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Correspondence Mapping Induced State and
Action Metrics for Robotic Imitation

Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn

Abstract—This paper addresses the problem of body mapping
in robotic imitation where the demonstrator and imitator may not
share the same embodiment [degrees of freedom (DOFs), body
morphology, constraints, affordances, and so on]. Body mappings
are formalized using a unified (linear) approach via correspon-
dence matrices, which allow one to capture partial, mirror sym-
metric, one-to-one, one-to-many, many-to-one, and many-to-many
associations between various DOFs across dissimilar embodi-
ments. We show how metrics for matching state and action aspects
of behavior can be mathematically determined by such correspon-
dence mappings, which may serve to guide a robotic imitator. The
approach is illustrated and validated in a number of simulated
3-D robotic examples, using agents described by simple kinematic
models and different types of correspondence mappings.

Index Terms—Correspondence problem, imitation and so-
cial learning, programming by demonstration, state and action
metrics.

I. INTRODUCTION

IMITATION is a powerful learning tool when a number of
agents interact in a social context. The demonstrator and

imitator agents may or may not belong to the same species
(a parent teaching a child, a human training an animal) or even
be biological and artificial entities (e.g., in human–robot inter-
action). The latter is a very interesting paradigm explored in
computer science and robotics, with researchers influenced by
work on biology, ethology, and psychology working to design
controllers that would allow their robots to be programmed and
learn more easily and efficiently [10], [11], [15], [16], [18],
[22], [25].

A fundamental problem when learning how to imitate is to
create an appropriate (partial) mapping between the actions
afforded by particular embodiments to achieve corresponding
states and effects by the model and imitator agents (solving
a correspondence problem) [21]. The solutions to the corre-
spondence problem will depend on the subgoal granularity
and the metrics used to evaluate the similarity between ac-
tions, states, and/or effects, resulting in qualitatively different
imitative behaviors [1], [2]. The related problem of what to
imitate addresses the choice of metrics and subgoal granularity
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that should be used for imitating, depending on the context.
See [9] and [24] for robotic examples and [8], [12], and [14]
for ethological and psychological aspects.

Related to the work on solving the correspondence problem
for imitation learning in robotics is the ALICE generic imitation
framework [1], [2] and the JABBERWOCKY system [3]–[5].
Both are generic approaches addressing multiple demonstrator
and target imitator embodiments using different metrics to
achieve different types of social learning, matching different
behavioral aspects.

In this paper, we introduce a novel generic approach to the
correspondence problem, via body mapping for the cases of
state and/or action matching. In particular, partial, relative,
and mirror matching all arise as special cases of such cor-
respondence mappings. Moreover, an infinite set of metrics
(parameterized by correspondence matrices) for imitation per-
formance are induced via such body correspondences.1 This
contributes toward a characterization of types of matching in
social learning. Previously, we studied the space of effect met-
rics [5], while in this paper, the focus turns to state and action
metrics. The approach is illustrated and validated via a number
of simulated 3-D and robot examples mapping across dissimilar
embodiments and is applicable to robot programming by human
demonstration.

II. DIFFERENT BODIES

Different agent bodies can be described as simplified kine-
matic models, comprising of a rooted acyclic connected graph
of segments (see Fig. 1).2 Each segment has a base and a tip end,
and is described by the quintuple (i, �i, pi, θi, φi) as follows:

i index number of the segment;
�i segment length;
pi index number of the parent segment;
θi and φi azimuth and polar angles, respectively, for the

spherical coordinates (�i, θi, φi) that indicate
how the segment is positioned in 3-D space (rel-
ative to the end of its parent segment).

NB: In general the range of the angles θi and φi may be
constrained within given respective ranges.

The values of θi and φi are relative for each segment, but
absolute angles for segment i, Θi, and Φi can be obtained

1That is, to say that a correspondence mapping “induces” a metric means
exactly that it mathematically determines the metric.

2Cf. modeling agents as simple open kinematic chains in [6].
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Fig. 1. Some embodiment examples using simple kinematic models. (Left) A
human and (right) an AIBO robot.

inductively starting from the segment after the root3

Θi = θi + Θpi

Φi =φi + Φpi
.

See the Appendix for detailed kinematic equations.
The state of such a kinematic model can be defined as the

vector containing the values of the degrees of freedom (DOF),
i.e., the values of the azimuth and polar angles for each segment
in the acyclic graph.

