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Abstract

Beyond complexity measures, sometimes it is worth in addition in-

vestigating how complexity changes structurally, especially in artificial

systems where we have complete knowledge about the evolutionary pro-

cess. Hierarchical decomposition is a useful way of assessing structural

complexity changes of organisms modeled as automata, and we show how

recently developed computational tools can be used for this purpose, by

computing holonomy decompositions and holonomy complexity. To gain

insight into the evolution of complexity, we investigate the smoothness

of the landscape structure of complexity under minimal transitions. As

a proof of concept, we illustrate how the hierarchical complexity analysis

reveals symmetries and irreversible structure in biological networks by ap-

plying the methods to the lac operon mechanism in the genetic regulatory

network of Escherichia coli.

Keywords: algebraic biology, computational biology, coordinate systems, Krohn-

Rhodes theory, finite state automata.

1



1 Introduction

It has been a common practice in artificial life and biological research to fo-

cus on one particular aspect of a living, life-like, or evolutionary system. It is

usually the fitness, genome size, etc., or the somehow assessed complexity of

individuals. Complexity changes (either increasing or decreasing) may indicate

that something significant is happening, but do not reveal what exactly or how

it is happening. Did a completely new component appear? Or are the existing

components just reused in a novel way? Or has an existing component been

duplicated and used in different contexts? These considerations do not entail

that analysis should go down to the finest details, although this may be benefi-

cial in some cases. Instead, we propose a method of hierarchical decomposition

which gives a coordinate system, from which one has, not only a quantitative

complexity measure, but can also read the internal structure of the underlying

phenomenon with arbitrary resolution at different levels of abstractness appro-

priate for the system in question. This approach allows one to gain mathematical

insight into the structure of dynamical hierarchies (cf. [18]). Note that whether

or not hierarchies are actually present in real world processes, they are very

often invaluable tools for understanding the structure of a complex system.

The mathematical theory behind this is the algebraic hierarchical decompo-

sition theory of finite state automata, Krohn-Rhodes Theory [16, 5, 25], and is

introduced in Section 2. The idea of using hierarchical decompositions as cogni-

tive tools for fostering our (or any other intelligent agent’s) understanding was

proposed several times [25, 21], but now is closer to fulfillment. For any evolved

or designed system amenable to modeling as a finite automaton, Krohn-Rhodes

Theory provides natural complexity measures [15, 28, 21] which are related to

but distinct from Kolmogorov complexity, while giving additional insight for

understanding complex structure (see Section 3).
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For forty years there had been no computational implementation for the

mathematically demonstrated hierarchical decomposition of automata. Although

in the electronic circuit industry there are many different decomposition meth-

ods and implementations, they are not hierarchical since there are several phys-

ical constraints on circuit design and the hierarchical (cascade) composition

appears not to be the most efficient in terms of power consumption, area and

delay minimization [4]. However, recently the authors have computationally

implemented two methods for the holonomy decomposition [9, 8, 7], a par-

ticular version of the Krohn-Rhodes decomposition, which is applied here to

understanding complexity. This method is applicable to yield a hierarchical

decomposition of any finite automaton, including models of organisms in evolv-

ing populations (whether natural or artificial). Section 4 introduces how these

computational tools can be used to create hierarchical coordinate systems for

understanding any system modeled in this way. Section 5 illustrates the appli-

cation of the holonomy decomposition technique to investigating variability in

complexity on the landscape of automata under minimal variations (i.e. within a

small neighborhood of a given automaton). Section 6 applies the method to un-

derstanding complexity in a genetic regulatory network model of the bacterium

E. coli revealing symmetry and irreversible structure, while the final section

discusses other possible future applications and scalability issues for complexity

computation.

2 Hierarchical Decomposition: The Krohn-Rhodes

Theory

Here we present the very basic underlying ideas of algebraic hierarchical decom-

position of finite state automata. We use the minimum amount of mathematical
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notation here. For precise definitions and details, see [17, 21, 5].

2.1 Reversible and Irreversible Processes

There are two different kinds of computational operations: reversible and irre-

versible ones. For instance, if we move some content of the memory to another

empty location, that is reversible, since we can move it back. But if we overwrite

a nonempty part of the memory, then this is irreversible, since there is no way

to restore the previously stored data. Closer to a formal definition we can say

that irreversible processes reduce the size of the set of possible future states,

while reversible ones do not.

Algebraically the distinction is more immediate. We view a system we wish

to understand as having a set of possible states A, upon which various possible

transformations (called “inputs”, “events” or “input symbols”) can act which

alter its states.1 A function f : A → A of a set A is called a permutation

(reversible) if it is one-to-one and onto; otherwise, it must collapse elements

(some a ∈ A is an image of more than one element, i.e. the image of A under f is

a proper subset of A), therefore it is irreversible. A permutation group is a set G

of invertible mappings together with the state set A on which the mappings act.

A transformation semigroup (A, S) with state set A and transformations S has a

similar structure, but S consists of general transformations, not necessarily just

permutations. Krohn-Rhodes Theory allows one to work with transformation

semigroups rather than finite automata, and apply abstract algebra to yield

results on the natural hierarchical structuring “hidden” in these automata. The

elements of the semigroup are the transformations of the state set generated by

the input symbols. This way the problems in automata theory are transferred

into the algebraic domain, where there are a rich mathematical theory and

1In elementary Krohn-Rhodes Theory, the state set A is assumed finite and the transfor-
mations are deterministic.
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rigorous complexity measures.

2.2 The Prime Decomposition Metaphor

For explaining Krohn-Rhodes Theory, the best way is to present it by a metaphor.

Basically we do the same for complex systems as the decomposition into prime

factors does for natural numbers, but instead of integer numbers we do it for

more complicated structures, namely finite state automata (considered as trans-

formation semigroups). The similarities can be summarized the following way:

Natural Numbers Finite Automata

Building Blocks Primes Flip-flop Automaton

Permutation Automata

Composition Multiplication Wreath Product

Precision Equality Division, Emulation

Uniqueness Unique Different Decompositions

The basic building blocks are (1) the simple2 permutation groups (for the re-

versible computation) and (2) a single additional building block for the irre-

versible computation, the so-called flip-flop automaton, which is essentially a

one-bit resettable memory that can be set and read.3

The way of putting together the components, the so-called cascaded or wreath

product, is hierarchical and no feedback is allowed from deeper levels to upper

levels (see Fig. 1). The usefulness of this special type of composition is due to

the following special properties of hierarchy that render the composed structure

manipulable and comprehensible:

2This has a well-defined meaning in group theory: a group is simple if it has only trivial
homomorphic images, i.e. any structure preserving map to another group is either one-to-one
or collapses all elements to a single point. See, e.g. [26].

3An important but subtle point here is that although the flip-flop can be reset, this does
not make it reversible. Indeed, it is not possible to reverse a resetting operation since this
erases the previous state, and hence is not a permutation of the flip-flop’s state set.
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• Generalization and specialization are natural operations realized by taking

subsets of levels in either direction up or down the hierarchy.

• Information flow between levels is restricted, avoiding problems of feed-

back.

Note that any number of parallel, non-interacting components are allowed on

any hierarchical level.

The hierarchical composition is a proper balance between the two conflicting

requirements: having a nice, comprehensible structure and possessing the ex-

pressive power to construct any arbitrary automaton (see Fig. 2). The parallel

composition (direct product) has a very simple structure, all of its components

are completely independent, but this also means that it is not possible to sur-

pass the complexity of the building blocks. On the other hand, if we allow

arbitrary wiring of the components (feedback loops with different lengths) then

any system is realizable (even using only flip-flops as building blocks – see, e.g.

[6]), but such a construction generally provides no insight into its structure. In

contrast, with a cascaded decomposition, feedbacks in the original automaton

being decomposed can give rise to structural permutation groups – possibly at

different levels in the hierarchical decomposition.

2.3 Coordinates and Hierarchical Dependence

Hierarchical decompositions provide a coordinate system for the original system

that has been described as an automaton. By a coordinate system we mean a

notational system (in the broadest possible sense), with which we can address

the components and their relations in a decomposition, thus gaining a convenient

way for grasping the structure of the studied phenomenon. For each coordinate

position we have a transformation semigroup (the corresponding component of

the wreath product), and elements of its state set are the possible values for
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that position. Due to its hierarchical nature the order of the coordinates does

matter. What happens on deeper levels depends not only on input to the system

but also on the states of the levels above.

A simple non-trivial example to describe hierarchical dependence is a bidirec-

tional counter. Imagine a device which keeps track of how many times you press

a button, where you also have two other buttons to set the operating mode. For

instance to count and double-check the number of passengers on an airplane

while walking along the aisle, you start from zero in adding mode, count, and

then as a check whether the resulting number is the correct value, you switch

to subtracting mode and count again, but this time downwards, until you reach

zero again. The operation of this device can be represented with the following

simple coordinate system on its states:

(n, mode),

where n is the current tally and the possible modes + and − correspond to

adding and subtracting. The mode coordinate is the top level of the hierarchy.

The buttons provide three operations: counting c, switching to adding mode

m+, and switching to subtracting mode m
−

. For instance, the result of each

elementary operation is exemplified as follows:

(9, +) · c = (10, +)

(9, +) · m
−

= (9,−)

(9, +) · m+ = (9, +)

(9,−) · c = (8,−)
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Hierarchical dependence here is clear: the counting operation does different

things (adding or subtracting 1) depending on the top level coordinate (the

right coordinate giving the current mode); but this dependence is only one way:

the state of the tally count (left coordinate) never influences the effect of the

basic transformations on the mode coordinate.

3 The Number of Hierarchical Levels as a

Complexity Measure

We consider complexity also as a structure not just as a number: we study

the hierarchical decomposition as a coordinate system. Beyond the hierarchical

structure we also get a single-valued measure for complexity by hierarchical

decomposition, namely the number of hierarchical levels. The number of levels

in such a decomposition is thus a raw complexity measure and structure of the

hierarchical coordinate system describes the components and their interaction

giving rise to this complexity. But since decompositions are not unique, this

measure can be defined differently depending on the decomposition algorithms

employed.

3.1 Group Complexity

One of the most natural questions about hierarchical decompositions concerns

the length of the cascaded product. What is the shortest possible decomposition

for a given automaton? The original mathematical formulation of group com-

plexity (also known as Krohn-Rhodes complexity) counts the number of alterna-

tions between group and aperiodic components (those composed of flip-flops) in

hierarchical decompositions of a given automaton. The smallest possible num-
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ber of alternations is the group complexity of the original automata [15, 28].

This value as a complexity measure is amenable to a system of axioms [20, 21]

and also can be used for assessing the evolvability of evolutionary systems [19].

However, determining the size of the shortest such decomposition turns out to

be a very difficult problem. Unlike Kolmogorov complexity, group complexity

is believed to be algorithmically decidable, although no correct proof of this

has yet appeared in print; and even if it is decidable, it still will not likely be

practically computable.

3.2 Holonomy Complexity

Since we are interested in practical applications to the evolution of complexity in

natural and artificial living systems, and not necessarily looking for the shortest

decompositions but rather feasible decompositions that are computationally ac-

cessible, we promote a particular decomposition method. The holonomy decom-

position method for obtaining a Krohn-Rhodes decomposition [29, 30, 12, 11, 5]

originates from ideas in computer science for coding nests of sets [29, 30]. It

identifies algebraically salient subprocesses within an automaton, especially per-

mutation group structures, by investigating transformations of certain subsets

of the state set of the automaton. The hierarchical structure also reveals the

flow of the irreversible computations possible in the automaton, as the subsets

of the original state set (induced by the transformations) represent reductions

of the set of future possible states.

Our open-source computational tool JGRASP [8] allows one not only to calcu-

late the number of levels in this decomposition, i.e. calculate holonomy complex-

ity, but produces the holonomy decomposition coordinate system with appro-

priate reversible and irreversible components for understanding the complexity

in the original system, as illustrated in the next section.
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4 Hierarchical Coordinate Systems as Tools for

Understanding

The general strategy of using coordinate systems to understand complex systems

can be summarized in the following table.

Complex phenomenon

↓

Finite description (automaton model)

↓

Hierarchical coordinate system for understanding the model

↓

Coordinate system for understanding and

manipulating the original phenomenon.

Modelling complex phenomena using automata is a powerful but delicate

method for beginning to understand them [25, 13, 22]. Here we skip this first

step and start with finite state automata. Let’s suppose we have an automaton

and we do not really know what it is doing (although by knowing its genera-

tors we fully describe it implicitly), as in the example shown in Fig. 3, which

is the state transition graph of a randomly generated automaton. Is it doing

some complex computation? In order to find this out we calculate its holon-

omy decomposition. The holonomy method finds constituent components by

analysing how the transformations act on certain sets of subsets of the state

set. The decomposition can be automatically generated by our open-source tool

JGRASP [8]. By studying the hierarchical structure we find that the automa-

ton can be emulated by a cascaded automaton with two levels (for details and

visualization see Figures 4-6). Now if we ask the question, ‘What does the au-

tomaton do roughly?’, then we can answer very easily just by looking at the top

level (Fig. 5). We have three abstracted states there and the component is not a
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reversible one, so it behaves like a memory that can be set into one of 3 abstract

states: {3, 4, 5}, {2, 3}, and {1}. Going further down to level 1 we find that

depending on the abstract state above we either have a reversible component,

a one bit memory, or a degenerate garden-of-eden state.4 The actual reversible

component is a permutation of three states of the original automaton, where

two of them are transposable and the other is fixed (Fig. 6).5 If the one-bit

memory is active, a state from {2, 3} encodes the one bit of information.

This illustrates the idea of having a coordinate system for understanding the

computation of an automaton.

5 A Glimpse into Complexity on the Vast

Landscape of Automata Decompositions

Our method guarantees that the decomposition retains and highlights the im-

portant features of the original system. To get insight into the structure of

the space of automata and their decompositions, we check how the complexity

changes – in terms number of levels in the decomposition (see Section 3) – as

we smoothly perturb the automaton, reflecting the ruggedness or smoothness

of the complexity landscape. This gives insight into the evolutionary landscape

of automata where minimal variations (or ‘mutations’) consist of (1) redirecting

an arrow in the state transition graph, or (2) adding or deleting a disconnected

state – i.e. a state with no transitions from or to any state other than itself.

Note that all finite automata are mutually reachable by sequences of transitions

of these types. As variations of the latter type by themselves cannot essentially

4A garden-of-eden state is a state that can never be returned to.
5In more general cases, permutation groups in the holonomy decomposition act on a set

of abstracted, higher-level states, i.e. they permute a set of subsets of the full state set of the
automaton (not necessarily a set of singletons). Such permutation groups are called holonomy

groups and their constituent permutations are called holonomy permutations.
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change complexity as measured by the holonomy decomposition, we investigate

only the first type. Nevertheless, the minimal variations of type 2, clearly open

up the space of future possibilities and increased complexity to evolution.

5.1 Rugged Variability

We start with an automaton with three input symbols (Fig. 7). This automa-

ton has a holonomy decomposition of length 8 (i.e. with 8 hierarchical levels).

We generate all the automata that are just one mutation far from this automa-

ton. Mutation here is changing one single transition for an input symbol to

another value, i.e. changing the target of one single arrow in the state transition

diagram. Therefore we have 168 automata in the automaton’s closest neighbor-

hood. Fig. 8 shows the distribution of the number of hierarchical levels of the

decompositions in this neighborhood. From this we can see that small changes

may yield completely different decompositions, as the number of hierarchical

levels varies from 5 to 18.6

5.2 Smooth Variability

Now we demonstrate that gradual changes in holonomy complexity and struc-

ture are also possible for mutations of type 1. Intuitively, these changes should

have only local effects, and since the reversible computations correspond to

cycles in the state transition graph, they should not create or destroy cycles

(compare Figures 9 & 10). Fig. 10 shows by example that such gradual change

is possible. Moreover, it is apparent from Fig. 8 that a significant fraction –

6Note that, although no theorem has been proved on holonomy complexity change under
single-step mutations, these holonomy complexity values are within the range one would expect
from the theoretically demonstrated limits for smooth evolutionary change on complexity for
the Krohn-Rhodes complexity measure [20]. However it is easy to construct examples – such
as long cycles – in which a single change on arrows can result in a change from 1 level
to n hierarchical levels in the holonomy decomposition (see Fig. 9). (This changes group
complexity, in contrast, from 1 to 0.)
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though not a majority – of mutations to the automaton in Fig. 7 leave the

holonomy complexity (which has value 8) unchanged.

Evolution operating in this high dimensional landscape of automata whose

local neighborhoods are defined by mutating simple state-transitions thus has

access to both ruggedly sharp and gradual types of changes.

6 Case Study: The Lac Operon in E. coli

Now we apply hierarchical decomposition to a well-known example. Escherichia

coli, the “workhorse” bacterium of microbiology, can metabolize glucose and

lactose as well, but it prefers glucose. Therefore lactose is metabolized only

when glucose is absent and lactose is available. In all other cases the expression

of the structural genes for the enzymes of lactose metabolism are suppressed.

This gene regulatory mechanism, the lac operon, is well understood now, and it

is the canonical example of prokaryotic gene regulation (see e.g. [23, 24]).

6.1 Complexity of the Lac Operon

We would like to apply the decomposition to the lac operon mechanism. First

we need a finite state automaton description of this gene regulation mechanism.

Here we can use a very simple Boolean network model of the lac operon mech-

anism in E. coli, as originally suggested by Stuart Kauffman [13].7 The state

transition graph of the automaton can be seen in Fig. 11. Again, we have an

automaton and we wish to understand what it is does. Although by knowing its

generators or transition diagram one can fully describe it implicitly, this gives

us no insight into its structure and no capacity to abstractly describe various

levels of its computation. What kind of computation does it perform? And how

7We are grateful to George F. Estabrook for providing us with the details of Kauffman’s
model.
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does the performed computation relate to the original system? It is difficult

to see from the state transition graph of the automaton (although in this very

simple case it is not impossible). Calculating its holonomy decomposition yields

a hierarchy with 5 levels (Fig. 12). A closer look shows that the top 3 levels

are transient; they include states that occur only for short time (i.e. exactly

during the depletion of lactose), and they may lead to a shut-off attractor state

n (in the continued absence of lactose). The remaining two levels show the pres-

ence of a non-trivial symmetry group operating within the sets of two attractor

metabolic cycles (in the presence of lactose) (Fig. 13): On level 2 we have two

abstract states representing the absence and the presence of lactose, if lactose

is present then the system is in the nontrivial group component of level 1, i.e.

reflecting a cyclic process of metabolizing lactose, otherwise the system is at the

fixed point attractor where lactose metabolism is shut off.

The result obtained here is not as interesting for novelty as it is for show-

ing that automatic hierarchical coordinatization can find essential structure in

complex biological systems. We knew beforehand about the metabolic cycle,

but this gives proof of the concept that hierarchical coordinatization can yield

a concise and easy to understand description of an unanalyzed complex system,

revealing natural internal symmetries and irreversibility structure.

6.2 Ensemble Approach

This biological example suggests another interpretation for the hierarchical

holonomy decomposition, based on ideas borrowed from statistical mechanics.

In this ensemble approach8 , we consider the state transitions of many copies of

the same automaton, not just one individual automaton. For example, the state

of a lac operon in each cell in a large population of E. coli cells growing in Petri

8This idea is due to John L. Rhodes [25] following physicist Erwin Schrödinger [27].
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dish may be modeled as a copy of the automaton in Figure 11. The subset of

states actually occurring in the population corresponds to sets appearing in the

holonomy decomposition. One uses the decomposition as a map with arbitrary

scale (considering subsets of the hierarchical levels) for the global states of the

ensemble of cells. This approach is appealing biologically and also removes some

of the difficulties originating from a discrete modeling approach.

