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Abstract

For several decades experiments have been
performed where animals have been reared in
environments with orientationally restricted
contours. The aim has been to nd out what
e ects the visual eld has on the development
of the visual system in the brain. In this
paper we describe similar experiments per-
formed with a robot acting in an environment
with only vertical contours and compare the
results with the same robot in an ordinary of-

ce environment. Using metric projections of
the informational distances between sensors
it is shown that all visual sensors in the same
vertical column are clustered together in the
environment with only vertical contours. We
also show how the informational structure of
the sensors unfold when the robot moves from
the environment with oriented contours to a
normal environment.

1. Introduction

In nature one nds that most animals are highly
adapted to their speci ¢ environment. One example
of this is the wide variety of sensory organs that are
well adapted to the speci ¢ animals and their respec-
tive environment (Dusenbery, 1992). It is believed
that in many animals the functionality of the sensory
organs is almost completely innate while in other an-
imals the functionality can be altered by experiences
during the lifetime of the speci ¢ animal. This age-
old question of nature versus nurture has been partic-
ularly studied in the visual system (Callaway, 1998).
Many experiments have been performed with ani-
mals where their visual eld somehow has been re-
stricted to contours of a certain orientation, see for
example (Wiesel, 1982) and (Callaway, 1998) for an
overview. The results of these experiments are not
completely conclusive but some experiments show

that animals that have been reared in for example an
environment with only vertical contours have more
neurons selective for vertical contours. It has also
been found that ferrets have more neurons selective
for vertical and horizontal contours than other angles
(Chapman et al., 1996).

Why is it so that animals have more neurons se-
lective for vertical and horizontal contours than con-
tours of other angles? In a very interesting study
by Coppola et al. (Coppola et al., 1998) the distri-
bution of contours of di erent orientations in both
man-made environments and a natural forest envi-
ronment was analysed. That they found more verti-
cal and horizontal contours than oblique angled con-
tours in the man-made environments might not be
a big surprise. But, interestingly enough, they also
found that natural environments contain more ver-
tical and horizontal contours than contours of other
angles. This might explain why visual systems in-
nate have more neurons selective for horizontal and
vertical contours.

Why, then, is this important when studying and
building robots? In contrast with natural systems,
sensors of arti cial systems are often, due to prac-
tical and historical reasons, seen as something that
is “given” and xed. But, given that robots usu-
ally are limited by computational resources as well as
power consumption, robots need to use their limited
resources e ciently. One way to do this is to try and
extract relevant information from the environment
as early as possible in the processing steps and then
focus the computational resources on these relevant
pieces of information. But, how can a robot know
what information that is relevant to perform its cer-
tain task? One notion of relevant information was
introduced and formalized in (Nehaniv, 1999) and
extended in (Polani et al., 2001) by associating the
relevance of information with the utility to an agent
to perform a certain action. Given knowledge of the
most relevant information from a number of sensors
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it might then be possible to adapt the sensoric sys-
tem to discriminate only between events that are of
use for the system. The layout of sensors can also be
evolved to a certain environment, which for exam-
ple has been studied in (Olsson et al., 2004a). It is
also possible to use the sensor reconstruction method

rst described in (Pierce and Kuipers, 1997) and ex-
tended in (Olsson et al., 2004b) to nd sensors that
produce the same (redundant) information. If sev-
eral sensors produce more or less the same informa-
tion the information from all of them but one can
be discarded or some of the sensors can be placed at
di erent positions.

In this paper we perform a similar experiment sim-
ilar to the ones peformed with for example kittens
(Wiesel, 1982) with a robot where the robot is acting
in an environment with only vertical contours. Us-
ing the sensor reconstruction method we show that in
this kind of environment most visual sensors produce
redundant information and can be discarded without
a loss of information. The results also indicate that a
rich visual environment is necessary if it is to learn to
distinguish between contours of di erent orientation.
We also show an example of unfolding of sensors,
where the robot moves from the environment with
oriented contours to a normal o ce environment. In
this case the sensors move in the metric projections
from the clusters of all sensors from a certain column
of visual sensors to a layout that re ects the physical
layout of the sensors.

