) and were all compatible with the C18 biocompatible fibre phase as well 

as the generic LC separation method. Log P values of these three compounds range from 1.88 

to 4.98. This is considered a typical range for NCEs displaying moderate hydrophobicity 

values. Such Log P values enable drug delivery to the site of action and facilitate biological 

activity as a consequence of drug absorption through various body compartments. Log P 

values of less than -2 and greater than 5 can lead to solubility issues and compromise drug 

penetration as well as drug absorption within the living organism84,85. 

 

 

Table -2.3- Chemical structures, molecular weights and protein binding values for the 

selected test compounds83. 

Compound Structure Average 
Molecular 

Weight 
(g/mol) 

Plasma 
Protein 
Binding 

(% Bound) 

Metoprolol    

267.4 

 

30 

Propranolol     
259.4 

 
90 

Diclofenac     
296.2 

 
99 
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2.3.2 Method Validation 

A scientific validation approach was followed to develop validated methods for all three 

compounds. Precision (% CV) and bias were assessed using whole blood protein 

precipitation followed by LC-MS/MS analysis. Protein precipitation was utilized due to the 

limited number of SPME fibres which were prototypes and in short supply. This is 

scientifically justifiable as those methods were validated using a conventional reliable 

extraction technique (protein precipitation). The selectivity of the method was established by 

the analysis of blank (control whole blood sample extracted using acetonitrile containing IS) 

and double blank samples (control whole blood sample extracted using 100% acetonitrile) of 

control rat whole blood from 6 individual animals. 

HPLC-MS/MS chromatograms of the blanks and validation samples were visually examined 

and compared for chromatographic integrity and potential interferences.  Representative 

chromatograms of a double blank sample and samples at the lower limit of quantification 

(LLQ) are shown in Figure -2.6- to Figure 2.8 for metoprolol, propranolol and diclofenac, 

respectively.  No unacceptable interferences at the retention times of each analyte and its 

internal standard were observed and the level of signal to noise ratio at the LLQ was greater 

than 10:1 for all three analytes.  

 

Figure -2.6- Representative chromatograms of a blank rat whole blood sample and an 
LLQ sample of metoprolol at 10 ng/mL.  
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Figure -2.7- Representative chromatograms of a blank rat whole blood sample and an 
LLQ sample of propranolol at 10 ng/mL.  

 

 

 

Figure -2.8- Representative chromatograms of a blank rat whole blood sample and an 

LLQ sample of diclofenac at 10 ng/mL.  
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Linear responses in the analyte/internal standard peak area ratios were observed for all three 

analytes when calibration standards were assessed as part of method validation. The 

correlation coefficients obtained using linear - weighted 1/(x*x) regression were 0.9967, 

0.9976 and 0.9986 for metoprolol, propranolol and diclofenac, as shown in Figures -2.9-, 

-2.10- and -2.11-, respectively. The weighted regression is typically used to maximize the 

estimation efficiency of each parameter86. This is performed by treating all of the data points 

equally. Since a calibration curve contains data over several orders of magnitude, the effect of 

the high-end point of the calibration curve changes the mean value of the response (the 

dependant variable value of Y) and dominates the calculation of the slope. For this reason, a 

weighting regression is utilised to give emphasis to data points at the lower end of the curve 

and give a better fit for the data set86.  

 

 

 

Figure -2.9- Calibration plot (range 10 – 500 ng/mL) for metoprolol extracted from rat 

whole blood using protein precipitation followed by LC-MS/MS, n= 2 at each 

concentration level. 
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Figure -2.10- Calibration plot (range 10 – 500 ng/mL) for propranolol extracted from 

rat whole blood using protein precipitation followed by LC-MS/MS, n= 2 at each 

concentration level.  
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Figure -2.11- Calibration plot (range 10 – 500 ng/mL) for diclofenac extracted from rat 

whole blood using protein precipitation followed by LC-MS/MS, n= 2 at each 

concentration level. 

 

 

The accuracy (% bias) and precision (% CV) calculated as shown below, of each method was 

evaluated using the quality control samples analysed against the calibration standards.  

ܸܥ % = ඌܵ݊ܽ݁ܯ݊݋݅ݐܽ݅ݒ݁ܦ ݀ݎܽ݀݊ܽݐ ඐ  Equation 2.1              100 ݔ 

At all quality control concentrations examined, the accuracy and precision values were within 

15% as shown in Tables -2.4-, -2.5- and -2.6-. 
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Table -2.4- Bias, precision (% CV) and individual validation sample concentration data 

for metoprolol extracted from rat whole blood 

 QC 10 QC 30 QC 200 QC 400 QC 500 
Nominal Concentration 10 ng/mL 30 ng/mL 200 ng/mL 400 ng/mL 500 ng/mL 
  10.8  32.6 237.8 394.3 498.9 
 9.7 33.5 218.0 408.8 448.9 
 11.8 33.3 212.8 407.2 504.8 
 9.2 34.1 224.0 391.3 496.8 
 12.8 29.4 232.3 396.7 464.7 
 11.5 30.8 227.5 459.7 520.2 
Mean 11.0 32.3 225.4 409.7 489.0 
Standard Deviation 1.3 1.8 9.2 25.5 26.8 
Precision (%) 12.1 5.6 4.1 6.2 5.5 
Bias (%) 9.7 7.6 12.8 2.4 -2.2 
N 6 6 6 6 6 
 

 

 

Table -2.5- Bias, precision (% CV) and individual validation sample concentration data 

for propranolol extracted from rat whole blood 

 QC 10 QC 30 QC 200 QC 400 QC 500 
Nominal Concentration 10 ng/mL 30 ng/mL 200 ng/mL 400 ng/mL 500 ng/mL 
    9.5 31.0 190.3 404.2 559.7 
 10.8 30.2 197.0 558.7 525.5 
 10.2 32.7 209.0 431.4 499.5 
 10.7 32.2 207.8 398.5 560.0 
 10.0 27.0 214.4 408.9 538.2 
 11.0 29.4 212.2 432.9 490.9 
Mean 10.3 30.4 205.1 439.1 528.9 
Standard Deviation 0.56 2.0 9.4 60.3 29.4 
Precision (%) 5.4 6.7 4.6 13.7 5.6 
Bias (%) 3.4 1.3 2.6 9.8 5.8 
N 6 6 6 6 6 
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Table -2.6- Bias, precision (%CV) and individual validation sample concentration data 

for diclofenac extracted from rat whole blood 

 QC 10 QC 30 QC 200 QC 400 QC 500 
Nominal Concentration 10 ng/mL 30 ng/mL 200 ng/mL 400 ng/mL 500 ng/mL 
  10.5 31.6 191.6 406.5 552.2 
 10.8 30.6 189.0 430.8 522.8 
 11.0 30.5 194.4 438.7 509.3 
 9.8 33.1 200.6 444.1 532.4 
 10.0 31.5 198.1 417.0 503.0 
 10.6 29.7 192.6 433.6 497.1 
Mean 10.4 31.2 194.4 428.5 519.5 
Standard Deviation 0.45 1.2 4.3 14.1 20.6 
Precision (%) 4.3 3.8 2.2 3.3 4.0 
Bias (%) 4.3 3.9 -2.8 7.1 3.9 
N 6 6 6 6 6 
 

 

The accuracy of an analytical method describes the closeness of mean test results obtained by 

the method to the true value (concentration) of the analyte. Accuracy is determined by 

replicate analysis of samples containing known amounts of the analyte. A minimum of three 

concentrations in the range of expected concentrations is recommended by the FDA12. 

According to the FDA guidance for GLP studies12, the mean value should be within 15% of 

the actual value except at LLQ, where it should not deviate by more than 20%. However, for 

non-GLP studies 20% accuracy is generally accepted. The accuracy for all three analytes was 

within 15% of the actual value at each concentration.  

 

The overall generic LC separation method and MS detection parameters were accurate and 

precise for all three analytes. This instils confidence in the LC-MS/MS part of the analysis 

when exploring the validity of the SPME technique and enables easier workflow throughout 

this research. Subsequent in vitro and in vivo experiments throughout this research contain 

calibration standards and quality control samples prepared using SPME fibres to suitably 

monitor the performance of the analytical method for experimental data acquisition. 
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2.4 Conclusion  

Selecting an appropriate set of tool compounds to evaluate a technology remains a 

challenging aspect for the pharmaceutical industry. The variety of NCE moieties that pass the 

drug discovery and development process is wide, such molecules have diverse 

physiochemical properties and multiple pharmacological characteristics. Covering the whole 

range of possible compounds when evaluating a technology is impossible. Also regardless of 

the number of compounds used to evaluate a technique, a specific method validation for 

every analyte will have to be executed prior to any study conduct. Therefore, selecting a 

narrow range with moderately variable properties that are relevant to the technique is 

sufficient to give a better understanding of the technique. The main rationale for choosing 

metoprolol, propranolol and diclofenac for the evaluation of SPME was the protein binding 

characteristics of the three compounds which covers a suitable range from high to low 

binding values. Other important aspects included log P values, compatibility with the C18 

SPME phase, commercial availability, cost and applicability to generic LC-MS/MS analysis.  

A scientific validation approach was followed and methods were validated for all three 

analytes. The overall bias and precision (%CV) of the validation runs were within 15% of 

nominal concentrations for all three analytes. These methods were both selective and 

sensitive and will be used throughout this research. 
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Chapter 3 

In vitro Evaluation of SPME Fibres; Considerations of 

Parameters Impacting Bioanalytical Method Development 

 

3.1 Introduction  

3.1.1   SPME Method Development  

The success of in vivo SPME sampling and extraction, depends significantly on the in vitro 

validation of the SPME method and the optimisation of extraction characteristics required to 

achieve adequate sensitivity, accuracy and precision. All of which are essential to have 

sufficient confidence in the data which in turn will be used to make appropriate preclinical 

and clinical decisions that can ultimately affect patients. 

Several factors are considered to be fundamental for developing a high quality SPME method 

including; appropriate selection of fibre coating, evaluation of extraction time, choice of 

agitation mode, selection of efficient desorption solvents and assessment of various other 

parameters such as on fibre stability, hematocrit effect and inter-fibre variability. In vivo 

experimental conditions need to be optimised and reproduced in vitro, for this reason in vitro 

SPME method development must be conducted prior to any in vivo SPME application.  

 

3.1.2   Fibre Coating  

The main element that determines the success of SPME as an extraction technique is the 

coating of the fibre87. The coating material is primarily responsible for the extraction of 

analytes. It is therefore crucial to have a range of fibre coatings that can extract a series of 

analytes with a wide range of characteristics including a variety of molecular weights and 

polarities. The extent of extraction is directly dependent on the affinity of the analyte towards 

the coating phase versus the sample matrix, which is defined by the magnitude of the 

distribution constant Kfs. Coatings are designed to have high Kfs values to improve analytical 

sensitivity87. 
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Most of the currently available SPME fibres have been designed for GC applications with a 

very limited number of fibre coatings developed for HPLC use.  Desorption of the analyte 

from the extraction phase entails the use of organic solvents as desorption solvents which are 

compatible with commonly used HPLC solvents. However, utilising organic solvents can 

cause swelling of the fibre coatings and eventually leading to breakage and stripping off the 

coated layer42. Four coatings were initially developed for HPLC use; polydimethylsiloxane, 

polydimethylsiloxane/divinylbenzene, polyacrylate and Carbowax-templated resin (CW-

TPR), some of which still lack the required properties of durability, inter-fibre reproducibility 

and good extraction efficiency41. However, a new series of fibres have been developed for in 

vivo SPME applications of small molecules; these consist of polymeric octadecyl (C18) 

bonded silica particles embedded into a biocompatible binder. The binder is composed of a 

non-swelling polymer which is resistant to fouling upon exposure to biological matrices; its 

biocompatibility feature refers to the non-toxic effect or the absence of adverse effects when 

the material is inserted into a living organism42. Furthermore, the biocompatible polymer 

prevents adhesion of macromolecules such as proteins, complex carbohydrates and lipids on 

its surface but permits the movement of analytes and metabolites through the binder to 

interact with the C18 particles88. This in turn facilitates efficient sample clean up and enables 

reduced levels of matrix interference.   

Two types of coatings determine the mechanism of extraction; these are classified as either 

absorbent or adsorbent types (Figure -3.1-). Absorbent fibre coatings such as the C18 coated 

fibres consist of viscous fluid like polymers, cross linked to the fibre core, the mechanism of 

analyte interaction depends exclusively on the thickness of the coating, where analytes 

migrate through the layers and are captured as they enter the deeper levels of the coating89. 

The adsorbent coating is composed of solid particles suspended into a liquid polymer where 

extraction of analyte is dependent on interactions between the analyte and the solid particles, 

the nature of interaction depends on the polarity of the analyte and its ability to form 

hydrogen bonding, pi-pi bonding or contribute to van der Waals interactions. 
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Figure -3.1- Schematic representation of absorptive versus adsorptive extraction89.  

 

3.1.3 Fibre Capacity and the Effect of Analyte Properties   

Fibre capacity is determined by the thickness and the size of coating particles. The thicker the 

coating, the larger the number of active sites available for analytes to bind and interact with. 

Smaller coating particles such as 2-3 µm have higher capacity relative to larger 7 µm coating 

particles. This is due to the greater total surface area supplied by smaller particles90. 

The typical particle size of adsorbents used for the in vivo SPME fibres is 3-5 µm. Fibre 

capacity is enhanced by applying multiple coats to produce the required thickness (45 µm)42. 

However, it is worth noting that the overall dimensions of the device should be small enough 

to be inserted into a living organism to ensure minimal tissue damage and short extraction 

times. Miniaturization of the device has two fundamental implications, one of which is the 

smaller amount of extracted analyte which may compromise analytical sensitivity and linear 

dynamic range. Second is the need for coatings with higher distribution constants (Kfs) to 

improve the compromised analytical sensitivity62. Coating fused silica involves pulling the 

fibre through a special coating applicator numerous times to obtain the necessary thickness. 

Controlling the speed with which the fibre is pulled through the applicator and producing 

fibres with similar lengths and coated portions (typically 1 cm long) per sample per batch of 

fibres are important factors that play a vital role in the durability and reproducibility of 

fibres42. Acquiring similar results when multiple fibres are used is an essential feature for 
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bioanalytical applications since, accuracy and precision of data should be within pre-defined 

limited acceptance criteria, as outlined by regulatory guidelines12.  

The extent of analyte retention on the fibre is dependent on several factors, including the 

polarity of the coating phase, the molecular weight of the analyte and its ionisation state. 

Polar coating materials offer selectivity for adsorption of hydrophilic analytes, while non-

polar phases with alkyl functional groups provide affinity for lipophilic analytes i.e. typically 

mid to non-polar substances. Most SPME fibres have bipolar properties to some degree, 

meaning that they are capable of extracting both slightly polar and non-polar analytes. 

Two commonly used polar fibre coatings have been reported including polyethylene glycol 

(PEG) phase and polyacrylate (PA) phase, both of which have demonstrated desirable 

selectivity towards extraction of polar analytes. Although both coating types are 

commercially available and perform very well for SPME-GC applications, their 

characteristics have not yet been extensively tested for LC suitability or developed for in vivo 

applications41.  

The molecular weight and size of the analyte governs the dynamic movement of the analyte 

in and out of the coating phase. Smaller analytes migrate rapidly in and out of the coating 

layers and therefore display poor retention characteristics but shorter equilibration times due 

to the fast movement, while larger analytes move through the coating in a slower manner 

gradually reaching deeper layers of the coating material but taking longer to reach 

equilibrium42. On the other hand, smaller sized molecules may occupy more surface area and 

bind tightly to the stationary phase as they can penetrate into the cavities that cannot be 

accessed by larger molecules.   

 

3.1.4 Extraction and Equilibration Time 
Extraction time is the amount of time in which the extraction phase i.e. the coated portion of 

the fibre, is in contact with the sample matrix. SPME is an equilibrium extraction technique, 

it requires long enough period of time for the concentration of analyte to reach a state of 

equilibrium between the coating phase and the sample medium91. 

Equilibration time is governed by the time needed for sufficient mass of analyte to reach the 

surface of the extraction phase in addition to the time required for the analyte to distribute 

within that phase. Both of these factors depend on the rate of extraction and fibre capacity92.  
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Fibre capacity denotes the thickness of the coating phase; it takes longer to reach equilibrium 

with a thicker coating compared to a thin coating. It is therefore essential for the fibre coating 

to be sufficiently thin to permit for faster equilibration times but thick enough to give 

adequate assay sensitivity. 

Ideally, SPME extraction should be performed at equilibrium conditions where the maximum 

amount of analyte is extracted by a given extraction phase and further increase in exposure 

time does not result in additional amounts of extracted analyte. This facilitates reduced data 

variation and improved method reproducibility. However the time needed to reach complete 

equilibrium can sometimes be inconveniently long, Lord et al 61 assessed the PK profile of 

diazepam and its metabolites in beagle dogs using 30 min extraction time which was 

considered adequate time to establish equilibrium between the SPME fibre and circulating 

blood. Such long sampling and extraction time are not compatible with ethical animal use and 

can adversely affect temporal resolution especially in PK studies where drug concentrations 

can rapidly change during early timepoints. For this reason, extraction time should be shorter 

than the time difference between two sampling timepoints but should also be sufficient to 

provide good sensitivity and reproducibility.  

One approach to improve temporal resolution of sampling is to employ pre-equilibrium 

extraction, the use of shorter fibre exposure time. However, if this approach is followed, it is 

vital to control extraction conditions and to carefully manage fibre exposure time to 

guarantee accurate and precise results. This is particularly important for the utility of external 

in vitro calibration curves, which may become challenging since the same experimental 

parameters such as matrix composition and pH need to be reproduced in vitro. Nevertheless, 

alternative calibration routes have been reported in the literature93 to minimize possible 

variations during pre-equilibrium extraction. Such strategies are based on kinetic calibration, 

where fibre coatings are preloaded with an appropriate standard, either a stable isotopically 

labelled form of the analyte, or an analogue of the compound with similar mass transfer 

kinetics to the parent analyte. The fundamentals of the kinetic calibration method is built on 

the relationship between absorption of the analyte from the sample matrix onto the SPME 

fibre and the desorption of preloaded standards from the fibre into the sample matrix94. The 

preloaded calibrant is desorbed during the extraction process and therefore the concentration 

of the extracted analyte is determined by establishing the desorption of the preloaded 

standards from the fibre.  
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The concentration of the analyte can be calculated using the following equation; 

଴ܥ  = ଴ݍ଴ݍ݊ − ܳ ௙௦ܭ1 ݔ   ௙ܸ                           Equation 3.1 

 

where C0 is the initial concentration of analyte, n is the amount of analyte extracted, Q is the 

amount of standard remaining in the extraction phase after exposure of the extraction phase to 

the sample matrix for the sampling time, Vf is the volume of the fibre, Kfs is the fibre 

coating/sample distribution coefficient of the analyte, and q0 is the amount of standard that is 

preloaded onto the extraction phase41,95. This technique has been successfully applied for the 

extraction of organic contaminants of field sediments96. 

The main advantage of this technique is that it accounts for potential variability caused by 

any potential disturbance to the exact length of sampling time, the uniformity of agitation in 

the system and sample composition. But a major drawback is the ethical and technical impact 

of desorbing the preloaded calibrant into the living organism as well as the additional cost 

and time required to preload the fibres. Another potential problem with pre-loaded calibrants 

is the possible effect of fibre heterogeneity which may impact pre-loading and subsequent 

desorption. Furthermore, the product KfsVf must be accurately determined in vitro using 

equilibrium extraction in the matrix of interest prior to performing the pre-equilibrium kinetic 

calibration97.   

Alternative calibration methods such as standard addition procedures have been proposed and 

implemented for fast pre-equilibrium sampling63,94. However, utilising such techniques is less 

suitable for high throughput in vivo studies within the pharmaceutical industry due to the 

time, cost and labour intensive demand for such procedures. Overall, selecting an appropriate 

exposure time is a compromise between reproducibility, assay sensitivity and time resolution, 

so it has to be optimized for each analyte during method development using an extraction-

time profile. The extraction can be interrupted and the fibre analysed prior to equilibrium as 

long as the same conditions are applied to both ex vivo calibration standards and in vivo 

samples. However, to obtain reproducible data, constant agitation 

conditions and careful timing of the extraction are necessary93. 
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3.1.5 Sample Volume  

Most conventional sample preparation techniques require the utility of increased sample 

volume to enhance method sensitivity. On the contrary, the amount of analyte extracted with 

SPME fibres increases with sample volume up to a point, after which method sensitivity is 

unaffected by further increase in sample size41. When sample volume is greater than KfsVf 

(the product of analyte distribution constant and fibre coating volume) the number of moles 

of analyte extracted is independent of sample volume98. In vivo sampling involves a very 

large sample volume such as that of the circulatory system and the amount of analyte 

extracted is considered to be negligible, therefore it is independent of sample volume. During 

in vitro experiments, the sample volume is mainly governed by the size of the vial containing 

the sample. Given that the vial dimensions are appropriate to retain a sample volume that 

could submerge the entire SPME fibre, sufficient amount of analyte will be extracted even 

from very small sample volumes. This eliminates the need to collect a defined sample 

volume66.  

 

3.1.6 Agitation Method 
Sample agitation in vitro aids mass transport between the sample and the coating phase, this 

in turn leads to shorter extraction times required to achieve equilibrium. Under perfect 

agitation conditions the time required to reach equilibrium is determined only by the fibre 

geometry and the diffusion of analyte in the sample97. The rate of extraction is impacted by 

the ability of the analyte to diffuse through the boundary layer of the sample matrix. The 

boundary layer is the term used to describe a hydrodynamic phenomenon where the liquid 

phase moves slowly passed a solid surface99. Intermolecular forces cause the solvent to 

stagnate near a surface, in this case the fibre coating, and so the only way a molecule can 

reach the coated phase is by diffusion across the boundary layer89.  The size of the boundary 

layer is determined by both the matrix and the rate of sample agitation. Essentially the 

boundary layer (Figure 3.2) is thicker in a viscous medium, and in a medium that is poorly 

agitated. Agitation increases the molecular mobility of the solvent molecules (i.e. thinner 

boundary) and also causes turbulence in the sample matrix (the ‘pocket’ of solvent that has 

been depleted of analyte at the boundary layer is replaced more efficiently). This results in 

improved mass transport of the analyte to the fibre surface89.  
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Figure-3.2- The boundary layer model of SPME sample matrix89 

 

 

Several agitation techniques could be utilized based on the mode of application, these 

include; orbital shaking, needle vibration, sonication and magnetic stirring. They all have 

their advantages and disadvantages but some are more appropriate than others depending on 

the application. For example, orbital shaking using plate mixers is more suitable for multiple 

fibres, applying uniform agitation to all samples. On the other hand, magnetic stirring 

although is simple to use without the need for sophisticated equipment, the magnetic stir bar 

must be small enough to be placed inside the sample vial and may cause unwanted heating, 

interference or introduce contamination into the sample vial. While needle vibration is ideal 

for very small sample volumes, but may exert substantial stress on the fibre coating and the 

needle as a whole100. 

Overall improved agitation efficiency is needed to reduce the thickness of the boundary layer 

and to increase mass transfer rate which ultimately leads to shorter equilibration time. 
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3.1.7 Desorption Conditions 
Desorption is the process of releasing the extracted analyte from the coated solid phase of the 

fibre. It is therefore essential to optimise desorption conditions to enhance extraction 

efficiency and maximise method sensitivity. Desorption procedures are generally more 

complicated for HPLC applications compared with SPME-GC. The kinetics of desorption 

process in liquid phase are significantly slower than in gas-phase, this is due to the fact that in 

gas-phase, analytes are desorbed off at high temperatures where diffusion coefficients are 

higher leading to faster desorption rates101. Therefore the process in liquid phase involves 

optimisation of several factors including; type of desorption solvent, volume of desorption 

solvent, desorption time and assessment of potential carryover102. 

Selection of suitable desorption solvents with appropriate elution strength is crucial to 

achieve adequate removal of analyte from the coating phase. Different mixtures with varying 

proportions of LC-MS compatible solvents such as acetonitrile, methanol and water, are 

typically utilized depending on the combination of analytes being extracted and the solid 

phase coating from which analytes are being desorbed off. Adjusting the pH of the chosen 

solvent composition may also increase desorption efficiency, depending on the type of the 

molecule and the nature of the coated solid phase103. 

Desorption can be performed in different ways including; i) manual desorption, ii) off-line 

desorption and iii) direct desorption. 

Manual desorption involves using a HPLC interface (a desorption chamber similar to a 

conventional HPLC injection system) where a static or dynamic mode can be applied. In 

dynamic mode, a continuous flow of mobile phase is passed through the interface containing 

the SPME fibre to desorb off the analyte. However a large internal desorption volume may 

cause peak broadening and therefore interface volume maybe reduced to improve peak shape, 

but desorption efficiency is compromised and all of the analyte may not completely get 

desorbed in a reasonable amount of time41. 

Alternatively, static desorption has been utilized where the interface is pre-filled with a 

defined volume of solvent and the fibre is exposed to this solvent for a length of time, 

subsequently the solvent containing the extracted analyte is diverted onto the HPLC system. 

The main disadvantage of this approach is the high risk of potential carryover due to 
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incomplete desorption, however this can be reduced by employing a wash step to clean the 

interface between analytes or to use disposable/single use fibres.    

Offline desorption is similar to static desorption, but the extracted analyte is desorbed into 

sample vials containing an appropriate solvent offline, without direct desorption into the 

HPLC system. The amount of solvent selected for desorption should be small enough to aid 

method sensitivity, but also sufficient to enable complete immersion of the coated phase. 

Desorbed analytes may then be injected using HPLC autosamplers into the LC-MS/MS 

system from sample vials or 96 well plates. The main drawback is the need to desorb the 

analytes into relatively large solvent volumes (> 200 µL) to submerge the entire coated fibre 

and ultimately facilitate efficient desorption process, which could lead to loss of sensitivity. 

One way to overcome this problem and improve sensitivity is to evaporate the extract to 

dryness immediately after desorption using a stream of nitrogen gas in a commercial plate 

dryer97. The sample can then be reconstituted with a small volume of HPLC compatible 

solvent, followed by injection into the LC-MS/MS. The shape and dimensions of the chosen 

vial and the use of various inserts placed inside vials or 96 well plates may also aid the use of 

small volumes. 

The internal standard can be added in either, or both of the desorption and the reconstitution 

solvent to control any pipetting and injection variability. The primary advantage of offline 

desorption is the ability to perform desorption of multiple samples at the same time with or 

without agitation. Use of agitation may speed the desorption process. Automated systems 

such as Concept 96 robotic station104 which allows for parallel desorption of up to 96 samples 

providing high throughput could be employed.  

Desorption time is determined as part of method validation, as reported in the literature88,97. It 

is appropriate to test between 5 - 30 min desorption time period with agitation, depending on 

the coating type. Practical limitations maybe encountered with less than 5 min desorption and 

inadequate throughput if more than 30 min is applied.   

Evaluation of carryover on the probe is sometimes necessary. This needs to be investigated 

when the same fibre is used in vitro multiple times, to determine the amount of analyte that 

may remain on the fibre after desorption. This could be assessed by performing multiple 

desorption steps using the same solvent following the first extraction. The efficiency of 

desorption is determined through a series of repeated re-desorption of the same fibre to 

ensure that no further analyte is eluted off the fibre, the amount of compound observed in 
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subsequent washes should be within an acceptable level of the original desorbed material to 

determine whether additional steps should be taken to reduce the carryover. This issue is not 

applicable to this research as single-use disposable fibres will be used throughout this project. 

In recent years, direct desorption off the fibre into the mass spectrometer has also been 

explored where various configurations of SPME have been directly coupled to mass 

spectrometry and desorption is performed online from the fibre into the detector105,106. This 

aspect is further discussed in Chapter 7.  

 

3.1.8 On-Fibre Stability  
The chemical stability of a compound is often a concern for bioanalysis. A valid analysis 

cannot be performed if losses or (gains) of analyte occur during sample collection, transport, 

storage and analysis. Many drugs are stable and often do not require further treatment other 

than confirmation of stability for the maximum storage time at specified conditions. 

Nevertheless, some analytes may exhibit instability, this could be biological, chemical, 

thermal or photo degradation, which needs to be addressed prior to sample collection. In 

some cases, certain sample carriers or sample preparation techniques may stimulate 

instability and so it is vital to perform pre-study stability evaluation as part of the 

bioanalytical method development to cover the expected sample handling and storage 

conditions during the conduct of the study as well as shipment and any subsequent length of 

storage68. Several key documents including regulatory guidelines and publications have 

highlighted the significance of stability assessment and have given specific recommendations 

on how to establish analyte stability11,107. 

For in vivo SPME extractions, it is anticipated that the analyte is extracted onto the fibre at 

the clinical site or animal laboratory and is then transported to the bioanalytical site for 

analyte quantification. As analysis is not usually performed directly after sample collection, it 

is essential to investigate whether analyte stability on-fibre is maintained over the relevant 

storage period. It is also important to identify whether the SPME coating deteriorates over the 

same period of storage time to understand impact on desorption.  

On a separate matter, prodrug compounds are often designed to be rapidly converted to the 

active molecule in vivo. However, in some cases prodrug quantification is necessary but may 

prove to be difficult to stabilise and inhibit conversion into the active in the collected sample. 
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In such cases, SPME may provide a potential advantage over other sample preparation and 

extraction techniques, as SPME could be utilized to determine the real time concentration of 

prodrugs directly in vivo without the need to stabilise the collected sample. 

 

3.1.9 Hematocrit Effect  
Blood can be divided into two major components; plasma and cellular constituents including 

red and white blood cells. The hematocrit is a measure of the proportion of blood that is 

composed of red blood cells which is expressed as a percentage of the cellular blood volume 

compared to the total blood volume, Equation 3.2108. This percentage could have a minimum 

value of 0% and a maximum value of 100%, there are no definitive values in animals or 

humans for normal hematocrit, as the levels vary with age, sex and health status Table -3.1-32. 

 

= ݐܿܪ   ൬ ோܸ஻஼஻ܸ௟௢௢ௗ൰  Equation 3.2                            100  ݔ  

 

Where Hct is the level of hematocrit, VRBC is the volume of red blood cells and Vblood is the 

volume of blood. 