Clearly, the global state of the ensemble can be defined in many different

ways (e.g. the set of observed states, or their frequency distribution), and the

choice of an “update rule” (how the transformations are applied to the individual

automata, the members of the ensemble), if not synchronous, may potentially

change the behaviour of the ensemble. However, even before these issues are

studied further, the ensemble approach can be used as a guiding metaphor for

applying the holonomy decomposition to understanding complex systems.

In the lac operon example, being in the state represented by level 1 in the

cascaded product (the metabolic cycle) can be interpreted as that in the many

cells of the ensemble after manipulating and observing them, the set of observed

states is exactly {a, b, c, d, e, f, g, h}. Any input from the holonomy group com-

ponent permutes this set of cell states in the ensemble and thus maintains it as

an invariant set of possible future states taken by the members of the ensemble

(assuming that all members of the ensemble always receive the same inputs at

the same time). Figures 5 and 6 can be interpreted similarly.

7 Future Work and Discussion

Since we would like to apply these methods to real-world problems the algo-

rithms should be scalable. Currently we are working on an incremental version

of the algorithm, which starts at the top level and goes down to decompose
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further levels when they are feasible. This way we get some information about

the hierarchical structure immediately, instead of trying to calculate the whole

decomposition all at once, which may fail due to combinatorial complexity.

However, the current software tools are already far beyond the capabilities of

the human’s pen and paper method.

Beyond increasing scalability it would be desirable to apply this tool for

understanding natural and artificial genetic regulatory networks (GRNs) [3, 14].

One strategy is to represent GRNs with Petri-nets, which can be easily converted

to finite state automata. This requires some theoretical preparatory work, since

Petri-nets can be converted to finite state automata in many different ways,

which might change the resulting model. Another strategy would also be to

apply Crutchfield’s ǫ-machine reconstruction [2] (with a finite time window size)

for a series of observations of real or artificial GRNs, which again yields a finite

automaton. It might also be intriguing to relate the holonomy decomposition to

graph properties (spectrum, diameter, connectivity, etc.; see e.g. [1]) of the state

transition diagram, however the fact that the decomposition depends heavily on

cycles labelled by powers of input words [10] and may change under relabelling

suggests that such an approach could be challenging to develop.

It will be important to relate evolution in the landscape of automata as

described above to evolution of biological organisms with their characteristic

types of genetic variability. Our basic assumption is that the individuals or

even the whole evolutionary system can be adequately described by finite state

automata. This is ensured for any in silico experiment, since the computer

on which it is carried out is a (huge) finite state automaton. One can argue

whether our assumption is suitable for real biological systems, or whether by

using discrete non-stochastic models we abstract away important layers of the

working machinery. However, since many researchers are generating descriptive
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but analysed finite state models of biological systems, our approach has a wide

range of possible applications. Current work on the computational implemen-

tations is aimed at allowing one to apply these methods to understanding the

complexity of particular example biochemical and genetic regulatory networks.
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Figure 1: Example of a 3-level coordinate system composed using the cas-
caded/wreath product of component transformation semigroups (An, Sn), n ∈
{1, 2, 3}. The resulting composed automaton is enclosed in dashed lines; both
its input and output are 3-tuples. Left: For a state transition in the wreath
product (A3, S3) ≀ (A2, S2) ≀ (A1, S1), the input transformation (f3, f2, f1) is ap-
plied to state (a3, a2, a1) yielding (b3, b2, b1) = (a3 ·f3(a2, a1), a2 ·f2(a1), a1 ·f1).
The “trays” visualize how at each level i the components of the input (depen-
dency functions fi) are evaluated according to hierarchical dependence on the
states at higher levels. The resulting transformations fi(ai−1, . . . , a1) ∈ Si are
then applied to transform the state component within level i. Note that the
applications of these functions happen simultaneously; their arguments are the
previous states of other components, therefore there is no need to wait for the
other components to calculate their new states. Right: The new state (b1, b2, b3)
is (without loss of generality) the output of the automaton. Projection onto ini-
tial coordinates is a structure-preserving mapping (homomorphism).