The remainder of this paper is organized as fol-
lows. Section 2 contains a brief overview of informa-
tional distances between sensors and the sensory re-
construction method. Section 3 contains the results
of the experiments with a robot in an environment
with oriented contours, and also results where the
robot moves from the vertical environment to a nor-
mal environment. Finally we summarize the paper
and discuss some potential applications of the results
and possible future directions of the presented work.

2. Information Distances between

Sensors

In order to discuss the information distance be-
tween sensors a distance metric is needed. To
do this a number of di erent methods can used,
e.g., the Hamming distance and frequency dis-
tribution distance (Pierce and Kuipers, 1997). In
(Olsson et al., 2004b) these distance metrics are
compared with the information metric, which
was de ned and proved to be a metric in
(Crutch eld, 1990). The distance between two infor-
mation sources is there de ned in the sense of classi-
cal information theory (Shannon, 1948) in terms of
conditional entropies. To understand what the infor-
mation metric means we need some de nitions from
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information theory.

Let X be the alphabet of values of a discrete ran-
dom variable (information source, in this case a sen-
sor) X with a probability mass function p(x), where
x € X. Then the entropy, or uncertainty associated
with X is

H(X)= ) p(z)log,p(x) (1)

reX

and the conditional entropy

> (e, y)logap(yle)  (2)

TeX ye)y

H(Y|X) =

is the uncertainty associated with the discrete ran-
dom variable Y if we know the value of X. In other
words, how much more information do we need to
fully predict Y once we know X.

The mutual information is the information shared
between the two random variables X and Y and is
de ned as

I(X;Y) = H(X) HX|Y)=H(Y) HY|X). (3)

To measure the dissimilarity of two infor-
mation sources Crutch eld’s information distance
(Crutch eld, 1990) can be used. The information
metric is the sum of two conditional entropies, or
formally

d(X,Y) = HX|Y) + H(Y|X). (4)

Note that X and Y in our system are information
sources whose H(Y|X) and H(X|Y) are estimated
from the time series of two sensors using (2).

It is worth noting that two sensors do not need to
be identical to have a distance of 0.0 using the infor-
mation metric. What an information distance of 0.0
means is that the sensors are completely correlated.
As an example, consider two sine-curves where one
is the additive inverse of the other. Even though
they have di erent values in almost every point the
distance is 0.0 since the value of one is completely
predictable from the other. In this case, the mutual
information, on the other hand, will be equal to the
entropy of either one of the sensors.

In the sensory  reconstruction  method
(Pierce and Kuipers, 1997, Olsson et al., 2004b)
metric projections(maps) are created that show the
informational relationships between sensors, where
sensors that are informationally related are close
to each other in the metric projections. To create
a metric projection the value for each sensor at
each time step is saved, where in this paper each
sensor is a speci ¢ pixel in an image captured by
the robot. A number of frames are captured from
the camera of the robot and each frame is one time
step. The rst step in the method is to compute the
distances between each sensor. This is computed



by considering the time series of sensor values from
a particular sensor as an information source X.
The distance between two sensors X and Y is then
computed using equation 4. From this 2-dimensional
distance matrix a 2-dimensional metric projection
can be created using a number of di erent methods
like metric-scaling (Krzanowski, 1988), Sammon
mapping, and elastic nets (Goodhill et al., 1995),
which positions the sensors in the two dimensions
of the metric projection. In our experiments we
have used the relaxation algorithm described in
(Pierce and Kuipers, 1997).

3. Experiments and Results

In our experiments we have used a SONY AIBO!
robot dog. The robot walked around more or less at
random in an ordinary o ce environment and one
other environment where the visual eld consists of
black vertical lines on a white background. This en-
vironment was created with big white sheets of pa-
per with 2cm wide stripes of black paper glued to
the white paper, see Figure 1. Since the AIBO did
not move its head up and down and the environment
was quite small, most of the collected frames of the
visual eld consisted only of the striped walls but in
some frames part of the uniform oor was also visi-
ble. Figure 2 shows an example frame captured by
the AIBO in the environment with vertical lines.
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Figure 1: The SONY AIBO robot in its environment with
vertical contours.

