
Evolvability of the Genotype-Phenotype

Relation in Populations of Self-Replicating

Digital Organisms in a Tierra-like System

Attila Egri-Nagy and Chrystopher L. Nehaniv

University of Hertfordshire
Department of Computer Science, Faculty of Engineering and Information Sciences,

College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom
{A.Nagy, C.L.Nehaniv}@herts.ac.uk

Abstract. In other Tierra-like systems the genotype is a sequence of
instructions and the phenotype is the corresponding executed algorithm.
This way the genotype-phenotype mapping is constrained by the struc-
ture of a creature’s processor, and this structure was fixed for an evo-
lutionary scenario in previous systems. Our approach here is to put the
mapping under evolutionary control. We use a universal processor (anal-
ogous to a universal Turing-machine) and put the structural description
of the creature’s processor as well as the instruction set of the actual pro-
cessor into the organism’s genome. The life-cycle of an organism begins
with building its actual processor, then the organism can start execut-
ing instructions in the rest of its genome with the newly built processor.
Since the definitions of the processors and instruction sets are in the
genome, they are subject to mutations and heritable variation enabling
their evolution. In this work we investigate the evolutionary development
of the processor structures. In evolving populations, changes in the com-
ponents (registers, stacks, queues), variations in instruction-set size and
the redefinition of the instructions can be observed during experiments.

1 Introduction

There is a trend in artificial life research that researchers try to put more free-
dom in their models. One of the big leaps was to implement ecological natural
selection instead of artificial selection (i.e. optimizing an objective function).
Using artificial selection in genetic algorithms may yield powerful optimization
methods for very different problems, but the evolution of the system does not
resemble biological evolution. In the best case the system converges to a solu-
tion satisfying externally imposed criteria. The evolutionary development is not
open-ended. However, in Tierra-like systems [11, 1, 5, 2], digital organisms self-
replicate in silico, and there is no global aim to reach; those entities which do
not survive and replicate fast enough simply vanish from the population. But
still the possible results are highly determined by the construction of the system:
the evolved programs for example are written in the same assembly language as
their progenitor. This language was designed by a human, not evolved. In this



paper we present a further improvement of the original idea of digital evolu-
tion. We give freedom to evolving populations of digital organisms (here called
archeans) to change their ‘genetic language’ namely their instruction sets and
the structures of their processors. This is done by putting the description of the
processor and instruction set into the genome itself, thus the ‘semantics’ of the
program is in the program itself (cf. [15]), and hence under evolutionary control.

2 Evolvability and Universal Processors

We handle the heritable information in digital organisms – a sequence of ex-
ecutable instructions or data cells or more simply a sequence of integers – as
strings. Moreover descriptions of their processors and the instruction sets that
run on them are parts of these strings. Variation in these structures thus be-
comes heritable. This results in new kinds of heritable variability and augments
evolvability of the genotype-phenotype mapping [8, 17, 13, 6].

Among processors smooth evolvability means that in most cases we can apply
transformations (delete, insert, replace) on these sequences without drastically
changing their semantics with the hope that some of these minor changes will
be favored by natural selection. This property does not appear in real processors
where just a simple bit-flipping can cause the abnormal termination of execution.
Therefore the design principles for processors will be different from the current
industrial standards when the main aim is to enable open-ended evolution of
machine-code programs driven by natural selection.

What are these design principles? By what means can we discover them?
Should we try out various processors and check how they perform under evolu-
tion [10]? There are already significant achievements implemented in the previ-
ous systems (Tierra [11], Avida [1], Primordial Soup [5]). The most prominent
examples are as:

– Labels and pattern-matching can be used instead of hardcoded addresses in
transfer of flow of control, subroutine calls, etc. [11].

– Fault tolerance: there is no combination of instructions which makes the pro-
cessor crash. Even in the worst cases violations result in nothing happening
(like performing a nop operation) [11].

– Using different instruction sets or subsets of a bigger and redundant instruc-
tion set in order to test their evolvability [12, 1].

In these previous works of using a processor with fixed structure it simply
executes the instructions and during execution a copy of the executed program
is made. This is the replication process. Of course different fixed processors have
been used but not in the same evolutionary run [12, 10]. One of our original goals
of designing Physis, yet another digital evolution system, was to provide pos-
sibilities to implement several processor architectures (including Tierra, Avida,
Primordial Soup) within the same experimental tool ensuring common metrics
for evaluation [2]. But this has been superseded by the general idea of using
evolvable architectures, so our approach here is now radically different. The idea



is if we don’t know how to construct a processor which supports evolvability of
self-replicating programs then we should let it be evolved! If we provide freedom
for the evolutionary process in tinkering with the processor structure, evolvable
processors may arise in the course of evolution. The guiding principle behind
this: the evolutionary potential of a processor itself is an important property at
lineage level and thus may be favoured by natural selection.

According to this we can outline a ‘meta’ design principle suggesting dynamic
structures for processors. The internal structure (registers, stacks, queues and
their sizes) and the instruction set may be varied over evolutionary time between
different creatures in the population.

Fig. 1. Execution phases of the universal processor.

In the case of the universal processor the execution consists of 2 phases:

1. First the structure of the processor is built according to a description con-
tained in the code of the digital organism itself. This structure remains con-
stant for the whole lifespan of the organism.

2. Then the actual code is executed on the newly built processor. During repli-
cation the processor description is also copied and thus it is subject to mu-
tation. So it may be changed.

The underlying theoretical construction is the universal Turing-machine [16].
Something similar happened in the hardware industry by introducing the Crusoe
processors [9].

This idea is also motivated by biological analogies. In real life the decoding
system, the mechanisms inside the cell, such as genetic code controlling tran-
scription, translation, protein biosynthesis and genetic regulatory control (see,
e.g. [13, Ch. 6]) evolved together with the genetic information, with DNA. How
the genetic code for protein biosynthesis evolved is one of the biggest questions
in today’s evolutionary biology. In silico experiments may shed light on this
mystery.



3 Processor Description Language

Obviously we need a genetic language to describe the inner structure of the pro-
cessor and its instruction set. As mentioned before we treat a digital organism
as a string of integers comprising a circular genome (as in prokaryotes or Avida).
Unlike in other Tierra-like systems, the context of decoding determines whether
an integer is an executable instruction or a component of the structural descrip-
tion: the processor treats an integer as an instruction in the instruction fetch
phase while the same integer references a structural element (such as a register
identifier) if an operand is needed. This is accomplished by using not directly
integers Z but Zm, integers modulo m, where m is the number of components of
the required type. This mapping of integers into either structural elements or in-
struction identifiers or positions in the genome constitutes an abstract analogue
of DNA to RNA transcription (often said to be lacking in such systems, cf. [4]).

3.1 Genetic Description of the Processor Structure

Part of an archean’s genome specifies its processor architecture. There are 3 basic
building blocks – we call them structural elements or primitives representing
basic data structures in the organism’s specification of the processor that its
code will run on. Each structural primitive has a corresponding symbol and we
need a special mark B for separating structural elements:

R register
S stack
Q queue
B blank

For example, a RRSSSBSS string in the genome represents two registers and two
stacks with sizes of 3 and 2. (A stack or queue of size 1 acts as a register, so it
would be an equivalent possible choice to use SB instead of R.) For every struc-
tural element (stack, register or queue) a unique integer is assigned, by which
it can then be referenced by executable instructions in the archean’s genome.
The structural element referenced by a simple zero is the instruction pointer by
default.

3.2 Genetic Description of the Instruction Set

The instruction set of an archean is defined by using the universal processor’s
basic instruction set. Those instructions can be used as the smallest building
blocks of a newly defined instructions. A digital organism cannot execute basic
instructions directly but executes instructions defined in the genome itself with
the syntax below. The descriptive part of the creature’s genome is separated
from the executable part by a special SEPARATOR instruction which marks where
execution should begin. Instruction definition in an archean’s genome specifies
instructions that are comprised of basic instructions of the universal processor.

The basic instruction set was designed to fulfill the following requirements:



– each instruction should be as simple as possible:

• an instruction as elementary building block represents a single action
not a compound one

• an instruction is independent from any addressing mode

– according to RISC philosophy only dedicated load/store instructions can
access the memory [14]

– the instruction set should be complete (any more complex operation should
be easily definable)

The basic instructions can be categorized in the following way (see [2] for more
details and exact specifications):

Data transfer There are 3 types of data transfer: between structural elements,
between a structural element and the environment, between structural ele-
ments and memory.
in reads data from environment,
out writes data into the environment,
load copies from memory to a structural element,
store copies from a structural elements to memory,
move general move between structural elements.

Control-flow Two instructions are enough to build any control structure.
jump unconditional jump,
ifzero skips the next instruction if operand not zero.

Arithmetic and Logic These are the usual instructions for mathematical and
logical operations. The operands are structural elements and the result is
stored in a structural element. These can be mixed arbitrarily. A defined
instruction can even use one structural elements for operands and results, if
it is for example a stack.
compare, add, sub, neg, div, mod, shift-l, shift-r, and, or,

xor, not, is sep ...

Biological These instructions are required for replication.
cinc,cdec cyclic increment/decrement for circular genomes,
allocate allocates memory,
divide splits the child and the parent program.

In order to enable inter-organism communication or parallelly executing organ-
isms this basic instruction set could be extended by the appropriate additional
basic operations.

The description of an instruction begins with an I symbol after which comes
the code of the newly defined instruction – just like defining a subroutine in a
higher level programming language. This technique enables evolution of modu-
larization. The semantics of the instruction is defined by a microprogram written
in the assembly language of the universal processor1. In short:

I basic instr [operand...] [basic instr [operand...]]...

1 It can be said that a CISC processor is defined on a RISC architecture [14].



For example I move 0 1 is an instruction that copies the content of the
instruction pointer to the first structural element. The operands point to struc-
tural elements which are indexed by a nonnegative number (modulo the total
number of structural elements). Also a number uniquely identifies an instruction
(modulo the size of instruction set). Again it depends only on the context of exe-
cution whether an integer denotes a structural element or executable instruction
or simply a data cell.

4 The Original Replicators

For starting the evolutionary process we need an original replicator. For the time
being this should be written by a human. As such it consists of 3 distinct parts.
(Fig. 2). In spite of this clear structure this organism is far from being optimal
in terms of replication speed.

Fig. 2. The structure of an original archean replicator. The lengths of the different sections
are not proportional to the number of cells. (length of structure description 8, definition of
the instructionset 52, executable code for self-replication 18 instructions)

Two original replicators were designed having different processor architec-
tures. One uses 4 registers (Fig. 3), and the other uses 2 registers and a stack
of size 2. The instruction set reflects the difference but otherwise both have
the same replication algorithm (count the instructions cyclically forward to the
SEPARATOR in one loop, allocate memory, copy the instructions in another loop,
divide).

5 Experimental Set-ups and Results

We are interested in changes of the processor structures over evolutionary time
and in checking whether universal processors have at least as much evolutionary
potential as their fixed counterparts or not. To assess the evolutionary potential
of our system, we implemented two scenarios. In the first, no external or envi-
ronmental rewards were provided and the archeans evolved only subject to the
constraints of their biotic environment. In the second, archeans were rewarded
with additional clock cycles for exploiting external environmental resources by
performing certain operations.



R I I I 0
B move load load 1
R 0 2 1 2
B 2 4 4 3
R I is sep I 4
B clear 4 rel-store 5
R 1 4 1 6

I ifzero 2 3
move 4 4 7
0 I I 8
3 jump 3 dec 2
I I 1 11
inc allocate I 9
1 1 ifnotzero 10
I I 1 12
cinc move I 6
2 1 divide 13

2 SEPARATOR

Fig. 3. The genome of the original archean replicator (read top-down, left-right). The first
column is the structrual description (4 registers), the last column is the archean’s actual
executable code for self-replication and the three columns in the middle constitute the
definition of the instruction set. For example the number 13 in the executable part refers
to the last defined instruction containing only the divide basic instruction.

We carried out 5 different experiments for each setup. The maximum popu-
lation size was 20000, the system runs for 200000 update cycles. This results in
roughly a few thousands of generations of archeans.

We use an observational fitness f for measuring (but not guiding!) the evo-
lutionary performance, defined as in Avida [3]:

f =
m

γ
(1)

where m is merit, defined as the organism’s effective length (the number of
executed instructions in the genome) possibly multiplied by the bonus values
earned by performing computational tasks, and γ is the gestation time (i.e. the
number of processor cycles needed for self-replication).

5.1 The Simple Scenario

In this case fast replication is rewarded via natural selection: each organism
receives constant size timeslice of 11 cycles and no computational task is re-
warded. Evidently in the presence of these constraints the organisms try to
decrease their gestation time either by shortening the genome or optimizing the
replication algorithm. Most of the evolved organisms have less than half of the
original replication time (Fig. 4). The handwritten progenitor is inefficient: it



executes extra instructions when measuring its size by scanning its genome from
SEPARATOR cyclically, but the evolutionary process was able to improve this de-
sign in each run by one of the following mechanisms: instead of measuring its
size in a loop the archean starts to execute the descriptive part of the genome
resulting in faster determination of size, or it just produces its size by using the
cdec instruction, which is decrementation modulo the length of the genome.

Organism Genome length Gestation times Effective length
(1st & 2nd offspring)

4regs original 78 857, 857 17

evolved 76 ± 3.7 498 ± 84.6, 414 ± 52.2 59.2 ± 26.2

2regs1stack 81 1369, 1369 17

evolved 80.4 ± 2.3 732.2 ± 43.7, 662.2 ± 34.9 49.6 ± 20.8

Fig. 4. Comparing the two different ancestral archeans and their evolved descendents.

As general trends the instruction set usually gets shorter by losing one or
two instructions (but retains its size by defining empty instructions), and the
use of operands read from the genome instead of hardcoded in the instruction
set appears. The structure of the processors remains generally constant in each
run although variants appear but never dominate in the population.

5.2 The Evolutionary Learning Scenario

In this case we would like to test whether universal processors have some draw-
backs beyond being slower as compared to static processors. This scenario uses
a task-handler subsystem, like in Avida [3], to model the exploitation of external
environmental resources (other than time and space). In addition to replicating
themselves digital organisms can get longer execution time by performing simple
calculations i.e. reading integers from the environment, transforming and writ-
ing the result back. All activities of the organisms are monitored. The average
timeslice given to an archean for one update is 11 processor cycles.

In this case changing the instruction set is more vital, as the instructions
for communicating with the environment are not defined in the progenitor. The
execution of the descriptive part had to evolve to provide the instructions for
I/O operations necessary to perform the tasks.

The results of these experiments support the hypothesis that digital organ-
isms with universal processors are able to learn the same set of computational
tasks as the ones with fixed processors. There were no observed signs of the
different evolutionary potential so far.

Fig. 5 shows the dynamics of the maximum and the average fitness through
time. Leaps indicate the evolutionary innovations (i.e. the learning of some
tasks). The evolutionary learning process shows the dynamics described by the
theory of punctuated equilibrium [7].



0 50000 100000 150000 200000

0.
1

0.
2

0.
3

0.
4

time in update cycles

fit
ne

ss
Maximum and average fitness

Fig. 5. The dynamics of average (below) and maximum fitness (above).