Depending on whether the relative or the absolute angle
values are used, for an embodiment with n segments, two
different state vectors can be considered

Srelative = [θ1 φ1 θ2 φ2 · · · θn φn]

Sabsolute = [Θ1 Φ1 Θ2 Φ2 · · · Θn Φn].

Here, complying with the particular kinematic models that will
be used, the state vector is composed of the alternating azimuth
and polar angles for each of the body segments.4 For the rest of
this paper, the notation Sj will be used to refer to the state value
of the jth DOF of an agent.5

An action can be defined as the difference between two
consecutive state vectors S and S ′

A = S ′ − S.

Using either the relative or absolute representation of the
state vectors for calculating an action vector produces mathe-
matically equivalent results. Note that depending on the em-
bodiment, a change in the relative values of the jth DOF can
influence the absolute values of subsequent DOFs (see the

3For mathematical convenience, the root node is treated as a segment of
length �0 = 0, but θ0 and φ0 can have nonzero values to orient the entire
model. For expository purposes, without loss of generality, in this paper, we
ignore the latter possibilities (Θ0 = θ0 = 0, Φ0 = φ0 = 0).

4Depending on the particular body representations used, the contents of the
vectors (and the ordering of the elements) can of course vary. For example,
if Euler angles (φ, θ, ψ) were used instead of spherical coordinates, the
state vector for an embodiment with n segments could be defined as S =
[φ1 θ1 ψ1 φ2 θ2 ψ2 · · ·φn θn ψn].

5Here, the number of DOFs for each agent will in general be twice the
number of segments, depending on embodiment restrictions, e.g., for S =
[θ1 φ1 θ2 φ2], S3 = θ2.

Appendix for the kinematic equations). For this paper, the
actions will be defined using the relative-state vectors.

Effects can be defined as changes to the body-world re-
lationship (e.g., location) of the agent and/or to positions,
orientations, and states of external objects. In this paper, we
will only consider state and action behavior aspects and metrics.
For characterization of the space of effect metrics and some
mathematical definitions of effect metrics, see [5].

III. SOME FIRST STATE AND ACTION METRICS

To evaluate the similarity of behavior, with respect to states
and actions, between an agent β imitating another agent α,
we define and use appropriate metrics. For the moment, let us
assume that both agent embodiments have the same number of
DOFs n. A first global state metric can be defined as

µstate(Sα, Sβ) =
n∑

j=1

∣∣∣Sα
j − Sβ

j

∣∣∣ (1)

where Sα
j and Sβ

j are the values of the state vectors for the
two agents. Depending on whether the relative or absolute-state
vectors are used, we call the state metric relative or absolute,
respectively.

A first global action metric can be defined as

µaction(Aα, Aβ) =
n∑

j=1

∣∣∣Aα
j − Aβ

j

∣∣∣ (2)

where Aα
j and Aβ

j are the values of the action vectors for
the two agents. Note that instead of absolute value, one could
alternatively use any Lp-norm, the choice of which might have
consequences for optimization in different applications.

An agent performing actions so as to minimize one (or a
weighted combination) of these two metrics would successfully
imitate a demonstrator in respect to states and/or actions. Note
that it is not necessary and, in general, will not be possible to
bring the value of the metric to zero with a matching behav-
ior, especially in the case of dissimilar embodiments. Instead,
finding minima is the goal.6

For effect metrics, see [5]. In the following sections, some
more complex state and action metrics are defined.

IV. CORRESPONDENCE MAPPING

For two agents, demonstrator α and imitator β with n and m
DOFs, respectively, an n × m correspondence matrix can be
defined as

C =




w1,1 w1,2 . . . w1,m

w2,1 w2,2 . . . w2,m

...
...

. . .
...

wn,1 wn,2 . . . wn,m




6Of course, one can replace µ by µ′ = µ−m, where m = inf µ and then
seek to solve µ′ = 0.
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Fig. 2. Examples of symmetry via correspondence mapping. The figure shows
(left) a demonstrator and (right) three imitators, facing the reader, each with an
upper human torso embodiment. The demonstrator is moving its right arm to
its left. Each of the three imitators is using different correspondence mappings:
mapping the demonstrator’s right arm to the left arm of the imitator (second
from the left), using a weight of minus one, but maintaining the same arm
mapping (second from the right), and, finally, both mapping the demonstrator’s
right arm to the left arm of the imitator and using a weight of minus one. The
gray lines trace the movement of the arms.

where the wi,j values are real-valued weights, determining how
the jth DOF of the imitator β depends on the ith DOF of the
demonstrator α. The jth column of the matrix can be thought as
a vector indicating how the DOFs of the demonstrator influence
the jth DOF of the imitator. Depending on how many of the
weights have a nonzero value, this correspondence mapping
can be one-to-one, one-to-many (or many-to-one), or many-to-
many. If partial body imitation is desired, some DOF of the
imitator (and/or the demonstrator) can be omitted by setting an
entire column (respectively, row) to zero in the correspondence
matrix.