Furthermore, certain medical conditions such as anemia and polycythemia could result in 

extreme hematocrit values. Changes in hematocrit lead to changes in the viscosity of the 

blood where a low hematocrit has a lower viscosity relative to higher hematocrit blood, this is 

because red blood cells are large (6-8 µm) and so a higher proportion will increase the 

viscosity of blood109. This disparity could have a potential effect on the performance of 

SPME extractions as it has previously been demonstrated that it has a major impact on dried 

blood spot analysis32.  SPME is a technique that does not require blood withdrawal, blood 

absorption or spotting.  So control of blood volume is not a necessity if the SPME probe is 

totally immersed but the viscosity of blood may affect the kinetics of extraction41.  This could 

prove to be true if blood used for preparation of in vitro SPME calibration standards is of a 

notably different hematocrit level to the in vivo blood sample, which could cause assay bias 

and may ultimately lead to misleading bioanalytical data. For this reason, it is important to 
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investigate the effects the hematocrit level may impose on analyte response when employing 

SPME extractions. 

 

Table -3.1- Typical human hematocrit levels32   

Age  Hematocrit Levels 

(%) 

Birth  42 – 64 

Less than 1 month  31 – 67 

1 month – 2 years  28 – 55 

2 – 12 years  34 – 45 

12 – 18 years, female  36 – 46  

12 – 18 years, male 37 – 49  

Adult female  36 – 44 

Adult male  41 – 50 

 

 

3.1.10    pH and Temperature  
Typical commercially available SPME coatings (C18) currently being evaluated throughout 

this research are likely to extract analytes in their undissociated/neutral state at physiological 

pH due to the non-polar nature of the C18 coating41. For this reason, extraction efficiency 

could be optimised by conversion of analytes into their neutral forms by making pH 

adjustment to the matrix. Therefore, a low pH value will improve the extraction of acidic 

compounds and a high pH will enhance extraction efficiency for basic compounds. For 

example naproxen which is acidic has an enhanced extraction efficiency observed at pH 365. 

For in vitro SPME extraction, the matrix is commonly modified to favour extraction by 

increasing the affinity or partition coefficient of the analyte for the extraction phase. 

However, this could adversely affect the quality of the coating and damage the fibre if 

extreme pH levels are utilised. 

On the other hand, it is not possible for in vivo extractions to perform pH optimisation as it is 

not viable to change the pH within a living organism without causing death or harm. For this 
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reason, pH adjustment of the sample is not an option for in vivo sampling and since in vitro 

calibration and quality control samples should mimic the in vivo samples, pH optimisation is 

unnecessary during method development of in vivo applications.  

Temperature modification also plays a vital role for SPME extractions, increasing the 

temperature may have an impact on reduction of the equilibration time. However, 

temperature alteration is also not feasible in vivo therefore it is not required during in vitro 

method development for in vivo application. Although the temperature of the blood used to 

prepare calibration standards and quality control samples (in vitro) should match 

physiological temperature. In which case, the blood will require warming to approximately 

37oC prior to spiking in vitro standards and QCs. Post-spiked standards and QCs should also 

be left at this temperature for a set time to match study samples. 

 

3.1.11    Effect of Anticoagulant  
Anticoagulants are used to prevent blood coagulation at the point of sample collection by 

conventional venepuncture. Keeping the sample in liquid form helps with downstream 

manipulation, such as taking sub-aliquots for extraction and analysis. Blood collection of 

samples and control matrices for bioanalytical analysis are typically performed using sample 

tubes containing an anticoagulant110. The choice of anticoagulant for bioanalysis is 

sometimes based on what has historically been used within an animal facility. Selection of 

the right anticoagulant is vital for some clinical chemistry applications. For example, 

measuring the sodium content of blood requires an anticoagulant that does not contain a 

sodium counter ion. 

The most commonly used anticoagulants for bioanalysis are ethylenediaminetetra acetic acid 

(EDTA) and potassium oxalate. These anticoagulants exist as salt forms with different 

cations (counter ions), for example potassium K1 and K2 EDTA110. This aspect is not 

considered crucial for bioanalytical applications, recently, the European Bioanalytical Forum 

(EBF) collected validation data to examine the impact of anticoagulant counter ion change 

and showed no effect on the precision and accuracy of more than 40 different LC-MS/MS 

bioassays111. 

Considerations of the impact of anticoagulants on SPME applications must be highlighted 

since there is a discrepancy between in vivo samples and in vitro samples. In vivo SPME 
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samples are directly exposed to the systemic circulation without the need for an 

anticoagulant. However, these would be quantified against in vitro samples which are 

exposed to spiked calibration standards and quality control samples prepared in whole blood 

containing an anticoagulant. Thus, to offer a realistic comparison between the two, blood 

collected without anticoagulation must be utilised alongside blood collected into tubes 

containing anticoagulant. The issue with this approach is that blood collected without 

anticoagulation readily clots at room temperature and it would be difficult to maintain matrix 

homogeneity while exposing SPME fibres to the matrix for a pre-defined time period. 

This could potentially be a limitation of the SPME technique, however previous work with 

other microsampling techniques has shown no impact of anticoagulation on bioanalytical 

data. For example, the viability of using volumetric absorptive microsampling (VAMs) 

devices without pre-treatment with anticoagulants was investigated by Miao et al112. No 

difference was found between samples with and without the anticoagulant. A similar study 

was conducted by Mastronardi et al113 assessing the levels of glycated haemoglobin (HbA1.) 

The study utilized DBS cards where blood collection was performed directly from a finger 

prick onto a DBS card without the use of an anticoagulant versus whole blood extraction 

using blood collected into EDTA tubes. The results from both types of sample collection 

were comparable without significant differences observed.  

Although the use of an anticoagulant agent remains a potential risk/ limitation of the SPME 

technique, the above examples clearly demonstrate that there is a low risk of the 

anticoagulant on bioanalytical data.  
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3.1.12  Aims and Objectives 

The aims and objectives of this chapter are to describe and assess the in vitro experiments 

typically conducted during the method development of SPME assays. Prior to in vivo study 

start, essential parameters such as extraction time profiles, desorption time profiles and on-

fibre stability must be examined to build an in vitro protocol that can be applied to the in vivo 

study. This will be performed by establishing in vitro equilibrium extraction and desorption 

profiles of the three test compounds (metoprolol, propranolol and diclofenac), followed by 

on-fibre stability investigations for all three analytes at ambient temperature for up to six 

weeks. Other parameters such as characterization of the physical properties of SPME fibres 

will be identified using scanning electron microscope, the impact of hematocrit levels on 

SPME extractions will be assessed and the effect of blood flow rate on SPME extractions will 

also be examined. 
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3.2  Experimental 
3.2.1 Chemicals and Materials  
Metoprolol tartrate, propranolol hydrochloride, diclofenac sodium salt and diclofenac 13C6 

sodium salt 4.5-hydrate were purchased from Sigma-Aldrich (Dorset, UK); metoprolol-d7 and 

propranolol-d7 were acquired from Toronto Research Chemicals (Ontario, Canada). 

BioSPME silica probes consisting of a titanium wire coated with a biocompatible C18 

extraction phase, housed inside hypodermic needle (medical grade, stainless steel, 22 gauge 

outer tubes) were supplied by Supelco (Bellefonte, PA, USA); each fibre has a thickness of 

45 µm and 15 mm length of coating, particle size approximately 5 µm. Control rat blood 

stored at +4oC, used within 48 h of collection, and control rat plasma containing K2-EDTA to 

prevent coagulation were obtained from B&K Universal (Grimston, Hull, UK). Control fresh 

bull blood containing heparin was obtained from a local abattoir (Leeches, Royston, UK). All 

animal studies were ethically reviewed and carried out in accordance with Animals 

(Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of 

Animals. Phosphate buffered saline tablets, dimethylformamide (DMF) and formic acid 

(reagent grade ≥ 95%) were purchased from Sigma-Aldrich (Dorset, UK). Methanol, 

acetonitrile, propanol and water were of HPLC gradient grade and obtained from Fischer 

Scientific Ltd (Loughborough, UK). 

 

 

3.2.2  Sample Preparation for Scanning Electron Microscope (SEM) 

Analysis 
Physical characterisation of BioSPME fibres was performed using scanning electron 

microscope (field emission SEM, ZEISS SUPRA, Germany). SEM images were acquired by 

a skilled SEM expert Dr. Nathalie Fa (Product Development/GSK) using an acceleration 

voltage of 3kV and a magnification range of 100 – 20,000 X, images acquired using SEM, 

SmartPI software, Germany. 

Five sets of fibres (n=3) were prepared for SEM examination; Set 1 = blank fibres, Set 2 = 

fibres exposed to 200 µL of fresh control rat blood containing K2-EDTA for 30 min, Set 3 = 

fibres stored for two days at ambient temperature subsequent to rat blood exposure, Set 4 = 

fibres washed with 200 µL of deionised water following exposure to rat blood and Set 5 = 

fibres desorbed with 200 µL of 100% acetonitrile (15 min desorption period) subsequent to 
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blood exposure. In addition, a small section of one of the blank fibre surface was 

intentionally removed using a scalpel to identify the coating thickness. 

Each fibre was cut using a blade cutter, into 10 mm piece, mounted using carbon conductive 

tape (Agar Scientific, UK) on individual SEM specimen target (ZEISS SUPRA, Germany) 

and then sputtered with a platinum coat using a sputtering device (Quorum Technologies, 

UK) and analysed on the SEM. 

 

 

3.2.3 Preparation of Standard Stocks, Working Solutions and Test 

Samples  
Primary stock solutions for each test compound (metoprolol, propranolol and diclofenac) and 

their stable label isotopes utilised as internal standards (IS) were prepared in DMF 

(1 mg/mL). Serial dilutions of each analyte’s stock solution were performed in 

acetonitrile/water (1:1, v/v) to give working standard concentrations of 1, 10 and 100 µg/mL. 

Internal standard working solutions for each analyte were prepared from the primary stock 

solution to give a final concentration of 100 ng/mL in acetonitrile.  

Analytical test samples were prepared fresh on the day of analysis by spiking an appropriate 

volume of the working standard solutions into fresh control rat blood containing EDTA, 

stored at + 4oC and used within 48 h of blood collection. The solvent used to spike into the 

blood matrix did not exceed 5% of the total volume. Three concentrations 10, 100 and 500 

ng/mL were prepared for each test analyte. 

 

 

3.2.4 Extraction and Desorption Time Profile 

SPME samples were preconditioned by immersing the fibres into 200 µL of methanol, 

followed by 200 µL water for a period of 15 min in each solvent. This step is necessary to 

wet the C18 chains of the coated phase and ultimately facilitate optimal extraction efficiency. 

An extraction time profile was constructed for each test compound by exposing n = 6 fibres, 

per timepoint per concentration, to 200 µL blood aliquot of the spiked test samples 

(Concentration 10, 100 and 500 ng/mL). Seven extraction time points were studied (0.5, 1, 2, 

3, 5, 10 and 30 min) at ambient temperature and samples were extracted at each time point by 

removing the SPME probes and rinsing them briefly for 30 s with 200 µL purified water to 

ensure removal of sample residue adhered to the outside of the coating. Subsequently the 
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fibres were placed in 200 µL of desorption solvent, 100% acetonitrile containing 100 ng/mL 

of internal standard, for 15 min. Extracted samples were then analysed by LC-MS/MS. In all 

cases; preconditioning, extraction and desorption were performed under constant orbital 

agitation of 500 rpm using a compact laboratory shaker (MS 3 Digital, IKA). All fibres were 

directed through the needle into a 96 deep well plate with a frame to ensure that the entire 

extraction phase (coated region) was immersed in the sample (Figure -3.3-).  

 

 

 

 

 

 

 

 

 

 

 

Figure -3.3- SPME fibres exposed to methanol for preconditioning of the coated C18 

phase. 

 

 

To evaluate the desorption time profile, the above procedure for the blood extraction was 

repeated, keeping the fibres exposed to the blood sample for 30 min. But three desorption 

timepoints were investigated. Analytes were desorbed off the fibres (n=6) after being exposed 

to the desorption solvent for 15, 30 and 60 min. 

 

 

3.2.5  Optimisation of Desorption Solvent  
In order to assess the efficiency of desorption solvent, four different solvents and solvent 

mixtures were investigated; 100% acetonitrile, 100% methanol, 70/30 acetonitrile/water (v/v) 

and 70/30 acetonitrile/water (v/v) containing 0.1% formic acid. The impact of the differences 

in organic composition and pH of desorption solvent were investigated to determine the 

effect on the measured analyte response. SPME samples were prepared by extracting n =3 
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fibres exposed to rat blood containing K2-EDTA, spiked with 10 and 500 ng/mL of each test 

compound. The extraction procedure was performed at 30 min and desorption at 15 min 

under constant orbital agitation of 500 rpm. All fibres were preconditioned with methanol and 

water for 15 min in each solvent and were rinsed with water for 30 s following extraction. 

The desorbed extracts were subsequently injected onto the LC-MS/MS.  

 

 

3.2.6 The Effect of Hematocrit Level on Assay Bias  
The impact of variable hematocrit levels on SPME extraction was investigated using 

metoprolol as the test analyte. Rat blood samples with a range of nominal hematocrit values 

20 - 80% were prepared. Control rat blood was centrifuged (5810R, Eppendorf, Germany) at 

1500 g for 20 min to produce a layer of plasma separated from blood cells. Prior to 

centrifugation, the hematocrit level of the control rat blood was determined (50%). Six 

additional blood samples were produced with the following hematocrit levels; 20, 30, 40, 50, 

60, 70 and 80% by either removing appropriate volumes of plasma from centrifuged blood, or 

adding plasma to uncentrifuged blood, followed by gentle mixing to avoid blood cell lysis. 

The hematocrit value for each blood sample was confirmed by centrifugation on a 

haematospin (1300, Hawksley, UK) using 1.15 x 75 mm micro hematocrit tubes (Brand, 

Germany) (Figure -3.4-), followed by observing hematocrit levels on a micro-hematocrit 

reader (Hawksley, England).  

 

 

 

 

 

 

 

 

 

 

Figure -3.4- Hematospin containing micro-hematocrit tubes for measuring blood 

hematocrit levels.  
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Each blood sample was spiked with an appropriate volume of metoprolol working solution (< 

5% non-matrix solvent) to give a final target concentration of 100 ng/mL. SPME samples 

(n = 3) were prepared by preconditioning fibres with methanol and water, 15 min in each 

solvent and exposure to blood samples for 30 min, followed by desorption with 100% 

acetonitrile containing 100 ng/mL of internal standard. The whole process was performed 

under constant orbital agitation of 500 rpm. Extracts were then analysed by LC-MS/MS.  

 

 

3.2.7  Sample Preparation for Stability Analysis  
On-fibre compound stability was assessed for all three test analytes (metoprolol, propranolol 

and diclofenac). Three concentration levels were examined (10, 100 and 500 ng/mL) and n = 

6 fibres were extracted at each concentration and time point. Three sets of fibres (n = 6 per 

set) were conditioned and exposed to spiked rat blood for 30 min and washed with water for 

30 s post extraction. One set of fibres were desorbed at T0 straight after sampling, with 

200 µL of 100% acetonitrile containing 100 ng/mL internal standard. The other two sets were 

stored post extraction at ambient temperature, one set was subsequently desorbed following 

storage for two weeks and the last batch were desorbed after six weeks. All extracts were 

analysed by LC-MS/MS on the same desorption days. Analyte response following fibre 

storage was compared to analyte response at T0. Instrument performance was evaluated using 

system suitability solutions injected onto the LC-MS/MS on each day of analysis to verify 

that system performance was reproducible and unchanged during this time. System suitability 

solution is a test mix containing metoprolol, propranolol and diclofenac at 10 ng/mL prepared 

in bulk at the start of the stability investigation and injected on analysis days to assess system 

performance. 

 

 

3.2.8 Preparation of Bull’s Blood for ex vivo Circulatory Simulation   
Approximately 2 L of fresh bull’s blood was obtained from a local abattoir in 4 plastic bottles 

each containing approximately 6,000 units of heparin dissolved in 2 mL of Ringer’s saline. 

The bottles were rotated to ensure their interior surfaces were washed by the heparin solution. 

Red blood cells (RBCs) were prepared as detailed below;  

Spin 1: The blood was taken and divided between 4 centrifuge pots and spun at 

approximately 3000 g for 15 min in a refrigerated centrifuge at +4 oC. The layer containing 



71 
 

white blood cells and platelets (buffy coat) in addition to the plasma supernatant were then 

removed by aspiration. 

Spin 2: The remaining RBCs were diluted to approximately double their volume with 

Ringer’s saline solution containing approximately 10,000 units/L heparin and centrifuged as 

described above.  

Spin 3: The supernatant was again removed and the above process repeated using un-

heparinised Ringer’s solution.  

Prior to storage, approximately 120 mg of glucose (Merck, AR), 1 mL of penicillin 

streptomycin solution (10000 IU/mL-10000 uG/mL, Gibco BRL) dissolved in 2 mL of 

Ringer’s saline was added per approximate 100 mL of RBC pellet. Further additions of this 

solution were made every five days during storage. Prepared RBCs were stored at 0-5 oC and 

discarded after a maximum of 14 days. 

 

On each experimental day, the required volume of washed bovine RBCs were split into 

50 mL centrifuge tubes (4 x 20 mL) and diluted approximately 1:1 with Krebs-Ringer 

Biocarbonate (KRB) (K4002, Sigma Aldrich, UK). The cells were centrifuged at 3000 g for 

10 min and the supernatant removed and discarded. This process was repeated, and following 

removal of the supernatant for the RBC pellets were pooled.  

The hematocrit count of the final RBC pellet was determined as (95%). This was used to 

calculate the volume of pellet required to obtain a hematocrit level of 50-52% (mimicking 

expected rodent hematocrit level) in the final perfusate (total volume 150 mL). 

Approximately 4.5 g of bovine serum albumin (A2153, Sigma Aldrich, UK) was dissolved in 

50 mL KRB. To this solution the calculated volume of RBC pellet was added, and further 

KRB added until a final volume of 150 mL was obtained. Finally, 150 mg of glucose were 

added to this solution.  

The hematocrit level was then measured using hematocrit tubes and a hematospin centrifuge 

to ensure that 50% hematocrit was prepared. 

 

3.2.9 ex vivo Circulatory Simulation for Effect of Blood Flow Rate  
In order to achieve relevant in vitro experimental conditions that partially mimic the dynamic 

in vivo extraction conditions and aid assessment of the effect of blood flow rate on SPME, a 

simulated circulatory blood system was employed. Figure -3.5- shows a photo of the flow 

system model of the systemic circulation. A peristaltic pump (Watson Marlow, 505S) was 
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utilized to function as an artificial heart, pumping bull’s blood containing heparin, from a 

150 mL reservoir of matrix. Rat blood was replaced with bull blood due the large volumes 

needed for the ex vivo simulations. A range of Tygon® silicone tubing (Saint-Gobain 

Performance Plastics, France) were used to simulate the circulatory system. Bull blood was 

pumped from the reservoir up through the tubing into a heat exchanger to maintain the 

temperature of the blood at approximately 36-37 oC and then entered a distilling column 

shaped flask acting as an artificial lung where blood is oxygenated from exposure to air 

through vents located on either sides of the flask. The blood then passed through flexible 

plastic tubing mounted on a holder to enable sampling and needle piercing of the SPME 

probe (Figure 3.6-). A manual pressure regulator was also employed to provide pressure 

control.  The pH of the blood was measured at the onset and at the end of the experiment. 

This remained the same (approximately 7.0) throughout the entire procedure. Appropriate 

volumes of each analyte working solution were added to the matrix reservoir to give three 

concentrations (10, 100, 500 ng/mL). Three blood flow rates were studied (20, 30 and 

75 ml/min) at each concentration level and n = 6 fibres were analysed at each flow rate and 

analyte concentration. SPME fibres were conditioned by immersing the fibres into 200 µL of 

methanol followed by 200 µL of water and then inserted inside the simulated vein for 30 min. 

Desorption occurred using 200 µL of 100% acetonitrile containing 100 ng/mL of analyte IS.  

The above process was repeated for each test compound. The entire system was washed with 

purified water, flushed with PBS and tubing replaced prior to changing to another analyte.  
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Figure -3.5- Snapshot of the in vitro simulated circulatory system using bull’s blood with 

a peristaltic pump providing a controlled blood flow rate, temperature maintained at 

37oC and silicone tubing mimicking in vivo veins.    

 

 

 

 

 

 

 

Figure -3.6- BioSPME probe pierced through the artificial vein, exposed to circulating 

blood for 2 min to enable analyte extraction. A restrainer was utilised to hold the 

artificial vein in place for sampling, this is similar to an animal restrainer used to enable 

efficient access to in vivo veins during sampling. 
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3.2.10  LC-MS/MS Analysis 

LC-MS/MS analysis was performed using the same methodology described in Chapter 2, 

Section 2.2.4. 

 

3.3 Results and Discussion 
3.3.1 Physical Characterisation of SPME Fibres 
The surface of the SPME fibres were examined using scanning electron microscope with a 

view to characterise the physical properties of the fibres at various stages of the SPME 

process. Figure-3.7- shows the structure of the coated phase, which consists of silica beads 

with C18 particles bonded to the surface of a stainless steel wire with the particles bonded to 

each other by use of polyethylene glycol (PEG) glue. The fibres appear to have a smooth thin 

coated surface when viewed with the naked eye, however SEM images in Figure -3.7- of 

blank fibres suggest that the coating contains unfilled parts, “holes” scattered between the 

C18 silica beads.   

Figure-3.7- image C and D show a cracked fragment and a cavity in the blank fibres (size 

~8µm) suggesting inconsistencies with the coating process. This non uniform coating is 

expected to be an important contributing factor to inter-fibre variability, which ultimately 

leads to irregular extraction efficiency and reduction in reproducibility. Vuckovic et al42 

investigated the inter-fibre reproducibility of biocompatible C18 fibres using model drugs 

and the results showed that reproducibility was ≤11% RSD for n = 10 fibres. Musteata et al114 

also assessed inter-fibre reproducibility of custom made biocompatible fibres where RSD 

values were ≤10%. While Lord et al61 utilised polypyrrole coated probes that has 

approximately 30% inter-fibre variability and Schubert et al115 reported 47 – 52% RSD 

values for the extraction of linezolid. Such values are considered to be undesirably high for 

regulated bioanalytical applications, where total analytical variability is required to be within 

±15%12. However, this aspect is currently being explored by the vendors (Supelco/Millipore 

Merck) in response to feedback from this research. They are currently looking to further 

improve inter-fibre reproducibility through production of highly homogenous fibres and 

better quality control procedures. 
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Figure -3.7- SEM images of blank SPME fibres coated with 5 µm C18- bonded silica 
particles. (A = blank fibre, Mag. = 100 X), (B = cracked blank fibre, Mag. = 100 X), 
(C = cracked blank fibre, Mag. = 500 X), (D = hole within fibre, Mag. = 2.5 K X), 
(E = fibre silica particles, Mag. = 2.5 K X), (F = fibre silica particles, Mag. = 2.5 K X). 

 

 

 
 
Figure -3.8- SEM images of SPME fibres exposed to fresh rat blood for 30 min without 
wash or desorption steps. (A = fibre exposed to blood, Mag. = 100 X), (B = fibre exposed 
to blood, Mag. = 100 X), (C = hole within fibre, Mag. = 1.5 K X), (D = hole within fibre, 
Mag. = 1.4 K X), (E = stripped fibre coating, Mag. = 600 X), (F = hole within fibre, Mag. 
= 2.5 K X). 
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The size of each C18 silica bead is approximately 5 µm as shown in Figure-3.7- image D, E 

and F. This is consistent with the manufacturer’s specification for the biocompatible fibres43. 

Figure -3.8- illustrates fibres subsequent to blood exposure. Images A-D show a thin layer 

covering some of the empty spaces or the holes previously detected on the blank fibres. This 

could be a sheet of fat or matrix components that adhere to the fibre during blood exposure. 

Other techniques such as energy dispersive spectrometry (EDS)116 or matrix assisted laser 

desorption (MALDI)117 could be utilised to identify the chemical nature of these components 

and confirm whether its matrix related or if its material leaching from the fibre itself. These 

techniques are suitable for surface imaging of biological and chemical materials to identify 

the individual components117. 

Although the size of a red blood cell (~7-8 µm) allows it to fit into these holes, the way the 

SEM samples are prepared involves the use of vacuum followed by platinum coating which 

potentially may cause intact cells to collapse. For this reason, it is anticipated that this thin 

sheet of material is not composed of intact blood cells, but could be debris of red blood cells. 

Figure -3.8- image E shows a deliberately stripped section of a fibre revealing the number of 

C18 layers (~ 6 to 7) coated onto the fibre which in turn provides an overview of the fibre 

thickness (~ 6 to 7 equating to approximately 40 µm fibre thickness) as well as the number of 

active sites. Similar findings were observed by Vuckovic et al42 where 40 µm fibre thickness 

was shown upon removal of a portion of the fibre coating. 

Figure -3.9- shows stored fibres subsequent to blood exposure for 30 min. Although in 

practice, fibres are washed prior to storage but in this instance fibres were stored immediately 

after blood exposure to observe the impact if blood residues were left on fibre and not 

completely washed off after extraction. Images A-F demonstrate dried blood forming a crusty 

hard layer on the fibre following storage at ambient temperature for 24 h.  Figure-3.10- shows 

fibres washed with water for 30 s following blood exposure, image A illustrates a mucus 

looking substance attached to the fibre after the wash step.   

Figure-3.11- shows fibre images post desorption which clearly demonstrates the recovery of 

smooth, well defined C18 particles without any smears or uneven surfaces. Although most of 

the thin sheets or layers covering the hollow spaces have been distorted, their presence is still 

apparent which indicates that exposure to an organic solvent during the desorption step had 

no impact on this.  The impact of this is unknown, whether it could contribute to the 

variability of extraction results, further investigations are required to understand the nature of 

these thin sheets and their effect. This could be performed using MALDI117 and or EDS118 as 

described earlier.  
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Figure -3.9- SEM images of SPME fibres stored for 24 hours at ambient temperature 

following exposure to control rat blood for 30 min. (A = fibre exposed to blood and 

stored, Mag. = 100 X), (B = fibre silica particles with blood following storage, Mag. = 2.5 

K X), (C = dried blood residue on fibre upon storage, Mag. = 500 X), (D = silica 

particles of fibre covered with blood upon storage, Mag. = 2.5 K X), (E = silica particles 

of fibre covered with blood upon storage, Mag. = 500 X), (F = silica particles of fibre 

covered with blood upon storage, Mag. = 2.5 K X).  

 

 

 

 

Figure -3.10- SEM images of SPME fibres after the wash step (rinsing with water for 

30 s) subsequent to blood exposure for 30 min and prior to desorption. (A = fibre 

subsequent to wash, Mag. = 100 X), (B = fibre silica particles subsequent to wash, Mag. 

= 500 X), (C = hole within fibre subsequent to wash, Mag. = 1.5 K X). 
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Figure -3.11- SEM images of SPME fibres subsequent to a desorption step, post analyte 

extraction. (A = fibre following desorption, Mag. = 100 X), (B = fibre silica particles 

following desorption, Mag. = 500 X), (C = fibre silica particles following desorption, 

Mag. = 500 X). 

 

3.3.2 Extraction Time Profile 

In order to study the equilibration time profile to establish the time required for the SPME 

C18 fibres to reach equilibrium, in vitro extraction time-course experiments were conducted 

in rat blood. An optimum equilibrium or pre-equilibrium time for in vivo applications must be 

determined as part of the in vitro method development. 

Prior to this, it was necessary to assess the suitability of the instruments used to establish the 

extraction time profiles. For this reason, an experiment was performed to investigate the 

linearity of the mass spectrometer response. This was conducted using spiked calibration 

standards in PBS for all three analytes (metoprolol, propranolol and diclofenac). These 

samples were extracted using protein precipitation. PBS was utilised rather than blood or 

plasma to decouple the outcome from any matrix effects. Also protein precipitation extraction 

was used to minimize the impact of the extraction technique i.e. to isolate any potential 

variability contributions that could be added if SPME was used. 

Figure -3.12-  shows that the response of the mass spectrometer is linear for all analytes 

across a large dynamic concentration range (1- 1000 ng/mL) with the following regression 

coefficients 0.993, 0.999 and 0.998 for metoprolol, propranolol and diclofenac respectively. 

This confirms the results of the validated methods developed in Chapter 2 for all three 

analytes. This also indicates that the detector response will be linear for all three analytes at 

the concentrations that will be investigated throughout this research. So, if any non-linearity 

is observed for adsorption or desorption profiles, it has now been confirmed that it is not due 

to the detector. 
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Figure -3.12- Response versus concentration calibration curve for metoprolol, 

propranolol and diclofenac at a range of 1-1000 ng/mL, analytes were spiked into PBS 

and extracted using protein precipitation followed by LC-MS/MS analysis.  
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Figures -3.13-, -3.14-and -3.15- illustrate an extraction time profile for metoprolol, 

propranolol and difclofenac respectively, at three different concentration levels (10, 100 and 

500 ng/mL) achieved by measuring the analyte response as a function of time. The data were 

normalized by dividing the analyte response (peak area) by the actual spiked concentration. 

 

 

 

Figure -3.13- Normalized response versus extraction time profile of metoprolol 

extracted from rat blood spiked at 10, 100 and 500 ng/mL. Data represents mean 

analyte peak area for n = 6 fibres at each time point, results were normalized by 

dividing the response (peak area) by actual spiked concentrations. Error bars 

constructed based on standard deviations (1 SD used). 
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Figure -3.14- Normalized response versus extraction time profile of propranolol 

extracted from rat blood spiked at 10, 100 and 500 ng/mL. Data represents mean 

analyte peak area for n = 6 fibres at each time point, results were normalized by 

dividing the response (peak area) by actual spiked concentrations. Error bars 

constructed based on standard deviations (1 SD used). 
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Figure -3.15- Normalized response versus extraction time profile of diclofenac extracted 

from rat blood spiked at 10, 100 and 500 ng/mL. Data represents mean analyte peak 

area for n = 6 fibres at each time point, results were normalized by dividing the 

response (peak area) by actual spiked concentrations. Error bars constructed based on 

standard deviations (1 SD used). 

 

The initial data points for the different concentrations of the metoprolol extraction time 

profile (Figure -3.13-) do not overlay, despite them being within the linear region of the 

response versus concentration from the detector. There is a difference between the low 

concentration (10 ng/mL) data compared with the mid and high concentrations at the early 

time points, with a greater response being observed at lower concentrations. The profiles then 

follow the same pattern and flatten out at the same position which indicates that they are 

following similar dynamics. Similar profiles were observed for propranolol and diclofenac. 

