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Application of neural networks to the inverse light
scattering problem for spheres

Zbigniew Ulanowski, Zhenni Wang, Paul H. Kaye and Ian K. Ludlow

 A new approach suitable for solving inverse problems in multi-angle light scattering is presented.

The method takes advantage of multidimensional function approximation capabili ty of radial basis

function (RBF) neural networks. An algorithm for training the networks is described in detail . It is

shown that the radius and refractive index of homogenous spheres can be recovered accurately and

quickly, with maximum relative errors of the order of 10-3 and mean errors as low as 10-5. The

influence of the angular range of available scattering data on the loss of information and inversion

accuracy is investigated and it is shown that more than two thirds of input data can be removed

before substantial degradation of accuracy occurs.

Key words: Light scattering, particle sizing, sphere, inverse problem, neural network,  radial
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1.   Introduction

Over the last hundred or so years great advances have been made in developing the electromagnetic

theory of scattering from particulate matter. Accurate predictions of the properties of scattered

electromagnetic fields - the direct scattering problem - are now possible in many situations. Rigorous

solutions exist for numerous particle types, such as homogeneous and inhomogeneous spheres,

elli psoids, cylinders, generalised axisymmetric particles and others. Of far greater practical

importance, however, is the determination of properties of particles from the knowledge of scattered

fields - the inverse scattering problem. Solving this type of problem is required in numerous

applications, ranging from astronomy and remote sensing, through aerosol and emulsion

characterisation, to non-destructive analysis of single particles and living cells.1-4

Unfortunately, the inverse problem has proven to be much less tractable, even for the simplest

particle shapes. This is partly because in many cases inverse problems do not have unique solutions

and are therefore ill -posed. Lack of rigorous solutions has motivated the development of methods
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based on approximate models of scattering for some particle geometries, for example, assuming that

the particles are weak (Rayleigh-Debye) scatterers or that diffraction alone can adequately describe

the interaction process. The reader is referred to the large body of existing literature and several

monographs for further details.5-8 However, when such methods are inappropriate, empirical

procedures have to be used which are based on generating solutions to the direct problem (after

making assumptions concerning the shape, internal structure of the particle, etc.) and matching these

solutions to experimental data.1-3,9,10 These procedures can be very slow, diff icult to implement and

require substantial computing resources. Attempts to apply numerical optimisation methods to assist

the fitting process have been only moderately successful so far. Two major diff iculties are apparent.

The first one is the presence of numerous local solutions necessitating the use of cumbersome and

slow global optimisation methods. The second difficulty arises in cases where scattering data is

"noisy" or distorted, for instance when it originates from single, small particles. Under such

circumstances spurious solutions appear, leading to large errors in the determination of particle

parameters.11-13

A natural starting point for attempts to solve the inverse scattering problem for fine particles is the

simple case of a single, homogeneous, non-absorbing sphere. If a plane incident wave of known

wavelength and state of polarisation and a known medium surrounding the particle are assumed, the

scattering from the particle can be completely described using two parameters, namely its radius and

refractive index. The direct problem can then be solved using the series expansions of the Lorenz-

Mie theory.5-7 In addition, if we assume that the irradiance of the light scattered by the particle is

measured in one plane only, then the scattering can be described by a function of the scattering angle

(defined as the angle between the direction of the incident wave and the direction of observation).

This arrangement leads to a one-dimensional scattering "pattern" which is representative of the

properties of the particle and has been used as a basis for characterisation of both single particles and

particle distributions.1-3,8 The present study is confined to such a scattering geometry. However,

extending it to more general cases, with larger numbers of parameters, should not present major

difficulties, as long as solutions to the direct problem are available.

One motivation behind the present study has been the observation that simple least squares fitting

methods often fail to locate correct solutions for noisy and/or distorted scattering data. Minimising a

merit function of the type:
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where I(θi)  is  a theoretical value for the scattered light irradiance at the scattering angle θi, M(θi) is

a measured quantity proportional to the scattered irradiance at the angle θi and c is an instrumental

constant (usually not known accurately), is often an unsatisfactory approach.2,11,12 Using additional

information, such as the positions of the peaks in the light scattering pattern,2,14 or weighting the

data in various ways1 can lead to substantial improvements, although these approaches are still

heuristic to some extent. A promising method, which directly yields particle radius but may

eventually lead to a full inverse solution, is based on transforming the patterns in a set of Legendre or

Gegenbauer polynomials.15-17 Particle size distributions as well as complex refractive indices can be

obtained under some constraining conditions by combining empirical and analytical (eigenfunction)

methods.8 In the context of the present study it is significant that visual comparison of experimental

and theoretical data - taking advantage of intrinsic data selection and processing capabili ties of the

human brain -  often produces good results, even where other approaches fail.2 These facts indicate

that a degree of, possibly quite complex, data pre-processing is required before methods such as least

squares fitting or numerical optimisation can be successfully applied. On this basis it can be

conjectured that artificial neural networks should be well suited to solving the present problem.