The choice of the correspondence mapping will in general
depend on the particular task. Assuming both agents share the
same embodiment (and, as a result, have the same number of
DOFs), a simple example of a one-to-one correspondence map-
ping would be using the identity matrix as a correspondence
matrix. Alternatively, if some mirror symmetry is wanted, then
the DOFs for the right arm and leg of the demonstrator (see the
example in Fig. 2, left) could be mapped to the DOFs for the
left arm and leg of the imitator, and vice versa (Fig. 2, second
from the left). Another possible form of symmetry results from
mapping some of the demonstrator’s DOF using a weight of
minus one [e.g., if the demonstrator raises its hand, the imitator
should lower its hand, or if the demonstrator turns its head to
the left, the imitator should turn to the right (see the example in
Fig. 2, second from right)].

If the agents do not have the same number of DOFs (or
depending on their particular morphology), it may be useful
to map a single DOF to many DOFs. For example, consider
correspondences between a human body as model to a dol-
phinlike imitator7: a dolphin, using its mouth corresponding
to either human hand (grasping an object) or using its tail to
toss a ball back to a human that used both arms, comprise real-
world examples of many-to-one mappings. These two examples
also illustrate that the correspondence needs not be static—the
human hands are mapped to different dolphin body parts in

7Different mappings do appear to be employed by real-life dolphins in
imitating humans [17].

each case—but can be adapted depending on the context and
the tasks involved.

V. INDUCED STATE AND ACTION METRICS

The metric definitions in Section III are appropriate for the
most simple one-to-one mapping (the identity mapping), with
both agents sharing the same number of DOFs (and probably a
very similar morphology). But, in general, using a correspon-
dence matrix, other metric definitions can be induced.

First, the state vector Sα and the action vector Aα of the
demonstrator can be multiplied with the correspondence matrix

S = Sα × C (3)

A = Aα × C (4)

producing two new vectors in imitator coordinates. Combining
(1) and (3) for the state metric gives

µC
state(S, Sβ) =

m∑
j=1

∣∣∣Sj − Sβ
j

∣∣∣ εj (5)

where Sβ is the imitator’s attempted matching state, and the
corrective term

εj =




0, if
n∑

i=1

w2
i,j = 0

1, otherwise
(6)

takes the value zero if the jth column of the correspondence ma-
trix contains only zeros (effectively omitting the imitator’s jth
DOF). Intuitively, the components of S and A (for such εj �= 0)
can be thought as current subgoal state and action target values.
The imitator can match the state S by assuming state Sβ so as
to minimize the metric µC

state. As in the previous definition, this
state metric is called relative or absolute depending on whether
the relative or absolute-state vectors are used, respectively.

Finally, combining (2), (4), and (6) for the action metric gives

µC
action(A, Aβ) =

m∑
j=1

∣∣∣Aj − Aβ
j

∣∣∣ εj (7)

where Aβ is the imitator’s attempted matching action.
These µC

state and µC
action metrics are called the induced state

and action metrics for the linear correspondence C.
Depending on the correspondence mapping used, a plethora

of new complex metrics (also allowing for dissimilar embodi-
ments) can be induced considering state or action aspects. The
next section will illustrate a variety of examples.

VI. MAPPING ACROSS DISSIMILAR BODIES

Using a system implemented in MATLAB, we are able to
describe a variety of agent embodiments as simple kinematic
models (defined in Section II with kinematic equations as in
the Appendix). These embodiments include models of robotic
platforms, as shown in Fig. 3.
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Fig. 3. Example robotic platforms. (Left) A doglike Sony AIBO robot is
positioned suspended on a tripod. (Right) A pair of human-size robotic arms
is shown attached to a wooden rack (the robot arms were designed and made
by Michael Walters of the University of Hertfordshire).