However, the normalized profile for the low concentration (10 ng/mL) for diclofenac is 

consistently higher than the mid and high profiles at all time points. This discrepancy could 

be due to the quality of the SPME fibres, where the inter-fibre variability could be more 

apparent at the lower concentration which impacts the mean of the response for n = 6 fibres, 

making the low concentration point appear to be higher than the data points for the mid and 

high concentrations. 
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It is noted that in all cases analyte response increased with time, however the complete profile 

was not accomplished and equilibrium was not reached by 30 min. The amount of analyte 

extracted at equilibrium is the largest analyte amount that can be extracted from a given 

sample by a given SPME fibre, and further increase in time does not contribute to additional 

increase in the extracted amount of analyte97. Thus, the equilibration time can sometimes be 

inconveniently long because of the slow analyte diffusion rates. The physiochemical 

properties of the analytes as well as other factors such as the boundary layer may also 

significantly contribute to the time required to reach equilibrium. 

Similar results were reported by Lord et al61 when assessing the time-extraction profiles of 

benzodiazepines. Extraction equilibrium was reached after 60 min, however pre-equilibrium 

conditions were used and 5 min sample exposure was employed. Aresta et al65 also showed 

extraction time profiles for naproxen using carbowax coated fibres, equilibrium was not 

reached by 60 min. While shorter equilibration times (15 – 20 min) were shown by Boussahel 

et al119 for pesticide extractions from water using PDMS/GC fibres.  In all cases such 

equilibration times are not suitable for in vivo PK/TK applications. 

Due to the fact that equilibrium in this study was not reached by 30 min for all three analytes, 

a follow up experiment was conducted for one of the analytes (metoprolol). It was decided 

that only one analyte would be further examined due to the limited number of the prototype 

SPME fibres available. Metoprolol was chosen because this analyte was to be used in further 

studies within this research. An extended extraction time was used to investigate the time at 

which equilibrium is achieved. This experiment was performed by quantifying the recovered 

concentrations of metoprolol at each time point rather than using the obtained response to 

gain a better understanding of recovery throughout the equilibrium profile. Quantification 

was achieved using calibration standards prepared in the desorption solvent (acetonitrile) 

spiked with metoprolol at a range of 1 – 1000 ng/mL. 
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Figure -3.16- Combined extraction-time profile of metoprolol where recovered 

concentrations were normalised by dividing them by the actual spiked concentrations 

(mean ± SD, of n = 6 fibre determinations) (1 SD used). 

 

 

The quantitative extraction-time profile for metoprolol displayed in Figure -3.16- shows that 

the curve started to flatten out indicating that equilibrium was achieved after 180 min (3 h) 

exposure to blood. It also shows that concentration is proportional to analyte response (peak 

area) when comparing Figure -3.13- to -3.16-. This further confirms that equilibrium was not 

reached after 30 min as shown previously in Figure -3.13-. Each profile needed additional 

time for equilibrium, this could also be the case for propranolol and diclofenac. 

However, such long equilibration times provide insufficient temporal resolution to construct 

an accurate PK profile when applied in vivo. This is particularly true for early PK time points, 

where it is sometimes necessary to take multiple samples within a very short period of time 
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such as 5 min, 15 min, 25 min and 1 h after dosing. Also the practicality of leaving the probe 

within a living organism for this length of time is of a major concern in addition to ethical 

considerations. 

The time required to reach equilibrium is independent of sample concentration, this is evident 

in Figures -3.13-, -3.14- and -3.15- and -3.16- and has been previously established in various 

studies published in literature41. The ratio of the amount of analyte extracted at each 

timepoint for different concentrations remained constant throughout the extraction profile 

within acceptable experimental error (± 15% as outlined by bioanalytical FDA guidelines12). 

For example, the ratio between the amount of metoprolol extracted at 10 min for the low and 

mid concentration is 1.27, this ratio at 30 min is 1.14 and at 4 h is 1.21 as shown in 

Table -3.2-. This trend was observed for all three concentrations throughout the time profile. 

This indicates that pre-equilibrium conditions and shorter extraction times could be utilized 

as long as all in vitro calibration standards and quality control samples are exposed to the 

matrix for the same length of time as in vivo sampling time. As previously mentioned, 

equilibrium time is affected by coating thickness, agitation conditions and analyte distribution 

constants. The long equilibration times observed for the fibres could be attributed to the 

thickness of the coated phase which is approximately 45 µm, thicker fibres requires longer 

periods of time for the analyte to diffuse through the particles layers and therefore result in 

longer equilibration times41. Reduction in the particle size of the extraction phase may allow 

for thinner coated fibres without impacting the number of active sites available for extraction 

and therefore decreasing the length of time required for equilibrium. 

The mechanics of agitation and fluid dynamics could also impact the equilibration process 

although only minor changes to equilibration times were observed by Lord et al97 when 

maximum orbital sample agitation was compared to no agitation. 
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Table -3.2- Recovered concentration ratio of metoprolol at each time point (mean ± SD, 

n = 6) (1 SD used). 

Time 
(minutes) 

Recovered Concentration Ratio 
100 ngmL-1/10 ngmL-1 500 ngmL-1/100 ngmL-1 500 ngmL-1/10 ngmL-1 

10 1.27  ± 0.035 0.849  ± 0.044 1.08  ± 0.037 
30 1.14  ± 0.069 0.822  ± 0.078 0.932  ± 0.064 
60 1.03  ± 0.099 0.914  ± 0.103 0.944  ± 0.094 

120 0.96  ± 0.115 1.120  ± 0.109 1.07  ± 0.122 
180 1.14  ± 0.131 0.929  ± 0.149 1.06  ± 0.139 
240 1.21  ± 0.127 0.926  ± 0.154 1.12  ± 0.143 

 

Several experimental limitations should also be considered when constructing in vitro 

extraction-time profiles during analyte method development; these include the potential 

change in blood consistency over time where some blood congealing effects were observed at 

the later timepoints, adhesion of matrix components to the outer parts of the probe i.e. the 

needle area due to long blood exposure periods which may require longer washing steps prior 

to desorption and finally the practicalities of executing such experiments within a working 

day.  
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3.3.3 Desorption Time Profile and Optimisation of Desorption Solvent 

Desorption, the final step in the SPME extraction process plays a vital role in maximizing 

method sensitivity. Increasing desorption efficiency by optimising the length of desorption 

time and selecting appropriate desorption solvents is a crucial element of in vitro method 

development. Figures -3.17, -3.18- and -3.19- show desorption time profiles for metoprolol, 

propranolol and diclofenac respectively. Desorption was performed using 100% acetonitrile 

containing IS. 

 

 

 

Figure -3.17- Normalized response versus desorption time profile of metoprolol 

extracted from rat blood spiked at 10, 100 and 500 ng/mL. Metoprolol desorbed using 

100% acetonitrile containing IS. Data represents the mean analyte peak area for n= 6 

fibres at each timepoint. Data were normalized to spiked concentrations and error bars 

constructed based on standard deviation (1 SD used). 
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Figure -3.18- Normalized response versus desorption time profile of propranolol 

extracted from rat blood spiked at 10, 100 and 500 ng/mL. Propranolol desorbed using 

100% acetonitrile containing IS. Data represents the mean analyte peak area for n= 6 

fibres at each timepoint. Data were normalized to spiked concentrations and error bars 

constructed based on standard deviation (1 SD used). 
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Figure -3.19- Normalized response versus desorption time profile of diclofenac 

extracted from rat blood spiked at 10, 100 and 500 ng/mL. Diclofenac desorbed using 

100% acetonitrile containing IS. Data represents the mean analyte peak area for n= 6 

fibres at each timepoint. Data were normalized to spiked concentrations and error bars 

constructed based on standard deviation (1 SD used). 

 

All desorption profiles are relatively flat suggesting that complete desorption was achieved 

after 15 minutes for all analytes across three different concentrations. Concentration 

dependency was also observed with desorption profiles of all three analytes, where 

normalized response of the lower concentration (10 ng/mL) was higher than the mid and high 

concentrations. This could be due to higher recovery at lower concentrations, potentially due 

to solvent saturation at higher concentrations or detector saturation. However, the latter is 

unlikely because the response for all anlytes is in the linear range of the detector as 

demonstrated earlier in Figure-3.12-.  

An interesting trend was observed throughout the majority of the profiles where variability 

decreased with time. This could potentially be due to longer agitation periods which seems to 

improve the variability. Or it could be due to the fact that the analyte is desorbed off the fibre 

from different areas, starting with the surface followed by the inner coated particles and 

therefore different desorption pathways and kinetics may lead to larger variability. 
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Another potential reason could be that complete desorption equilibrium is established with 

longer desorption periods, but some of the desorbed analyte might be re-adsorbed onto the 

SPME fibre. Finally, a portion of the analyte could be sticking to the vial (desorption tube) 

giving better consistency. 

The desorption profiles shown above were flat between 15-60 min, therefore the time 

required for maximal desorption could be selected between 15-60 min. Desorption time 

periods of < 5 min do not provide practical advantages and those > 30 min are 

disadvantageous for throughput.  Current bioanalytical extraction or clean up techniques prior 

to analysis range in complexity from very quick and simple protein precipitation methods to 

more complex liquid-liquid extraction and SPE methods77. While microsampling techniques 

such as dried blood spots (DBS) require additional steps such as sample drying on the DBS 

card (typical recommended time is 2 h), punching out the DBS disk or whole spot followed 

by solvent extraction using a suitable shaker for 2 h120. Thus, the time taken for the analyst to 

complete the extraction process is variable depending on the extraction technique. This 

implies that a SPME desorption time of approximately 30 min can offer operational 

advantages to the analyst. Particularly, when sample freezing and defrosting, aliquoting and 

centrifuging steps are all removed and the only step subsequent to sample collection is the 

desorption stage within the bioanalytical laboratory. This step could be further improved with 

decreased manual intervention and introduction of laboratory SPME automation techniques. 

It is also important to select a desorption solution and volume that optimize both desorption 

efficiency and the degree of pre-concentration (small volume) while maintaining adequate 

chromatographic peak shape through matching of the solvent composition to that of the 

mobile phase as much as possible87. 

Different desorption solvents were also evaluated to understand the impact on analyte 

recovery. The choice of solvents varied from 100% organic such as acetonitrile to others 

containing aqueous and finally an acidified composition. This is to understand whether the 

affinity of the test compounds for each solvent is different and in turn result in higher or 

lower analyte recovery. Figures -3.20-, -3.21- and -3.22- illustrate the normalized peak area 

values for two concentration levels (10 and 500 ng/mL) obtained after desorption with 

various solvent compositions. It was noted that desorption efficiency was almost halved for 

propranolol desorbed with methanol compared with acetonitrile at the high concentration 

(500 ng/mL), this effect was less apparent with metoprolol. Propranolol is less hydrophilic 
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than metoprolol121, therefore the affinity of each analyte to various solvents is different 

depending on the chemical structure of the analyte and its physiochemical properties.  

Diclofenac on the other hand, showed no difference in response at 500 ng/mL across all 

desorption solvents and only a minimal effect was observed at the lower concentration 

10 ng/mL where addition of aqueous composition enhanced the performance of diclofenac 

desorption. A non-linear or an un-proportional trend was observed between both 

concentration levels (10 and 500 ng/mL) for both propranolol and diclofenac which may 

impact the accuracy (recovery) of the drug concentrations when using SPME. For this reason, 

this must be assessed during method validation and the impact, if any, on the overall recovery 

should be determined. 

 

 

 

Figure -3.20- Optimization of desorption solvent for metoprolol extracted from rat 

blood (mean ±SD, n = 3) spiked at 10 and 500 ng/mL, desorption exposure was 

performed for 15 min using agitation of 500 rpm. Data was normalized to spiked 

concentrations and error bars constructed based on standard deviation (1 SD used). 
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Figure -3.21- Optimization of desorption solvent for propranolol extracted from rat 

blood (mean ±SD, n = 3) spiked at 10 and 500 ng/mL, desorption exposure was 

performed for 15 min using agitation of 500 rpm. Data was normalized to spiked 

concentrations and error bars constructed based on standard deviation (1 SD used). 
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Figure -3.22- Optimization of desorption solvent for diclofenac extracted from rat blood 

(mean ±SD, n = 3) spiked at 10 and 500 ng/mL, desorption exposure was performed for 

15 min using agitation of 500 rpm. Data was normalized to spiked concentrations and 

error bars constructed based on standard deviation (1 SD used). 
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of the targeted compounds and for all concentrations. This correlates with the supplier’s 

(Supelco/Sigma Aldrich) recommendation for desorption of C18 SPME fibres42 and is 

therefore a good default eluent solvent. However, if additional sensitivity is required, then 

other solvents may need to be explored. 

The practice of identifying an optimum solvent for greater extraction efficiency has 

previously been adopted and applied during the method development of other microsampling 

techniques such as DBS24,122. The choice of extraction solvent is dependent on the nature of 

the analyte in terms of its physiochemical properties and its relative affinity for the stationary 

and solvent phases. However generic solvents that may be applicable for a range of analytes 
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sensitivity at low enough reproducibility is obtained. In the case of SPME, acetonitrile would 

be the starting point as a generic desorption solvent.  

 

3.3.4 The Impact of Hematocrit Level on SPME Extraction 
The effect of blood hematocrit level on analyte response was studied for the SPME extraction 

of metoprolol from rat blood samples with varying hematocrit levels (20 - 80%). Only one 

analyte was investigated (metoprolol) due to the limited number of prototype in vivo SPME 

available. Figure -3.23- shows that no consistent correlation was observed between changing 

hematocrit level and analyte response, suggesting that there is no evidence of hematocrit 

impact on SPME extraction. Results for the 60% hematocrit level were not reportable due to 

instrumental failure which prevented sample injection. The data obtained were then 

normalised to the difference in response from the response acquired for the original 

hematocrit level of rat blood prior to centrifugation (i.e. nominal HCT value for rat blood = 

50%) as shown in Figure -3.24-. The difference in response across the hematocrit range is 

< 25% with no particular trends noted. 

The amount of bias that is considered acceptable by international regulatory agencies for a 

quantitative bioanalytical method to be valid is ±15%107, Figure -3.24- shows that the 

percentage difference in response is < 15% from nominal over the range of 20 - 70% 

hematocrit levels which is within the acceptance criteria as stated above. Also, the range of 

HCT covered is more than the range that is likely to be encountered within a preclinical 

study.  
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Figure -3.23- Relationship between rat blood hematocrit and analyte response for 

metoprolol (100 ng/mL). Each data point is the average analyte response of n = 6 fibres. 

Error bars set at standard deviation (1 SD used). 

 

 

 

 

 
Figure -3.24- Metoprolol mean response normalized to 50% hematocrit level.   
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Studies have shown that an increase in red cell hematocrit leads to an increase in relative 

whole blood viscosity123. Also diffusion coefficients are inversely related to viscosity where 

the rate of analyte diffusion decreases with increased viscosity and therefore an increase in 

the equilibration time is expected for more viscous matrix.  This could explain the low 

analyte response observed for 80% hematocrit sample where a longer equilibration time may 

have been required to achieve a satisfactory response equivalent to that of a nominal 

hematocrit sample. 

Overall the level of hematocrit for individual animals or humans is unlikely to change over a 

short period of time under healthy conditions, i.e. over the course of pharmacokinetic studies, 

however the potential for inter-individual hematocrit variability remains a risk. Nevertheless, 

this means that SPME has the potential to provide a fit for purpose microsampling technique 

that may overcome issues associated with the quantification of samples with varying 

hematocrit levels and offer benefits over previously established problems with the dried 

blood spot technology124,125.  

 

 

3.3.5 On-Fibre Stability  
A stability experiment was performed to investigate on-fibre compound stability upon storage 

at ambient temperature. Three anaytes (metoprolol, propranolol and diclofenac) were 

extracted from spiked rat blood onto SPME fibres and stored at ambient temperature for two 

and six weeks. Stability was assessed at three different concentrations (10,100 and 

500 ng/mL) by comparing the mean response (peak area ratio) after storage for two (T2 wks) 

and six weeks (T6 wks) with the original analyte response extracted fresh at time zero (T0). 
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Table -3.3- On-Fibre Stability Data for Metoprolol    

Nominal 
Concentration 
(ng/mL) 

10 100 500 

Extraction Time* T0 T2 T6 T0 T2 T6 T0 T2 T6 
Mean (n=6) Peak 
Area Ratio 
(Analyte/IS) 

0.00859 0.00931 0.00911 0.0793 0.0781 0.0792 0.319 0.316 0.319 

SD 0.0020 0.00252 0.00263 0.0111 0.0127 0.0120 0.0619 0.0661 0.0612 
CV (%) 24.3 27.8 28.9 14.8 15.4 16.2 19.1 21.0 19.2 
Difference from 
T0 (%) 

 8.6 7.0  -1.5 -0.1  -0.9 -0.1 

*  T0 = Extraction at Time 0  

T2 = Extraction after storage at ambient temperature for two weeks 

T6 = Extraction after storage at ambient temperature for six weeks 

 

 

 

Table -3.4- On-Fibre Stability Data for Propranolol 

Nominal 
Concentration 
(ng/mL) 

10 100 500 

Extraction Time* T0 T2 T6 T0 T2 T6 T0 T2 T6 
Mean (n=6) Peak 
Area Ratio 
(Analyte/IS) 

0.00553 0.00521 0.00624 0.0463 0.0429 0.0465 0.218 0.203 0.226 

SD 0.000712 0.000934 0.000723 0.00621 0.00446 0.00514 0.0152 0.01353 0.0145 

CV (%) 13.9 17.3 12.5 14.0 10.3 11.0 6.9 6.4 6.2 

Difference from 
T0 (%) 

 -4.9 12.7  -7.3 0.4  -6.9 3.7 

*  T0 = Extraction at Time 0 

T2 = Extraction after storage at ambient temperature for two weeks 

T6 = Extraction after storage at ambient temperature for six weeks 
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Table -3.5- On-Fibre Stability Data for Diclofenac 
Nominal 
Concentration 
(ng/mL)  

10 100 500 

Extraction 
Time* 

T0 T2 T6 T0 T2 T6 T0 T2 T6 

Mean (n=6) 
Peak Area 
Ratio 
(Analyte/IS) 

0.000224 0.000316 0.000321 0.00233 0.00243 0.00235 0.00936 0.00901 0.00914 

SD  0.000812 0.000767 0.000783 0.000321 0.000332 0.000414 0.00245 0.00222 0.00241 

CV (%) 28.6 22.2 24.8 14.3 13.7 20.5 25.9 24.4 26.4 

Difference 
from T0 (%) 

 10.7 12.7  5.1 0.8  -2.9 -1.4 

*  T0 = Extraction at Time 0 

 T2 = Extraction after storage at ambient temperature for two weeks 

 T6 = Extraction after storage at ambient temperature for six weeks 

 

 

The results in Tables -3.3-, -3.4- and -3.5-  show that there was no significant difference 

(<15%) in analyte response between samples extracted fresh and after on-fibre storage for 

two and six weeks across all concentrations for all three analytes. This in turn indicates that 

all three analytes are stable on-fibre for at least six weeks stored at ambient temperature.    

Depending on the location of the in-life study and the site responsible for bioanalysis, the 

distance between the two could range from 0.5 to 10,000 miles and several weeks or even 

months could pass before samples are analyzed, therefore ensuring compound stability on-

fibre is vital during method development. 

The data presented in this study illustrate the possibility of storing fibres with extracted 

analytes at ambient temperature. This is an important aspect for SPME as the technique could 

be applied to studies in remote areas where refrigerating and centrifugation are not commonly 

available. The ability to ship samples at ambient temperature offers the potential for 

considerable cost savings compared with shipment of frozen wet samples126. 

Furthermore, extreme temperature and humidity storage levels should also be investigated 

prior to sample collection if knowledge of such extreme environmental conditions is known 

and that samples will be subjected to long distance transfer due to the location of sampling 

and bioanalytical sites. 
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3.3.6 The Impact of Blood Flow Rate on SPME Extraction 
Changes in body temperature have a direct impact on blood flow rates, for this reason 

conventional sampling techniques such as venipuncture require rodents to be warmed by 

placing them on a warm plate or exposing them to warm water prior to taking a sample in 

order to dilate the blood vessel and increase blood flow rate. Raman et al127 has established 

that there is a linear relationship between body temperature and blood flow rate. Tail blood 

flow rate in rodents rises as a linear function of body temperature. This is because at low 

body temperature, blood flows primarily in central veins of the tail, while at higher body 

temperature, blood flows in peripheral tail veins127. Also the rate of blood flow is varied 

between species, such physiological parameters cannot be controlled when performing in vivo 

sampling and so it is vital to understand the potential effect of these factors on SPME 

extraction127. In this study, the impact of changes in blood flow rates on analyte response was 

investigated through a simulated in vitro circulatory system. Three analytes (metoprolol, 

propranolol and diclofenac) were evaluated at three different concentrations (10, 100 and 

500 ng/mL) and three different blood flow rates (20, 30 and 75 ml/min). The choice of blood 

flow rates was a compromise between interspecies hepatic blood flow variation for human, 

dog and rat (~ 20, 30, 75 mL/min respectively)128 and the capacity of the peristaltic pump 

utilised to drive the blood through the in vitro set up. 

 
Figure -3.25- The effect of blood flow rate on analyte response. Plots of the log mean 

peak area ratio of analyte/IS (n = 6) with 95% confidence intervals versus blood flow 

rate for metoprolol, propranolol and diclofenac at 10, 100 and 500 ng/mL. Plots 

generated using InVivoStat, version 3.0. 
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Table -3.6- ANOVA table calculated for the effect of blood flow rate on analyte response 

using a type III model fit. 

Analysis of variance (ANOVA) table 
Analyte Degrees of freedom F-value p-value 

Metoprolol 2 4.12 0.0227 
Propranolol 2 5.62 0.0066 
Diclofenac 2 1.44 0.2487 

 

 

The data in Figure -3.25- show that in general analyte response (log mean n= 6) increased 

with increasing blood flow rates for metoprolol and propranolol while no consistent trend 

was observed for diclofenac. These observations were further confirmed by the results of the 

statistical analysis shown in Table -3.6-, where a type III model was utilized which assesses 

the effect of the blood flow rate and the effect of concentration as well as the interaction 

between both parameters. The data for analyte response were statistically different for 

metoprolol and propranolol (p values were < 0.05, 0.0227 and 0.0066 for metoprolol and 

propranolol respectively) while no statistical differences were shown for diclofenac (p value 

> 0.05, 0.2487).  

It is also notable that the change in analyte response at higher blood flow rate was more 

apparent at the lower concentrations (10 and 100 ng/mL) for metoprolol and propranolol than 

at the higher concentration (500 ng/mL). This could be due to the fact that mass transfer of 

the analyte via diffusion increases with increased agitation levels i.e. higher blood flow rates 

cause faster diffusion which in turn decreases the equilibration time and hence leads to higher 

analyte response. Nevertheless, the amount of analyte extracted could potentially be the 

maximum amount of drug extracted at equilibrium, this means that at higher flow rates, 

shorter equilibration times are anticipated and so equilibrium is reached faster which affects 

the amount of extracted drug within the 2 min probe exposure period. This concept correlates 

with results that have previously been reported by Es-haghi et al129. Despite the apparent 

impact of blood flow rate for metoprolol and propranolol, it should be noted that blood flow 

rates within a specific species will not drastically change over time127,130 as shown in this 

experiment therefore it is highly unlikely that such parameter will have an impact on PK/TK 

data within one species.  

Inter-species differences have been previously encountered in other microsampling 

techniques such as DBS. The spot size and appearance of a DBS sample has been shown to 

be variable between different species where rabbit blood spot size appears to be larger and 
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forms bigger halo around the spot compared to other species120,131. However, as all unknown 

samples are quantified against calibration standards and QCs prepared with control matrix of 

the same species then such issue becomes practically insignificant with no impact on the 

quality of the data produced. 

 

Although the extraction of n = 6 fibres was performed simultaneously for each blood flow 

rate at each concentration with accurate timing of 2 min exposure to the flowing system, 

experimental limitations may have impacted the precision (%CV) of the results. This is 

shown by the poor % CV values that exceeded 30% in some cases as displayed in Table -3.7. 

 

 

Table -3.7- % CV of analyte response at different blood flow rates (% CV of n = 6)   

 Concentration 
(ng/mL) 10 100 500 

Flow Rate 
(ml/min) 75 30 20 75 30 20 75 30 20 

Analyte Response 

% CV 

Metoprolol 23.8 18.1 13.5 30.3 12.7 36.3 31.7 23.9 23.2
Propranolol 13.3 5.6 11.4 7.5 18.5 29.2 29.5 19.0 24.6
Diclofenac 18.2 13.1 8.7 15.9 25.9 13.4 19.6 16.4 22.8

 

 

Contributions to overall experimental variance include the positioning of each fibre with 

respect to the central plug of blood flow, the proximity of the fibre to the walls of the 

artificial vein, the length of fibre or how far each fibre is actually exposed to the flow at each 

occasion as well as accuracy of timing in addition to any evaporative or adsorption losses 

during washing of the fibre or throughout the entire extraction process. This experiment has 

highlighted the potential for increased inter-fibre variability which could be encountered due 

to in vivo sampling, such variability is associated with the process of handling fibres during in 

vivo applications compared with in vitro implementation where most parameters are 

controlled. For this reason, improved quantitative data could be achieved by enhancing the 

quality of the manufactured product i.e. by reducing the intrinsic variability of BioSPME 

fibres down to very low percentages. This will then permit for further variability which 

maybe encountered during in vivo sampling as well as instrumental variability of 

bioanalytical LC-MS/MS analysis or other quantification techniques. 
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3.4 Conclusion 
An in vitro evaluation of the critical parameters that play a major role in the development of a 

suitable SPME method for the extraction of small molecules was performed. The effect of 

some of these parameters highlighted some of the potential issues that may impact the 

application of SPME in vivo.  

The results of the analyte extraction time profiles, illustrated that analyte adsorption onto the 

SPME fibre is dependent on matrix exposure time. It may take up to or more than 3 h for the 

analyte concentration to reach equilibrium between the fibre and the sample matrix. This 

length of time is not viable for in vivo applications. For this reason, pre-equilibrium 

conditions with short fibre exposure time (1-2 min) will have to be used during in vivo 

applications. Therefore, calibration standards and quality control samples need to be exposed 

to the matrix for the same length of time as the in vivo fibre exposure.   

On the other hand, it was noted that desorption time has very little influence on analyte 

recovery. However, data variability decreased with time which indicates that 15-60 min of 

analyte desorption is a compromise between throughput and variability.  

Moreover, 100% acetonitrile efficiently desorbed both metoprolol and propranolol, while 

addition of water enhanced the desorption of diclofenac. This indicates that optimisation of 

desorption solvent is necessary during in vitro method development. 

The level of blood hematocrit was found to have no impact on analyte response following 

SPME extraction, while blood flow rate may have an effect on analyte response and 

concentration.  

On-fibre analyte stability for all three analytes was established for six weeks. This indicated 

the suitability of the SPME technique to be utilized in remote areas where access to 

centrifuges and freezers is limited. 

Overall, this study showed the various parameters that should be investigated and evaluated 

in vitro prior to in vivo SPME application. The results from this chapter indicate that pre-

equilibrium time should be used to measure metoprolol concentrations during the in vivo TK 

study investigation in later chapters.  While desorption of metoprolol could be performed 

within 15 – 60 min and that 100% acetonitrile is the most efficient desorption solvent for 

metoprolol. 
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Chapter 4 

SPME for Assessment of Plasma Protein Binding, a 

Complementary Technique to Rapid Equilibrium Dialysis 
 

4.1 Introduction  

Administered drugs can partition between the red blood cell and plasma components of 

circulating blood. Historically, in drug concentration assays, the use of plasma has been 

preferred as a matrix over blood. This is due to perceptions concerning its ease of handling, 

ability to be frozen and thawed successfully for sample storage and shipment, potential for 

increased assay sensitivity and the reduction of matrix interference24.  Plasma contains 

proteins, small molecules and inorganic ions. Almost 60% of the plasma protein is serum 

albumin, while 3% is α-1-acidglycoprotein and the remainder is immunoglobulin132. Within 

the plasma fraction, drug molecules can be found either non-covalently bound to plasma 

proteins (mainly to serum albumin and acidglycoprotein), termed plasma protein binding 

(PPB), or  be found free (unbound) and can diffuse through biological membranes or bind to 

receptors132. 

According to the well-established free drug hypothesis, only the free drug concentration is 

distributed to the site of action where it effects biological activity leading to efficacy and 

toxicity36. Hence, accurate determination of this parameter is essential for therapeutic drug 

monitoring, specifically for drugs with a narrow therapeutic window i.e. for drugs that have a 

small difference between therapeutic and toxic doses, such as digoxin and lithium133. The 

importance of determining the unbound drug concentration for monitoring various classes of 

drugs has been previously highlighted134. 

The current approach in drug discovery is to use in vitro experiments to determine PPB 

values to ultimately help establishing structural drug designs and aid selection of candidates 

for further in vivo experiments135. The extent of protein binding depends on several aspects 

including the physiochemical properties of the compound, the concentration of the drug and 

in vivo protein content. Interspecies difference in PPB and variability between individuals 
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specifically in disease states such as renal, liver and thyroid disease can also significantly 

alter the binding characteristics of a drug136. 

For this reason, several regulatory authorities recommend the determination of PPB prior to 

clinical trials to support the assessment of drug-drug interactions6. Therefore, PPB is 

considered to be a crucial parameter in ongoing drug development projects and in drug 

discovery studies137.  

Despite the importance of this parameter, due to reasons of convenience and precedence, the 

majority of bioanalytical assay techniques in current use measure the total (free and bound) 

drug concentration, rather than the potentially more relevant concentration of free drug 132. 

The sole use of total drug levels might be misleading and may not reflect the true significance 

of the relationship between clinical pharmacokinetics (PK) and pharmacodynamics (PD) of a 

drug36. Although in some cases, total concentrations of drugs from PK studies are related 

back to free using PPB values determined in vitro during early discovery experiments138,139.  

 

The most widely used in vitro methodologies for determining the plasma protein binding of 

drugs include equilibrium dialysis, rapid equilibrium dialysis (RED), ultrafiltration and 

ultracentrifugation. Each technique displays a variety of advantages and disadvantages in 

terms of speed, data quality and complexity. Comparative evaluations of each method have 

been reported in the literature140-142.  

Several analytical challenges are known to be associated with some of these techniques. For 

example, ultrafiltration is a quick and easy method, where a special exclusion filter is used to 

filter the analyte from a matrix. However, the analyte may bind to the filter and cause 

disturbance to the equilibrium which in turn will impact the quality of the data11. 

Ultracentrifugation, on the other hand, requires the use of a powerful centrifuge (up to 

250,000 g) along with lengthy centrifugation periods (approximately 16 hours) to separate the 

binding matrix from the drug which impose cost and time problems 12.   

Perhaps the most frequently used method in the pharmaceutical industry is equilibrium 

dialysis which has been considered the “gold standard” for protein binding assessments143. 

This technique involves the use of two containers, one with the matrix sample and one with a 

suitable buffer such as phosphate buffered saline (PBS), separated by a membrane (Figure -

4.1-). The free drug concentration is determined when equilibrium is reached between the 

two vessels11. Equilibrium dialysis avoids the dependence on nonspecific binding of the 
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analyte and the large plasma volumes required for the other procedures mentioned above. 

Even if some compounds may bind non-specifically, they will not interfere with the 

equilibrium because binding will be very minimal.  

On the other hand, equilibrium dialysis is considered to be time consuming and labour 

intensive therefore the use of more recently developed technique, the RED device, has 

become the dominant method for protein binding analysis143. 

The RED device consists of a Teflon base plate which holds up to 48 disposable dialysis 

cells. Each cell is composed of two chambers separated by a dialysis membrane with a high 

membrane surface area to volume ratio. Plasma containing the analyte is placed in one of the 

chambers and buffer, such as phosphate buffered saline, is added to the other side and 

incubated for a period of time (typically > 6 hours). Subsequent to equalizing each matrix 

with blank plasma or PBS, aliquots from both sides are analysed with an appropriate 

quantification method e.g. LC-MS/MS143. Results are simply expressed as the ratio in 

concentration between both sides of the membrane. Although higher assay throughput is 

achieved compared to routine equilibrium dialysis, which is an advantage for rapid screening 

in drug discovery and large numbers of clinical samples in drug development, the length of 

equilibration time remains a major drawback for this technique14. 

 

 

 

Figure -4.1- Basic principles of equilibrium dialysis, drug in plasma on one side (left) 

and PBS on the other (right). This is incubated at 37oC to reach equilibrium with 

constant shaking. 
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Recent advances in SPME  have opened up new possibilities for addressing some of the 

challenges encountered when measuring plasma protein binding values39,144. SPME, as 

mentioned in earlier chapters, is an equilibrium process in which the analyte partitions 

between the SPME coating and the sample matrix (Figure 4.2). The amount of analyte 

extracted by SPME is directly proportional to the concentration of unbound analyte present in 

the sample matrix89. The non-exhaustive nature of SPME, represents an important benefit, 

since typically only a small portion of the analyte is removed from the matrix which does not 

cause any interference with the equilibrium41. 

Analyte extraction from the matrix is independent of sample volume when the fibre is 

exposed to a sample volume larger than the coating capacity (Vsample >>Vfibre). This means 

that SPME can be directly exposed to various matrices without the need to collect a defined 

sample volume as long as sample volume is large enough to immerse the whole fibre 

coating63. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure -4.2- SPME for the measurement of unbound drug concentrations in plasma.  
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The SPME approach, therefore, may also be used to determine PPB values in vitro to 

characterise the distribution of small molecules with respect to the plasma compartment.  

SPME has the potential to offer a simple approach to accurately estimate protein binding 

affinities in early drug discovery, or during drug development. It may overcome several 

limitations of current methodologies by providing short experimental time and ease of use in 

addition to accuracy and reliability. 

 

The determination of PPB by SPME is based on establishing the free concentration of drug in 

plasma in the presence of proteins which is then compared with total drug concentration 

measured by SPME in the absence of proteins21.  In practical terms, this can be performed by 

spiking a known concentration of analyte into plasma and the same is repeated in a suitable 

buffer such as PBS. The plasma compartment will contain the free concentration of drug in 

the presence of proteins while the buffer compartment will act as a surrogate for the total 

drug concentration in the absence of proteins. Analyte concentrations from both 

compartments can be extracted by SPME and compared to determine the PPB of the drug. 

The percentage of drug binding to plasma proteins is simply calculated from the total and free 

concentrations of the drug as shown below;  

 

ܤܲܲ  = ஼೟೚೟ೌ೗ ି  ஼೑ೝ೐೐ ೛೗ೌೞ೘ೌ஼೟೚೟ೌ೗  -Equation -4.1                                      %100 ݔ   

 

 

This technique can be relatively fast and offers the possibility of automation as well as the 

ability to directly study complex sample matrices including whole blood and tissue.  
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4.1.1 Aims and Objectives  
The aims and objectives of this chapter are to investigate the use of SPME as a tool for in 

vitro determination of plasma protein binding. This will be performed by comparing SPME to 

the RED device, the current golden standard method for PPB measurements. Three test 

compounds (metoprolol, propranolol and diclofenac) will be used as they are representative 

small molecule drugs that cover a range of binding values (30-99%) in rat plasma. Three 

concentrations will be assessed for each drug across a physiologically relevant range (10 - 

500 ng/mL) using the validated bioanalytical methods.   
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4.2 Experimental 
4.2.1 Chemicals and Materials  
Metoprolol tartrate, propranolol hydrochloride, diclofenac sodium salt and diclofenac 13C6 

sodium salt 4.5-hydrate were purchased from Sigma-Aldrich (Dorset, UK); metoprolol-d7 and 

propranolol-d7 were acquired from Toronto Research Chemicals (Ontario, Canada). 

BioSPME silica probes consisting of a titanium wire coated with a biocompatible C18 

extraction phase, housed inside hypodermic needle (medical grade, stainless steel, 22 gauge 

outer tubes) were supplied by Supelco (Bellefonte, PA, USA); each fibre has a thickness of 

45 µm and 15 mm length of coating. Control rat plasma containing K2-EDTA to prevent 

coagulation was obtained from B&K Universal (Grimston, Hull, UK). RED device was 

purchased from ThermoFisher Scientific (UK). Phosphate buffered saline (PBS) tablets, 

dimethylformamide (DMF) and formic acid (reagent grade ≥ 95%) were purchased from 

Sigma-Aldrich (Dorset, UK). Methanol, acetonitrile, propranolol and water were of HPLC 

gradient grade and obtained from Fischer Scientific Ltd (Loughborough, UK). 

 

 

4.2.2 Preparation of Standard Stocks, Working Solutions and Test 

Samples  
Primary stock solutions for each test compound (metoprolol, propranolol and diclofenac) and 

their stable label isotopes utilised as internal standards (IS) were prepared in DMF 

(1 mg/mL). Serial dilutions of each analyte’s stock solution were performed in 

acetonitrile/water (1:1, v/v) to give working standard concentrations of 1, 10 and 100 µg/mL. 

Internal standard working solutions for each analyte were prepared from the primary stock 

solution to give a final concentration of 100 ng/mL in acetonitrile.  

 

 

4.2.3 SPME Procedure for Analysis of Plasma Protein Binding 
PBS solution was prepared by dissolving one PBS tablet into 200 mL of deionised water 

(0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 

7.4). 

SPME fibres were preconditioned with methanol followed by water for 15 min in each 

solvent. Appropriate volumes of analyte working solutions were spiked into fresh rat plasma 
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and into PBS at target concentrations of 10, 100 and 500 ng/mL. Non-matrix volumes used to 

spike the samples were < 5% of the total sample volume12,69. Spiked rat plasma was gently 

mixed on a roller mixer (Progen Scientific, UK) for 15 min at 37oC. 

One set of SPME fibres (n = 6) was immersed into 200 µL aliquots of spiked plasma and a 

second set was placed into 200 µL aliquots of spiked PBS for each target concentration. 

SPME extraction was conducted following 30 min incubation at 37oC by removing the fibres 

from the samples, rinsing them with water for 30 s and desorbing them in 200 µL of 100% 

acetonitrile containing 100 ng/mL of the appropriate internal standard for 15 min. All extracts 

were subsequently analysed by LC-MS/MS. The entire SPME extraction procedure was 

performed with constant orbital agitation at 500 rpm using a compact laboratory shaker (MS 

3 Digital, IKA). The percentage of binding to plasma proteins was calculated from the total 

and free analyte response as follows;  

 

 

PPB % = ቀ ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢  ುಳೄ  ି   ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢ ು೗ೌೞ೘ೌ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢ ುಳೄ ቁ         100   ݔ   
 

Equation -4.2- 

 

 

4.2.4 RED Procedure for Analysis of Plasma Protein Binding 
A single-use RED plate preloaded with 48 equilibrium dialysis membrane inserts was used 

and 300 µL aliquots (n = 6) of spiked rat plasma in addition to 300 µL aliquots (n = 6) of 

control blank plasma (same plasma batch as the spiked plasma) were placed into the sample 

chambers of the RED device. This was dialysed against 500 µL aliquot (n = 6) of PBS added 

into the buffer chambers. The RED unit was covered with self-adhesive plate seal and 

incubated at 37oC on a flatbed orbital shaker (MS 3 Digital, IKA) set at 300 rpm for 

approximately 6 h. Following equilibration, dialysis was stopped and 25 µL aliquots were 

taken from each compartment, placed into 1.4 mL matrix tubes (Micronics, Platinastraat, 

Netherlands), and an equal volume of dialysed blank plasma was added to the PBS aliquot 

and 25 µL of dialysed PBS was added to the spiked plasma compartment aliquot to ensure 

matrix matching of samples prior to extraction and analysis.  

Samples were extracted by protein precipitation through addition of 200 µL of 100% 

acetonitrile containing 100ng/mL of internal standard. All tubes were vortex mixed for 5 min 
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and centrifuged (5810R, Eppendorf, Germany) at 3000 g for 10 min. The supernatant was 

transferred into clean tubes and injected onto the LC-MS/MS. Analyte binding calculation for 

the RED approach was performed as shown below;   

 

PPB %  = ቀ ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢  ು೗ೌೞ೘ೌ ି   ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢ ುಳೄ஺௡௔௟௬௧௘:ூௌ ௉௘௔௞ ஺௥௘௔ ோ௔௧௜௢ ು೗ೌೞ೘ೌ ቁ         100   ݔ   
 

Equation -4.3- 

 

 
4.2.5 LC-MS/MS Analysis  
LC-MS/MS analysis was performed using the same methodology described in Chapter 2, 

Section 2.2.4. 

 

4.3 Results and Discussion  

SPME fibres have been reported for the measurement of unbound, circulating plasma 

concentrations of xenobiotic compounds during in vivo experiments61,92,145. Due to the fact 

that SPME can measure free drug concentrations, and its (comparative) ease of use, this 

raised the interesting prospect of SPME’s application for a rapid throughput method for 

routine plasma protein binding determination.  To demonstrate the utility of SPME fibres for 

measuring free drug concentration from biological matrices, an in vitro experiment was 

conducted to compare the amount of drug extracted from protein free matrix (PBS) with the 

amount of drug determined from rat plasma (high protein content matrix). The percentage of 

bound drug concentration extracted was then calculated and compared with values obtained 

using a conventional technique, the RED device, routinely utilised for establishing plasma 

drug protein binding. The results in Table -4.1- display the calculated protein binding values 

for metoprolol, propranolol and diclofenac across a range of concentrations (10, 100 and 

500 ng/mL) using SPME and RED. 
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Table -4.1- Comparison of protein binding values for metoprolol, propranolol and 

diclofenac across a concentration range of 10-500 ng/mL obtained using rapid 

equilibrium dialysis (RED) and SPME. Data represent mean ± SD, n = 6 

determinations. 

Analyte 

Concentration 

(ng/mL) 

RED 

%PPB* 

SPME 

%PPB* 

% Difference 

between both 

techniques** 

Metoprolol / Literature values for %PPB  = ~30%146 

10 34.3 ± 0.336 31.8 ± 0.784 7.3 ± 0.027 

100 33.6 ± 0.415 31.6 ± 0.562 6.0 ± 0.022 

500 31.5 ± 0.180 31.8 ± 1.09 -1.0 ± 0.035 

Propranolol / Literature values for %PPB  = ~90%143 

10 89.3 ± 0.0742 91.4 ± 1.01 -2.4 ± 0.011 

100 90.0 ± 0.0816 91.0 ± 0.735 -1.1 ± 0.008 

500 87.6 ± 0.0504 77.4 ± 0.961 11.6 ± 0.012 

Diclofenac / Literature values for %PPB  = ~99%147 

10 98.7 ± 0.0589 98.5 ± 0.941 0.203 ± 0.010 

100 99.4 ± 0.0367 99.5 ± 0.857 -0.100 ± 0.009 

500 99.4 ± 0.0363 99.1 ± 0.721 0.302 ± 0.007 

*Errors were based on standard deviation and calculated using error propagation 

methodologies.   

** % Difference =  %୔୔୆౎ుీ ି %୔୔୆౏ౌ౉ు%୔୔୆౎ుీ   x 100 

 

The calculated bound percentage by SPME correlated well with bound values determined by 

the RED device, which indicates that SPME did indeed measure the free circulating drug 

concentration within a complex biological matrix. It was found that consistent results were 

obtained by SPME for each analyte across all three concentrations with ≤15% difference12 

between concentrations. 

The percentage difference between the two techniques, SPME and RED was < 15% across all 

analytes and concentrations. In the case of diclofenac, the magnitude of the difference 
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between RED and SPME was <1%. All results also correlated well with average protein 

binding values quoted in the literature for each compound143,146,147. The small differences 

between the values obtained in this study and protein binding values previously published in 

literature148,149 can be explained by inter-animal variations in plasma protein content or due to 

typical analytical experimental errors.   

The SD of SPME was greater than the SD from the RED assay which suggests that the 

variability of the SPME assay is higher than the RED although not high enough to impact the 

reliability of the data. This could be due to the quality of the fibres used and the inter-fibre 

variability associated with it41,87 which was also discussed in Chapter 3, Section 3.3.1. 

Another reason for this variability could be due to the pre-equilibrium conditions which were 

applied during this study. As it was highlighted in Chapter 3, Section 3.3.2, the time required 

for each compound to reach equilibrium could potentially be > 3h. This in turn has an adverse 

effect on high throughput determination of plasma protein binding of drug molecules. For this 

reason, pre-equilibrium conditions were applied during this study and 30 min exposure time 

was chosen to equilibrate the SPME fibres with the sample matrix. This was deemed an 

appropriate length of time for in vitro applications and a good compromise between 

throughput and data reproducibility41. The use of pre-equilibrium SPME conditions has no 

impact on free concentration measurements or protein binding determination as long as all 

samples are extracted using the same length of exposure time as illustrated by the data shown 

in Table -4.1-.   

A paired t-test was conducted to compare the PPB values obtained using RED for all three 

analytes with PPB values measured using SPME. There was no significant difference in the 

values for RED and SPME, p >0.05. The test was performed on n= 18 samples (i.e. three 

concentrations X six replicates) for each drug by SPME versus RED. This suggests that data 

obtained using SPME is equivalent to the data obtained using the RED device and therefore a 

suitable alternative method allowing more rapid analytical throughput.  

A two-way analysis of variance was also performed to understand the influence of two 

independent variables, namely the concentration of analyte and the effect of the analytical 

technique on the PPB values. The analyte concentration included three levels (10, 100 and 

500 ng/mL) and analytical techniques consisted of the RED and SPME.  Neither effect was 

statistically significant at the 0.05 significance level. The effect of analyte concentration 

yielded F = 1.02, p > 0.05, indicating that the effect of concentration was not significant. The 
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impact of the analytical technique yielded F = 2.89, p > 0.05, indicating that there is no 

significant difference between both analytical techniques.  

The data obtained in this study clearly demonstrate that SPME measured only the unbound 

drug fractions for a range of different compounds and this is in agreement with several 

previous reports of SPME use 91,150,151. The technique uses an extraction phase that adsorbs 

analytes and prevents adhesion of large molecules and, therefore, provides a simple approach 

for the measurement of free drug concentration which is a key parameter for the 

interpretation of compound bioavailability and its PD action. The depletion of the free 

fraction of drug from the matrix is negligible with SPME, such that it does not have an effect 

on the equilibrium between the bound and free fraction of the analyte within the matrix41. 

Although, negligible extraction may lead to smaller drug amounts available for analysis and 

therefore lead to detection problems, such issues are now resolved by highly sensitive MS 

instrumentation that permit successful detection of low analyte concentrations. 

An important aspect for consideration is the thickness of the coating on the SPME fibres. 

This determines the capacity of the fibres which in turn impacts the concentrations at which 

the protein binding is measured. For higher sample concentrations, a thicker coating would be 

required, the thicker the coating the larger is the number of adsorption sites available for 

analytes to bind and interact with. 

Overall, the experimental findings of the current study indicate that SPME is an approach that 

could be utilised in vitro for determining the percentage PPB of a compound in a biological 

matrix. SPME allowed monitoring of PPB values for analytes with a range of binding 

affinities which can be classified as low, medium and highly bound compounds (30 - 99% 

bound)36. 

Compared to the RED device, SPME offers several advantages for use in protein binding 

measurements including; short analysis time of less than 1 h for SPME compared with greater 

than 6 h for RED; the ability to study complex matrices such as blood directly without the 

need for dilutions or subsequent extractions; the elimination of the need for protein 

precipitation with the RED device which ultimately minimises concerns associated with 

matrix interference. In addition to the above, SPME provides a relatively easy sampling and 

extraction procedure compared to other conventional PPB assays. No sample aliquoting or 

centrifugation is required, and extracted samples can be stored on fibre as shown in Chapter 

3, Section 3.3.5 allowing for desorption later if analyte stability is established.  
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SPME could potentially be automated using several stations equipped with agitators where 

fibres could be conditioned, exposed to the sample matrix and analytes desorbed off using 

robotic handlers which ultimately will facilitate high sample throughput with minimal labour. 

The ultimate applicability of SPME for direct in vivo determination of the unbound 

concentration of drug is also a promising aspect, which has been supported by the in vitro 

findings of the current work. 

The use of SPME as a tool to determine PPB values enables simplified workflow and higher 

throughput when compared to other PPB techniques and their challenging issues such as 

RED, ultracentrifugation and ultrafiltration as mentioned in Section 4.1. The SPME technique 

is not commonly used for this purpose because it has not been presented to the 

pharmaceutical industry as a PPB tool. Limited knowledge/publications are currently 

available about using SPME for PPB measurements. Commercial availability and promotion 

of the technique for PPB is another hindrance, although SPME devices can be tailored 

according to the researcher’s needs, the commercial availability of ready-to-use devices for 

PPB experiments is still limited and not widely published. However, refocusing 

commercialisation of SPME for routine analysis of PPB would likely increase interest in the 

technology as a tool for such in vitro experiments.  
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4.4 Conclusion  

The impact of measuring the degree of protein binding is high when trying to understand the 

relationship between the PK and PD of drugs. Although RED has dominated this field, the 

potential for the use of a complementary technique such as SPME with a direct comparison to 

RED has not been studied previously.  

This investigation demonstrated the use of SPME for the measurement of PPB in vitro and 

highlighted its favourable comparison to existing techniques. The data obtained using SPME 

clearly showed that this approach provided accurate estimates of PPB values across a range 

of bound drug levels (30 – 99 %) at a several physiologically relevant concentrations. 

Compared to RED, SPME offered a number of benefits including simplicity as well as short 

equilibration and analysis time, where the overall procedure for SPME was completed within 

1 h compared to 6-8 h using RED. Importantly, the ability of SPME to determine the 

unbound drug concentrations in plasma (of relevance for direct in vivo microsampling) has 

been shown in this work using the industrial-standard, comparative RED technique. SPME 

also offers the future possibility of automation which will consequently enhance throughput 

and increase the number of samples processed.  

In this chapter a pre-equilibrium measurement was developed suitable for the high throughput 

determination of plasma protein binding of drug molecules.  
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Chapter 5 

Bridging the Gap Between in vitro and in vivo SPME: 

Investigation into the Use of SPME for Detection of 

Exogenous Analytes in Rats 

 

5.1 Introduction  

5.1.1 Direct in vivo Insertion of SPME 

The development of biocompatible coating materials was a major breakthrough for SPME. It 

has opened opportunities for the use of SPME as an in vivo tool facilitating direct extraction 

from complex biological matrices42. The term “biocompatibility” as described by the 

International Union of Pure and Applied Chemistry (IUPAC) refers to the characteristics of a 

material that enables it to be in contact with a living organism without triggering an adverse 

effect13.  A material could be considered biocompatible if the sum of adverse hormonal and 

cellular reactions occurring during exposure to the material is lower than that or equivalent to 

a reference material41. This feature permits direct immersion into biological matrices, both ex 

vivo and in vivo. 

Biocompatible SPME coatings use a biocompatible binder “glue” to immobilize coated 

particles114. However, one of the major shortcomings of SPME is the small choice of 

commercially available stationary phases; in fact the choice is limited to silica particles 

coated with octadecylsilane particles (C18), polyacrilonitrile (PAN), polyethylene glycol 

(PEG), polyacrylate (PA) and polypyrrole (PPY), all of which are polymers that are deemed 

biocompatible42. Of these coatings, the C18 phase is the only coating which has currently been 

assembled within a hypodermic needle and is commercially available for direct in vivo 

sampling42.  

The use of the in vivo SPME device for rodent studies has previously been limited to 

implementation only in conjunction with an interface. In-dwelling catheters and adapters 

connected to syringes that allow fibre penetration, have been employed as interfaces for in 
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vivo SPME rodent studies63. This is due to the large dimensions of earlier in vivo devices 

prior to the hypodermic needle assembly, which prohibited direct SPME probe insertion into 

the veins of rodents91. Reports in literature have shown usage of various custom-made 

sampling interfaces that enable application of in vivo SPME in rodent studies92.  To date 

direct immersion of the SPME probe into the vasculature has mostly been demonstrated in 

large animals such as beagle dogs61, however miniaturization of the sampling device has 

allowed for the availability of a range of needle gauges (21 – 23 G) suitable for direct 

sampling from different size animals including rodents.  

Blood vessels in a rat’s tail are 0.15 to 0.5 mm in diameter as approximate dimensions 

measured by Staszyk et al152, while recent biocompatible SPME probes have a diameter of 

approximately 45-50 µm i.e. small enough to penetrate inside the veins of a rat’s tail without 

completely obstructing them. The lateral tail vein is usually accessed for sampling 

approximately one-third along the length of the tail from the tail tip, moving towards the base 

of the tail for multiple samples. Blood samples are only usually taken from the base of the tail 

if no vein is visible elsewhere. Taking the first sample/s from the proximal end of the tail can 

result in a perivascular clot and inflammation that significantly reduces blood flow to the 

distal portion of the vessel16. It therefore important to assess the occurrence of adverse events 

such as perivascular clotting when inserting the SPME into the veins of an organism.  

The first in vivo investigation within this research project will involve preliminary 

determination of the feasibility of inserting the SPME probe into anesthetised rats and 

capturing whether in vivo SPME is viable for use within a rat’s tail vein without the use of an 

interface. The investigation will also monitor the length of time required for fibre exposure to 

blood in order to produce reliable results. 

One of the most common methods of reducing animal suffering while testing or investigating 

a new invasive sampling technique is the use of anaesthesia. This is to reduce pain if the 

procedure is new and if the mechanism of action is unknown. It is also useful to enable initial 

handling of the device without dealing with any signs of distress or other unexpected animal 

response.  

In small research animals such as rodents, induction with volatile anaesthetic agents is 

usually fast and smooth, and is easily achieved by placing the animal in a plastic chamber, to 

which the volatile agent is delivered. The first anaesthetic to be used in this fashion was ether 

which is highly irritating to the respiratory tract as well as inducing signs of distress. When 
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more modern volatile agents (isoflurane, sevoflurane) are used for rodents, induction is 

usually performed without struggling or obvious signs of excitement153. Anaesthetic agents 

such as isoflurane are known to reduce cardiac output and slow down blood flow to body 

organs154; this in turn has a direct impact on conventional sampling techniques where blood 

withdrawal becomes difficult when studies are performed under general anaesthesia. 

However, SPME sampling can be used in surgeries and other studies that require 

anaesthetised animals as no blood withdrawal is needed.  For example, Lord et al97 assessed 

the PK profile of linezolid in anaesthetised pigs after a single IV dose using in vivo SPME. 

The length of extraction was 5 min and their results illustrated the potential for rapid free 

drug determination within surgical or intensive care situations.   

 

5.1.2 Potential of SPME to Measure Free Drug Concentrations in vivo 

The importance of measuring free drug concentrations lies in the fact that this parameter 

provides basis for accurate determination of in vivo drug efficacy137. For example, under 

certain conditions the equilibrium between bound and free drugs can be disrupted leading to 

elevated free concentration levels which is significantly higher than predicted levels 

calculated in vitro using total drug concentrations. For instance, elevated free phenytoin 

concentrations have been reported in patients suffering from acquired immune deficiency 

syndrome (AIDS)36. This in turn can have major consequences on patient safety and may lead 

to fatal cases. 

Despite its importance, free drug monitoring is not a routine procedure in clinical laboratories 

due to technical difficulties and lack of established reference ranges for free drugs36. 

Numerous techniques that are applicable for direct in vivo analysis of free drug 

concentrations have been widely available. These include arrays of sensors, microdialysis, 

microfluidics and nanotechnology88. But most of these systems remain complicated and 

bulkier than a simple miniature in vivo device, in many cases, external optics, pumps and 

detectors are required to operate the devices155. Regardless of some distinctive advantages, 

some of these techniques such as nanomaterials have significant cytotoxicity and require 

major modifications prior to in vivo applications156. Biocompatible SPME was initially 

developed to address these issues and provide a simple in vivo procedure that can monitor 

free drug concentration within a living organism. Due to its microextraction nature, SPME 
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removes a minimal amount of analyte from the system under investigation without disturbing 

the normal balance of in vivo chemical components, whereas large volumes of blood would 

be needed to assess the free concentration with traditional techniques such as rapid 

equilibrium dialysis143. 

Studies described in Chapter 4 confirmed the capability of SPME in measuring free drug 

concentrations in vitro. The feasibility of using SPME for protein binding experiments was 

also demonstrated. In order to confirm that these findings are translated to in vivo 

measurements, an in vivo study was conducted in this chapter. SPME sampling in conscious 

rats was performed to determine in vivo free drug concentration. This was compared with 

data obtained using conventional blood withdrawal and in vitro rapid equilibrium dialysis. 

This examined the feasibility of SPME for direct in vivo assessment of drug concentrations. 

 

5.1.3 Aims and Objectives  

The aims and objectives of this chapter were to perform two in vivo studies. The first study 

was carried out in anesthetised rats to achieve the following; 

- Utilise the SPME fibre in anesthetised rats for the first time in this research without 

employing adapters and interfaces such as catheters.  

- Determine the duration of fibre exposure during the period before sample 

equilibration has been reached (i.e. pre-equilibrium) to systemic circulation while 

considering ethical limitations.  

- Qualitative preliminary assessment of the practicality of using the prototype device 

and its applicability for implementation in a toxicology study.  

The second in vivo study was performed in conscious rats. This was to demonstrate the use of 

biocompatible SPME fibres for the measurement of free drug concentrations in vivo and to 

compare the results with a conventional protein binding assay (the RED device). This aimed 

to determine whether the data obtained in Chapter 4 for in vitro SPME could be translated to 

an in vivo microsampling approach.  
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5.2 Experimental  

5.2.1 Chemicals and Materials 

Metoprolol tartrate was obtained from Sigma Aldrich (Dorset, UK). The sources of all other 

chemicals and materials were as described in Chapter 2, Section 2.2.1.  

 

5.2.2 Procedure for in vivo SPME Study in Anesthetised Rats   

All animal studies were ethically reviewed and carried out in accordance with the Animals 

(Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of 

Animals. 

The design of the first in vivo study involved the use of two sampling techniques; SPME and 

conventional caudal venipuncture (CV) in anesthetised male rats. The purpose of this study 

was to identify a suitable pre-equilibrium length of time for the SPME fibre exposure within 

the rat’s tail. In order to achieve this, drug extraction was performed at steady state drug 

concentration. This was to ensure that all fibres were exposed to the same in vivo drug 

concentration but for different periods of time. Conventional CV samples were also taken to 

compare the data generated with the data obtained using SPME sampling.  

Four male rates (Wistar Han) were obtained from Charles River Labs (St. Constant, PQ, 

Canada) weighing 250 to 300 g. The rats were acclimatised for a week prior to experimental 

start date. They were kept in plastic solid bottom cages and fed 5CR4 rodent diet (Purina 

Mills International) along with filtered mains water (Veolia Water plc).  

Animals were anesthetised with isoflurane/O2 and were maintained under anaesthesia 

throughout the duration of the experiment. Subsequent to being anaesthetised, all four rats 

were placed on their back and their body temperature was maintained by use of heat mats 

with thermostat.  

Rats were surgically prepared with a jugular vein cannula two days prior to experimental start 

date. This was performed to facilitate IV drug (metoprolol) administration. An angiocath 

(SAI, Infusion Technologies, UK) was placed in the right lateral tail vein to facilitate 

conventional blood sampling. A dose of 5 mg/kg (0.2 mg/mL) of metoprolol tartrate was 
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applied at an IV rate of 3 mL/h/kg through the jugular vein. The duration of infusion was 

approximately 4 h. These parameters were determined using the in silico modelling described 

in Section 5.2.3 to give an appropriate steady state concentration. 

Prior to the in vivo sampling, prototype biocompatible SPME probes housed within 22-gauge 

hypodermic needle and consisting of biocompatible C18 coating (45 μm thickness, 5 μm 

particle size, Supelco, Bellefonte, PA, USA), were preconditioned with methanol followed by 

water for 15 min. 

In vivo sampling was performed after metoprolol concentration in blood had reached steady 

state. This was achieved using continuous intravenous infusion (IV) of metoprolol solution. 