Figure 2: Schematic diagram of the position of the wreath product relative to
alternative decomposition methods.
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Figure 3: State transition diagram of a randomly generated automaton R with 5
states and transition arrows for two input symbols x and y. The arrows encode
state changes following the transformations x = ( 1 2 3 4 5

2 2 3 3 3 ), y = ( 1 2 3 4 5
3 3 3 5 4 ),

where the upper row lists the states of the automaton and the lower row gives
the corresponding resulting states after the transformation.

{2}{5}{4}{3}{1}

{2,3}{3,4,5}

{1,2,3,4,5} 2

1

0

Figure 4: The structure of the holonomy decomposition of the automaton R.
This is the tiling picture of the decomposition, i.e. it is the structure of how
the state set is recursively covered with its subsets. The numbers on the right
denote the hierarchical levels (the level 0 is included to show the states of the
components on level 1, it does not appear as a separate hierarchical level in the
decomposition). The nodes are subsets of the state set, outer rectangular nodes
represent the components of the decomposition. Shaded components denote the
existence of some reversible computation possible in the system. The arrows
going into the component come from the component’s states (solid and dotted
arrows indicating state sets of two types: solid line means that it is a real
image of the parent state set and dotted means that the child node comes from
somewhere else). On level 1 we have parallel, non-interacting components.
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Figure 5: The states of the top level component of the decomposition of au-
tomaton R are overlapping subsets of the state set.

Figure 6: The identified reversible computation at the level 1, the level below
the top level, of the holonomy decomposition of automaton R. The input y

permutes the 3 circled states, transposing states {4} and {5} while fixing the
state {3}.
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Figure 7: A finite state automaton with three input symbols representing the
transformations x = ( 1 2 3 4 5 6 7 8

2 4 2 6 6 7 8 8 ), y = ( 1 2 3 4 5 6 7 8
3 2 3 5 5 6 5 8 ), z = ( 1 2 3 4 5 6 7 8

1 2 3 3 5 6 7 8 ) .
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Figure 8: Frequencies of holonomy complexity values for the one mutation neigh-
borhood. The height of the decomposition of the original automaton is 8.
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Figure 9: An example of one mutation, where redirecting one arrow completely
changes the decomposition. The left automaton has a decomposition with only
hierarchical one level, consisting of a single reversible component (the whole
cycle). The automaton on the right, where only the target of the arrow leaving
state 5 has been redirected, has 4 hierarchical levels in its decomposition as it
has become completely irreversible.

24



1

2

x

3
x

4x

x

5
x 1

2x 3
x

4

x
x

5
x

Figure 10: An example of a “harmless” mutation: changing the target of the ar-
row coming out from state 5. The change does not affect the cycle, and does not
introduce any new state set reduction, thus the structure of the decomposition
is preserved. Clearly, if further mutations are applied these neutral differences
can lead to different decompositions.
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STATE a b c d e f g h i j k l m n o p
A 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
Op 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

ZYA 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
lactose present absent

Figure 11: The automaton derived from Boolean network model of the lac
operon mechanism in E. coli. Transition L1 denotes the introduction of lactose,
L0 the depletion of lactose, and t labels transitions due to passage of time.
The states are defined by Boolean combinations of the presence or absence
of biochemical components: A: allolactose is an isomer of lactose, Op: the
repressor molecule, ZYA: the structural genes for the enzymes needed for lactose
metabolism. Here, 1 means that the molecule is present/active or the gene is
expressed, 0 is for the absence/inactivity. The transformations of the system
are given by all finite sequences of transitions from L1, L0, and t.

26



{j} {o} {p} {m}{k} {l} {f}{e}{g}{b}{d}{c}{n} {h}{a}{i}

{a,b,c,d,e,f,g,h}

{a,b,c,d,e,f,g,h,n}

{a,b,c,d,e,f,g,h,m,n}

{a,b,c,d,e,f,g,h,m,n,o,p}

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p} 5

4

3

2

1

0

Figure 12: The holonomy decomposition of the Boolean network model of the
lac operon mechanism in E. coli. The top 3 levels are transient.
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Figure 13: A closeup of the most important (non-transient) levels, levels 2
and 1, in which a non-trivial cyclic group of permutations (shaded component)
operates, reflecting the lactose processing metabolic cycle.
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