For a given demonstrator and imitator embodiment pair, the
imitator attempts to match the behavior of the demonstrator
by minimizing a given metric (or a combination of metrics).
This can be done continuously (immediate imitation) or after
the completion of the demonstration (deferred imitation) [19].
Moreover, the granularity or “fineness” of the matching of
actions, states, and/or effects determines a sequence of sub-
goals for the imitator to achieve, and the appropriate level of
granularity may be different depending on the context and task.
Different correspondence mappings can be defined between the
two agents, yielding qualitatively different types of matching
behaviors.

A. Examples

Using the system, we conducted a series of simulation runs,
using a variety of agent embodiments and correspondence map-
pings. The demonstrator performs a series of actions, and the
imitator tries to minimize the correspondence induced relative-
state metric. Continuously using the components of S for which
εj �= 0 as the current subgoals for each DOF j, the imitator
performs actions that attempt to reduce the contribution of
error in each such component. Here, the rate of change was
restricted to half the componentwise error. Of course, many
other selection mechanisms are possible for both immediate or
deferred imitation.

1) Identity and Mirror Symmetry Mappings: Two examples
of imitation across similar embodiments are shown in Fig. 4.
Both demonstrator and imitator are humanoid. In the first
example, the identity correspondence mapping is used. In the
second example, using the same demonstration, symmetry is
achieved by mapping the left body parts of the demonstrator
to the right body parts of the imitator and vice versa (see also
examples in Fig. 2).

2) Multiple Mappings Between Dissimilar Bodies: The
model of an AIBO robot is used as an imitator in the examples
shown in Fig. 5. In the first example, the right arm of the
demonstrator is mapped on the right front leg of the robot, the
left arm to the left front leg, the right leg to the back right
leg, and the left leg to the back left leg. As each of the arms
and legs of the demonstrator consists of three segments, and
the imitator’s legs consist of two segments, only the first two
segments are mapped. In the second example, the imitator’s

Fig. 4. Two examples of imitation across similar embodiments (humanoid).
Both demonstrator (left in both examples) and imitator (right in both examples)
share the same humanoid embodiment. In the example on the left, the identity
mapping is used as the correspondence mapping. In the example on the right,
the left arm and leg of the demonstrator are mapped on the right arm and leg of
the imitator (and vice versa) with a weight of minus one, resulting in a mirror
symmetry. The gray traces visualize the body-part trajectories.

Fig. 5. Two examples of imitation across dissimilar embodiments (humanoid
and doglike). The demonstrator (left in both examples) is embodied as a
humanoid, while the imitator (right in both examples) is embodied as a doglike
AIBO robot (see Fig. 3, left). In the example on the left, a simple one-to-one
correspondence mapping is used, mapping the first two (out of three) segments
of the demonstrator’s arms and legs to the two segments of the four imitator’s
legs. In the second example on the right, the demonstrator’s first segment of the
left arm is mapped on the imitator’s tail and the demonstrator’s first two right
arm segments to the neck and head of the imitator’s head. This results in the
demonstrator controlling “puppeteer-like” the head and tail of the robot. The
gray traces visualize the body-part trajectories.

head and tail are controlled “puppeteer-like” by mapping the
first two segments of the right arm and the first segment of the
left arm of the demonstrator to them, respectively. The latter
can also be thought as an example of using a body part of
the demonstrator (the left arm) to refer to a body part of the
imitator (the tail) that does not have a direct equivalent on the
demonstrator’s (human) body. Also, although here both bodies
have “heads,” it might be the case that it is more “expressive”
(i.e., the motions/posture more easily to be perceived by the
imitator and/or performed by the demonstrator) to use the right
arm to indicate the head movements.

3) Partial Mappings: An example of partial mapping is
shown in Fig. 6 (left). As the imitator is an upper torso hu-
manoid, the DOFs in the lower body parts of the (whole hu-
manoid) demonstrator are ignored (via zero rows in the matrix),
with a unity one-to-one mapping used for the upper body.

4) One-to-Many Mappings: When the perception of the
demonstrator by the imitator is limited, a complicated
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Fig. 6. Two examples of imitation across dissimilar embodiments (whole
and upper torso only humanoids). The demonstrator (left in both examples)
is embodied as a humanoid, while the imitator (right in both examples) is
embodied as an upper torso humanoid robot (similar to the one shown in Fig. 3,
right). In the first example on the left, the arms of the demonstrator are mapped
using a weight of one to the arms of the imitator. Note that the movement of
the demonstrator’s left leg is ignored as these demonstrator’s DOFs are omitted
(via a zero row in the correspondence matrix). In the example on the right,
the same mapping is used, but the rate of movement of the imitator is severely
limited, resulting in impersistence (see further discussion in Section VII). The
gray traces visualize the body-part trajectories.