Four fibre exposure times were applied. This experiment was performed to determine the 

required length of fibre exposure to circulating blood within a living organism. At each 

sampling point, the SPME fibre was exposed to the systemic circulation for a defined period 

of time. The chosen durations of pre-equilibrium SPME exposure to systemic circulation 

were (30 s, 60 s, 90 s and 120 s) as shown in Table -5.1-. The latter times were chosen based 

on ethical considerations for leaving the fibre within a live animal. A whole blood sample 

was also withdrawn at each occasion to compare with the SPME concentrations.  

 

Table -5.1- SPME sampling schedule in anesthetised rats   

Animal Number Sample 1 Sample 2 Sample 3 Sample 4  

Rat 1  30 s 120 s 90 s 60 s 

Rat 2 60 s 30 s 120 s 90 s 

Rat 3 90 s 60 s 30 s 120 s  

Rat 4 120 s 90 s 60 s 30 s 

 

 

Desorption of metoprolol from SPME probes was achieved using 200 µL of desorption 

solvent containing internal standard (IS) i.e. acetonitrile containing 100 ng/mL of metoprolol-

d7. Desorption was performed for 15 min under orbital agitation of 500 rpm. The resulting 

extracts were then analysed by LC-MS/MS.  
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Whole blood samples (100 µL) were withdrawn into microtainer tubes containing K3EDTA 

as the anticoagulant (BUNZIL Healthcare, UK). The whole blood samples were withdrawn at 

the same time as each SPME sampling occasion in order to obtain a realist comparison of 

both techniques. A 22-gauge angiocath (venous catheter) was utilized for the CV procedure 

to facilitate whole blood withdrawal. 

Whole blood samples were extracted using protein precipitation where an aliquot of 25 µL 

was precipitated using 200 µL of IS solution (acetonitrile containing 100 ng/mL of 

metoprolol-d7). The supernatant was removed from the pellet into clean 1.4 micronic tubes 

(MicronicTM, Aston, USA) and analysed by LC-MS/MS. 

SPME samples were quantified against calibration standards and QCs prepared in rat blood 

and extracted by the SPME procedure described above. Whole blood samples were quantified 

against calibration lines and QCs extracted by protein precipitation.   

 

5.2.3 In silico Modelling of Metoprolol Steady State Concentration  

In order to estimate the length of time required for continuous IV infusion to achieve a steady 

state concentration of metoprolol between 100 – 200 ng/mL, published metoprolol data from 

Yoon et al157 was utilised to model and predict the required experimental parameters.   

The mean plasma concentrations after 1 min IV infusion of metoprolol at 1 mg/kg from Yoon 

et al157 was entered into a TK software (Phoenix 32, version 6.0, Pharsight Corporation, CA, 

USA) to perform the PK modelling and simulation. Initially a 2-compartment IV bolus model 

was employed to generate the initial parameters. These were subsequently utilized in a 2-

compartment IV infusion model from which the infusion rate (3 mL/h/kg) and the duration of 

the infusion (4 h) were determined. 

 

5.2.4 Post Mortem Tail Dissection 

Animals were killed by terminal anaesthesia where pentabarbitone was administered through 

the jugular cannula. Subsequent to death confirmation, SPME fibres were inserted into the 

tail vein and dissection of the tail was performed. The procedure involved careful lateral 

cutting of the tail around the SPME probe to examine the penetration of the fibre into the 
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vein. This assessment was performed to identify whether the fibre was inserted correctly into 

the vein of the tail. The intention of this experiment was for qualitative necropsy only i.e. 

making observations with the naked eye to ensure that the fibre was inserted into the vein.   

 

5.2.5 In vivo Measurement of Protein Binding Values by SPME and RED 

A second study in conscious rats was designed to confirm that SPME measures free drug 

concentrations in vivo. Similar to the in vitro study in Chapter 4, two techniques, SPME and 

RED, were utilised and compared.  

The study design involved use of six male rats (Wistar Han, Charles River Labs, St. Constant, 

PQ, Canada) weighing 250 to 300 g. The rats were acclimatised for a week prior to 

experimental start date. They were kept in plastic solid bottom cages and fed 5CR4 rodent 

diet (Purina Mills International) along with filtered mains water (Veolia Water plc). 

Similar to the anesthetised rat study design, rats were surgically prepared two days prior to 

experimental start date to insert a jugular vein cannula. This is to facilitate tethered IV 

infusion in live rats. Subsequent to two days recovery period, the rats were tethered to the 

infusion device through a rodent jacket that allows IV infusion with free rat movement within 

the cage while being connected to an infusion pump. 

A dose of 5 mg/kg (0.2 mg/mL) of metoprolol was applied at an IV rate of 3 mL/h/kg 

through the jugular vein for 4 h. Each rat was sampled twice as shown in Table -5.2-, once 

using preconditioned SPME probes and the second sample was a whole blood withdrawal 

(200 µL) using a conventional butterfly needle (caudal venepuncture). SPME fibres were 

preconditioned using methanol followed by water for 15 min. Whole blood samples were 

collected into microtainer tubes containing K3EDTA as the anticoagulant (BUNZIL 

Healthcare, UK). Metoprolol was desorbed off the SPME fibres using 200 µL of IS solution 

(acetonitrile containing 100 ng/mL of metoprolol-d7). 

Whole blood samples were split into two (100 µL aliquots) as shown in Figure -5.1-. One 

sample was extracted by protein precipitation using 25 µL of whole blood sample and 200 µL 

of acetonitrile containing 100 ng/mL of metoprolol-d7. This was centrifuged at 3000 g for 

10 min (5810R, Eppendorf, Germany). The supernatant was removed and injected onto the 

LC-MS/MS.  This was performed to determine the total drug concentration. The second 
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whole blood aliquot was analysed using the RED device to determine the protein binding 

values of metoprolol in each rat. The procedure used for the RED analysis was as described 

in Chapter 4, Section 4.2.3. however, plasma was replaced with whole blood samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure -5.1- Illustration of the type of samples taken from each rat and the fate of each 

sample. PP samples are whole blood samples analysed by protein precipitation (PP) and 

RED samples are samples that were analysed by the rapid equilibrium dialysis device 

followed by PP extraction.   
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Table -5.2- Order of sampling and sampling timepoints for six conscious rats dosed with 

metoprolol using continuous IV infusion  

Order of 
sampling  
 

Animal Number and Sampling Time* 

Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 Rat 6 Rat 6 

Sample 1 SPME 
4.75 h 

CV 
4.83 h 

SPME 
4.92 h 

CV 
5.00 h 

SPME 
5.083 h 

CV 
5.16 h 

SPME 
5.25 h 

Sample 2 CV 
5.33 h 

SPME 
5.41 h 

CV 
5.50 h 

SPME 
5.58 h 

CV 
5.66 h 

SPME 
5.75 h 

CV 
5.83 h 

*  Sampling time after dose start 

 

5.2.6 LC-MS/MS Analysis 

LC-MS/MS analysis was performed using the validated methodology described in Chapter 2, 
Section 2.2.4. 

Analysis of metoprolol biotransformation was performed using a quadrupole time- of-flight 

mass spectrometer (QToF) coupled to an Acquity UPLC system (both Waters, Ltd, UK). 

External mass calibration of the mass spectrometer was performed over m/z range of 

50 -1000 using a solution of NaCsI (purchased from Waters Ltd.). The instrument was tuned 

to give the best possible performance using a 10 μg/mL solution of metoprolol in 50% (v/v) 

acetonitrile in water, infused into a solvent flow of 0.15 mL/min 1:1 0.1% (v/v) formic acid 

in water: acetonitrile, using the integrated syringe pump. An external lock mass (1 μg/mL 

leucine enkephalin in 50% (v/v) acetonitrile in water containing 0.1% (v/v) formic acid, m/z 

556.2771) was infused into the reference sprayer of the MS source at a flow rate of 

20 μL/min using a dedicated HPLC pump (Shimadzu, Manchester, UK) during each 

analyses, for automatic mass correction. 
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5.3 Results and Discussion  

5.3.1 In vivo SPME Study in Anesthetised Rats   

The in vivo exposure time trends of SPME fibres were evaluated using four rats. Results from 

Chapter 3, Section 3.3.1 showed that extraction equilibrium was not reached even after 30 

min of fibre exposure to spiked samples in vitro. However, it can be assumed that as long as 

calibration standards and QCs prepared in vitro97, mimic the length of in vivo exposure, then 

resultant concentrations of unknown samples should give reliable data and reflect in vivo 

concentrations. 

In order to test this, a study in anesthetised rats was performed and a number of exposure 

timepoints were explored. The exposure times were limited by ethical constrains of the 

duration the fibre could be left in the tail vein without causing too much distress to the live 

animal. For this reason, exposure times of (30 s, 60 s, 90 s and 120 s) were examined. Parallel 

whole blood samples were withdrawn using conventional caudal venepuncture sampling to 

compare with the SPME extraction data.  

 

Figure -5.2- Extracted metoprolol at steady state concentration in anesthetised rats. In 

vivo exposure time profiles were investigated for SPME (free) concentrations and were 

compared to whole blood (total) concentration using protein precipitation extraction.  
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Figure -5.2- shows extracted metoprolol concentrations using in vivo SPME versus whole 

blood concentrations extracted by protein precipitation. The SPME time exposure profile in 

vivo showed that 30 s and 60 s fibre exposure resulted in variable concentrations between the 

four rats with an approximate 5-fold difference between the lowest and highest 

concentrations observed for the same sampling timepoint. This variability was reduced for 

the 90 s exposure timepoint and was further decreased for the 120 s exposure timepoint. 

These data seem to indicate that concentration consistency increased with length of fibre 

exposure time to the circulatory system. This finding is expected as SPME is an equilibrium 

extraction method; therefore, extraction time is the limiting step for the SPME procedure. 

Selection of the optimum extraction time is a critical step to obtain reliable results, 

particularly for pre-equilibrium extraction approach. Equilibrium extraction provides the 

highest sensitivity and reliability but in most in vivo SPME applications, pre-equilibrium 

conditions are used97, since equilibrium extraction times tend to be long and impractical for 

in vivo use.  

However, in the case of pre-equilibrium extraction, the longer the extraction times and the 

less steep the extraction profile versus time curve slope, the smaller the relative errors that 

occur. When the chosen extraction time is in the steep area of the curve, a small error in 

timing may cause much higher relative errors in analyte adsorption as it is the case with the 

30 s and 60 s exposure times. Pre-equilibrium SPME offers distinct advantages due to its 

better temporal resolution and short sampling intervals which allow for monitoring of 

analytes within highly dynamic systems with rapid analyte concentration changes. Previous 

research has shown that extraction time for certain compounds can be as short as 30 s whilst 

providing fully reproducible and quantitative results158.  Lord et al97 assessed the 

pharmacokinetic profile of linezolid in anesthetised pigs after a single IV dosage using a 

5 min extraction time. This length of time (5 min) could still pose a potential problem, if the 

PK profile for the analyte in an IV study is rapidly changing with time. 

Overall, based on the data presented above, both equilibrium and pre-equilibrium extractions 

need precise and perfectly repeatable timing which should be determined as part of the 

bioanalytical method, although for the latter method, timing is more critical.  
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5.3.2 Biotransformation of Metoprolol 

Upon processing the SPME and the whole blood data, two peaks with the same MRM 

(multiple reaction monitoring) transition as metoprolol were observed as shown in 

Figure -5.3-. The major peak was identified as metoprolol, its retention time corresponded to 

the same retention time as the metoprolol internal standard. The “unidentified peak” eluted 

earlier than the metoprolol peak on a reversed phase LC system, which indicated that it was a 

more polar component. This unidentified peak was only observed in the whole blood sample 

extracts while the SPME extracts only contained the peak corresponding to the parent 

(metoprolol). 

 

 

Figure -5.3- Representative LC-MS/MS chromatogram of a whole blood sample taken 

at steady state post continuous IV infusion of metoprolol for 4 h in anesthetised rats. 

Whole blood samples extracted using protein precipitation. 
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In order to investigate the origin and identify the moiety of the unidentified peak, residual 

whole blood samples from all four rats were pooled to create a large enough sample for the 

investigation. A 50 µL aliquot was precipitated with 200 µL of acetonitrile containing 100 

ng/mL of metoprolol-d7 and centrifuged (5810R, Eppendorf, Germany) at 3000 g for 10 min.  

The resultant supernatant was removed and analysed using a QToF. The rationale for using 

this instrument lies behind its capability to detect and resolve compounds with improved 

mass accuracy. This enables collection of data that can distinguish drug metabolites from 

most if not all isobaric endogenous components and that can determine elemental 

compositions of metabolite ions and their fragments. The high mass measurement accuracy 

allows exact mass measurement of small molecules. The QToF is a hybrid quadrupole time-

of-flight mass spectrometer with MS/MS capacity, the quadrupole acts as an ion guide in MS 

mode and as a mass filter when utilised in MS/MS mode. A reflectron time-of-flight analyser 

is positioned orthogonally to the quadrupole to serve as a mass resolving tool. The high 

resolving power of this instrument allowed for elemental composition analysis of the pooled 

sample. A full scan of the pooled extracted sample was performed to determine the accurate 

mass of metoprolol and the unidentified (unknown) peak. The accurate mass corresponded to 

molecular formulae differing by C, 4 x H and O indicating a loss of CH4 and a gain of O as 

shown in Figure -5.4-. 

 

 

 

Figure -5.4- The detected accurate mass for metoprolol and the unknown peak when 

analysed using the QToF. 
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A standard stock solution of metoprolol was diluted to 100 ng/mL and analysed along with 

metoprolol-d7 by MSn to determine the fragmentation pattern which in turn would enable 

elucidation of the individual fragments. These were compared to the MSn fragments of the 

unknown peak to determine the location of biotransformation on the metoprolol molecule as 

shown in Figure -5.5-. 

 

 

 

Figure -5.5- MSn fragments of the unknown peak to elucidate the biotransformation. 
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Figure -5.6- Biotransformation of metoprolol in rat.   

 

The retention time, accurate mass and fragmentation data indicated that the biotransformation 

was O-demethylation and further oxidation to a carboxylic acid as shown in Figure -5.6-. 

These findings correlate well with published literature regarding the metabolism pathway of 

metoprolol159. Metoprolol is primarily metabolised by cytochromes (CYP2D6) and 

(CYP3A4) where α-hydroxylation and O-demethylation of metoprolol occurs to produce 

inactive metabolites160. 

The unknown peak corresponds to a metoprolol metabolite which was only observed in the 

whole blood extract and was not detected in the SPME extract. This suggests that the 

selectivity of the C18 coated SPME fibres was limited to adsorption of metoprolol only 

without its metabolite. Although a C18 column was still utilized for chromatographic 

separation of the whole blood sample, this was combined with gradient elution which in turn 

enabled separation between the two peaks (unknown and metoprolol). As discussed above, 

the metabolite is of a more polar moiety than the parent. Therefore, the type of SPME phase 

utilised in this experiment did not exhibit the appropriate coating properties to detect the 

metabolite. The type of phase applied determines the polarity of the SPME coating. Polarity 

can provide selectivity by enhancing the affinity of the coating for polar analytes compared to 

a non-polar fibre coating.  
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The lack of commercially available mixed phase in vivo SPME coatings for more polar 

analytes is a current drawback of the SPME technology. The choice of coating phases 

particularly for in vivo applications is very limited which poses a challenge for the extraction 

of polar components such as metabolites. Drugs entering the body undergo 

biotransformation, some leading to active metabolites that may bind to the therapeutic target 

receptors or interact with other targets causing adverse effects. For this reason, the FDA 

guidance for metabolites in safety testing161 recommends metabolic profiling of drugs during 

different stages of development using in vitro and in vivo methods. Generally, active 

metabolites as well as ones that have been identified in vitro using human hepatocytes are 

considered for exposure and safety assessments. In such cases, sensitive and selective 

analytical techniques are required to detect and characterize metabolites derived from the 

parent drug. Although SPME has been successfully applied in numerous metabolomic studies 

i.e. the analysis of metabolites or metabolite fingerprinting151, the SPME probes employed in 

those studies were custom-made or specifically designed for each study. For example, 

Vuckovic, D. et al42 utilized mixed-mode coatings, polar-enhanced 

polystyrene − divinylbenzene, and phenylboronic acid custom made coatings for the 

extraction of hydrophilic and hyrophobic metabolites at physiological conditions.  

The use of SPME for metabolic profiling and metabolomics in general could potentially 

transform the way metabolites are currently captured and quantified. Measuring unstable 

metabolites or even unstable prodrugs has always been a complicated task for bioanalysts. In 

vitro concentrations of unstable components do not always match the real in vivo 

concentrations. In some cases, the time between withdrawing a sample and treating it with a 

stabilizer is enough to degrade an unstable moiety. For this reason, capturing unstable 

metabolites or prodrugs within a living organism using suitable SPME probes can lead to 

real-time drug monitoring i.e. reflect true in-life drug concentrations. This can have a 

substantial impact on current quantification methods for unstable metabolites and prodrugs. 

The small amount of analyte required for SPME analysis permits detection of metabolites 

circulating at low concentrations. SPME may offer a good representation of the true 

metabolome at the time of sampling and therefore act as a powerful tool for metabolomic 

analysis62,151. But this capability is currently limited by the chemistry of the coating and the 

commercially available SPME products. Increased coverage of hydrophilic molecules will 

only be achieved when a diverse range of in vivo coating phases become commercially 

available. 
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5.3.3 Post Mortem Tail Dissection 

Necropsy is considered as an important step in research, especially when evaluating new 

sampling techniques. In this study, the insertion of SPME fibre into the rat’s tail vein was 

followed by tail dissection. This was performed to identify the positioning of the fibre within 

the vein and possibilities of vein puncture if the fibre is advanced into the vein with increased 

handling force. 

 

 
Figure -5.7- SPME fibre fully extended into a Wistar Han rat tail vein.  

 

 

 

 

 

 

 

Figure -5.8- Necropsy of Wistar Han rat tail vein illustrating the SPME insertion into 

the vein. 
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In addition to the fact that SPME sampling does not require blood withdrawal, Figure -5.7- 

illustrates that there was no blood loss during the insertion of the device into the living 

organism. Figure -5.8- demonstrates the fibre penetration inside the vein. The laboratory 

animal technician and study vet both confirmed that the necropsy further revealed that the 

fibre had been advanced into the tail vein without causing any damage to the vein. The 

laboratory animal technicians stated that resistance was exerted in the reverse direction to the 

fibre when the device was pushed into the vein vigorously. This meant that vein puncture was 

not possible as the fibre is too flexible and thin to cause any damage to the vein.  

Preliminary assessments of SPME probe insertion into the living organism showed that the 

device was easy to handle. Despite the fact that the current in vivo SPME probe is a prototype 

device which requires modification and product development, animal technicians found the 

device simple to use within a busy laboratory setting. This was a satisfactory indicator that 

the device could potentially be applied and used for a toxicology study. 

In comparison to other microsampling techniques, extensive training was not required for the 

animal technicians to utilise the SPME device. While one of the core concerns with the dried 

blood spot technology was training of staff to accurately spot the blood sample onto the 

card162. On the other hand, the SPME device was used in anesthetised rats in this instance so 

the ease of use could have been masked by the fact that a response was not observed upon 

insertion of the device due to the anesthesia effect. The ease of use requires full assessment 

when the technique is applied in a toxicology study of live animals. This is described in more 

detail in Chapter 6. 

 

5.3.4 In vivo Measurement of Protein Binding Values by SPME and RED 

Assessment of PPB of candidate drugs in each laboratory animal is not a common approach 

within preclinical drug development. Traditional and current ways of identifying 

bioavailability and relating total drug concentrations to free circulating drug concentrations 

have been through in vitro plasma protein binding measurements. Values determined in vitro 

are then applied to total drug concentrations measured in vivo to produce a calculated value.  

In this study, the percentages of metoprolol binding to protein were measured individually for 

six conscious rats, by taking whole blood samples and analysing them using the RED device. 
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Total metoprolol concentrations were also measured by protein precipitation extraction. The 

two values were used to calculate the theoretical free concentration using Equation -5.1-.  

 

ܶℎ݁ܿ݊݋ܥ ݁݁ݎܨ ݈ܽܿ݅ݐ݁ݎ݋.  = .ܿ݊݋ܥ ܤܹ ݈ܽݐ݋ܶ                      ݁݁ݎܨ % ݀݁ݐ݈ܽݑ݈ܿܽܥ  ݔ  ܲܲ ݕܾ ݀݁݊݅݉ݎ݁ݐ݁݀
Equation -5.1-  

 

This was compared with free metoprolol concentration (Table -5.3-) determined using SPME 

which was sampled at approximately the same timepoint as the whole blood sampling.  

 

Table -5.3- Total and free metoprolol concentrations measured in live rats using RED 

and SPME 

Animal 

Number 

Total WB 

Conc. 

determined 

by PP 

(ng/mL) 

% Bound 

determined 

by RED 

Calculated 

% Free 

By RED 

Calculated 

Theoretical 

Free Conc. 

(ng/mL) 

Actual free 

Conc. 

determined 

using 

SPME 

(ng/mL) 

% 

Difference 

between 

SPME and 

Theoretical 

Conc. 

Rat 1 49.4 21.6 78.4 38.7 34.4 11.2 

Rat 2 52.0 22.0 78.0 40.6 46.0 -13.4 

Rat 3* - - - - - - 

Rat 4 56.5 36.8 63.2 35.7 40.2 -12.5 

Rat 5 85.3 21.1 78.9 67.3 61.4 8.72 

Rat 6 83.1 10.1 89.9 74.7 73.6 1.38 

Mean 65.3 22.3 77.7 51.4 51.1  

SD 17.5 9.5 9.5 18.1 16.1  

 *Rat 3 chewed the connections of the infusion harness and escaped from the tethered IV 

jacket and therefore no data was collected for rat 3. 
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Table -5.3- shows the data collected for in vivo metoprolol concentrations using RED and 

SPME. The first observation was that protein binding values measured using the RED device 

have a large inter-animal range, varying between 10.1% - 36.8%. Although the overall mean 

correlates with reported literature values for metoprolol (20 - 30%)146, the inter-animal 

variability was much larger than the observed variability for the in vitro RED data in 

Chapter 4, Section 4.3. The calculated theoretical in vivo free metoprolol concentration 

obtained using the RED device correlated well with the free concentrations determined using 

SPME. It was found that the percentage difference between the free drug concentrations 

obtained by the two techniques was less than ±15%. This is expected because the SPME fibre 

was not competing with the proteins for the drug since fibres only adsorb a small amount of 

drug which does not impact the blood/protein equilibrium. This indicates and further 

confirms that SPME measures in vivo free circulating drug concentration. 

The overall results of this experiment showed that SPME can be used to determine free 

circulating drug concentrations in live animals. In the current drug discovery and 

development setting, knowledge of drug/protein binding property is determined during the 

early stages of the drug discovery36. This is used to extrapolate preclinical animal data to 

predict drug’s efficacy and toxicity in human subjects. Although the amount of circulating 

free drug concentration is crucial to determine the drug’s bioavailability, hepatic clearance 

and other parameters, the common practice in the pharmaceutical industry is to report total 

drug concentrations rather than free. This is mainly due to the fact that there is equilibrium 

between bound and free drugs, and concentration of free drug can be predicted from total 

drug concentrations. Also the limited range of analytical techniques for direct monitoring of 

free drug concentrations adds to the complexity of utilising this parameter in preclinical and 

clinical settings. However, under certain conditions such as disease states, if the equilibrium 

between bound and unbound drug is disturbed, the free drug concentration can become 

significantly higher than expected in which case a patient may experience drug toxicity even 

if the total drug concentration is within the therapeutic range. The converse is also true. In 

hyperalbuminaemia more drug will be bound to the plasma proteins than in a healthy patient 

and the amount of free drug would therefore be lower than expected i.e. below efficacious 

levels163. 

For this reason, it is essential in some cases to monitor the free concentration and SPME has 

the potential to be used in vivo for direct monitoring of free rather than total concentrations. 

Currently, microdialysis is recognised as the most established in vivo technique for measuring 
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free drug concentrations164. The technology is widely used for monitoring neurotransmitters 

in the brain and for the measurement of selected metabolites as a bed-side instrument. 

However, the technique still has limitations such as complicated initial set up of the sampling 

device and carryover issues. All other techniques require blood withdrawal followed by in 

vitro analysis of drug binding values to elucidate the free concentrations. Therefore, SPME 

offers a simple and compelling alternative to these techniques. 

The current pharmaceutical environment as discussed above utilises total drug concentrations 

for preclinical and clinical studies as this has been the routine approach for many years. The 

mindset of the industry will have to change before a technique such as SPME becomes the 

routine technique for reporting drug exposure levels. But if the science behind SPME can be 

demonstrated, then there is every possibility of it being adopted in the future because of the 

stated advantages, although this is likely to take time and require support from regulators. 

Despite this, SPME can potentially be used immediately for certain study types such as PK 

discovery studies and preclinical non-GLP studies, where free drug concentrations and 

sample blood volumes play a major role.  

 

 

5.4 Conclusion 

The work reported in this chapter, showed the feasibility of transferring the SPME technique 

from in vitro to in vivo bioanalysis. It has been demonstrated that pre-equilibrium conditions 

can be applied in vivo to reduce the length of sampling time. In practice, the time required to 

reach equilibrium is usually too long and cannot be implemented for two reasons; ethical 

considerations of leaving the needle and fibre within the living animal for a long period of 

time which may cause animal distress and second, the rapid drug concentration change within 

a dynamic system. Essential parts of the drug PK profile could be missed if the length of 

sampling time is too long. However, the main disadvantage of employing pre-equilibrium 

conditions lies in the fact that time of extraction requires optimisation during the in vitro 

method development and that shorter sampling times may compromise analyte recovery and 

sensitivity. But such hurdles can be addressed by current highly sensitive detection 

techniques such as mass spectrometry. 

The small blood vessel size of rodents meant that the use of interfaces was a necessity to 

allow in vivo SPME applications. This study showed that the new miniaturized SPME 
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devices were small enough to be inserted directly into rodent veins without the need for a 

catheter or other interfaces.  

This was further confirmed by the necropsy which revealed ease of fibre penetration into the 

vein. This feature enables ease of use and flexible handling for animal technicians 

particularly within a busy preclinical study laboratory. 

The information generated in this study presented for the first time a direct comparison 

between RED and SPME for monitoring free drug concentrations in individual animals. The 

difference between the two techniques was ±15%, however, the RED device involved blood 

withdrawal followed by in vitro analysis while SPME did not require blood withdrawal and it 

enabled sampling and extraction in one step. Despite the apparent advantages of SPME in 

monitoring free drug concentrations, there is currently only one phase (C18) which is housed 

within hypodermic needles and is commercially available for in vivo applications. This 

coating phase is a versatile phase but it does not cover a wide range of analyte polarities, for 

this reason metabolites that exhibit polar moieties cannot be extracted using this phase as was 

the case with the metoprolol metabolite. Product development issues and the need for mixed 

phase coatings to expand the portfolio of in vivo drug extraction will have to be addressed 

prior before the SPME technique could be accepted as a mainstream bioanalytical procedure. 
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Chapter 6 

Comparison of SPME and Conventional Blood Sampling 

in a 7 Day Toxicity Study in Male Rats 

 

6.1 Introduction  

As previously discussed in Chapter 1, Section 1.2, the primary objective of toxicokinetics is 

to demonstrate the systemic exposure achieved in animals and its relationship to the drug 

dose level and the time course of a toxicity study165. This is then related to toxicological 

findings if any, and their relevance to clinical safety in human studies165. Thus, toxicokinetic 

measurements are normally integrated within toxicity studies using separate satellite groups 

with a view to enhance the value of the toxicological data generated. 

Laboratory animals utilised within preclinical investigations including toxicity studies, 

require stable and defined physiological states so that response to the variable of interest 

(drug under evaluation) is not masked by external factors such as sampling procedures. 

Compromising animal wellbeing leads to unreliable data which may give false interpretations 

with reduced credibility of study outcomes166. One of the major hurdles for implementing 

microsampling techniques in regulatory studies is the removal of TK satellite animals and the 

potential consequences of using microsampling on functional, behavioural and clinical 

pathological endpoints in main study animals17,167. Any adverse impact of generating TK 

measurements from the main toxicity study animals can lead to regulators not accepting the 

data17. For this reason, systematic evaluation of toxicologically sensitive parameters 

including haematological and clinical chemistry changes is essential to understand the impact 

of subjecting animals to a new microsampling device. Changes between control and test 

groups are monitored to observe and assess the biological and the toxicological significance 

of any differences between the two groups17. 

Such assessments are also important in revealing the biocompatibility of the microsampling 

tool, specifically if it is invasive. In the case of SPME, investigating toxic and inflammatory 

reactions as well as monitoring other stress markers is necessary as the mechanism of the 
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device involves leaving the fibre in the vein of a living organism for a defined period of time, 

therefore the possibility of adverse reactions to the device is high.  

In addition to assessing the impact of microsampling techniques on toxicological parameters, 

it is also essential to ensure that the TK data generated using microsampling devices is 

comparable to TK data obtained by conventional sampling. Therefore, using SPME in a 

typical preclinical study within a pharmaceutical setting and comparing this technique to a 

conventional sampling tool to generate TK data is vital to evaluate the applicability of the 

technique. 

 

6.1.1 Tail Vein Sampling  

To date, blood removal is one of the most common procedures used to address the needs of 

toxicokinetic, pharmacokinetic and toxicology studies168. The ideal method for blood 

sampling from laboratory rodents should have minimal physiological impact on the animal, 

removes the requirement for anaesthetics and finally enables fast and repeated sampling 

without causing stress to the animal or having an effect on any toxicological parameters169. 

Tail vein sampling is a popular technique suitable for rodent studies. It is quick and simple to 

perform. However, this method requires warming rodent tails by immersion into warm water 

or through whole animal warming using a hot box or an incubator. This is to enable blood 

vessel dilation and in turn allow collection of sufficient blood volume for analysis170. The 

rodent is usually placed in a restrainer which consists of a plastic tube and a 21 gauge 

butterfly-needle is inserted into the blood vessel and blood is collected directly into tubes or 

through a syringe or a capillary tube. To avoid bruising and damage to the tail, no more than 

eight samples should be taken over 24 h15. The recommended number of attempts is also 

minimal (no more than three needle sticks in any one attempt). Removal of blood can have a 

direct impact on the pathology and other endpoints of main study animals including 

haematological changes which may mask the potential effects of the test compound. For this 

reason, satellite groups have been previously employed to determine toxicokinetic 

parameters. 

In vivo SPME has the potential to eliminate the need for satellite groups as no blood 

withdrawal is required. Furthermore, the device is housed within a 21 gauge needle, thereby 
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maintaining the same dimensions of conventional sampling tools. However, the number of 

needle sticks will remain the same as the conventional technique i.e. a needle stick is required 

per each PK/TK timepoint unless the current prototype SPME device can be further 

developed to encompass an indwelling cannula that can accommodate interchangeable fibres 

without the need for multiple needle sticks.  

 

6.1.2 Clinical Pathology Measurements  

The assessment of clinical pathology is a key tool for the evaluation of drug safety within a 

biological system and it is also a clear indicator of physiological changes as a consequence of 

exposure to foreign materials such as sampling tools171. The most common analysis includes 

clinical chemistry measurements looking at several enzymes that are used as biomarkers for 

cellular injury and organ toxicity/damage. For example elevated levels of alanine 

aminotransferase and glutamate dehydrogenase are regarded as indicators of hepatotoxicity 

whereas alterations in alkaline phosphatase activities are a sign of changes in food intake172. 

Cardiac dysfunction is observed through changes in atrial natriuretic peptide (ProANP) and 

tropinin levels. High influx of white blood cells is also a clear indicator of inflammation in 

response to damage caused by sampling procedures. Other core clinical chemistry tests 

involve determination of glucose, urea, total protein and other hepatocellular and 

hepatobiliary parameters173. These biomarkers act as important pointers to distinguish the 

direct and downstream effects of sampling techniques on animals. 

 

Haematology examination is also performed concurrently with chemistry tests, the standard 

parameters that are clear pointers of haemorrhage and functional disturbances of the blood 

platelets are erythrocyte count, leucocyte count, haemoglobin levels, haematocrit as well as 

several others such as white blood cell count that provide insight to production of 

haematopoietic tissues and give indications of bone marrow toxicity171.  

In addition to the above, coagulation markers are also monitored to reveal vascular injuries 

and show signs of a haemostatic disturbance where an increased tendency to bleeding is 

suspected171. Also initiation of coagulation is an indicator of body response upon exposure to 

foreign materials i.e. a marker for biocompatibility19. These markers include prothrombin 

time, activated thromboplastin time and fibrinogen levels. The coagulation system which 

promotes the formation of blood clot during tissue damage starts by platelet aggregation 
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which is activated by thrombin, this is then followed by fibrinogen formation which 

stimulates platelet clumping to accommodate formation of the plug172. For this reason, the 

coagulation system plays an important role as a biomarker for changes associated with the 

vascular system.   

Histopathology of certain organs is also one of the requirements for clinical pathology 

assessments, for example; the spleen is a site of red blood cell production and therefore is a 

clear indicator of disturbance to the red blood cell count while liver toxicity and lung damage 

can occur as a consequence of changes associated with stress174. Tail tissue is usually 

examined for inflammation, irritation and extent of vascular damage/bruises14,175 to determine 

the impact of new sampling tools; hence terminal tissue samples of these organs are retained 

and microscopically examined.   

 

 

6.1.3 Neurobehavioral Assessment   

How an animal cope with a given situation and how it responds to internal and external 

factors is what defines an animal’s wellbeing. The extent of animal wellbeing is not exclusive 

to physiological measures; it is a combination of physiological and behavioural indicators. 

Animal behaviour including eating and drinking patterns, playing, sleeping, grooming and 

posture serve as important markers that characterise the animal’s health and its response to 

stress16. 

Any alterations from the regular state will trigger a protection mechanism where adaptive 

coping responses are activated to return the animal to its normal condition of what is known 

as “wellbeing”176. Abnormal responses may lead to distress, disability or death. A systematic 

observation of an animal’s behaviour offers the possibility for determining the effects of 

drugs and exposure to surgical or sampling tools on the psychological and behavioural state 

of the animal. Samuel Irwin177 developed an observational procedure which was further 

developed into a functional observation battery (FOB) that consists of a series of situations 

applied to the animal to determine the overall sensory, coordination and motor deficits. The 

procedure is designed to comprehensively assess activities related to stimulation of the 

central nerves system such as excitation, jumping and autonomic functions such as salivation, 

lachrymation and several other responses177. The duration of the test lasts between 10-15 

minutes where visual and other sensory stimuli are applied to the animal to determine its 
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ability to detect and respond in a normal manner, after which rodents are returned to their 

cages177,178.   

The “Irwin neurobehavioral study” is suitable for identifying the suitability of SPME as a 

microsampling tool. The SPME device is considered to be a ‘stressor’ (an external factor 

which may cause pain), to which the animal will respond through behavioural and autonomic 

ways. Depending on the magnitude of the stressor, the animal’s biological function maybe 

altered to either have a minimal effect on its wellbeing or have a greater impact that could 

result in distress179. Animal distress can adversely impact the quality of experimental results, 

data interpretation and may also affect the ethical conduct of the study176. If SPME is shown 

to be psychologically and toxicologically benign, its adoption in preclinical and future 

clinical studies may have the potential to evolve a new area of microsampling without having 

to withdraw any blood.  

 

6.1.4 Aims and Objectives 

The aims and objectives of this chapter are to assess the ethical and practical impact of using 

biocompatible SPME as a novel microsampling technique for repeat blood sampling without 

blood withdrawal, and to compare the use of SPME with a conventional tail blood sampling 

procedure (caudal venepuncture) to generate TK data. This will be performed through a 7 day 

repeat dose toxicity study in male rats. The study design will mimic a typical preclinical 

study used within the pharmaceutical industry, in terms of duration, dosage, animal numbers 

and analysis of various endpoints. In this study, SPME will be used for serial toxicokinetic 

sampling from conscious rats on day 1 and day 7 to replicate a standard toxicokinetic 

assessment. This will be conducted to demonstrate the quality of the TK data generated using 

SPME and whether it is comparable to conventional sampling. A full tolerability evaluation 

assessing stress levels and clinical pathology is to be conducted for all animals to establish 

the suitability of this novel microsampling technique. SPME sampling and conventional 

blood withdrawal sampling will also be compared to a control group to observe the impact of 

each sampling technique on the animals and to assess the toxicological significance of any 

differences between them.   
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6.2 Experimental  

6.2.1 Test Material  

Metoprolol tartrate obtained from Sigma Aldrich (Dorset, UK) was formulated as a solution 

using sterile water (6 mg/mL) and stored at approximately 2 -8 oC, protected from light for 15 

days.  

 

6.2.2 Rationale for Test Material  

Metoprolol is a selective beta 1 receptor blocker which is used to lower blood pressure in 

patients with high blood pressure, heart failure or angina. It has been chosen as a tool 

compound because it is a class I compound (high solubility and permeability) according to 

the Biopharmaceutics Classification System (BCS), with a wealth of published information 

(in vitro and in vivo)146,148, defined pharmacokinetics (rapidly cleared) and pharmacodynamic 

effect (blood pressure). A previous study has been reported investigating the 

pharmacokinetics, pharmacodynamics and toxicity of metoprolol in Wistar albino rats at 60, 

120 and 240 mg/kg/day for 28 days180.  Based on this a dose of 60 mg/kg/day was selected as 

the identified no observed adverse effect (NOAEL) from Nandi et al180 to provide a suitable 

concentration-time profile for the study duration.  Metoprolol was to be administered once 

daily for 7 days by oral gavage to male Crl:WI(Han) rats to determine the toxicokinetics and 

systemic exposure of metoprolol at a target dose level of 60 mg/kg/day. 

 

6.2.3 Animals and Housing  

24 Male Wister (Han) rats were obtained from Charles River UK Ltd (Margate, Kent). Male 

rats were used to minimize data variability caused by sex differences. The approximate age of 

the rats at day 1 of dosing was 10 weeks. Animals were split into 4 groups as shown in Table 

-6.1-, each containing 6 rats. The number of animals per group was chosen based on the 

minimum recommended number of rodents used on 7 day and 1 month preclinical toxicology 

studies165. Plastic solid bottom cages were used for housing, each containing Aspen 4H 

bedding (Datesand Ltd). 3 animals were randomly housed within each cage (same treatment 

group) and were acclimatised for 6 days prior to day 1 of dosing. All animals were kept at an 
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approximate temperature of 19 -23oC and a relative humidity range of 55 ± 10% on a 6 am to 

6 pm light cycle.  They were given 5CR4 rodent diet (Purina Mills International) and filtered 

mains water (Veolia Water plc). Chew sticks, nesting material and tunnels were provided for 

environmental enrichment. 

Animals were randomly allocated to one of four treatment groups (each group is defined in 

Section 6.2.4) and were identified using microchips and permanent markers on the tail with 

numbers as shown in Table -6.1- below;  

 

Table -6.1- Animal numbers within each group 

Animals Group Number 
 1 2 3 4 

Males 001 007 013 019 
 002 008 014 020 
 003 009 015 021 
 004 010 016 022 
 005 011 017 023 
 006 012 018 024 
 

 

 

6.2.4 Study Design  

The design of the study consisted of 4 animal groups as shown in Table -6.2- below. The 

rationale for each group choice was based on the fact that the difference between Groups 1 

and 2 would examine the impact of the SPME device on the animal. While the difference 

between Groups 2 and 3 would examine the impact of the test article (metoprolol) and finally 

the difference between Groups 3 and 4 would examine the impact of SPME compared to 

conventional sampling i.e. caudal venipuncture (CV).  
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Table -6.2- Study design and animal group numbers with sampling types and dosing 

schedule  

Group 
Number 

Group 
Name 

TK Blood 
Sampling 

Sampling 
Method 

Dose*  
(mg/kg/day) 

Dose Conc 
*(mg/mL) 

Number 
of Males 

1 Group 1 No Control/None Vehicle 0 6 

2 Group 2 Yes SPME Vehicle 0 6 

3 Group 3 Yes SPME 60 6 6 

4 Group 4 Yes CV 60 6 6 
 

 

6.2.5 Dosing Regimen and Sampling  

Metoprolol was administered, once a day, orally at a dose volume of 10 mL/kg which is 

equivalent to 60 mg/Kg. Groups 1 and 2 were dosed 10 mL/kg of sterile water by oral 

gavage.  

Toxicokinetic sampling was performed on days 1 and 7 at the following timepoints; 0.5, 1, 3, 

5, 7 and 24 h after dosing. Groups 2 (vehicle) and 3 (dosed/metoprolol) were sampled using 

SPME by placing the SPME needle into the rat vein. Once the needle was inserted into the 

caudal vein, the fibre was projected inside the vein and exposed to the systemic circulation 

for a defined period of time (2 min). Prior to sampling, each fibre was pre-conditioned with 

methanol for 15 min followed by water for another 15 min.  

Group 4 was sampled using caudal venipuncture (CV). This method involved using a 

standard 21 g cut-off butterfly needle inserted into the caudal vein. Approximately 150 µL of 

blood was collected into 0.5 mL microtainer tubes containing K3EDTA as the anticoagulant 

(BUNZIL Healthcare, UK). Bleeding was staunched using light pressure and a swab or other 

absorbent material at the end of each collection.  Subsequent bleeds required a fresh cut-off 

butterfly needle to be inserted into the caudal vein at each occasion. All blood samples were 

gently mixed on a roller mixer (Progen Scientific, UK). 

Animals were sacrificed after the 24 h timpepoint on day 8 by exsanguination via the 

abdominal aorta under isoflurane anaesthesia. Confirmation of death was performed by 

cutting of the major blood vessel (cessation of circulation). All animal studies were ethically 
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reviewed (GSK POL-GSKF-403 POL_87182 (7.0)) and carried out in accordance with 

Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and 

Treatment of Animals. 

 

6.2.6 Bioanalysis and Toxicokinetics   

SPME samples collected from Group 3 were desorbed using acetonitrile containing 

metoprolol-d7 as per the SPME procedure described in Chapter 3, Section 3.2.4. Whole blood 

samples collected from Group 4 were extracted (25 µL aliquots) using protein precipitation 

(full methodology for metoprolol whole blood analysis is detailed in Chapter 2, Sections 

2.2.3 and 2.2.4). Concentrations of metoprolol from SPME samples (Group 3) and blood 

(Group 4) were determined by using the bioanalytical LC-MS/MS method validated for 

metoprolol (as detailed in Chapter 2). Two sets of calibration lines and QC samples were 

analysed, one was extracted using the SPME procedure described above and the second was 

extracted using whole blood protein precipitation as detailed in Chapter 2, Sections 2.2.3 and 

2.2.4. 

Toxicokinetic evaluation was performed using a non-compartmental pharmacokinetic 

analysis method (Phoenix 32, version 6.0, Pharsight Corporation, CA, USA). Systemic 

exposure to metoprolol was determined by calculating the area under the plasma 

concentration-time curve (AUC) from the start of dosing to the last quantifiable timepoint 

(AUC0-t) using the linear-logarithmic trapezoidal rule. The maximum observed peak plasma 

concentration (Cmax) and the time at which it was observed (Tmax) were determined by 

inspection of the observed data. 

 

6.2.7 Clinical Observations 

All animals were thoroughly examined for clinical signs on day -3 prior to dosing and at least 

three times daily during treatment days by animal laboratory technicians. Body weights and 

food consumption were also recorded on day -3 pre-treatment and daily during treatment 

days. 
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6.2.8 Clinical Pathology Measurements 

Necropsy was performed using samples taken on day 8 by puncture of the abdominal aorta 

under isoflurane anaesthesia (with food withheld overnight prior to necropsy). 0.8 mL of 

blood was collected into potassium EDTA tubes and analysed using standard ADVIA 2110 

haematology methodology181  (full protocol available from Siemens Healthcare Diagnostics) 

to determine the following haematology parameters: 

Haematocrit (HCT), haemoglobin (HB), total red blood cell count (RBCR), mean cell volume 

(MCVR), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC), 

red blood cell distribution width (RDWR), reticulocytes (RETA), platelet count (PLT), white 

blood cell count (WBC), neutrophils (NEU), lymphocytes (LYM), monocytes (MON), 

eosinophils (EOS), basophils (BAS), low reticulocyte (LRT), medium reticulocyte (MRT), 

high reticulocyte (HRT), leucocyte count (LUC), platelet count (PLT). 

Clinical chemistry parameters were measured using ADVIA 2120 chemistry methodology181 

(full protocol available from Siemens Healthcare Diagnostics), 2.0 mL of blood was collected 

into tubes containing lithium heparin to measure the following parameters: 

Alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH), aspartate 

aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), glucose (GLU), 

albumin (ALB), total protein (TP), urea (UREA), creatinine (CREA), inorganic phosphorus 

(PHOS), calcium (CA), cholesterol (CHOL), triglycerides (TRIG), sodium (NA), potassium 

(K), chloride (CL).  

Coagulation activity was monitored using 1.8 mL of blood collected into tubes containing 

0.2 mL of 0.106 M trisodium citrate. A standard CA 1500 coagulation methodology (full 

protocol available from Siemens Healthcare Diagnostics) was employed to measure 

prothrombin time (PT), activated partial thromboplasin time (APTT) and fibrinogen content 

(FIB). 

Cardiac output was investigated using standard Centaur CP methodology (full protocol 

available from Siemens Healthcare Diagnostics), 0.8 mL of blood was collected into 

Minicollect Z serum gel activator tubes to assess the level of troponin I (CTNI). A further 

0.8 mL of blood was utilised to determine NT-pro-atrial natriuretic peptide (NT pro-ANP) 
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levels. An enzyme-linked immunosorbent assay on a meso scale discovery (MSD) platform 

was employed. 

All tissues from all animals (Groups 1-4) were preserved in 10% buffered formalin and 

macroscopic examination of any abnormalities was performed. Specific tissues including the 

liver, lung, spleen and tail were histologically examined for all animals.   

 

6.2.9 Neurobehavioral Assessment  

Animals were observed by animal laboratory technicians according to a standardised 

observation battery which allows the assessment of both peripheral and central nervous 

systems activities (e.g. motor activity, behaviour, co-ordination, somatic sensory/motor reflex 

responses and autonomic responses such as piloerection, pupil size, lachrymation, and 

salivation, overt cardiovascular and gastrointestinal effects).  Methods were adapted from 

those originally described by Irwin for detecting behavioural effects in mice177 and 

subsequently modified as the neurologically based Functional Observational Battery (FOB) 

adapted for use in rats182.  

Animals were examined on day -1 i.e. pre-treatment and on days 1 and 7 between 2 and 4 

hours after dosing.  Each animal was subjected to a number of stimuli to assess the response. 

The true identification of each animal was blinded for the purposes of these examinations 

(microchipped).  In addition, the order in which animals were presented to the examining 

technicians on each respective occasion was also randomised.  

 

6.3 Results and Discussion  

6.3.1 Bioanalysis and Toxicokinetics  

The evaluation of pharmacokinetic profiles and examination of toxicokinetic parameters is a 

crucial part of all toxicology studies. The feasibility of PK/TK studies by in vivo SPME was 

investigated and compared with conventional blood sampling.  Blood sampling by SPME 

measures the unbound free drug concentration (Group 3). This was also shown in Chapter 5, 

Section 5.3.4. Whereas total drug concentration was measured (Group 4) using conventional 
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caudal tail vein (CV) sampling followed by protein precipitation extraction. Metoprolol 

concentrations from Groups 3 and 4 are shown in Tables -6.3- and -6.4- respectively. 

 

Table -6.3- Free concentrations of metoprolol extracted by SPME at each timepoint on 

days 1 and 7 following oral administration at a nominal dose of 60 mg/kg/day to male 

rats. Data reported to 3 significant figures. 

Free Concentrations of Metoprolol Extracted by SPME (ng/mL) 

Period 
Time 
(h) 

Animal Number 

13 14 15 16 17 18 

Day 1 0.5 601 548 250 797 525 378 

 1 394 333 197 321 228 587 

 3 67.1 99.2 55.6 52.4 56.4 91.9 

 5 4.97 14.5 4.26 5.57 8.75 9.57 

 7 3.20 4.28 3.09 NQ 3.85 3.78 

 24 NQ NQ NQ NQ NQ NQ 

Day 7 0.5 135 183 334 344 491 482 

 1 198 140 239 216 294 703 

 3 32.0 54.8 61.2 51.4 40.7 58.8 

 5 NQ 14.2 4.03 5.49 5.55 3.07 

 7 NQ 5.79 8.44 NQ 1.54 1.97 

 24 NQ NQ NQ NQ NQ NQ 
NQ – Not Quantifiable 
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Table -6.4- Total whole blood concentrations of metoprolol by conventional CV 

sampling at each timepoint on days 1 and 7 following oral administration at a nominal 

dose of 60 mg/kg/day to male rats 

Total Whole Blood Concentrations of Metoprolol (ng/mL) 

Period 
Time 
(h) 

Animal Number 

19 20 21 22 23 24 

Day 1 0.5 458 927 483 658 558 1418 

 1 270 811 394 399 502 952 

 3 60.7 279 108 40.4 73.3 195 

 5 11.0 27.1 21.3 4.14 12.4 63.0 

 7 4.56 6.63 9.15 NQ 7.31 15.5 

 24 NQ NQ NQ NQ NQ NQ 

Day 7 0.5 636 734 676 1411 277 645 

 1 334 418 500 946 299 749 

 3 28.1 127 152 150 74.0 137 

 5 NQ 13.0 23.3 30.5 13.9 30.5 

 7 NQ 10.6 12.6 12.1 NQ 11.9 

 24 NQ NQ NQ NQ NQ NQ 
NQ – Not Quantifiable 
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Figure -6.1- Individual concentration-time profiles of metoprolol sampled by SPME and 

CV on days 1 and 7 following oral administration at a nominal dose of 60 mg/kg/day to 

male rats (individual rodent numbers are indicated in the coloured key to each plot).  

 

 

Following oral administration of metoprolol to male rats at 60 mg/kg/day, concentrations of 

metoprolol were quantifiable in blood up to 7 h after dosing from both blood sampling 

techniques. Similar concentration-time profiles were observed for metoprolol following both 

blood sampling techniques, using SPME and CV, for day 1 and day 7, respectively. However, 

Figure -6.1- shows a difference in the concentration levels between Groups 3 and 4. This is 

expected as both techniques are measuring different aspects, one is measuring unbound drug 

concentration (SPME/Group 3) and the other is measuring total drug concentration 

(CV/Group 4). 

For this reason and in order to establish a like for like comparison between Groups 3 and 4, a 

correction factor consisting of the average protein binding value for metoprolol (22.3%) 

determined in vivo in Chapter 5, Section 5.3.4 was applied to adjust the free concentrations 

from SPME to give equivalent total concentrations as shown in Table -6.5- below.  
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Table -6.5- Concentrations of metoprolol extracted by SPME adjusted for protein 

binding fraction (22.3%), to give total concentration at each timepoint on days 1 and 7 

following oral administration at a nominal dose of 60 mg/kg/day to male rats 

Corrected Total Concentrations of Metoprolol Extracted by SPME (ng/mL) 

Period Time 
(h) 

Animal Number 

13 14 15 16 17 18 

Day 1 0.5 774 705 322 1026 676 486 

 1 508 429 253 414 294 756 

 3 86.4 128 71.5 67.5 72.7 118 

 5 6.40 18.7 5.48 7.17 11.3 12.3 

 7 4.12 5.51 3.98 NQ 4.96 4.87 

 24 NQ NQ NQ NQ NQ NQ 

Day 7 0.5 174 236 430 443 632 620 

 1 255 180 308 278 378 905 

 3 41.2 70.5 78.8 66.2 52.4 75.6 

 5 NQ 18.3 5.19 7.07 7.14 3.95 

 7 NQ 7.45 10.9 NQ 1.98 2.54 

 24 NQ NQ NQ NQ NQ NQ 
NQ – Not Quantifiable 
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Table -6.6-Calculated toxicokinetic parameters for groups 3 (free concentration/SPME), 

(corrected equivalent total concentration/SPME) and 4 (total concentration/CV) 

Toxicokinetic Parameters: 

   Male 

Parameter Period  Dose of Metoprolol (60 mg/kg/day) 

   Group Number 

   Group 3 
(SPME) 

(Unbound Free) 

Group 3 
(SPME) 

(Corrected/ 
Equivalent 

Total) 

Group 4 (CV) 
(Total Whole 

Blood) 

AUC0-t Day 1 Mean 747 962 1230 

(ng.h/mL)  Min 444 572 646 

  Max 955 1230 2200 

 Day 7 Mean 552 710 1160 

  Min 300 386 607 

  Max 978 1260 1990 

Cmax Day 1 Mean 551 710 750 

(ng/mL)  Min 250 322 458 

  Max 797 1030 1420 

 Day 7 Mean 375 483 751 

  Min 183 236 299 

  Max 703 905 1410 

Tmax Day 1 Median 0.5 0.5 0.5 

(h)  Min 0.5 0.5 0.5 

  Max 1.0 1.0 0.5 

 Day 7 Median 0.5 0.5 0.5 

  Min 0.5 0.5 0.5 

  Max 1.0 1.0 1.0 
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When comparing the original TK parameters of Group 3 with Group 4, a difference in TK 

parameters (as defined by mean AUC0-t and Cmax) was noted but as expected this is due to 

using free and total concentrations measured by SPME and CV, respectively. Group 4 (CV) 

appears to have higher systemic exposure to metoprolol when compared with Group 3 

(SPME), but the difference is potentially consistent with the known protein binding. 

However, when the corrected TK parameters from Group 3 are compared with Group 4 

values, a much more realistic picture was illustrated and similar values were observed for the 

parameters from both groups. Tmax was observed at 0.5 and 1 h of dosing. Due to the fact that 

the SPME sampling and the conventional blood withdrawal sampling were conducted in two 

different groups of animals and due to inter-animal variability, it is inappropriate to employ 

statistical methods to compare the data obtained from SPME and whole blood analysis. 

However TK data generated from such small group sizes over many years in GSK 

laboratories for multiple NCEs suggest that TK data can vary by up to two-fold and still be 

considered comparable24. Hence, the TK parameters generated using SPME with the < 1.7 

fold variability in data compared with data generated using the conventional sampling 

technique (CV) demonstrate that they are within the limits of physiological variability24. To 

conclude whether SPME and CV sampling generate equivalent TK data, several statistically 

powered studies would be required. This could potentially be generated over the years when 

SPME is applied to numerous TK studies as was the case with other techniques such as DBS. 

Figure -6.2- shows the level of data variability between Groups 3 and 4 at each timepoint on 

days 1 and 7. The level of variability as illustrated by the box plots for Group 4 seems to be 

higher than Group 3. This suggests that the data generated using SPME is comparable to the 

data generated using CV sampling with similar or lower levels of variability. Figure -6.3- 

show clearly the comparison between the data of both groups.  The range of AUC0-t and Cmax 

values from Group 3 (corrected) on day 1 correlated to the range of AUC0-t and Cmax values 

of Group 4. However, the TK parameters of Group 3 (corrected) seem to be lower on day 7 

than the TK parameters for Group 4. This difference could be due to inter-animal variability 

as well as analytical extraction variability between the two bioanalytical techniques. Higher 

levels of variability were also observed for both AUC0-t and Cmax values within Group 4 when 

compared to variability within Group 3 (corrected) as shown in Figure-6.3-. This observation 

potentially suggests that the variability of the SPME sampling technique is lower than the 

standard conventional (CV) sampling approach. 
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Metoprolol exposure profiles AUC0-t , Cmax and Tmax values generated using both SPME and 

CV sampling techniques compare favourably with published data by Nandi et al180 and 

Yoon et al157. 

This study revealed the feasibility of obtaining six timepoints from each animal using the 

SPME procedure without the requirement for blood withdrawal. This in turn suggests that 

SPME could be utilized to generate TK data from main study animals without the need to use 

separate satellite groups. According to the Home Office Guidelines183 for use of animals in 

research, the number of needle sticks permitted per timepoint can be up to 3 attempts and 

between 6  to 7 timepoints can be taken over the duration of 24 h183,184. This implies that 

there is scope for using SPME to take additional samples for either more TK timepoints or 

samples that can be used for other endpoints such as PD or biomarker investigations. 

Overall, the data demonstrated that SPME is a technique that can be used to measure 

unbound free drug concentrations and in turn enable evaluation of toxicokinetic parameters. 

These findings are consistent with data obtained by Lord et al61 who conducted the first in 

vivo SPME study in dogs within an academic set up. The study utilized polypyrrole custom 

made SPME fibres to determine diazepam and its metabolite concentration in dog. This 

chapter has built on this work and highlighted the suitability of in vivo SPME for PK/TK 

evaluation within pharmaceutical toxicology studies without the need for separate satellite 

groups. 
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Figure -6.2- Comparison between the corrected total concentrations of metoprolol 

determined by SPME for Group 3 and CV samples for Group 4 determined by CV 

sampling at each timepoint for days 1 and 7. Box plots consisting of the interquartile 

range with the median displayed by the bold line within each box. Outliers defined by 

the black dots represent the values which are outside the distribution range. 
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Figure -6.3- Summary TK data, mean and 95% confidence levels. Comparison of TK 

parameters between the corrected total concentrations determined by SPME for Group 

3 and parameters for Group 4 determined by CV sampling for days 1 and 7. 
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6.3.2 Clinical Observations   

There were no procedure related clinical observations noted. These include cage-side 

observations such as general health and mortality, no rats died throughout the duration of this 

study. There were no prominent changes in body weight or food consumption for any of the 

four groups. This indicated that both SPME and CV sampling had no adverse effects on the 

overall clinical wellbeing of the animals. 

 

6.3.3 Clinical Pathology Measurements   

Summary data of haematology parameters are presented in Figures -6.4- to -6.7-. 

Haematology samples from control male 6 (vehicle dosed/No sampling) and dosed male 13 

and 18 (60 mg/kg/day – SPME) were clotted therefore they were considered not suitable for 

analysis. 

Group 4 animals, given 60 mg/kg/day and sampled using CV showed a significant reduction 

in haemoglobin, haematocrit concentration and red blood cell count as shown in Figure -6.4-.  

This suggests red blood cell mass loss, reduced production or increased blood cell removal. 

An increased reticulocyte count and reticulocyte subpopulation was also demonstrated in 

Figure -6.5-, indicating a response from the bone marrow to blood loss. This compensatory 

increase in the low, medium and high reticulocytes of Group 4 is a clear indication of body 

response to compensate for the blood loss caused by the CV sampling procedure. All other 

parameters for all groups were within normal levels185 and within the range of analytical 

variability. In contrast, Groups 2 and 3 which were SPME sampled showed similar 

haematology patterns to the control Group 1 i.e. all within normal levels186, suggesting no 

effect of SPME procedure on haematology parameters.  

The impact of losing approximately 15-20% of the total blood volume by CV sampling 

causes a substantial cholinergic release with intense arteriolar constriction. This is a known 

potential consequence of blood loss and is accompanied with metabolic acidosis due to 

anaerobic glycolysis and oxygen shortage187. Such changes may have undesirable effects on 

the outcomes of pre-clinical toxicology studies and may give false interpretations of the 

impact of drugs on animal’s physiological and behavioural changes188. 
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Although SPME has not been used in a toxicology study where the haematological impact 

has been investigated, similar studies in literature have shown that the effects of other 

microsampling techniques on haematological parameters were similar to the outcomes of this 

study189.  For example Powles-Glover et al20 showed that conventional sampling volumes 

showed a significant decrease in haemoglobin, haematocrit and red blood cell count 

compared with microsampled (6 x 32 µL) animals which showed a slight decrease in 

haemoglobin concentration relative to the control group. Even though other microsampling 

techniques have less impact on haematology parameters compared to conventional 

techniques, they still do have slight effects compared to SPME which showed no changes 

when compared to the control group. 

 

 

Figure -6.4- Haematology parameters comparing Groups 1-4. Box plots consisting of the 

interquartile range with the median displayed by the bold line within each box. Outliers 

define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8. 
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Figure -6.5- Haematology parameters comparing Groups 1-4. Box plots consisting of the 

interquartile range with the median displayed by the bold line within each box. Outliers 

define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8.   
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Figure -6.6- Haematology parameters comparing Groups 1-4. Box plots consisting of the 

interquartile range with the median displayed by the bold line within each box. Outliers 

define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8.   
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Figure -6.7- Haematology parameters comparing Groups 1-4. Box plots consisting of the 

interquartile range with the median displayed by the bold line within each box. Outliers 

define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8.  