Indeed, recent work on the determination of particle size distributions18 and particle classification19

using multi-angle light scattering data, as well as earlier studies on the recovery of size distributions

from backscattering20 have shown that neural networks can be used to solve some classes of inverse

problems in light scattering. Moreover, the neural network approach may eventually yield several by-

products, e.g.: data reduction methods, optimal data collection methods, efficient algorithms for

comparing theoretical and experimental data and, last but not least, insights into the theory of

scattering.

An approach to solving inverse problems in multi-angle light scattering based on radial basis

function (RBF) neural networks is proposed. The method takes advantage of the capabili ty of the

RBF networks to approximate multidimensional functions. A detailed investigation of the technique

for the case of homogeneous, spherical particles is presented. A step-by-step algorithm for training

the networks is described. Testing of the networks is carried out using data generated from the



Lorenz-Mie theory. Several scaling and weighting schemes for the scattering data are investigated.

The influence of  the angular range of available scattering data on inversion accuracy is also studied.

2.   Neural network algorithm

In the context of the present study the inverse scattering problem can be stated as follows. If a

homogeneous particle, immersed in a given external medium, is ill uminated by light of a given

wavelength and state of polarisation, the intensity of scattered light at angle θ with respect to the

forward direction is a function of the radius and the refractive index (r, n) of the particle. This

function can be given as:

I(θ) = F(θ, r, n) , (2)

where the function F is defined by the Lorenz-Mie theory.5-7 Given a vector of discrete

measurements x of scattered light intensity I(θ) at m different scattering angles θ, the inverse

scattering problem is to determine values of r and n from the measurements x. In other words, it is to

find an inverse function  f = F-1 such that r and n can be determined by f(x). In the artificial neural

network approach a set of discrete intensity patterns I(θ) generated from the Lorenz-Mie theory

together with the parameters r and n are used as network training examples in order to form an

approximation of the inverse function f. It will be assumed that the patterns are sufficiently dense to

avoid spatial aliasing.

A radial basis function (RBF) neural network has simple architecture consisting of only one

hidden layer. Fig. 1 shows a generalised architecture of such a network with m inputs, N hidden

nodes and k outputs. The hidden nodes are radial basis functions and the network output is simply a

linear summation of the weighted basis functions. The radial basis function ω(x, c) is a non-linear

function solely dependent on a radial distance || x - c ||, where c is the function's "centre". In general,

the distance need not be Euclidean, although it often is, as in the case of the present study. The

implementation of an RBF network includes selecting the basis function form and parameters and

finding the weights.

Suppose the function to be approximated is  f : x→ y , where x ∈ Rm  and y ∈ Rk. The RBF

network approximation of  f ,  f ,  will have the following form:
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where x ∈ Rm  is the input vector, y ∈ Rk  is the output vector, N is the number of hidden nodes, wi

∈ Rk  is a weight vector, ωi(x, ci) are radial basis functions corresponding to the hidden nodes in Fig.

1, ci ∈ Rm  is a centre vector, and b ∈ Rk is a bias vector. The bias vector is used to compensate for

the difference between the mean of the output vector and the corresponding target.

A previous study19 described a simplified RBF network in which the basis functions are made

Gaussian and take the form:
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where x c− i  is Euclidean distance and di are the widths. This simplification essentially consists in

making the receptive fields of the basis functions spherical, while in general they can be elli psoidal.

The reason for the use of this model is to reduce complexity, which is particularly important in the

high-dimensional application considered here. Although the simplification could affect network

performance, accuracy can be recovered by scaling the input data to compensate for the changed

receptive fields.