Fig. 7. Two examples of imitation across dissimilar embodiments using one-
to-many correspondence mappings. The demonstrator (left in both examples) is
embodied as an abstract “letter V” shape, visualizing the three motion sensors
attached to a human (one to waist and one on each hand), while the imitator
(right in both examples) is embodied as a humanoid. In the example to the left,
the left segment of the demonstrator is mapped with different weight values
to the imitator’s left-arm segments. In the second example to the right, this
mapping is extended by also mapping the left segment of the demonstrator
with different weight values to the imitator’s left leg segments. The gray traces
visualize the body-part trajectories.

one-to-many correspondence mapping could be used. Assum-
ing a human acting as a demonstrator, but providing the system
and the imitator with only the coordinates of three motion
sensors, one attached to her/his waist and one in each hand,
and filtering perception through this sensory apparatus yields
a reduced representation of the demonstrator embodiment that
can be modeled as a “V”-letter-shaped kinematic model.8 The
θ and φ of each arm segment of the “V” embodiment can be
mapped on each of the segments of the corresponding arms of

8Note that as the human moves her/his arms around, the lengths of the
two segments of the “V” will change accordingly and not remain constant.
But, this can be ignored since, for the correspondence mapping, the important
parameters are the azimuth and polar angles. These can be found from the
(relative to the waist sensor) Cartesian coordinates of each arm sensor.

Fig. 8. Induced absolute-state, relative-state, and action metric values for the
imitation example shown in Fig. 4 (left), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

a humanoid imitator, with different weights. For example, in
Fig. 7 (left), the following mapping:

wθLA,θLS =wφLA,φLS = 1

wθLA,θLE =wφLA,φLE = 0.5

wθLA,θLW =wφLA,φLW = 0.25

is used, where LA is the demonstrator’s left “V” arm segment,
and LS, LE, and LW are the imitator’s left shoulder, elbow,
and wrist segments, respectively. As a result, as the human
demonstrator (not shown) lifts her/his left arm, the left segment
of the “V” model also rises, and the left arm of the humanoid
imitator rises as well. In Fig. 7 (right), an extension of this
mapping is used with

wθLA,θLH = 0.2

wφLA,φLH = 1

wθLA,θLK =−1

wθLA,θLAn = 0.05

wφLA,φLAn = 0.05

where LH, LK, and LAn are the imitator’s left hip, knee, and
ankle segments. As a result, both the left arm and leg of imitator
rise when the demonstrator’s left “V” segment moves. These
mappings are presented here only as indicative examples of
complex one-to-many mappings and were hand-coded.

B. Evaluation Using State and Action Metrics

The values of the induced absolute-state, relative-state, and
action metrics during the simulations shown in Figs. 4–7 are
plotted in Figs. 8–15.

The rate of movement of the imitator during the simula-
tions was limited to reflect real-world constraints. The current
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Fig. 9. Induced absolute-state, relative-state, and action metric values for the
imitation example shown in Fig. 4 (right), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

Fig. 10. Induced absolute-state, relative-state, and action metric values for
the imitation example shown in Fig. 5 (left), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

subgoal is constantly updated using the current state of the
demonstrator during the run. When each demonstration fin-
ishes, the simulation does not terminate until the imitator
manages to reach the final subgoal of the demonstrator.

As the imitator tries to minimize the relative-state errors,
the value of the metric used by the system (here, in all cases,
the relative-state metric, middle plot) in all figures is shown
to converge to zero. Depending on the embodiment and the
correspondence mapping, the value of the absolute-state metric
(top plot) also converges to a value that may (e.g., see Fig. 8) or
may not (e.g., see Fig. 9) be zero. The value of the action metric
(bottom plot) trivially converges to zero (since toward the end
of each simulation, both the demonstrator and the imitator stop
performing any actions).

Fig. 11. Induced absolute-state, relative-state, and action metric values for the
imitation example shown in Fig. 5 (right), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

Fig. 12. Induced absolute-state, relative-state, and action metric values for
the imitation example shown in Fig. 6 (left), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

C. Mapping to Robotic Target Platforms

Capturing human demonstration via the “V”-perception
mechanism (see Section VI-A above), implemented using the
Polhemus Liberty motion capture system, and mapping to
robotic target platforms (AIBO and robot arms—see Fig. 3)
according to different correspondence matrices, as described
above, allow the achievement of qualitatively dissimilar types
of robotic imitation based on human demonstration.