To collect data we used the wireless network of
the AIBO to download images from the camera of
the robot where the image is 88 pixels wide and 72
pixels high. The frame rate was on average 10 frames
per second with a minimum of 9.7 frames per second
and a maximum of 10.2 frames per second, where
the maximum and minimum values were computed

LAIBO is a registered trademark of SONY Corporation.
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Figure 2: The environment from the robot’s perspective.

as averages over ve seconds. To make the results of
the sensor reconstruction method easier to interpret
we used a 10 by 10 pixel image from each frame taken
from the upper left corner of the image. The pixels
of this 10 by 10 image are numbered from 1 to 100,
see Figure 3. To verify that the results were not due
to the fact that we only used a part of the visual eld
we performed experiments with the whole image with
similar results.

1 ]2 |3 (4 |5 |6 |7 |8 |9 |10

1112|1314 |15 |16 |17 |18 |19 |20

21 (22 |23|24|25(26|27|28 (29|30
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41 (42 43|44 |45 |46 |47 |48 |49 |50
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71|72 |73 |74 |75|76 |77 |78 |79 |80

81|82 |83[84|85|86|87|88|89]|90

91192 (9394|9596 97|98 |99 | 100

Figure 3: The layout of the visual sensors (individual
pixels).

First consider when the robot is walking in
the ordinary o ce. Contours of all possible an-
gles are visible even though there are probably
more vertical and horizontal contours as found in
(Coppola et al., 1998). Figure 4 shows the metric
projection of the 100 sensors after 50, 100, 200, 300,
400, and 500 frames have been captured. After only
50 frames the sensors are spread out over the metric
map but it is hard to distinguish some real order.
After 100 frames the metric projection of the sen-
sors has more order. As more frames are processed
the structure becomes clearer and clearer and after
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500 frames the sensors are ordered in more or less a
square with sensor 1 in the upper right corner and
sensor 100 in the lower left corner. Thus, the layout
of the sensors shown after 500 frames is the mirror
image of the real layout found in Figure 3. This ori-
entation of the layout as a mirror image of the real
sensors in this case is just a coincidence and in fact
all eight possible orientations are equally likely. This
is because the data contains no directional informa-
tion and it is therefore impossible to nd the correct
physical layout without applying higher-level image
analysis. Therefore only the relative positions can be
computed, see (Olsson et al., 2004b).
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Figure 4: Metric projections of the sensors after 50, 100,
200, 300, 400, and 500 frames of visual data in the normal
office environment.

Now consider Figure 5 with metric projections for
the visual data from the environment with only ver-
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tical contours. After 50 frames no real order can be
found. After 100 frames it is possible to see that
the sensors start to become clustered in a number
of groups. After more frames these clusters become
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Figure 5: Metric projections of the sensors after 50, 100,
200, 300, 400, and 500 frames of visual data in the vertical
environment.

more and more noticeable and after 500 frames the
sensors are grouped in a horse-shoe shape of 10 clus-
ters with 10 sensors in each. This is very di er-
ent from the metric projection formed by the frames
from the o ce environment. Looking closer at these
clusters we nd that each cluster correspond to one
column in the sensor layout in Figure 3. For exam-
ple, the upper right end of the horse-shoe contains
the sensors 1,11,21,..., 91 which are the sensors of
the leftmost column of the layout of visual sensors in
Figure 3. If we follow the horse-shoe shape starting



from sensors 1,11,21,..., 91 we nd that the next
cluster is all sensors in the second column (ending
with 2) and so forth. Finally the leftmost cluster of
the horse-shoe shape contains all sensors of the right-
most column of sensors (10, 20, ..., 100) in Figure
3.

What is the reason for this clustering of columns
of sensors in the vertical environment? In an envi-
ronment with only vertical contours and a uniform
background all sensors with the same horizontal po-
sition will at each time step return the same value.
Thus the informational distance between these two
sensors will be close to or 0.0. In the results pre-
sented in Figure 5 we note that the distance between
the sensors in the same column is larger than 0.0.
This is due to the fact this is data from the real world
and hence the light is di erent in di erent parts of
the visual eld and not all lines are aligned at exactly
the same angle. The shape of the group of clusters is
dependent on the distribution of vertical lines within
the environment and the width of the lines and the
robot’s distance to the lines. In this particular ex-
periment the vertical lines were often thinner than
the width of the visual eld (10 pixels). Thus we

nd that the informational distance between the two
outermost columns is shorter than the distance be-
tween for example the leftmost column and the mid-
dle columns. This is the reason for the horse-shoe
shape of the clusters.

Now consider a situation where the AIBO after
600 time steps move from the environment with only
vertical contours to a normal o ce environment with
contours of all angles. In Figure 6 metric projections
are shown of the visual sensors after the robot has
moved from the vertical environment to the o ce
environment. After 700 time steps the sensors of
each vertical column are still clustered together even
though they have started to move apart. The longer
time that the AIBO has spent in the normal environ-
ment the more the metric projection looks like Figure
4 which is the layout of sensors in the normal envi-
ronment. This is an example of unfolding of sensors
where the sensors are separated in the metric pro-
jection when they distinguish di erent information.

4. Conclusions

In this paper we have tried to capture some of the
properties of experiments done with real animals in
environments with oriented contours in experiments
using a real robot. A SONY AIBO robot has moved
around in an environment with only vertical con-
tours. Metric projections have been created from the
visual sensors that show the informational relation-
ships between the sensors. The metric projections
show that the sensors from the same column in the
visual eld are clustered together which means that
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Figure 6: Metric projections of the sensors after 700,
1100, 1500, 1900, 2100, and 2300 frames of visual data
in the normal environment where the robot moved after
600 frames from the vertical environment.

the informational distance between them is small,
and would in an simulation without noise be 0.0.
We also showed how the sensors unfold in the metric
projections when the robot moves from the vertical
environment to an o ce environment with contours
of all angles.

The methods and results in this paper can be ap-
plied to robots that adapt and evolve over time,
where the robot is constrained by the available num-
ber of sensors and the processing power available to
process the information from the sensors. First of
all is it important to note that all robots interact
in some environment and that knowledge about this
environment usually can be utilized to optimize the
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robots’ sensors. Consider for example the fact that
most mammals have more neurons selective for ver-
tical and horizontal contours than contours of other
orientations (Callaway, 1998). This can be explained
by the fact that most environments contain more
contours of those orientations (Coppola et al., 1998).
Thus, the mammal visual system has been adapted
by nding generic properties of many di erent en-
vironments. Similarly, is it possible to adapt the
visual system of robots by studying the properties
of the environment that the robot will interact in.
This can for example be done using the sensory
reconstruction method (Olsson et al., 2004b) or by
evolution of the sensory layouts, see for instance
(Olsson et al., 2004a). This was illustrated in this
paper where the sensors were clustered in ten groups
and most of the sensors could have been discarded
or moved to other positions on the robot.

There are several issuses that need to be consid-
ered when designing a robot with sensors that can
adapt and be optimized to a certain environment as
discussed above. First of all there is the obvious
question of how to actually design a sensoric system
that can adapt to a speci ¢ environment. Another
important issuse is how this specialisation might af-
fect future adaptations to other environments. For
example, consider a robot with a sensoric system op-
timized for the environment with only vertical con-
tours. How can the robot detect that it has moved
to a more complex forrest environment using sensors
adapted to the restricted vertical environment? This
is related to the trade-o s between redundancy and
novelty that any designer of a sensoric system is faced
with (Olsson et al., 2004a). These are all questions
that we intend to investigate in future work.
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