The r-, p-, and nu p-Process

Thielemann, Friedrich-Karl, Dillmann, I., Farouqi, K., Fischer, T., Froehlich, C., Kelic-Heil, A., Korneev, I., Kratz, K.L., Langanke, K., Liebendoerfer, M., Panov, I. V., Martinez-Pinedo, G. and Rauscher, T. (2010) The r-, p-, and nu p-Process. IOP Publishing Ltd..
Copy

The processes discussed in this review are three of the four nucleosynthesis processes involved in producing heavy nuclei beyond Fe (not counting the rp-process in Xray bursts). Opposite to the fourth process (the s-process), which operates in stellar evolution during He- and C-burning, they are all related to explosive burning phases, (presumably) linked to core collapse supernova events of massive stars. The (classical) p-process is identified with explosive Ne/O-burning in outer zones of the progenitor star. It is intitiated by the passage of the supernova shock wave and acts via photodisintegration reactions like a spallation process which produces neighboring (proton-rich) isotopes from pre-existing heavy nuclei. The reproduction of some of the so-called lighter p-isotopes with A <100 faces problems in this environment. The only recently discovered nu p-process is related to the innermost ejecta, the neutrino wind expelled from the hot proto-neutron star after core collapse in the supernova explosion. This neutrino wind is proton-rich in its early phase and reactions with neutrinos permit to overcome decay/reaction bottlenecks for the flow beyond the Fe-group, thus permitting the production of those p-isotopes, which face problems in the classical p-process scenario. The understanding of the r-process, being identified for a long time with rapid neutron captures - and passing through nuclei far from stability - is still experiencing major problems. These are on the one hand related to nuclear uncertainties far from stability (masses and half-lives), affecting the process speed and abundance peaks, on the other hand the site is still not definitely located, yet. Later neutron-rich, high entropy phases of the neutrino wind could permit its operation, other options include the ejection of very neutron-rich neutron star matter. Two different environments are required for a weak and a main/strong r-process, witnessed by observations of low metallicity stars.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads