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Abstract 

In handwriting the drawing or copying of an individual letter involves a process of 

linearising whereby the form of the letter is broken down into a temporal sequence of 

strokes for production.  In experienced writers, letters are produced consistently using 

the same production methods that are economic in terms of movement. This regularity 

permits a rule-based description of such production processes, which can be used in 

the teaching of handwriting skills. In this paper, the outstanding question from rule-

based descriptions as to how consistent and stable letter production behaviour 

emerges as a product of practice and experience is addressed through the 

implementation of a connectionist model of sequential letter production. This model: 

(1) examines the emergence of letter production behaviour, namely - the linearising 

process, (2) explores how letters may be internally represented across both spatial and 

temporal dimensions, and (3) investigates the impact of learning certain letter 

production methods when generalising to produce novel letterforms. In conclusion, 

the connectionist model offers an emergent account of letter production behaviour, 

which addresses the co-representation of spatial and temporal dimensions of letters, 

and the impact of learning experiences upon behaviour. 
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1. Introduction 

Handwriting involves the structured sequencing of movements in order to 

produce a letter or a string of letters. The process whereby a complete static letterform 

is broken down into a temporal sequence of strokes for production is known as 

linearising (Thomassen and Tibosh 1991, Thomassen, Meulenbroek, and Tibosh 

1991).  This fundamental initial stage in the handwriting process is relatively 

autonomous, and is likely to be subject to a variety of influences such as culture and 

handedness, in combination with the level of skill and practice (Alston and Taylor 

1987, 1988, Thomassen and Tibosh 1991, Thomassen, Meulenbroek, and Tibosh 

1991, Meulenbroek and Thomassen 1993, Desbiez, Vinter, and Meulenbroek 1996a, 

b). Generally, the sequence in which individual letter strokes are produced is strongly 

influenced by the direction in which the writing will be read (Alston and Taylor 

1990). For writing that is produced from left to right (as in Western cultures), the 

sequence of strokes usually commences at the leftmost point of the letter, progressing 

through neighbouring strokes, although in some cases letters are produced starting 

with the topmost point of the first vertical line of the letter.  

In the experienced writer, letter production is fluent and economical 

(Thomassen, Meulenbroek, and Tibosh 1991).  Letters are produced in a manner that 

is both biomechanically and cognitively efficient, and is typified by a production 

trajectory that uses the minimum number of strokes, with ideally the movement 

trajectory being as continuous (as few pen-up movements and positional changes) as 

possible (Meulenbroek and Thomassen 1991, 1993, Meulenbroek, Thomassen, 

Schillings and Rosenbaum 1996, Desbiez, Vinter, and Meulenbroek 1996a, 1996b).  

This smooth production movement, (for which visual feedback during production is 

not a requirement: Marquardt, van Doorn and Keuss 1993, Gentz and Mai 1996) 
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forms a characteristic bell-shaped velocity profile. Such learnt letter production 

trajectories are considered to be stored as higher-level representations, which are 

essentially motor programs for movement (Teulings and Shoemaker 1993, van Galen 

and Webber 1998). In this respect, economical production processes are also 

consistent production processes, with the same letters being produced repeatedly in a 

similar manner  (Thomassen and Tibosh 1991). Furthermore, as similar letters will not 

have radically different biomechanical and cognitive costs, consistency can also be 

observed when comparing similar individual letters. For example, the curved 

segment/s of letters P, R, B, and D, are all typically produced in a clockwise direction. 

These regularities of letter production processes are reflected in educational models 

used in the teaching of handwriting (for examples, see Alston and Taylor 1990, 

Armstrong 1993, Hadley 1996), which are usually very similar, containing letter-style 

differences (such as J instead of J, the crossbar being omitted from the former) as 

opposed to deviations in production processes.  

Overall, economy and consistency serve to reduce the potential for production 

errors or distortions during the handwriting process, which may consequentially 

interfere with the identification of a letter. The regularities in letter production 

processes validate a rule-based description, such as “produce strokes from left to 

right”, or “always produce multiple vertical stokes in succession”. However, we 

cannot always assume that there will be one optimal way of producing a given letter; 

there may be a number of equally efficient candidate production methods to select 

from. For example, a letter ‘T’ can be produced starting with either the horizontal 

crossbar or the vertical stroke, with no obvious advantage for selecting one production 

trajectory over the other.  Letters such as these have longer onset production latencies, 

as well as less fluent and more variable trajectories, which are considered to be due to 



 5 

conflict being generated between competing production rules (Thomassen and Tibosh 

1991, Thomassen, Meulenbroek, and Tibosh 1991).   

The aforementioned regularity, and potential conflict between different letter 

production processes has been captured in the probabilistic production-rule model of 

Thomassen and Tibosh (1991). This model emulates human production processes 

through the implementation of eight production rules, five principal and three 

additional, all of varying strengths. However, this model raises some outstanding 

questions, such as (i) how does letter production behaviour emerge through 

experience and practice? (ii) What are the representational characteristics of these 

letterforms in terms of their combined spatial and temporal properties (Viviani and 

Terzuolo 1982)? And (iii) how might such learning experiences influence the 

production of novel letterforms? 

In order to address these outstanding questions we have adopted a 

connectionist modelling approach to explore the linearising process in letter 

production. Classically, connectionist models have been used to explore a variety of 

cognitive and perceptual tasks (McClelland, Rumelhart and the PDP Research Group 

1986, Morris 1989, Elman, Bates, Johnson, Karmiloff-Smith, Parisi, and Plunkett, 

1996), such as reading (Seidenberg and McClelland 1989), acquisition of the English 

past-tense (Rumelhart and McClelland 1986, Plunkett and Marchman, 1991, 1993, 

1996, Plunkett and Juola, 1999), the development of knowledge of conservation 

(Shultz, 1998), and the development of knowledge of the balance scale task 

(McClelland 1989, Shultz, Mareschal and Schmidt 1994). Typically, these models 

acquire proficiency through learning without the aid of explicitly imposed rules or 

heuristics, with comparable performance to human data, and the added bonus of being 

able to explore the internal representations formed by the model during the learning 
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process, in order to explore the structure of the network’s solution (Elman 1990, 

1991).                  

    

2. Simulating Letter Production Sequences 

The aim of this investigation was to explore the emergence of letter production 

behaviour in a model that learns as a result of its experiences, specifically focusing on 

two elements (i), experience-driven behaviour – through the model’s output for novel 

artificial letters after learning, and (ii) the impact of spatial and temporal information 

upon the internal representations of letters within the model. Although stroke 

sequence and direction have a close relationship in the process of linearising, for the 

purposes of this investigation, stroke sequence was deemed to be a sufficient starting 

point for the exploration of production behaviour. This is because it is possible to use 

letters that vary solely in their stroke sequences to detect production behaviour 

consistent with learning experience, and to explore the potential impact of both spatial 

and temporal information combined upon the representations of these letters. 

2.1  The Task and the Model 

The model’s task was, given a representation of a static artificial letter at input, 

to identify and produce as output a sequence representing the order of the strokes used 

to draw the letter.  The network used to carry out this task can be seen in figure 1. The 

first feature of this model to note is that it is recurrent, with feedback connections 

from the output layer to the hidden layer. These connections are necessary for a 

network to be able to generate a sequential output in response to a single input. 

 In this model, the output layer  (8 units) consisted of two parts. For both parts 

there was a unit corresponding to each different line-type (4 units).  The task for the 

first part of the output layer was to simply identify the component strokes of the input 
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letter.  The task for the second part of the output layer was to output the production 

sequence for these component strokes. Thus, the activations for the first part of the 

output layer remained constant, whilst the second part produced the sequence.  The 

constant output on the first part of the output layer, encouraged the model to identify 

the component strokes of the letter, which is an essential precursor to outputting the 

sequence of component strokes.   This type of response was included in the model’s 

required output as it aided the initial stages of learning, and models with this form of 

output layer performed better than those without it.   

In the example in figure 1, the letter ‘L’ is given as input to the model. In the 

first part of the output layer the two component line-types for this letter are identified 

(units corresponding to the vertical and horizontal line-types are shown as active). On 

the second part of the output layer (where the sequence of the identified component 

strokes is given), the unit corresponding to the vertical line-type is activated at the 

first time step (t1), followed by the activation of the horizontal line-type at the second 

time step ( t2.).It should be noted that on the second part of the output layer, only one 

unit is active during a single time-step. 

  

[Insert figure 1 about here] 

 

In order to complete the task the model needed to learn a number of sub-tasks: 

(i) the spatial relationship of the units in the input layer as a two-dimensional 

representation in a 7x7 grid (ii) to segment compound letters into their constituent line 

segments, and finally (iii) to produce the two output strokes in a reasonable sequence. 

Furthermore, the model is required to be able to carry out this task irrespective of the 

size or position of the letter on the input array. Of course it is (in principal) difficult to 
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establish exactly what the model is learning in order to accomplish this task, but the 

fact that the networks here are required to segment and sequence previously unseen 

letters suggests they really are being treated as described. Finally, this form of input 

focuses upon that which is required in order to perform a process, as opposed to 

explicitly reflecting the modality of the input (i.e. a visual stimulus). This therefore 

imposes the minimum necessary pre-defined structure upon the model, ensuring that 

the representations formed by the model were experience-driven, process-based, and 

self-organised. 

 

2.2 Training the Model 

The model was trained using back-propagation through time (BPTT - 

Rumelhart, Hinton and Williams 1986). BBPT is similar to standard back-propagation 

in that it operates over an activation and error back-propagation phase, with the main 

difference being that these phases extend over time. The selection of this training 

algorithm was motivated by performance considerations, given the limited capacity of 

Simple Recurrent Networks (an alternative choice of sequential network) to generalise 

(Wang, Liu, and Ahalt, 1996). 

The model was trained incrementally across two phases using a cross-

validation technique, where, following each epoch of training, the generalisation 

performance of the model was assessed using novel training exemplars. Training 

ceased when the model reached its best generalisation performance (lowest Mean 

Squared Error -MSE) for a given phase.  

 All letters used in this training process (which can be seen in figure 2) had 

production sequences consistent with naturalistic production methods, and were 

composed of two different line-types of varying combinations. In phase one, the 
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model was trained on letters one to eight, which are all consistent with a left-to-right 

production rule, and the network was trained to produce them in that order. In phase 

two, letters nine and ten were added to the training set (these were exceptions from 

the test set shown in figure 3). These two letters were consistent with a top-to-bottom 

production rule only. The motivation for this training regime was to explore how 

knowledge of these two different production processes evolved over the two phases of 

training. 

 

[Insert figure 2 about here] 

 

The exemplars used in this training process varied in terms of their size and/or 

their position on the input array, with component strokes ranging from three to seven 

units in length. The total number of size and position combinations was calculated for 

each letter. These were then randomly allocated to two equal groups, with one set 

being used to train the model on, and the other to assess generalisation performance as 

training progressed (each set consisted of 366 exemplars in phase one from a total of 

732, and 407 exemplars in phase two, from a total of 814). 

 The model was trained using a learning rate 0.1, and a momentum 0.9; these 

values (along with the number of hidden units) were determined through systematic 

and incremental changes in parameter settings. A total of 15 runs were conducted in 

order to establish the general trend in behaviour. Each run was initialised with a 

different set of starting weights.  
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2.3 Testing the Model  

The model was tested at the end of each phase of training using a set of novel 

letters, which can be seen in figure 3. Six exemplars of each letter, varying size and 

positions were used. Test letters were divided into three types: normal, ambiguous and 

exceptions, which reflect the production sequence expected from the model. For 

normal and exception letters, the expected production sequences were consistent with 

a left-to-right and top-to-bottom production sequence respectively.  Exceptions were 

exceptions in that after training in phase one, the model had only been trained to 

produce letters form left-to-right.  For ambiguous letters, production from left-to-right 

or top-to-bottom would result in different stroke sequences. Thus, the normal and 

exceptions letters tested the model’s ability to output regular production sequences 

(but which are described in terms of two different rules). The ambiguous letters were 

used to test for variations in letter production behaviour described in the literature as a 

result of conflict between production rules. The output sequences for each test letter 

according to three different production rules can be seen in table 1. 

[Insert figure 3 about here] 

[Insert table 1 about here] 

 

 In order to explore how the spatial and temporal knowledge of letters was 

represented in the model, and how this knowledge influenced the models’ ability to 

generate stroke sequences for the novel test characters a Principal Components 

Analysis (PCA) of the hidden unit activations was conducted upon the model (details 

of this process can be found in section 3.2).  The representations of letters learnt 

during training were probed with a subset of the training exemplars (six per letter, of 

varying sizes and positions, figure 4 showing three variants). This probe set of letters 
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was used, as a PCA displaying representations for all training letters would be 

difficult to interpret due to overcrowding. These representations were then overlaid 

with the representations of the test letters. A summary of the different pattern sets 

used in training and testing can be found in table 2.  

 

[Insert figure 4 about here] 

[Insert table 2 about here] 

 

2.3.1 Phase One  

In this phase, the model learnt to produce strokes consistent with a left-to-right 

production sequence. However, for some training letters (2, 3 and 6, as shown in 

figure 2) this production sequence was also consistent with a top-to-bottom 

production rule. The extent to which the model adopted the left-to-right production 

sequence for letter strokes was tested through the use of the ambiguous test letters. 

 It was hypothesised that as all the letters used to train the model conformed to 

a left-to-right production sequence, that the model would attempt to produce all test 

letters in the same fashion, including ambiguous test letters (which would be produced 

from left-to-right, resulting in a horizontal-vertical production sequence for both test 

letters). The model was also tested on exceptions letters to explore the extent of the 

models’ generalisation ability. 

 

2.3.2 Phase Two  

The assessment of the model during this phase was dependent upon the 

model’s success in phase one. In phase two the model’s production knowledge was 

extended through the introduction of letters only consistent with a top-to-bottom 
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production sequence only.  This additional training permitted the representations of 

letters with explicitly different methods of production could then be explored. The 

stability of the model in terms of producing the appropriate output sequences for 

stable (normal) and variable (ambiguous) letters was tested. 

 

 

3. Results  

 All runs of the model were tested following completion of each training phase 

using the letters shown in figure 3. This section is divided into two sub-sections, 

firstly looking at the output behaviour of the model, followed by an exploration of the 

representations formed through the model’s learning experiences, using PCA. 

  

3.1 Output Behaviour  

The output response sequences generated for each test letter were analysed as 

to whether they were either a definite output or a no-response. An output was 

considered a definite output if the activation of the target units were 0.50 or over, and 

no non-target units had an activation of 0.50 or higher at either time-step of the output 

sequence. Any other outputs were classified as a no-response. For the normal and 

exceptions testing subsets (see figure 3) definite outputs were compared with the 

appropriate output response, in order to determine their accuracy. Output response 

sequences for the ambiguous subset were assessed simply in terms of the sequence of 

production, as either stroke sequence was considered to be an appropriate output 

response. 
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3.1.1 Phase One 

The ability of the model to generate definite output responses was compared 

with the quantity of no-responses produced by the model over all runs. An average of 

64.5% responses were definite outputs. The output sequences for normal test letters 

was as expected with 87.4% of definite output responses produced in accordance with 

a left-to-right production sequence. For no-responses, outputs more often than not 

consisted of incomplete letter production sequences.  

Interestingly, for ambiguous letters, a variety of output response sequences 

were generated. The production of these different sequences across these letters 

suggested that the model held more than one level of production description, with 

production sequences letters adhering to the full range of different production rules as 

displayed in table 1. Supporting evidence for these multiple levels of description also 

comes from the mixed output responses generated by the model for the exceptions 

subset of letters. This general trend in behaviour was shown over all runs and can be 

seen in figure 5. In order to illustrate in more detail the patterns of responses given by 

the model over runs, a selection of model runs and their response sequences are 

summarised in table 3. Interestingly, responses from run 3 are in accordance with to a 

top-to-bottom production rule, whereas responses from runs 11 and 13 are in 

accordance with vertical-stroke-first, and left-to-right production sequences 

respectively. Responses from run 7 do not correspond to a specific rule-based 

description of letter production processes, as was occasionally the case for some 

model runs. 

 

[Insert figure 5 about here] 

[Insert table 3 about here] 
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In summary, the analysis of the output response sequences produced by the 

model has found that the model is capable of producing coherent and analysable 

output production sequences for novel letters. Further examination of the output 

responses of the model indicates that the model is sensitive to the individual 

properties of the letters. This resulted in multiple levels of letter production 

descriptions being accommodated by the model, even when the model was trained on 

letters whose output production sequences could be described in terms of a single rule 

(produce strokes from left-to-right).  This output response behaviour is likely to have 

occurred as a result of training the network on letters that were all produced 

consistently in a left-to-right manner.  

 

3.1.2 Phase Two 

The expansion of the training set in phase two to include letters that could only 

be described by a top-to-bottom production rule did not have a negative impact upon 

the model’s overall ability to generate definite output responses (72.2% of outputs 

were definite responses, this increase in comparison to that of phase one, being due to 

the model being able to produce exception letters). There was little interference 

between letters from the normals test set that have different production sequences for 

different production-rules (62.5% of normals were produced using the appropriate 

production sequence, with the majority of remaining responses being indefinite output 

as opposed to incorrect responses). The additional training resulted in a model able to 

produce letters in a manner consistent with two different production rules and produce 

stable and consistent output behaviour within the appropriate letter context. The 

general pattern of the model’s behaviour during this phase can be found in figure 6.  
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A more detailed pattern of output responses for a selection of runs can be 

found in table 4. As seen for phase one, production sequences for normal letters were 

generally found to be correct. Overall, the deviations in letter production sequence, 

were most prominent for letter 3 (see figure 3, and table 4). This letter is interesting 

because its production sequence is changed when a top-to-bottom production rule is 

applied. Moreover, it is a letter that is composed of diagonal line-types like the 

exceptions, for which the only viable production sequence is top-to-bottom. This 

reflects some minor interference in letter production for similar letters. It is 

noteworthy that this form of deviation was not found for letter 2, a letter composed of 

horizontal and vertical strokes, but which differs in production sequence according to 

the production rule used to describe it. In table 4, run 1 corresponds to a left-to-right, 

run 2 a vertical-stroke-first, and run 14 to a top-to-bottom production rule. Responses 

from run 8 do not correspond to a specific production rule over both letters.  Overall, 

the model shows consistent production behaviour for normal and exception test letters 

over runs, with varied production responses for ambiguous letters.  

 

[Insert figure 6 about here] 

[Insert table 4 about here] 

 

3.2 The Representation of Learnt Letters  

The representations formed following training were explored with a view to 

explaining how the representations of learnt characters influenced the generalisation 

behaviour of the model. PCA was conducted following each phase of training, upon a 

subset of training patterns (the probe set: see table 2) and the generalisation set of 

artificial letters.  For a given set of patterns, the vector formed by the collective 
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activations of all fourteen hidden units were recorded at each time-step for which an 

output was generated (two time-steps output for each input pattern), PCA was then 

conducted on all the vectors of these activations. The first two principle components 

were then selected and the hidden unit activation vectors for both the training and test 

set were projected into the space spanned by these two principal components.  These 

activation vectors can therefore be drawn as points in a two-dimensional space 

(Elman 1993). In this section, we first explore the representations formed by the 

model following training in phase one. Following this we compare the representations 

formed during training with those from test letters by taking the representations 

formed during training and overlaying them with those from testing, in order to gain 

an impression of which learnt representations were the most influential for a each 

letter in the generalisation test set 

 

3.2.1 Training representations 

The clustering of representations of letters appeared to be sensitive to general 

properties such as stroke-type and temporal sequence, as opposed to the grid positions 

in which exemplars were presented during training. Same line-types were grouped 

together, particularly horizontal and vertical lines (this is most likely to be due to the 

higher frequency of letters composed of these line-types in the training set). Temporal 

clustering was also observed, with distinctively separate clusters being formed for 

strokes produced at t1 from strokes produced at t2. This representational structure is 

shown for training patterns in figure 7, were three regions of spatial and temporal 

clustering and sub-clustering are highlighted. This pattern was consistent for letters 

composed of horizontal and vertical strokes across training phases. For letters 

composed of diagonal strokes, there was a tendency for some letter strokes to be 
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grouped in pairs (likely to be due to the additional training on exceptions letters in 

phase two). 

[Insert figure 7 about here] 

 

 3.2.2 Testing representations: normal and ambiguous letters 

The representations from testing with the generalisation set of letters adhered 

to the same representational structure as those seen in training (see figure 7).  When 

the output production sequence for these letters was correct, the representations for 

these letters at t1 were closest to those of training letters that shared the same stroke-

type in the same temporal sequence. For representations at t2, the clustering was also 

within line-type, but not always overlapping letters that followed the same temporal 

sequence. When the output was incorrect, the representations of at least one stroke 

were closest to a letter from training that shared the same stroke-types, but had a 

different temporal sequence. This is shown for normal letters in figure 8A, which 

illustrates the representations for two cases, one where the output sequence given by 

the model was correct, and another where the sequence was incorrect. For the correct 

sequence, the first stroke of the letter is in close proximity to the representations of 

strokes from training that is of the same type and point in the temporal sequence. For 

the incorrect case, the first stroke is closest to the representations from a training letter 

that shares the same stroke-types, but not the same temporal sequence. This is also 

shown to be the case for ambiguous letters – see figure 8B.  

 

[Insert figure 8 about here] 
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3.2.3 Testing representations: exception letters 

For exceptions, the representations from generalisation set letters were closest 

to training set representations of letters composed of diagonal strokes of the same 

type. Again, the representations of t1 strokes from the generalisation letters for correct 

output sequences were closest to letters that shared the same production sequence. For 

incorrect outputs, the representations were inconsistent, sometimes not seeming 

closest to any stroke-type representation in particular. However, there were incorrect 

outputs for which the representations of strokes at t1 closely matched the sequence of 

strokes output. The representations formed for exceptions letters are shown in figure 

9. 

[Insert figure 9 about here] 

 

4. Summary and Discussion   

This paper describes a connectionist model of sequential letter production that 

partially undertakes the process of linearising, by producing stroke sequences for 

static letters presented at input. The model draws upon, and is guided by its learning 

experiences, as shown through its internal representations, when generating stroke 

sequences for novel letters, and in this respect provides an emergent account of letter 

production behaviour.  

In terms of the pattern of output responses given by the network for different 

letter-types, the model generates a consistent method of producing letters that can be 

described in terms of a single production rule, or, have the same production sequence 

across different rules. For letters that have classically produced variable production 

sequences (which has been explained as conflict between competing production-rules: 
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Thomassen and Tibosh 1991, Thomassen, Meulenbroek, and Tibosh 1991), the model 

also showed a variety of production sequences. 

 In this paper, we have been careful to use the term “rules” as a means of 

describing the regularity of output production sequences across letters, and in this 

respect, as a method of characterising the regularity of output behaviour.  This model 

contains no predefined rules prior to the onset of training. Of course, a connectionist 

model may embody rules of varying degrees and strengths through their connection 

weights (Bates and Elman, 2002).  However, such rules are not absolute, and are in 

contrast to those explicitly defined by production systems, or, in the manner in which 

rules are defined in the context of the English past tense (Pinker and Ullman, 2002). 

Connectionist models have advocated associative similarity-based accounts for 

behaviour (cf. Kinder and Assman 2002, McClelland and Patterson 2002, Plunkett 

and Marchman 1991, Rumelhart and McClelland 1986). Whether this model contains 

rules or not would be the focus of further investigation. However, it can be said that 

this model exhibits similarity-based regularities in letter production, and indeed the 

distinction between rules and such regularities may not be the dichotomy it appears to 

be (Pothos, 2005). 

The internal representations of the model show how the model draws upon its 

learning experiences in order to generalise in the production of the novel test letters, 

with those that share the same stroke types and temporal sequence being the most 

similar, clustering together. Strokes of the same letter commonly grouped together, 

and in this respect the identity of a given letter was preserved through the relative 

similarity of the representations. These representations highlight two important 

properties of letters for production: (i) the spatial properties of the letter, and (ii) the 

temporal component to production. In a production task these two aspects of a letter 
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are co-dependent, and trajectory-specific (Richardson, Davey, Peters, Done, and 

Anthony 2002). In the model, the grouping of stroke-types (the spatial aspect) was 

very prominent in the representations formed, however, for a letter to be produced 

correctly the representations (particularly those at t1) were required to be in a point in 

representational space that fitted both the spatial and temporal properties of the letter 

stroke.  

Finally, over the learning process, the model was introduced (in phase two) to 

new and different production information regarding some characters. Interestingly, the 

model was capable of assimilating this new and different information, which 

influenced the model’s production behaviour for letters that had similar properties, but 

did not have a marked impact upon the model’s ability to generate appropriate letter 

production sequences.  This learning did affect the representations of these letters 

within the model, which highlights that the model was able to detect where the new 

information was relevant, and adapt accordingly in order to assimilate the new 

knowledge, but also at the same time maintain the commonalities for other letters (for 

which the new knowledge was not relevant), indicating that the knowledge acquired 

by the model was within context, and sensitive to the stroke-specific properties of the 

letter - both spatial and temporal (Viviani and Terzuolo 1982). These representations 

may offer some insight into the structure and organisation of higher-level motor 

programs for letter production (Teulings and Shoemaker 1993, van Galen and Webber 

1998). 

In conclusion, this model adds emergent perspective to the letter production 

process, in that both regularity and variability for letters of differing properties may 

evolve through a process of learning, and in this respect complements the probabilistic 

production model of Thomassen and Tibosh (1991). In our model, the relative 
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similarity between learnt and novel letters drives production behaviour. Generally, 

whether the letter production system evolves into a system of rules of varying 

strengths or not, this model shows how letter production may emerge as a result of 

experience and practice. 
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Table 1 

Normals Ambiguous Exceptions  

1 2 3 4 5 6 7 8 
Left-to-right | _ _ | / \ \ / _ | _ | - - 

Top-to-bottom | _  | _ \ / \ / | _ _ | / \ \ / 

Vertical-stroke-first | _   | _ - - | _ | _ - - 

 

 

Table 2  

Number of Exemplars  

Name of Pattern Set Phase One Phase Two 

Training Set 366 407 

Generalisation Set 366 407 

Test Set 48 36 

Probe Set 24 30 
 

 

 

Table 3  

Normals Ambiguous Exceptions  

1 2 3 4 5 6 7 8 

Run 3 * * * * | _ _ | o o 

Run 7 * * * * _ | | _ * x 

Run 11 * * * * | _ | _ x x 

Run 13 * * * * _ | _ | o x 
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Table 4  

Normals Ambiguous Exceptions  

1 2 3 4 5 6 7 8 

Run 1 * * o * _ | _ | * * 

Run 2 * * * * | _ | _ * * 

Run 8 * * * * _ | | _ * * 

Run 14 * * * * | _ _ | * * 
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Figure 1. A network performing the sequential production task. Active units are 

displayed in black, with arrows indicating full connectivity between layers. The 

network is presented with a representation of a static (artificial) letter as input. As 

output the network is required to identify the component line-types of the letter (as 

displayed in the static section of the output layer) and also output the sequence of 

strokes that should be used to produce it (on the sequential section of the output 

layer).  

 

Figure 2. Shows the artificial letters presented to the network during training.  Letters 

one to eight were presented in phase one. Letters nine and ten were added to the 

training set in phase two. Line-type abbreviations showing the production sequence 

for each artificial letter are also indicated (Vertical, Horizontal, Diagonals, D1 / and 

D2 \). 

 

Figure 3: The test set of novel letters, composed of line-type combinations familiar to 

trained networks. The test set is divided into three subsets: normals, ambiguous and 

exceptions, with each subset testing a different aspect of letter production behaviour. 

For letters marked with a ‘*’, the implementation of a different production rule would 

result in a different stroke sequence. 

 

Figure 4: An example of a set of three probe input patterns from the training set of 

letters. Each letter is a different size and location upon the input array.  

 

 

 



 34 

 

Figure 5: The mean percentage of correct outputs (with error bars showing the 

standard deviations) for each test set over all runs of the model for phase one. Outputs 

for the ambiguous subset are shown for HV (bottom) and VH (top) ordered 

combinations. It can be seen that over runs, the model was able to produce a large 

number of correct/appropriate output responses for normal and ambiguous letters, but 

struggled with exceptions. 

 

Figure 6. The mean percentage of correct outputs for each test set over all network 

runs for phase two (with error bars showing the standard deviations). Correct outputs 

for the ambiguous set are shown for HV (bottom) and VH (top) ordered combinations. 

It can be seen that networks were able to produce a large number of 

correct/appropriate output responses for all test sets, thus exhibiting a rule-like 

behaviour for normal and exception test letters, and varied output responses for 

ambiguous letters. 

 

Figure 7: Shows the results of a PCA displayed as a 2-D graph from a randomly 

selected network from phase one. The first two principal components account for 59% 

of the total variance. There is a distinctive clustering of same line-types, especially 

among those that are produced at the same time-step in a sequence. For example 

region A shows clustering of same line-types, which share the same temporal 

sequence. Region B shows clustering of lines that share the same temporal sequence, 

with sub-clustering of same line-types. Region C shows clustering of the same line-

type, with two sub-clusters, one corresponding to t1 and the other to t2. 
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Figure 8: PCA’s from randomly selected runs (A) shows representations formed for 

two normal letters. The output sequence for letter N1 was incorrect, where that for N2 

was correct. (B) shows representations formed for ambiguous letters for an ambiguous 

character, for Ae, an expected sequence at phase one (HV), and Au, an unexpected 

sequence (VH). These two principal components account for 59% and 55% of the 

total variance respectively. The representations of strokes for correct test letters are 

close to those of training letters, which share the same stroke types (as indicated by 

the highlighted regions in map space). 

 

Figure 9: Shows the representations for an exceptions letter, as a result of PCA. The 

first two principal components account for 60% of the total variance.  As indicated by 

the highlighted regions in map space, the representations of strokes for the correct test 

letter (E*) are close to corresponding stroke representations of training letters. This is 

not the case for Ex, for which an incorrect output sequence was produced. 

 

Table 1: Shows the stroke sequences for each test letter according to three different 

production rules (shown as strokes, read from left to right). 

 

Table 2: Shows a summary of the pattern sets used in both phases. 

 

Table 3: Shows a summary of the pattern of letter production sequences for the full 

test set of letters (labelled 1 to 8, as in Figure 3) for four runs of the model in phase 

one, with responses summarised over the majority of definite outputs.  * = correct 

response, x = incorrect response, o = no consistent response sequence.  The responses 

for ambiguous letters shown as strokes (read from left to right). 
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