 

The clinical chemistry and coagulation data as well as the cardiac output for all four groups 

were compared in Figures -6.8- to -6.11-. The significant changes and differences were 

summarized in Table -6.7-. All other parameters presented in Figures -6.8- to -6.11- 

measured were neither of significance nor differing from control values and are not discussed 

further.  No differences were observed between control Group 1 and Group 2 however animal 

number 10 (vehicle/SPME) demonstrated a high plasma GLDH activity (40.1 U/L) and a 

high WBC, LYM count (9.60 and 8.20 x 109/L respectively). These values fell outside 

normal biological range185,190. This could be attributed to inter-animal variability as 1 out of 6 
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animals is not significant enough to be procedure related or associated with the test article 

because Group 2 were dosed vehicle only. R.Hall171 commented on inter-animal variability 

and outliers which may be caused by genetic defects or other biological pathway 

interferences that may lead to such outliers.  

The data outlined in Table -6.7-, showed that there were no differences in clinical chemistry 

data between Group 3 (SPME/dosed) and Group 1 (control) which is highlighted in grey to 

illustrate no difference in values. This further confirms that the SPME procedure had no 

impact on animals in terms of changes in clinical chemistry data. Whereas differences were 

observed between Group 4 (CV/dosed) and Group 1 (control) showing that conventional 

sampling did indeed affect clinical chemistry parameters. 

Also, the difference between Groups 4 (dosed/CV) and 3 (dosed/SPME) shown in Table -6.7- 

is similar to the difference in parameters between Groups 4 (dosed/CV) and 1 (control/no 

sampling). This suggests that the SPME sampled group is behaving in a similar manner to the 

control/not sampled group i.e. no noteworthy changes were observed in the clinical chemistry 

data for the SPME sampled groups. These findings concur with similar findings by 

Niu et al189 which reported no impact of capillary microsampling on biochemical endpoints. 

In summary, the above observations showed the potential advantage of using SPME sampling 

to generate TK data from main study animals without impacting clinical chemistry or 

haematology endpoints during a toxicity study. Conversely, conventional sampling did have a 

clear impact on those parameters and may cause false interpretations of drug effects, which 

further confirms the reason for the current practice of using separate animal groups for TK 

analysis within the pharmaceutical industry when applying conventional sampling 

techniques. 
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Figure -6.8- Clinical chemistry parameters comparing Groups 1-4. Box plots consisting 

of the interquartile range with the median displayed by the bold line within each box. 

Outliers define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8.   
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Figure -6.9- Clinical chemistry parameters comparing Groups 1-4. Box plots consisting 

of the interquartile range with the median displayed by the bold line within each box. 

Outliers define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8. 
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Figure -6.10- Coagulation parameters comparing Groups 1-4. Box plots consisting of 

the interquartile range with the median displayed by the bold line within each box. 

Outliers define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8. 
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Figure -6.11- Cardiac output comparing Groups 1-4. Box plots consisting of the 

interquartile range with the median displayed by the bold line within each box. Outliers 

define the values which are outside the distribution range. Group 1 (Control), 

Group 2 (Vehicle/SPME), Group 3 (Dosed/SPME) and Group 4 (Dosed/CV) 

Abbreviations described in Section 6.2.8. 
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Table -6.7- Between group differences in haematology and clinical chemistry 

parameters. Abbreviations described in Section 6.2.8. 

 

 

 

 

 

 

 

 

• No difference  
*Differences were calculated by dividing the mean of each group by the mean of the opposing group 
and then observing the number of animals within each group which is outside the range of the control 
group for each parameter.  
 
 

The haematology and clinical chemistry results supported the histology findings of the 

spleen.  The spleen is the site of direct and indirect toxicity, a target for some carcinogens, 

and also a site for metastatic neoplasia and a primary site of extramedullary 

haematopoiesis174. In the spleen, mild or moderate extramedullary haematopoiesis was seen 

in all the animals in Groups 1, 2 and 3. Haematopoiesis refers to the formation of blood 

cellular components174. Animals given 60 mg/kg/day metoprolol and subjected to 

conventional caudal vein blood sampling suffered from severe extramedullary 

haematopoiesis. This change was associated with a reduction in haemoglobin, haematocrit 

concentration, red blood cell count and increased reticulocyte count and reticulocyte 

subpopulation. Figure -6.12- shows the histopathology of spleen samples from Groups 1,3 

and 4. Minimal extramedullary haematopoiesis was seen in control animals of Group 1 that 

were not sampled by either technique. This is indicated by the purple spots of the images in 

Figure 6.12-; the first image shows a minimal number of purple spots corresponding to 

minimal production of blood cellular components in Group 1 rats. While the second image 

shows an increase in the number of purple spots signifying a moderate level of blood cell 

 Male Rats* 
Group 3 4 

Parameter 60 (SPME) 60 (CV) 
 [X] Group 1 [X] Group 2 [X] Group 3 [X] Group 1 

ALB •  0.98 (2/6) •  •  
PHOS •  1.09 (2/6) •  •  
HCT •  •  0.89 0.85 
HB •  •  0.86 0.83 

MCHC •  •  0.97 (2/6) 0.97 (2/6) 
RETA •  •  1.79 1.73 
LRT# •  •  1.37 (4/6) 1.35 (4/6) 
MRT# •  •  1.72 1.60 
HRT# •  •  3.6 3.6 
RBCR •  •  0.84 0.82 
NEU •  •  0.87 (4/6) 0.83 (4/6) 
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production. The last image in Figure -6.12- shows a rise in the number of purple spots 

suggesting a high level of extramedullary haematopoiesis. The increased incidence and 

severity of the extramedullary haematopoiesis and the associated changes in haematological 

parameters with conventional sampling method was considered to be secondary to the blood 

loss with homeostatic compensation by increasing the level of blood cell production. 

 

 

Figure -6.12- Representative images of the spleen histology slides from Groups 1, 3 and 

4 showing varying levels of extramedullary haematopoiesis. The dark purple dots, 

marked with a white circle indicate areas of blood cell production (haematopoiesis).   

 

 

Tail histology was performed by taking four sections from the top to the bottom of the tail for 

all animals as shown in Figure -6.13- to ensure full examination of the sampling sites. In the 

blood sampling sites in the tail, there were no differences in inflammatory reaction between 

the groups that were subjected to the conventional or the SPME sampling techniques. 

Minimal or mild inflammatory reaction, characterised by perivascular haemorrhage and/or 

inflammatory cell infiltrate and/or vascular wall necrosis, was seen in all the animals that 

were sampled by the conventional or the novel SPME technique. These changes were 

considered to be the consequence of soft tissue trauma caused by the venepuncture technique 

i.e. needle insertion into the blood vessel. No similar changes were seen in the animals of 

Group 1 that were not sampled. Figure -6.14- shows histology images which reveal 

differences between the injection sites in the tail from Groups 3 and 4 as well as an example 
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image of the control tail where no sampling occurred. Because of the relatively large amount 

of blood taken during conventional sampling, the wound needs to be larger and deeper to 

yield sufficient quantities of blood, hence the source of severe haemorrhage and 

inflammation that was observed for Group 4. 

These histopathological findings highlight the impact of conventional blood withdrawal 

sampling procedures on sampling sites compared to the SPME technique. Although both of 

the SPME and CV procedures are invasive and cause inflammatory response upon needle 

insertion into the tail, it is apparent that blood withdrawal can cause additional damage to the 

vessels which was accompanied by severe haemorrhage compared to the no blood withdrawal 

method of SPME. 

There were no noteworthy organ weight changes in all animals or any other histological 

findings in the liver or lung associated with either of the blood sampling techniques.  

 

 

Figure -6.13- Representative histology slide (control male animal 1) showing the general 

tail sectioning for microscopic examination, lateral sectioning starting from the top (1) 

to the bottom (4) of the tail. This type of sectioning was applied to all animal groups.  

 

 

 

 



173 
 

 

 

Figure -6.14- Examples of tail histology slides at the sampling site from Groups 3 and 4 

showing the effect of sampling on the blood vessel. Group 1 was not sampled but tail 

histology was taken for comparison with sampled groups. Black arrows indicate the site 

of blood vessel and the red marks surrounding that area illustrate haemorrhage. 

 

 

6.3.4 Neurobehavioral Assessment 

The Irwin test which consists of a battery of general behavioural and psychological 

observations in the rodent has been utilized for many years to study the effect of NCEs on 

central nervous system activity and neurological function in rodents. This was later adopted 

to investigate the impact of new sampling procedures on the behavioural and psychological 

functions of rodents191,192. For this reason, this test was incorporated into the toxicity study to 

assess the impact of SPME and conventional sampling on neurobehavioral endpoints. 

As part of the neurobehavioral observation assessment, aggression and irritability was noted 

in 2 out of 6 rats following treatment of 60 mg/kg metoprolol and sampled by the 

conventional caudal venepuncture on day 7. These observations could be attributed to the 

noise generated by the study conduct and not treatment or sampling related as this was not 

consistent across all sampled groups. All neurobehavioral data are shown in Tables -6.8- to -

6.10-, there were no SPME related effects on the behaviour of the animals.  

Occasional differences were noted in positional passivity and grooming in several animals 

including in the vehicle no sampling group (Group 1), these changes were not considered 
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treatment or procedure related as they observed in the control group. Rearing was reduced in 

all groups over time and is considered to be related to habituation to the open field arena. 

Physiological parameters such as urination and defecation were variable during all 

observations. Pupil diameter was not assessed due to a failure of the ophthalmoscope. 

Although the above observations and the results of this test indicate that there were no 

procedure related changes and there were no behavioural or psychological differences 

between the conventional and the SPME sampling techniques, the Irwin test may not have 

been sensitive enough to assess the effects of sampling procedures. The Irwin observation test 

is commonly used to evaluate the effects of a new compound to determine potential 

neurotoxicity or impact of new drugs on a specific psychological function193. The relevance 

of this test to examine the effect of sampling procedures remains debatable. The 

interpretation of behavioural tests such as those conducted within the Irwin study, is rarely 

obvious. For example, grooming or body movements might fail to reflect pain or other 

sampling effects. Other tests such as the use of micro-sensors that can detect behavioural 

changes or video recordings that monitor all animal throughout the duration of the study may 

reveal better understanding of the impact of sampling on rodent behaviour194.  
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Table -6.8- Effects on neurobehavioral functions of male rats on day -2 prior to study 

start 
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Table -6.9- Effects on neurobehavioral functions of male rats on day 1 of study start 

 

 

 

 



177 
 

Table -6.10- Effects on neurobehavioral functions of male rats on day 7 of study start 
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6.3.5 Feedback from Laboratory Animal Technicians  

Six laboratory animal technicians were trained on the use of SPME, some of whom were 

exposed to the technique prior to the start of the study and others received minimal training 

throughout the study conduct. SPME is a novel technique that has not been utilized within 

toxicology studies in the pharmaceutical industry. The use of the technique is different to the 

conventional procedures that the technicians had been using. Although the SPME needle is 

similar to a butterfly needle applied for CV sampling, advancing the actual SPME fibre into 

the vein of the living organism remains a task that requires training and skills. Despite this, 

minimal training was given during the study and all six technicians agreed that the prototype 

SPME device was simple to use and that the fibre was easy to insert and to adjust into the rat 

tail vein. Five out of the six technicians found no difference between using the SPME device 

compared with the conventional butterfly needle. Suggestions for improvements were given 

with regards to reducing the time of fibre exposure to the systemic circulation within the vein 

from 2 min to 1 min or less though leaving the fibre for 2 min did not impact the behavior of 

the animals during or after sampling. Other comments included no blood loss during SPME 

sampling compared with other microsampling and conventional techniques. Overall, positive 

feedback was received from all six technicians regarding the use of SPME, throughout the 

conduct of the study and during the after study review meeting.  These comments agreed with 

previous positive feedback received from technicians throughout the conduct of the first in 

vivo study which was performed in Chapter 5. 
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6.4 Conclusion 

A seven day toxicology study was conducted to evaluate the application of in vivo SPME 

sampling and extraction in rodents. The SPME technique was also compared to conventional 

sampling procedures within this study. This is the first study where in vivo SPME has been 

applied within a preclinical pharmaceutical setting; the technique has shown powerful 

potential for future use as a microsampling tool that could be applied in upcoming preclinical 

and clinical studies. The device proved its strength in terms of enabling repeat sampling 

without blood withdrawal and minimal blood loss, its biocompatibility was established with 

no impact on toxicology endpoints and no observed adverse effects. Meaningful PK profiles 

and TK parameters were obtained via a simplified sampling method (SPME) which enabled 

monitoring of free unbound drug concentration. No difference in inflammatory reaction at the 

blood sampling site (tail) was observed between the novel SPME microsampling and the 

conventional tail vein blood sampling technique. Whereas in the spleen, an observable 

difference in extramedullary haematopoiesis was seen in all the animals given 60 mg/kg/day 

metoprolol and subjected to conventional caudal vein blood sampling compared to SPME. 

SPME was, therefore, demonstrated to be a promising microsampling technique that could be 

applied to toxicology studies to determine TK in the main study animals. It could also be 

applied in juvenile preclinical studies where rodents are too small to undergo blood 

withdrawal procedures without sacrificing a large number of neonates. Despite the design of 

the probe still being at a relatively early stage of development, the prototype device was easy 

to use as described by laboratory animal technicians. Further modification to the mechanics 

of the in vivo device will facilitate simpler workflow allowing more convenient SPME 

sampling. 

Overall, this study showed that SPME is pathologically benign and that its adoption as a 

microsampling tool could be a beneficial, more viable and ethical form of blood sampling 

based on haematology, clinical chemistry and coagulation data in conjunction with 

procedure-related microscopic changes seen in the spleen and tail sampling sites and derived 

toxicokinetics. 
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Chapter 7 

Direct Ambient SPME-MS for Quantitative Analysis of 

Drugs 

 

7.1 Introduction   

The quantitative analysis of complex samples consists of several steps, each of which is 

essential for obtaining accurate and informative results for the analyte of interest. Previous 

chapters have shown the suitability of SPME for bioanalytical analysis and for direct 

sampling from rodents in PK/TK studies as described in Chapter 6.  Perhaps, the two key 

bottleneck procedures in bioanalysis are still sample clean-up and chromatographic 

separation195, both of which are considered time consuming as well as labour and cost 

intensive. Ideally, techniques that can eliminate the laborious manual extraction procedures 

associated with sample clean-up and the analytical complexity of chromatography separation 

will significantly simplify the entire bioanalytical procedure. For this reason, enormous 

efforts have been made in the past to simplify these processes through various approaches 

including attempts to reduce extraction complexity by employing automated liquid 

handlers196, minimise cost and increase throughput by utilizing high speed separation 

techniques and introducing online direct analysis197. 

The term “direct analysis” is used to describe techniques that eliminate the need for 

separation or enable direct ionization off the sample surface197.  This means direct 

introduction of complex samples into the mass spectrometer at ambient temperature and 

atmospheric pressure, which provides a powerful tool for rapid analysis without sample 

preparation. To date, direct ambient mass spectrometry has been applied for monitoring a 

variety of different molecules including pharmaceuticals, explosives, forensic and 

environmental samples198.  Detection of these analytes has been performed from a broad 

range of matrices including biological samples at physiologically relevant concentrations199, 

forensic samples such as ink aging analysis200, food applications such as lipid content in 

milk201 and pesticides in fruits as well as many other environmental matrices such as 

pesticides in water202 and hydrogen peroxide in ambient air203.  
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The second contemporary generation of mass spectrometers hyphenated with direct 

desorption/ionization techniques emerged in 2004198. Since then desorption electrospray 

ionization (DESI) and direct analysis in real time (DART) have set the benchmarks for this 

generation of direct MS approaches. Subsequently, they have led to a remarkable stream of 

rapidly expanding variants to support the analysis of myriads of analytes106,204. DESI which 

was introduced by Cooks and co-workers205 is an ambient ionization technique, in which a 

high velocity pneumatically assisted electrospray jet, is continuously directed toward the 

probed surface. The jet forms a thin solvent film on the sample where rapid analyte extraction 

occurs. Secondary droplets are formed by the incoming jet, from which gas phase ions are 

created and ejected into the MS inlet for downstream detection. DESI mimics ESI in terms of 

ionization pathways but, by being one of the major ambient MS techniques, it exhibits added 

analytical capabilities. 

DART on the other hand, introduced by Laramee and Cody206, involves generation of a direct 

current or radiofrequency upon exposure to flowing helium or nitrogen gas. This in turn 

creates a stream of ionized molecules that are directed toward the sample to promote 

desorption of analytes. The desorbed discharge is then directed to the MS inlet to enable 

detection. 

While qualitative analysis has been demonstrated by DESI and DART, to date the 

quantitative performance of many of these techniques has not been sufficient to enable 

general adoption of the technology for routine quantitative applications such as bioanalysis. 

The consistency of various analytical parameters such as robustness, reproducibility and 

sensitivity has been the main issue associated with direct analytical techniques. For example 

many direct desorption techniques do not match the sensitivity on offer from other traditional 

routes that involve manual sample extraction followed by chromatography separation197. For 

some applications this is not an issue such as metabolic profiling, biomarker identification, 

monitoring of food additives and many other qualitative processes. However, for quantitative 

analysis with regulatory restrictions, such barriers will have to be overcome before direct 

analysis techniques can be used to support such bioanalytical studies. 

Despite this, a number of publications have demonstrated acceptable quantification of drugs 

in biofluids and tissues with paper spray ionization207. Some of which have had low enough 

or adequate variability that has been sufficient to meet regulatory bioanalytical criteria. 

Paperspray ionization involves analyte transport by wicking in a porous material with a 
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macroscopically sharp point, and a high electric field is used to perform ionization105.  

Multiple versions of paper spray ionization sources have been developed and utilised for 

various applications such as quantification of small molecule pharmaceuticals form dried 

blood spot samples105,208,209. This has also led to the development of other substrate spray 

techniques such as “Nib-Spray-MS” where bamboo nibs were used as sample emitters and 

have been applied for rapid sampling and screening of saliva samples210. 

Direct desorption techniques in general are still at a relatively early stage of development but 

a number of these techniques show huge potential analytical gains that can enable efficiency 

and simpler bioanalytical workflows. However, the challenges described above clearly show 

that sensitivity and robustness will have to be addressed prior to routine implementation for 

bioanalytical applications. Table 7.1 summarises some of these techniques and lists their 

primary advantages and disadvantages.  
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Table -7.1- Summary of some currently available direct analysis techniques and their 

key advantages and disadvantages  

Direct Analysis 

Technique* 

Key Advantages* Disadvantages* 

- Desorption Electrospray 

Ionization (DESI)  

- Direct Analysis in Real 

Time (DART) 

- Desorption Atmospheric 

Pressure Chemical 

Ionization (DAPCI) 

- Paperspray 

- Nib-Spray 

- Easy Ambient Sonic 

Electrospray Ionization 

(EASI) 

- Desorption Corona 

Beam Ionization (DCBI) 

- Minimal sample 

preparation. 

- Sample maintenance under 

ambient conditions outside 

the vacuum system. 

- Rapid with high throughout 

analysis.  

- Gentle ionization methods.  

- Simplified overall 

workflow. 

- Analyte detection depends 

largely on the matrix such as 

tissue, fruits, which in some cases 

results in lack of quantification.  

- Difficulty of modifying or 

switching between existing mass 

spectrometers and ambient mass 

spectrometers. 

- Lack of automation in some 

cases which has a negative impact 

on productivity and throughput.    

- Potential problems with labile 

metabolites converting back to 

parent (acyl glucuronides, N 

oxides, sulphates).   

- Potential matrix effects, leading 

to lower sensitivity. 

*106,198,210-214 
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7.1.1 Direct SPME-MS 

As highlighted above, the potential advantages on offer from direct desorption techniques, 

such as simpler bioanalytical workflows are significant enough to reshape the future of 

bioanalysis as well as other fields, where analytical instrumentation is utilized for non-

regulated applications. The recent surge in interest in ambient spectrometry and direct 

elution215 instigated the idea of combining two disparate but powerful techniques, direct 

SPME with direct MS. This combination allows for the merger of microsampling benefits 

with direct detection without the involvement of chromatographic separation. Currently 

SPME analysis requires offline analyte desorption from the fibre into a suitable solvent 

followed by LC-MS/MS analysis. The proposed idea, similarly to paperspray, involves direct 

desorption and ionization of the analyte directly off the SPME fibre itself into the MS inlet.  

Direct SPME-MS is a novel ionisation method that could allow for both qualitative and 

quantitative analysis of pharmaceutical drugs from in vivo and ex vivo systems with minimal 

sample usage, without the need for sample preparation or separation. The process in which 

SPME samples are collected, minimizes the impact of other matrix components which are 

associated with wet whole blood or plasma samples. This means enhanced sample clean-up is 

achieved with SPME, therefore, interference with quantitative analysis of analytes is limited. 

This in turn allows for enhanced direct analysis despite lack of separation (chromatography). 

Subsequent to analyte extraction by the SPME coating, the fibre is mounted in close 

proximity to the orifice of the MS and a solvent is applied to the fibre. A high voltage is then 

employed to induce electrospray ionization at the tip of the fibre, enabling the quantitative 

analysis of the analyte. 

SPME and paper spray have multiple similarities in terms of the design characteristics where 

the spraying tip consists of a sharp tip, the spray solvent transports the analytes using a high 

voltage to create a high electric field between the device and mass spectrometer inlet. This 

type of analysis can potentially be applied to a wide range of analytes in vivo and may offer a 

simple and effective approach to the quantitative determination of circulating analyte 

concentrations, particularly where sample volumes are limited (e.g. rodent and paediatric 

studies)88, or in situations where conventional wet blood / plasma sample collection and 

processing may be difficult. 
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This novel technique (SPME-MS) has the compelling advantages of direct in vivo extraction, 

monitoring unbound drug concentrations with minimal blood removal and the simplicity and 

speed of obtaining immediate results by direct MS analysis61. It would offer a significant 

impact when applied in the drug discovery arena for early phase drug screening and even for 

therapeutic drug monitoring, where the level of regulatory restrictions is somewhat less 

complicated than regulated drug development studies.  Direct SPME-MS is an attractive 

technique for any field that requires a quick, easy, simple and cheap analysis, for example 

point-of-care diagnostics and forensic applications88. In this case, user friendly devices are 

desirable that are simple enough for non-clinicians as well as clinicians to perform sampling 

with accuracy and where samples can be safely shipped without the need for freezing and 

refrigerating.  

 

7.1.2 Potential Challenges  

Eliminating the need for chromatographic separation is the ultimate advantage of direct 

desorption. However, it is also one of the challenges that must be overcome if it is intended to 

be introduced to the regulated bioanalytical arena. GLP drug development studies require a 

high level of confidence in the accuracy of the analytical data with tight statistical 

outcomes12. Removing liquid chromatography can result in decreased sensitivity due to ion 

suppression and also cause reduced selectivity and in turn could reduce bioanalytical 

performance216. Therefore, particular attention must be paid to achieving adequate sensitivity 

and selectivity across a range of representative NCEs when using direct desorption 

techniques. 

Control of contamination and carryover is also essential to ensure confidence in the analytical 

results. The level of analyte contamination in blank control samples should not exceed 20% 

of the analyte response at the lower limit of quantification (LLQ) as stated in the 

bioanalytical regulatory guidance12. Carryover should also not be large enough to 

significantly bias subsequent samples. 

Carryover and cross contamination can be avoided using integrated wash systems that can 

reduce the effect of any residual analyte levels. Current direct techniques106,207,217 have not 

been identified to suffer from carryover issues. However, a better understanding will be 
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gained once direct desorption techniques become more widely applied within the 

pharmaceutical industry.  

In addition to the above, the financial implications of modifying MS sources to integrate 

direct desorption technologies and the need to train personnel is subject to scrutiny. For a 

technique to be worth such efforts, the advantages have to be significant and for many 

bioanalysts to even consider a new technology to be a suitable alternative, it needs to be 

complementary to established techniques that are readily accepted and “work” even if the 

new technology offers many benefits, it needs to essentially demonstrate a simpler working 

process which in itself may pose a challenge. 

 

7.1.3 Aims and Objectives  

The aims and objectives are to design a novel SPME-MS direct desorption technique to 

eliminate the need for chromatographic separation and to demonstrate the first application of 

direct SPME-MS for the extraction and detection of NCEs from whole blood. This will be 

performed by building an interface to facilitate direct elution from SPME fibres into the MS. 

Instrumentation factors of importance to direct SPME-MS analysis will be identified and 

optimised to provide quantitative direct SPME-MS analysis. Components of this chapter have 

been used as the basis of a publication in Analytical Chemistry67. 
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7.2 Experimental  

7.2.1 Chemicals and Materials 

Metoprolol tartrate and propranolol hydrochloride were purchased from Sigma Aldrich 

(Dorset, UK), metoprolol-d7 and propranolol-d7 were acquired from Toronto Research 

Chemicals (Ontario, Canada). SPME silica probes consisting of a titanium wire coated with a 

biocompatible C18 extraction phase, housed inside a hypodermic needle (medical grade, 

stainless steel, 22 gauge outer tubes) were supplied by Supelco (Bellefonte, PA, USA); each 

fibre has a thickness of 45 µm and 15 mm length of coating. Control rat blood (stored for 

48 h at + 4oC) containing K2-EDTA to prevent coagulation was obtained from B&K 

Universal (Grimston, Hull, UK). Methanol, acetonitrile and water were of HPLC gradient 

grade and obtained from Fischer Scientific Ltd (Loughborough, UK). Dimethylformamide 

(DMF) was purchased from Sigma Aldrich (Dorset, UK). 

 

7.2.2 Preparation of Standard Stocks and Working Solutions 
Primary stock solutions for each test compound and internal standard (IS) were prepared in 

DMF (1 mg/mL). Serial dilutions of each analyte’s stock solution were performed in 

acetonitrile/water (1:1, v/v) to give working standard concentrations of 1, 10 and 100 µg/mL. 

IS working solutions for each analyte were prepared from the primary stock solution to give a 

final concentration of 100 ng/mL in acetonitrile.  
 

 

7.2.3 Preparation of Test Samples  
Analytical test samples were prepared freshly on the day of analysis by spiking an 

appropriate volume of the working standard solutions into fresh control rat blood containing 

EDTA. The solvent used to spike into the blood matrix did not exceed 5% of the total 

volume. A concentration range relevant for the physiological exposure of the drugs was 

utilised to give final concentrations of 10, 50, 200, 500, 800 and 1000 ng/ml for each of the 

analytes. 

SPME extraction characteristics, including equilibration time profile for blood exposure were 

previously determined for both metoprolol and propranolol in Chapter 3.  The SPME samples 

were prepared by preconditioning the fibres with methanol followed by water for a period of 
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15 min in each solvent. This step is necessary to wet the C18 chains of the coated phase and 

ultimately facilitate optimal extraction efficiency. The fibres were exposed to 200 µL aliquots 

of the test samples for a minimum of 2 min with 500 rpm agitation using a compact 

laboratory shaker (MS 3 Digital, IKA). Agitation of the sample was applied in an attempt to 

mimic the existence of a ‘stirred’ medium which would surround the fibres due to 

intravenous blood flow in a living organism. This assists the mass transport between the 

sample and the fibre coating and decreases the time needed to reach equilibrium. After 

extraction, the SPME probes were rinsed briefly for 30 s using purified water in order to 

remove any sample droplets adhered to the outside of the coating as a result of surface 

tension. In all cases (preconditioning and extraction), fibres were directed through the needle 

into a 96 deep well plate with a frame (Figure -7.1-) to ensure that the entire extraction phase 

(coated region) was immersed in the sample.  To assess the accuracy and reproducibility of 

the method, three fibres were extracted and analysed at each concentration level. All samples 

were prepared on the same day of analysis. SPME fibres are currently disposable and 

designed for single use extractions for both in-vivo and in vitro applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure -7.1- SPME fibres directed through a frame into a 96 deep well plate to ensure 

that the entire extraction phase is immersed into the sample. 
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7.2.4 Initial Direct SPME Ionization Prototype 

In order to establish the feasibility of direct SPME-MS, an initial prototype was developed 

using a spent 100 µL glass CTC (Hamilton, UK) syringe. The syringe was employed as both, 

a desorption chamber with a known volume of solvent capacity (100 µL) and as a tool to 

facilitate ionization.  The syringe metal needle section was removed and replaced with a 

modified coaxial Sciex ionizer nozzle (part number 016323.C, electrospray assembly). A test 

sample of metoprolol at 100 ng/mL was extracted from rat blood by SPME and the fibre was 

subsequently placed inside the CTC syringe, the rear end of the syringe was blanked off with 

a septum seal. Previously a radial side hole (1 mm) was diamond drilled into the centre of the 

glass syringe to fit a 10 µm PEEK tubing which was bonded liquid tight into the glass (Figure 

-7.2-). The PEEK tubing was connected to a syringe infusion pump.  The syringe containing 

the SPME fibre was positioned in front of the mass spectrometer and acetonitrile was applied 

through the infusion pump with a high voltage maintained during desorption inside the 

syringe. A favourable MS response for metoprolol was observed which led to the second 

stage of spraying directly from SPME fibres.  

 

 

 

 

 
 
Figure -7.2- Schematic diagram of the initial experimental set up 67. A modified CTC 
syringe acts as desorption chamber and a tool to facilitate ionization through the nozzle.  
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7.2.5 Direct SPME Ionization Set-up and Optimising Operating 
Conditions  

For the final SPME ionization set-up, a source with a direct fibre inlet holder was designed to 

allow for precise introduction of the SPME needle and close proximity of the coated fibre to 

the MS inlet. A spray solvent (which also functions as the desorption solvent for the 

compounds adsorbed onto the SPME fibre) consisting of acetonitrile containing the 

isotopically labelled internal standard (100 ng/mL) was applied onto the entire coated fibre 

through a syringe infusion pump delivering solvent at a constant flow rate. PEEK tubing 

(10 µm) which was placed at the end of the SPME fibre was utilized to deliver the spray 

solvent. The voltage was then set to 5000 V and applied to the rear titanium wire of the 

SPME fibre as shown in Figure -7.3- and direct ionization was performed by simultaneously 

starting MS data acquisition. The application of a voltage to the SPME device (titanium wire) 

initiated the formation of a spray at the tip of the fibre and resulted in the immediate detection 

of analyte and internal standard ions. After 588 scans (5 min), the voltage was set to zero and 

the fibre was retracted. This length of time was chosen because the MS signal of the LLQ 

(10 ng/mL) started to deteriorate after 5 min. Therefore, 5 min was deemed appropriate for 

desorption and was used for all samples. 

The operating conditions were systematically altered to examine the essential factors that 

may influence the quality of the MS signal achieved. These included parameters such as the 

distance between the SPME fibre tip and the MS inlet. This was varied from 1 to 10 cm to 

identify whether this will have an impact on the analysis. The flow rate of the spray solvent 

was also investigated by changing the flow rate at 5 µL/min intervals from a low rate of (5 

µL/min) to high (30 µL/min). Carryover was assessed by analysing a control fibre which had 

been exposed to blank rat blood (drug free) following analysis of a HLQ sample 

(1000 ng/mL). This was utilised to ensure and assess the selectivity of the method as well as 

potential for carryover.   
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Figure -7.3- A schematic illustration of direct SPME-MS 67. SPME fibre mounted on a 

3D stage to allow movement towards the MS inlet. Spray solvent was applied through a 

10 µm PEEK tubing connected to a syringe pump. Direct SPME-MS does not require 

sheath gas and is performed at ambient temperature.  

 
 
 
7.2.6 Mass Spectrometry  
All experiments were performed using a Sciex API3000 (Applied Biosystems/MDS Sciex, 

Canada). The instrument was operated in positive ion mode with a declustering potential and 

a focusing potential for both analytes of 60 V and 100 V respectively. The curtain gas (N2) 

was set to 12 psi, scan rate was 5 s-1 and MS unit resolution was chosen. The analytes and 

their internal standards were detected in Q1 scan mode using the characteristic protonated 

molecular ions [M+H]+ corresponding to the following: metoprolol: m/z 268, metoprolol-d7: 

m/z 275, propranolol: m/z 260 and propranolol-d7: m/z 267. Preliminary experiments were 

performed using full scan mode however for quantitative analysis, selected ion recordings 

were acquired using narrow scan ranges m/z 267-276 for metoprolol and m/z 259-268 for 

propranolol. 

MS data were acquired and processed (integrated) using Analyst software (v1.4.2 Applied 

Biosystems/MDS Sciex, Canada).   
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7.3 Results and Discussion  

7.3.1 Direct SPME Ionization  

The desire to achieve direct ionization and removal of distinct separation systems, initiated 

the idea of exploring the possibility to directly ionize analytes from a SPME fibre. As 

detailed in Section 7.1, the main advantage of direct analysis is the elimination of liquid 

chromatographic separation. Such aspect will impose significant simplification of the current 

bioanalytical workflow which involves manual sample preparation (analyte extraction) as 

well as chromatographic separation.   

This initial procedure of the first SPME-MS prototype was performed to determine proof of 

principle i.e. to establish whether a signal can directly be produced from a loaded fibre using 

a known desorption volume and established ion optics. The purpose of the above was to 

identify experimental and instrumental variables related to desorption and ionization with a 

view to understand practicalities such as accurate timing of sample desorption and ability to 

change the fibre without encountering carryover issues when using different concentrations 

and obtaining adequate inter-fibre reproducibility. This ensured that such limitations were 

understood prior to attempting direct spray from the fibre without the assistance of a CTC 

syringe. The outcome from this preliminary experiment showed that the basic instrumental 

requirements of SPME-MS is very similar to paper spray analysis105, a spray solvent is 

required to facilitate desorption of analyte from the fibre and a high electric field to perform 

ionization. Pneumatic assistance was not required to transport the analyte: a spray solvent and 

a voltage are simply applied to the fibre, which is held in front of a mass spectrometer. A 

signal was generated as shown in Figure -7.4-.   
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Figure -7.4- Direct SPME-MS analysis of metoprolol (10 ng/mL) extracted from fresh 

rat blood, response versus time chronogram illustrating electrospray ionisation upon 

voltage onset using the initial set up, SPME fibre within a CTC syringe.  

 

 

 

Subsequent to the initial experiment, a modified source was designed to enable direct SPME-

MS analysis. Figure -7.3- shows in schematic form the general experimental set up for direct 

SPME-MS. Stable electrospray ionization was observed upon voltage onset (Figure -7.5-).  

 

The coated titanium SPME fibre is conductive and when the spray solvent is applied, the high 

electric field generated between the SPME tip and the MS inlet breaks the liquid to form a 

mist of charged fine droplets which subsequently desolvates to produce gaseous ions. In 

common with paper spray MS207 and nib-spray MS210, direct SPME-MS required the fibre to 

possess its characteristic sharp tip to establish the high electric field and a manually-blunted 

SPME tip caused loss of signal. It is believed that the coating and the bonding materials of 

the fibre function as insulators41 therefore ensuring that the tip is exposed gives rise to a much 

more stable spray.  Visual observation of the Taylor cone and examination of the mass 

spectra obtained for both metoprolol and propranolol samples suggested that a controlled 

spray producing protonated ions was achieved and that ESI mechanism may be responsible 

for the resultant ionization.  The analysis of each sample was halted after 5 min (588 cycles) 
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i.e. a fixed desorption period was implemented for all samples in order to compare like-for-

like. This desorption period was chosen because the signal stabilized by 2 min and remained 

approximately stable for more than 5 min as shown in Figure-7.5-.  

 

 

 
 
Figure -7.5- Direct SPME-MS analysis of metoprolol (10 ng/mL) extracted from fresh 

rat blood, response versus time chronogram illustrating electrospray ionisation upon 

voltage onset. Voltage switched off after 5 min67. 

 

 

 

Since no chromatographic separation is taking place, the solvent used to desorb the analyte 

from the SPME fibre is referred to as the “spray solvent” rather than the mobile phase. In this 

case, the C18 coating of the fibre is acting as the stationary phase and the spray solvent as the 

mobile phase eluting the analyte off the fibre.  It is also important to note that this technique 

is generating a “MS response” of the total ion current rather than a chromatographic peak. 

For this reason, the height of the response produced i.e. the sum of the mass spectral intensity 

of the analyte over the full 5 min was treated in the same way as a chromatographic peak to 

elucidate sensitivity and precision data.  
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7.3.2 Optimising Operating Conditions  

The spray efficiency was found to be dependent on several factors, one of which is the flow 

rate at which the spray solvent was applied; higher flow rates (> 30 µL/min) resulted in 

excess solvent forming larger droplets that ultimately compromised the shape and efficiency 

of the cone jet and in turn impacted the quality of spectrum obtained. A poor performance 

was also observed with lower solvent flow rates (< 10 µL/min) which led to a non-uniform 

flow over the tip and a correspondingly erratic, unstable signal for desorbing analyte. Thus a 

suitable range (10-30 µL/min) of spray solvent flow rate was identified and an optimum flow 

rate of (15 µL/min) was consequently utilised.  

Another important aspect for effective ionization is the position of the fibre relative to the MS 

orifice. The distance of the fibre tip from the MS inlet plays a vital role, placing the tip too 

close to the inlet (< 3 cm) generated sparking and consequently produced low and variable 

responses (Figure -7.6-) while moving the fibre too far from the inlet (> 7 cm) caused loss of 

signal intensity and a change in the spray plume. For this reason, the XYZ configuration and 

positioning of the fibre was optimised to be within a distance of 3-5 cm from the MS using a 

3D moving stage on which the SPME holder was mounted. Approximate alignment with the 

MS was also essential. Further investigations and execution of a full evaluation are required 

to transform this technique into a routine bioanalytical tool.  

Carryover was minimal (< 20% of the LLQ peak area) i.e. no unacceptable interferences 

corresponding to metoprolol and propranolol ions were observed, representative spectra of a 

blank sample and test sample for both metoprolol and propranolol at 200 ng/mL are shown in 

Figure -7.7- and Figure -7.8-.  

 

Subsequently optimised parameters enabled production of desired signals for direct 

SPME-MS without substantial carryover (< 20% of the LLQ signal) which led to subsequent 

quantitative experiments. 
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Figure -7.6- Example mass spectrum of metoprolol (200 ng/mL) when the fibre tip was 

place < 3 cm from the MS inlet. Variable response generated due to sparking.   
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Figure -7.7-  a) Mass spectrum of metoprolol (200 ng/mL) and its internal standard 

(100 ng/mL) analysed by direct SPME-MS.  b) Mass spectrum of blank sample and 

metoprolol-d7 (100 ng/mL) analysed by direct SPME-MS showing minimal carryover, 

blank sample analysed immediately after the highest concentration (1000 ng/mL)67. 
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Figure -7.8- a) Mass spectrum of propranolol (200 ng/mL) and its internal standard 

(100 ng/mL) analysed by direct SPME-MS.  b) Mass spectrum of blank sample and 

propranolol-d7 (100 ng/mL) analysed by direct SPME-MS showing minimal carryover, 

blank sample analysed immediately after the highest concentration (1000 ng/mL)67. 
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7.3.3 Analyte Quantification Using Direct SPME-MS 
The analysis of a set of standards (range 10 – 1000 ng/mL) for both metoprolol and 

propranolol was performed (n = 3 for each concentration) and used as examples of the results 

typically obtainable for small molecule quantitation by direct SPME-MS. The results showed 

that analyte peak height/IS ratio increased in a proportional manner with increasing 

concentration levels for both metoprolol and propranolol test samples. Plots of analyte/IS 

peak height ratio versus the nominal concentration were constructed as shown in Figure-7.9- 

and Figure-7.10-. The signal of the lowest concentration analysed, for both metoprolol and 

propranolol was sensitive enough to detect a lower limit of quantification (LLQ) of 10 

ng/mL. This performance was achieved through a Q1 scan of an API3000. The Q1 scan mode 

was utilised to identify any competing ions i.e. possible background ions that may have 

dominated charge exchange and therefore reduced the ion intensity of ions of interest. No 

competing ions were observed. In the future MS/MS with multiple reaction monitoring 

(MRM) scans will be acquired to mask any unwanted species and ultimately enhance 

performance. It is also anticipated that using superior instruments such as high resolution 

accurate mass spectrometry would lead to acquisition of greater selectivity and sensitivity.   
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Figure -7.9- Quantitative analysis by direct SPME-MS of metoprolol. Data represents 

the standard curve (ratio of instrument response to that of internal standard versus 

analyte concentration) for n=3 replicates at each concentration67. 

 

 

 

 

 

 

 

 

 

 

 

Figure -7.10- Quantitative analysis by direct SPME-MS of propranolol. Data represents 

the standard curve (ratio of instrument response to that of internal standard versus 

analyte concentration) for n=3 replicates at each concentration67. 
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The initial results showed that good linearity and reproducibility were achieved in this proof 

of concept study up to 800 ng/mL but the trend was less linear at 1000 ng/mL. This may be 

attributed to the analyte being deeply embedded in the fibre and more difficult to desorb off 

the fibre at low concentrations while at higher concentrations the analyte is more widely 

distributed (including on the surface) leading to more facile desorption.  

Precision (% CV) data generated from the replicate measurements (n=3) at each 

concentration were below 30% for both metoprolol and propranolol as shown in Table -7.2- 

and Table -7.3-. It should be noted that some of the variation observed could be attributed to 

the inter-fibre variability of the SPME probes that was observed in previous chapters 

(Chapters 3 and 4). At this stage of early development, such precision data demonstrated for 

two test analytes suggests that this technique was capable of generating acceptable 

reproducibility and if additional investigations prove successful, the precision could be 

further improved to meet current bioanalytical acceptance criteria (15-20%). Precision values 

obtained by direct SPME-MS compare favourably well and in some cases better than 

precision data obtained for other direct analysis techniques. For example < 30% has been 

achieved for paper spray analysis of citalopram in dried blood spots105, while >30% has been 

shown for DART analysis of indomethacin195 at 10 ng/mL from rat plasma and 33% for 

verapamil analysis195 from rat plasma.  
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Table -7.2- Peak height ratio of metoprolol standards /IS analysed using direct 
SPME-MS 

Conc. (ng/mL) 10 50 200 500 800 1000 
Peak 

Height 
Ratio 

(Analyte/IS) 

Sample 1 0.0184 0.0336 0.0608 0.1351 0.2121 0.3473 
Sample 2 0.0244 0.0533 0.0717 0.1682 0.2540 0.4756 
Sample 3 0.0288 0.0621 0.1035 0.1718 0.2699 0.4737 

Mean 0.0239 0.0497 0.0787 0.1584 0.2453 0.4322 
SD 0.0052 0.0146 0.0222 0.0202 0.0298 0.0735 

% CV 21.9 29.4 28.2 12.8 12.2 17.0 
 

 

 

Table -7.3- Peak height ratio of propranolol standards /IS analysed using direct 
SPME-MS 

Conc. (ng/mL) 10 50 200 500 800 1000 
Peak 

Height 
Ratio 

(Analyte/IS) 

Sample 1 0.0133 0.0627 0.0967 0.3073 0.4439 0.8754 
Sample 2 0.0146 0.0519 0.0971 0.3060 0.5864 0.7882 
Sample 3 0.0131 0.0360 0.0878 0.2784 0.4131 0.8974 

Mean 0.0137 0.0502 0.0939 0.2972 0.4811 0.8536 
SD 0.0008 0.0134 0.0053 0.0164 0.0924 0.0578 

% CV 5.99 26.7 5.65 5.50 19.2 6.77 
 

 

 

Additional work is required to improve and build on the current findings with a view to 

achieving linear calibrations which will enable accurate quantification of unknown 

concentrations. Further tests using a number of compounds may improve understanding of 

the overall mechanism of direct ionization and help compare this technique to conventional 

analytical methods such as protein precipitation and solid phase extraction combined with 

liquid chromatographic separation. 

SPME fibres can easily be introduced into a source of a triple quadrupole mass spectrometer 

without the need for complicated modifications. This in turn means compatibility with pre-

existing resources as triple quadrupole mass spectrometers are currently the detection method 

of choice in many industrial bioanalytical labs. This poses a major advantage in terms of 

retaining high levels of sensitivity and selectivity using available mass spectrometers which 

are prevalent in quantitative and regulated bioanalysis.  
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Furthermore, the use of direct SPME-MS for structural elucidation on high resolution 

accurate mass-spectrometers is envisaged for future technical development with a view to 

identify metabolites in the same sample as the parent compound.  

Also investigating various SPME coating phases for the extraction of molecules with a broad 

range of log P values will allow detection of unstable metabolites such as acyl glucuronides 

and N-oxides. The rapid acquisition of metabolism data will provide a better understanding of 

disease pathways and the discovery of new biomarkers. 

A number of modifications to the current design of the direct source need to be developed, 

the present device, although very simple, is still manually controlled. Therefore, the ability to 

characterize and analyse large numbers of compounds and samples in a high sample 

throughput mode can only be achieved with a fully automated system. This involves 

incorporating a wash procedure in between analysis to flush the system and ensure 

elimination of any contamination or deposits of residuals. Manually operated direct 

desorption technique involves a setup consisting of the extraction/ionization device coupled 

to the MS inlet where each sample is manually uploaded onto this arrangement. Such setup 

might be adequate for investigative low sample throughput applications. However, for routine 

drug development and discovery studies, the requirement to analyse hundreds of study 

samples will necessitate reliable automation where samples can be racked up and left for 

analysis overnight without the need for human interaction196. 

This could be achieved by utilizing a robotic arm that can pick SPME fibres from a rack and 

transfer them to the MS inlet with accurate positioning in front of the orifice. Alternative 

methods could involve a rotary device where a set of SPME fibres can be uploaded (Figure -

7.11-) into a rotary cylinder and each fibre would be presented at the MS orifice for the 

duration of the analysis. A new fibre is rotated into position subsequent to the extraction of 

the previous sample and a new set of fibres can be uploaded from an automated carousel-like 

magazine. Additional functionalities such as application of the internal standard i.e. the 

desorption solution, as well as visual recognition of samples should also be considered when 

designing SPME automated devices.  
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Figure -7.11- Rotary bespoke automation concept for direct SPME-MS, designed by 

Sheelan Ahmad and developed by Michael Tucker at GlaxoSmithKline.  

 

Robust automation of SPME is a challenge that requires attention to enable direct desorption 

to be utilized for drug development studies. Automation errors should be minimal and 

comparable to errors seen with current sample injection systems in HPLC instruments. Error 

handling is essential if direct analysis techniques are to be deemed as alternatives for 

separation techniques. The automated direct analysis device must also be able to 

communicate and synchronize with the detector so that samples are reconciled against a 

sample sequence list that maybe submitted from the MS computer system.  Although 

significant progress has been witnessed in SPME automation, currently there are no 

commercially available automation devices for any SPME direct analysis techniques.  

Overall direct SPME-MS substantially simplifies MS analysis where no sample preparation 

or separation is required and data is generated at ambient temperature. This may considerably 

reduce time, costs and aid higher analytical throughput with minimal sample usage and no 

blood withdrawal. The fundamental drive and rationale for direct analysis is the potential 

removal of the sample preparation interface which will aid process simplification and enable 

time saving. 
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7.4 Conclusion  
The intention of this work was to identify the possibility to perform direct ionization from a 

SPME fibre by applying voltage and desorption solvent. This chapter has presented the proof 

of concept for direct SPME-MS as a means to conduct quantitative analysis of small 

molecules directly from whole blood samples. The capability of direct SPME-MS analysis 

has been characterised with two test analytes, metoprolol and propranolol, spiked into control 

rat blood. The data indicated the significance of this approach to enable rapid, selective and 

highly sensitive (10 ng/mL lower limit of quantification) qualitative and quantitative 

chemical and biochemical analysis.  

Analysis is carried out on the same SPME fibre that is used for extracting the analyte from 

the investigated medium or the living organism, thus immediate determination of unbound 

drug concentration could be achieved from biological samples. The approach combined the 

highly attractive features of two very powerful techniques; SPME and MS. The technique has 

wide ranging potential for future preclinical and clinical tests as well as therapeutic drug 

monitoring. Exploring the technique in more depth for both qualitative and quantitative use 

has the potential to open the door to further applications and transform the field of 

bioanalysis through combining the selectivity of SPME with the sensitivity of direct SPME-

MS analysis.  
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Chapter 8 

Research Summary and Future Directions 

 

8.1 Research Summary 

For many years analysts have been trying to identify techniques with better analytical 

sensitivity and tools that reduce multistep sample handling procedures. This has been recently 

accompanied by a shift towards using smaller sample volumes without impacting the quality 

of the bionanalytical data21,218. This is to cope with the demand for highly sensitive assays 

that require low LLOQ and to improve ethical considerations around the use of reduced 

animal numbers in research. As discussed in Chapter 1, a number of microsampling 

techniques have been applied over the last decade to address the above. Each with its own 

advantages and disadvantages (Chapter 1). 

Meanwhile, a technique known as solid phase microextraction has been growing in 

popularity (Figure -8.1-) among scientists from several different disciplines due its unique 

properties. However, some of its distinctive characteristics such as analyte extraction without 

the need for blood withdrawal had not been fully explored to address bioanalytical and 

sampling issues within the pharmaceutical industry. In vivo SPME applications have been 

mostly confined to academic research laboratories rather than the pharmaceutical industry42.  
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Figure -8.1- Number of SPME publications per year for the last 25 years that contain 

the term “SPME”. Data collected using the Scopus search facility (Elsevier). 

 

This research explored the feasibility of utilising SPME as a microsampling technique within 

the pharmaceutical industry with a view to evaluate the factors affecting SPME’s use as a 

bio-microanalytical device for preclinical studies. Parallel in vitro and in vivo experiments 

were conducted to assess the technique and its application within the pharmaceutical 

industry.  

At the start of the project, the in vitro investigations in Chapter 3 revealed that SPME is 

suitable for determining physiologically relevant analyte concentrations from blood without 

the need to lose any sample volume. This in turn meant that SPME can be used as a 

microsampling device in live animals without the requirement to withdraw any blood. 

However, the probe requires equilibration with the analyte within the sample matrix. But 

equilibration profiles determined in Chapter 3 showed that equilibrium is not reached prior to 

3 h exposure. This has adverse effects on ethical, practical and scientific considerations for 

the technique. Leaving the SPME fibre within a living organism for long periods of time will 

cause animal distress and jeopardise data quality if earlier PK timepoints are missed. As such, 

shorter sampling times i.e. pre-equilibrium extraction was assessed in Chapter 5 (first in vivo 

study). This study was successful showing that 2 min extraction is sufficient providing that 

calibration standards and quality control samples are exposed to spiked samples for the same 
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length of time in vitro. Analyte desorption time profiles, on the other hand, showed that 

sufficient analyte recovery was achieved within 15 - 30 min of desorption exposure. This in 

turn greatly simplifies and shortens the analytical effort and time for the analyst, enabling 

simpler workflow. 

One of the over-riding findings of this project has been that SPME extracts free analyte 

concentrations rather than total concentrations. This aspect was employed and assessed in 

Chapter 4 to use SPME as a tool to determine protein binding values in vitro. The technique 

was further explored and was compared to a gold standard protein binding technique known 

as the RED device. SPME was found to be quicker producing results within 1 h compared to 

8 h with the RED device and generating comparable data with < 15% difference between the 

two techniques. SPME provided a compelling alternative platform for the efficient generation 

of high quality plasma protein binding values. This opens another door for useful applications 

of the SPME device within the pharmaceutical industry. The current approach across the 

industry is to identify protein binding values of candidate drugs during the early discovery 

work. However, this is typically performed in vitro using traditional techniques such as RED 

and ultracentrifugation that require time and resource. SPME can simplify this approach if 

utilized for protein binding experiments both in vitro and directly in vivo giving individual 

animal protein binding parameters. 

One apparent barrier to wider applications of in vivo SPME which was discovered in 

Chapter 2 (method development of naproxen) and Chapter 5 (identification of metoprolol 

metabolite) is the need for mixed-phase fibre coatings. The current in vivo biocompatible 

SPME fibres which are commercially available are C18 coated. This type of coating is not 

suitable for polar/hydrophilic compounds. Despite the potential importance of SPME 

application in the metabolism and metabolomic fields, the accessibility to varied 

biocompatible phase/chemistry coating types is still limited. Working in collaboration with 

the SPME vendors (Supelco/Merck Millipore), a new line of biocompatible mixed-mode 

coatings are currently being produced and efforts are under way to evaluate them. However, 

it is important to mention that challenges in terms of SPME coating do remain. In particular, 

the thickness of the fibre coating determines the capacity of the device. Thicker coatings 

allow for wider dynamic concentration ranges but mean that longer equilibration periods are 

required, while linearity is lost at higher concentrations with thinner coatings due to limited 

capacity. For this reason, several ideas have been proposed to vendors/collaborators to 

improve coating qualities through smaller particle dimensions therefore increasing surface 
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area without compromising coating thickness. Another aspect that needs to be highlighted is 

the inter-fibre variability encountered throughout this project, high %CV values of inter-fibre 

variability during stability and blood flow rate experiments in Chapter 3 Sections 3.3.5 and 

3.3.6 were observed. This has been fed back to the manufacturers and is currently being 

addressed through better quality control of fibre batch production.  

The biocompatibility of SPME, the ability to construct PK/TK profiles and the feasibility of 

inserting the fibres directly into rat tails without the need for an interface device were 

demonstrated for the first time in this project. The full tolerability study in Chapter 6 

assessing serial TK sampling and evaluation of SPME within a preclinical setting highlighted 

the fact that SPME provides a unique microsampling platform without the need to withdraw 

any sample. Biocompatibility was confirmed through clinical pathology endpoints as well as 

animal stress levels when subjected to the SPME fibres.  This work illustrated the importance 

of in vivo SPME and no blood withdrawal to preclinical rodent studies. No blood removal 

enables serial or repeat sampling from the same animal without the need for extra satellite 

groups in addition to toxicology animal groups. This leads to improved data quality and 

reduced animal use which has a huge ethical impact and permits cost savings.  

Another essential outcome of this project has been introducing the SPME technique to 

laboratory animal technicians. Previously, the industry has witnessed the implementation of a 

number of microsampling techniques including dried blood spots, capillary microsampling 

etc. and there has been initial difficulties and push back from staff regarding complex 

procedures where extensive training was required. Despite this, many animal technicians 

realise the microsampling benefits and so they are keen to try and implement new 

microsampling techniques. The feedback received from all six technicians that utilized the 

SPME device during the in vivo studies was very positive, complementing the ease of use and 

handling flexibility being comparative to the use of butterfly needles and other traditional 

sampling tools. Minimal training was required during study conduct; all staff used the device 

without training prior to in vivo study days. Nevertheless, it is vital to point out that fibre 

conditioning with methanol and water prior to sampling was performed and handled 

separately. If this was to be carried out by technicians at the animal laboratory, it would have 

added complexity, time and effort. This step is currently being reviewed by the manufacturers 

and may be eliminated by using smaller particle size that does not require surface activation.  
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The availability of such single-use SPME devices which are biocompatible is extremely 

important to make in vivo SPME technology stand out within the pharmaceutical industry. 

The potential applications of the technique both as a microsampling device and as a tool to 

measure unbound drug concentrations within the pharmaceutical industry is extremely wide.  

Finally, this research has led to the development of an innovative direct ionization technique 

involving in vivo SPME. This enabled the analysis of analytes by spraying directly from 

SPME fibres straight into the mass spectrometer without the need for offline sample 

preparation and chromatographic separation. A direct SPME-MS source was designed and 

tested to present a proof of concept for a technique that provides rapid, selective and highly 

sensitive qualitative and quantitative chemical and biochemical analysis. This particular 

outcome of this project is relevant not only for the use of SPME in bioanalysis, but for the 

analysis of analytes in environmental, food, fragrance and forensic industries.  

Overall, the work in this project has shown the potential for applying in vivo SPME in several 

different stages of the pharmaceutical industry. Based on the work and the data generated in 

this research, in vivo SPME can now be immediately utilised for non-GLP preclinical studies 

where the bioanalytical acceptance criteria is a little wider than those defined in the regulated 

guidance, 20 - 25% compared to 15%12,71,73. The next stage will be to implement the 

technique in regulated toxicology studies but prior to that, several aspects including inter-

fibre reproducibility and simplified preconditioning steps as well as sample audit trail will 

have to be addressed. 

 

8.2 Future Directions 

The advantages on offer from the SPME technique could potentially be utilized at various 

stages of the drug discovery and development process. Starting with early discovery phases, 

SPME can be applied in 3D cell cultures to determine the ability of the drug to elicit a 

biological response inside an in vitro model where the cellular function is examined prior to 

full commitment in the in vivo system.  

More importantly, SPME forms an attractive tool for knockout studies in which transgenic 

animals are used to understand mutagenesis and validate genetic variations. Such studies 

have been limited almost exclusively to mice models by virtue of the ease of genetic 
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manipulation and their close reflection of the human physiology. The generation of these 

unique species is an expensive process and therefore it is crucial to determine as much 

information as possible from these genetically engineered animals.  The approach however, 

has always suffered from the strict regulations on the availability of blood volumes, but this 

will no longer be an issue with the direct, no blood withdrawal aspect of SPME. However, 

the needle residence time within the vein of a living organism may be an issue if this is not 

further reduced through manufacturing modifications to the design and particle size of 

coating phases.  

The technique has been applied in the metabolomic area facilitating effective in vivo 

metabolite monitoring using custom-produced coating phases97 and also for in vitro studies to 

monitor the metabolomics of disease pathways using relevant cell lines219. Multiple blood-

free sampling aids the process of capturing unstable metabolites within the living organism, 

reflecting the actual metabolite component in real time i.e. a true snapshot of the 

metabolome151. The acquisition of rapid metabolism data known as “Metabolism quenching” 

will provide the pharmaceutical industry with information that can form the foundations of a 

comprehensive metabolomic database used for designing future personalised medications.  

Biomarker monitoring is another area worth shedding some light on. SPME has been used for 

the detection of volatile compounds that act as indicators of various disorders. Recent 

publications have described the use of SPME -GC-MS coupled with nano-sensors for the 

successful identification of 42 volatile compounds220. These small molecules which 

correspond to lung-cancer biomarkers were detected using patient breath sampling. Tumour 

growth biomarkers and potential regulators of angiogenesis have also been captured by 

SPME221. If these yet un-commercialised prototype devices could be further developed into 

commercial tools with selective coatings specific for biomarkers, then SPME can add further 

prognostic values to the industry. 

 

Analysis of peptide biomarkers and larger biopharmaceutical molecules such as antibodies 

and proteins is another area where SPME could potentially add value. The development of 

biotherapeutics is now an integral part of the pharmaceutical industry where, traditionally 

immunoassays have dominated the field of quantifying such molecules. However, with 

current advances in LC-MS/MS, it has been possible to accurately measure peptides and 

proteins with lower limits of quantification. So although it may not yet be so well established, 

it is believed that with intricate design of SPME fibres, it may prove feasible to coat fibres 
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with specific antibodies/immunosorbents to act as binding beds for antigens. This will enable 

a highly specific “lock and key” mechanism between the fibre and the target harvested from 

the complex biological matrix, all of which would take place within the living organism, 

avoiding the necessity to collect blood samples.  

Potentially SPME applications could be further extended to tissue analysis. The device can 

penetrate organ tissues without causing much regional damage compared with microdialysis 

probes164. Solvent compatibility and the difficulty of coupling microdialysis with LC-MS 

remains unsolved164; therefore the use of SPME coupled with LC-MS will enable detection of 

low concentrations without the ion suppression associated with microdialysis. Measurements 

of drug levels in the brain of conscious free moving rodents have been performed without the 

requirement for organ removal222. This opens the door for quantitative PK and TK analysis of 

drugs with complete organ exposure or accumulation profiles without the need to take 

terminal samples for subsequent tissue homogenising and wet sample analysis.  

The clinical suitability of SPME is also an important consideration. Although sample volume 

is not a major concern when dealing with the majority of human subjects, there are numerous 

cases where avoidance of blood withdrawal is essential, specifically in paediatric studies or 

blood coagulation disorders. To date, most human SPME applications have been clustered 

around breath and skin analysis. However, the quantification of analgesic drugs in human 

urine samples has also been reported58,221. A notable novel application anticipated for SPME 

within the clinical arena is the possibility of the technique to serve as a diagnostic tool in the 

operating theatre. Monitoring of blood drug concentrations during surgery is a critical 

element of many clinical procedures. An example that illustrates this significance is 

anaesthetic management of liver transplantation patients. The function of the hepatic system 

varies during liver transplantation surgeries; this has a direct impact on the metabolism of the 

combination of drugs used for general anaesthetics. SPME can provide a simple method to 

measure the concentration of parent drug and metabolites throughout the various stages of the 

transplant process specially if coupled with direct MS analysis. This in turn will enable 

dosage control of anaesthetics during surgical procedures.   
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