VII. DISCUSSION AND FUTURE WORK

We have shown how partial, mirror symmetric, one-to-one,
one-to-many, many-to-one, and many-to-many body mappings
can be characterized by (linear) correspondence matrices.
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Fig. 13. Induced absolute-state, relative-state, and action metric values for the
imitation example shown in Fig. 6 (right), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

Fig. 14. Induced absolute-state, relative-state, and action metric values for
the imitation example shown in Fig. 7 (left), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

These correspondences induce an infinite variety of absolute
and relative-state and action metrics that can be used to guide
robotic imitation across dissimilar embodiments—even radi-
cally different ones in which neither the size of body parts, nor
their type, nor number of DOFs needs be preserved—enhancing
existing approaches to imitation learning. The study of nonlin-
ear correspondences for achieving matching behavior in states,
actions, and/or effects would extend this set of metrics.

Note that as discussed in Section VI-B and shown in
Figs. 8–15, in some situations, the values of some state or action
metrics (that were not used by the system) do not decay to zero,
while the imitator still produces a meaningful imitation (either
by mirroring or by using different body parts). Depending on
the metric used, qualitatively different imitation behaviors will
result.

Fig. 15. Induced absolute-state, relative-state, and action metric values for the
imitation example shown in Fig. 7 (right), plotted during the simulation. The
abscissa and ordinate units are time step and value of the metric, respectively.
Note that, here, the system is using the relative-state metric only to produce the
imitative behavior.

Currently, the correspondence mapping in this system is
given for each experimental run, but finding the correspondence
can be approached using reinforcement learning and an experi-
ential history (adding memory), as in our previous work with
the ALICE generic imitation framework [1], [2]. How such
correspondences can be built is one of the hardest problems
of imitation learning and comprises an important aspect of the
what to imitate problem. For related work on visuo-somatic
mapping, see [7] and [13].

The scope of this paper is not to compare between different
correspondence mappings (as they are currently given); but
for future work, it would be an interesting issue to examine
how different mappings (derived, e.g., by a genetic algorithm
system or via a suitably adapted version of ALICE [1] using
correspondence matrices) can be compared and evaluated for a
particular task.

The solutions generated by the present system do not take
into account joint limits, body mass distribution, or detailed
dynamics, which may lead to unfeasible and/or unstable so-
lutions (cf. [20] for an example where the trajectory had to
be corrected to ensure proper balance, after mapping). By
relying on simulation, we avoided many of the typical problems
associated with the interpretation of the demonstrator’s actions
and with the computation of the demonstrator’s state. It will, in
general, be necessary to adapt a generated action sequence for
a particular configuration of the particular physical system.

The current system is purely reactive with no memory (and,
as a result, has no learning). This results in certain limitations.
For example, in Fig. 6 (right), the demonstrator is moving
its left arm in a loop trajectory, but since the imitator is
continuously reacting but with a limited rate of movement,
the imitator is unable to reach the current subgoal before it
changes (until finally the demonstrator completes the entire
demonstration). This inability to sustain appropriate actions is
called impersistence [23] and can be solved by adding memory
to the system, containing the sequence of subgoals.
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Future work would naturally also address the derivation of,
and switching between, appropriate correspondence mappings
depending on the needs of the imitator agent in the social and
task context. The developed system could eventually serve as
a correspondence engine for imitation learning, incorporating
aspects of discovering what to imitate, depending on the context
and interaction history.

APPENDIX
KINEMATIC EQUATIONS FOR THE MODELS

A kinematic model (as defined in Section II) with n segments
can be positioned in the 3-D workspace by assigning the values
(x0, y0, z0) as the coordinates of both the base and the tip of the
root segment. Inductively, the Cartesian coordinates (xi, yi, zi)
of the base of each subsequent segment i are equal to the
coordinates of the tip of its parent segment pi

xi = x′
pi

yi = y′
pi

zi = z′pi
.

The Cartesian coordinates (x′
i, y

′
i, z

′
i) of the tip of each segment

i can be found by using the spherical coordinates (�i, θi, φi)
describing the current (relative) position of the segment

x′
i =xi + �i cos(φi + Φpi

) cos(θi + Θpi
)

y′
i = yi + �i cos(φi + Φpi

) sin(θi + Θpi
)

z′i = zi + �i sin(φi + Φpi
).
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