Given a sufficient number of input and output examples, xj and yj , respectively, the RBF network

can be trained by forming the interpolation:
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where S is the number of example input/output pairs. The unknown parameters in this model are the

weight vectors wi, the centre vectors ci, the widths di and the bias vector b. If the centres and the

widths are known, training is a matter of solving the following linear equation:

[ ] [ ]   y y y w w w ba1 2 1 2 ...   =   ...  S N ΦΦ + , (6)

where y j j j jky y y= [ ]T
1 2 ...  is the j-th example output vector, wi = [w1i  w2i  ... wki ]

T is the i-th node

weight vector, b = [b1  b2  ... bk]
T is the bias vector ([.]T denotes matrix transpose),

a = [ ]1 1 1...  and ΦΦ is a matrix of i-th node radial basis functions calculated for the j-th example

input vector:
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If the bias vector is included in the weight matrix, then Eq. (6) can be written in the following

compact form:

Y Wb a= ΦΦ , (7)

where
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The network is trained by obtaining the least squares solution of Eq. (7). Consequently, the weights

W Yb a a a =  -T T( )ΦΦ ΦΦ ΦΦ 1. (8)

are given by

Before the weights are computed, the centres and the widths must be chosen. To maximise accuracy,

each training input is made to be a centre, and, as a result, the number of hidden nodes in the RBF

network is equal to the number of  training input vectors, i.e. N = S. Since the widths di control the

degree of overlapping of the m-dimensional Gaussian functions, they control the generalisation abili ty

of the RBF network. In order to obtain good generalisation, the choice of the width di should ensure

that the i-th basis function responds to inputs furthest from its centre ci. However, this requirement

conflicts with the need to approximate functions locally. To satisfy these opposing demands, di can



be calculated as the difference between maximum and minimum Euclidean distances from the centre

vector ci to all other training inputs, namely:
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where d is a constant. As a result, the wider the data spread, the larger the width and the network is

automatically adjusted to different input data. The constant d has, typically, the value of one but it

can be altered to provide "fine tuning" of the network.

Within the framework provided by Eq. (5), the inverse scattering problem can be solved by

unsupervised training (using only the inputs) consisting of selecting the centres and calculating the

widths from Eq. (9), followed by supervised training (using the inputs and the outputs) to determine

the weights from Eq. (8).

3.   Neural network testing

Simulations were conducted using theoretical data generated from the Lorenz-Mie theory. A

wavelength of 0.5145µm, incident light polarised perpendicularly to the scattering plane and a

refractive index of the surrounding medium (water) of 1.336 were assumed. Discrete ranges of

parameter values, n ∈ [1.5, 1.7] (dimensionless), and r ∈ [0.5, 1.5] micrometers, were used to

construct a matrix of parameter pairs, each with a corresponding normalised intensity pattern x(θ).

For logarithmically scaled data the patterns were calculated from:

x S S( ) ,θ θ% & '1 log (0) log ( )1
2

1
2 (10)

where S1(θ) is the element of the scattering matrix corresponding to perpendicular polarisation.5-7

Note that, since S S1
2

1
2( ) (0)θ ( , x(θ) ≤ 1 and x(0)=1. The motivation behind the use of this scaling

was that, generally, measurement accuracy of scattering functions such as S1(θ) is much better in

terms of relative values (for different scattering angles) as opposed to absolute ones - the

measurements are "differential". For linear data the patterns were calculated from:

x(θ) = g(θ)S1(θ)
2
 , (11)

where g(θ) is an appropriate weighting function. The intensity patterns, sampled between 0° and 180

° with 2° intervals, produced a set of input vectors with 91 elements. The parameters r and n formed

a 2-element output vector. That is, the inverse function was a mapping f: R91 → R2 (m = 91, k = 2).



For use with data truncated at the forward and backscattering regions network models with

correspondingly smaller input vector dimensions m were constructed.

Where indicated, the input vectors were scaled into a 91-dimensional unit hypercube. The linear

data input vectors were normalised to give a mean of one over θ ∈ [0°, 180°], or the appropriate

truncated range, by dividing with a mean taken over all the elements of the input vector.  The tests

compared several scaling and weighting schemes for the input vectors, including:

   1. Logarithmic normalised to 1 at θ = 0°.

   2. Linear (g(θ) = 1) scaled into a hypercube.

   3. Linear weighted with g(θ) = (sin θ)2  .

   4. Linear weighted with g(θ) = (sin θ)4  .

   5. Linear weighted with g(θ) = (sin θ)6 .

A two-stage approximation configuration was used to maximise accuracy. The first stage  RBF

network,  trained  with data chosen from the following range of parameters: n ∈ [1.5, 1.7] and r ∈

[0.5, 1.5] µm, was used for global approximation. Its output was then used to select which local

approximation network to use. The second stage networks, performing local approximation, were

trained using subsets of the data. Up to 455 pairs (65 radius and 7 refractive index values) of

input/output vectors of the data were used to train the first stage, global approximation network. For

the second stage the training data was divided into subsets covering 10 overlapping ranges of r,

typically with 144 pairs in each subset (there was no subdivision in terms of n).

The number of hidden nodes was chosen to be equal to the number of training samples (N = S) in

all networks. The i-th input vector was chosen as the centre of the i-th hidden node. The basis

function width for the i-th node of RBF network was calculated as the difference between the

maximum and minimum distances from the i-th centre vector to all other centres, as defined in Eq.

(9). The least squares training method of Eq. (8) was then used. Test data were selected such that all

parameter pairs were surrounded by training data pairs in order to eliminate edge effects. All the

network algorithms were implemented using the MATLAB™ ver. 4.2 software with the Neural

Networks Toolbox ver. 2 (The MathWorks, Inc.).



4.   Results and discussion

In the two-stage configuration used in this study the approximation abili ty of the second-stage,  local

networks depends on the accuracy with which the first stage, global network classifies the data into

correct ranges (in terms of the radius r in for the examples shown in this paper). A failure to classify

the data accurately might result in forcing the use of a local network outside the range of output

vectors for which it was trained. This would be likely to result in large approximation errors at the

second stage. To test the classification abili ty of the global network, approximation errors were

computed for several spatial distributions of training points. It was found that optimum performance

was achieved for non-uniform distributions, with decreasing distances between the points for

increasing output parameters. In addition, training point density was increased near the boundaries of

the  local  networks.  The  best  results were obtained for input vectors scaled linearly, a g(θ) = (sin θ

)4 weighting function and the width constant d of 1.4. Approximation errors for the global network

are presented in Fig. 2 as a function of the output parameters. Examination of the results shown in

the figure reveals that the lines representing the distance from the test point (true solution) to its

approximation generally do not cross network boundaries - in other words, the global network

correctly classifies the test data.

The influence of input data scaling and weighting on approximation accuracy was investigated by

comparing the five scaling and weighting schemes detailed in the previous section. Local network

approximation errors were computed for all the schemes by combining results from 10 sub-networks.

Summarised results are shown in Table 1. It can be seen that the best overall result is for linear data

weighted with a g(θ) = (sin θ)4 function, closely followed by (sin θ)6. In contrast, unweighted input

data, both linear and logarithmic, gave poor performance.

Table 1.   Relative approximation errors for local networks using five data

scaling schemes (results combined from 10 local networks)


Scale and Radius error (%) Refr. index error (%)
Scheme weighting  

Mean          Max. Mean Max.

    1 log 0.0266 0.8243 0.0253 1.6833
    2 linear, hypercube 0.1301 4.0570 0.0395 2.5768
    3 linear, (sin θ)2 0.0278 1.2762 0.0155 0.8739
    4 linear, (sin θ)4 0.0016 0.1106 0.0012 0.0765
    5 linear, (sin θ)6 0.0023 0.2170 0.0016 0.0752




It is interesting to observe that weighting functions of the type (sin θ)p occur in the Gegenbauer

transforms which have recently been used to obtain particularly simple representations of angular

scattering data and which form the basis of a promising new inversion method.16,17 The inclusion of

the (sin θ)p weighting functions gives emphasis to angular regions where the intensity of light

scattered from spherical particles is very sensitive to parameter values, which may account for the

results of the present study. Moreover, both the forward- and the back-scattering regions are

reduced in magnitude, which is a valuable feature since these regions are absent or distorted in the

case of experimental data due to the presence of incident light. Therefore, these results suggest that

the common practice of using unweighted linear or logarithmically scaled data in particle light

scattering measurements may have to be reassessed.

Relative approximation errors for the combined local networks are shown in Fig. 3 as a function

of the output parameters r and n. The existence of high values of approximation error for isolated

cases of test data (for example, for r = 1.3 and n = 1.7  in Fig. 3) stemmed from "anomalous"

character of individual test input vectors. In these cases the input vectors were found not to be

varying smoothly between the training data points. This finding ill ustrates a problem common to

most neural networks - to minimise errors training examples must adequately represent all cases that

the network is to approximate. Therefore, performance can be improved by locally increasing the

density of training data. In particular, the large errors along the n=1.7 boundary could be reduced

quite easily in this way.