5.3 Evolution of Instruction Set and Processor Structure

The observations in terms of the evolution of processor structure can be sum-
marized in two categories. One is for those attributes which did not change:

– Evolution is conservative in changing the processor’s inner structure. Al-
though there were several variants (e.g. with fewer or more registers, stacks
or queues instead of a register, etc.), they could not gain domination over the
population. The ratio of the original processor structure did not fall below
90% in the course of evolution observed.

– The number of defined instructions was also preserved during the evolu-
tionary process similarly to the processor’s structure. The rigidity of the
mapping of integers to instructions might be a possible explanation for this
observation.

Persistent change in the processor structure and instruction set size may re-
quire more time or some kind of macro-evolutionary steps in order to appear.
Alternatively we may consider the problem of redesigning of the universal pro-
cessor’s structure in terms of a more flexible mapping of instruction codes to
instructions.

The second category comprises attributes which were observed to vary:

– The instruction set was highly modified, especially when evolutionary learn-
ing was involved: instruction definitions were extended with new basic in-
structions or even completely changed.

– The sectioning present in the original handwritten organism vanished, i.e.
the descriptive part and the executable code became interwoven. This way
some parts of the organism’s code were reused and had two or more different
meanings depending on the context.



6 Conclusions

We have demonstrated that the evolutionary potential of universal processors
is at least high as for the fixed processors in previous systems. The observed
evolutionary changes in processor structures justify the need for further extend-
ing these experiments. While the number of instructions remained unchanged
in our experiments, the instruction set itself did change radically during the
course of evolution. The observed conservatism in number and type of processor
components and instruction set size indicates a rigidity against changing the
interpretation of instructions analogous to conservatism of DNA to RNA tran-
scription in living organisms [13, Ch. 5-6]. By evolving the genotype-phenotype
mapping by puting processor design and instruction set definition under evo-
lutionary control, we may realize digital organisms with greater evolutionary
potential.

References

1. Avida. http://dllab.caltech.edu. Digital Life Laboratory.
2. Physis. http://physis.sourceforge.net.
3. Chris Adami and C. Titus Brown. Evolutionary learning in the 2D artificial life

system “Avida”. Proc. Artificial Life IV, pages 377–381, 1994. MIT Press.
4. Christoph Adami and Claus O. Wilke. The biology of digital organisms. Trends

in Ecology & Evolution, 17(11):528–532, November 2002.
5. Marc de Groot. Primordial soup. unpublished.
6. C.L. Nehaniv (ed.). BioSystems, special issue on evolvability. 69(2-3), 2003.
7. Stephen Jay Gould and Niles Eldredge. Punctuated equilibrium comes of age.

Nature, 366:223–227, November 1993.
8. Marc Kirschner and John Gerhart. Evolvability. PNAS, 95:8420–8427, 1998.
9. Alexander Klaiber. The technology behind the Crusoe processors, 2000.

http://www.transmeta.com.
10. Charles Ofria, Christoph Adami, and Travis C. Collier. Design of evolvable com-

puter languages. IEEE Transactions on Evolutionary Computation, 6(4):420–424,
2002.

11. Thomas S. Ray. An approach to the synthesis of life. Artificial Life II., Studies in

the Sciences of Complexity, IX:371–408, 1992. Addison Wesley.
12. Thomas S. Ray. Evolution, complexity, entropy, and artificial reality. Physica D,

75:239–263, 1994.
13. J. Maynard Smith and E. Szathmáry. The Major Transitions in Evolution.

W.H. Freeman, 1995.
14. Daniel Tabak. RISC systems and applications. Research Studies Press, 1996.
15. Tim Taylor. Some representational and ecological aspects of evolvability. In

Carlo C. Maley and Eilis Boudreau, editors, Artificial Life 7 Workshop Proceed-

ings, pages 35–38. 2000. Available online at: http://homepages.feis.herts.ac.
uk/~nehaniv/al7ev/cnts.html.

16. Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

17. G.P. Wagner and L. Altenberg. Complex adaptations and the evolution of evolv-
ability. Evolution, 50(3):967–976, June 1996.