Since the forward- and back-scattering regions are absent or distorted in experimental data, the

local networks were also trained and tested with incomplete input vectors. Data was removed from 0

° up to, but not including, a variable scattering angle, referred to here as a forward truncation angle,

and/or between a backscattering truncation angle and 180°. Approximation errors for such

incomplete data are shown in Fig. 4. There was a gradual reduction in accuracy with increasing data

loss: up to the forward truncation angle of about 100° or when up to 130° was removed from the

backscattering region. After that the reduction was more rapid. While the initial deterioration was

slow, the fact that the errors did increase indicated that the truncation of scattering intensity data in

angular form resulted in some loss of information. From the practical point of view, however, the

accuracy achievable even with a large loss of data was still high. For example, maximum errors were

1% and mean errors were below 0.01% with less than a half of the input data available. An



examination of Figures 4(a) and (b) reveals that, for data weighted with (sin θ)4, the forward and

backscattering angular regions 0° to about 30° and 120° to 180°, respectively, do not appear to

contribute much to the solutions. Moreover, not all of the central 30° to 120° region is required to

maintain high accuracy, as shown in Fig. 4(c): 60° to 120° is sufficient. Further tests (not shown)

revealed that similar accuracy could be obtained when only the 30° to 60° data region was used.

Typical computation times required for training the networks and particle parameter recovery are

shown in Table 2. The evaluations used Matlab 4.2 running on a 166MHz Intel 80586 processor (the

training time includes data scaling and normalisation but not the input vector computation from the

Lorenz-Mie theory). One global network and 10 local  networks,  as  described   in  the  previous

section,  were  used  with  complete  (91-element) input data vectors scaled accordingly to scheme 4

from Table 1. The parameter area covered by the networks was 0.5µm < r < 1.5µm and 1.5 < n <

1.7. As can be seen, training the networks took less than a minute. What is more important, size and

refractive index recovery took typically only 0.1 second. The computations could be further speeded

up by using purpose-written software, truncated data or a faster processor.

Table 2.   Computation time for global and local RBF networks.


Phase Training (s) Solving (s)


Global a    46.8    0.079
Local b    10.4    0.023


a 455 hidden nodes
b 10 subnets, each with 144 nodes

5.   Conclusions

Radial basis function neural networks offer a fast and accurate method of solving the inverse

scattering problem for small spherical particles. The recovery of both the size and the refractive index

of particles from angle-dependent light scattering data is possible. Maximum relative errors of the

order of 10-3 and mean errors as low as 10-5 are easily achievable. To put these results into a more

tangible context, the radius errors correspond to absolute errors of less than 0.1nm on average and

2nm maximum for particle diameters. The maximum errors can be further reduced by locally

increasing the density of training data. Computations with truncated scattering data show that the

absence of scattering data from substantial parts of the 0° to 180° angular range - two thirds or more



- results in only a modest degradation of accuracy. Size and refractive index recovery is fast, taking

typically 0.1 second on an average desktop computer. Training the networks is rapid too - for the

case presented here it took about a minute.  The success with the  (sin θ)p weighting function, most

notably for p = 4, suggests that in experimental work involving angle dependent scattering such

weighting may have greater merit than the traditional linear or logarithmic scaling of data.

The parameter space coverage (e.g. the size parameter range) can be extended relatively easily

either by simply expanding the range of the training data or, preferably, by adding further local sub-

networks (the latter approach would involve a smaller computational penalty).  Likewise, extending

the present technique to cases involving larger numbers of parameters (for example, complex

refractive index, multi-layered spheres, etc.) should not present major diff iculties, as long as solutions

to the direct problem are available. RBF networks are particularly appropriate in this context, since

increasing the number of dimensions should not greatly increase the computational burden. Size

distribution recovery may also be possible, although, in common with other methods, accuracy is

likely to be dependent on the width and the shape of the distribution.

Z. Ulanowski was supported by a grant from the Engineering and Physical Sciences Research

Council during this work.
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error). The training data points are shown as small rectangles and the boundaries of the 10

overlapping local networks as vertical lines. The input vectors were scaled linearly and the

weighting function used was g(θ) = (sin θ)4. The value of the width constant d was 1.4.
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Fig. 3.   Approximation errors for the local networks shown as a function of the output

parameters r (radius) and n (refractive index). Results from 10 local networks were

combined and relative errors calculated separately for r (a) and n (b). The input vectors

were scaled linearly, the weighting function used was g(θ) = (sin θ)4 and the width

constant d was 1.
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Fig. 4.   Approximation errors for the local networks trained and tested with incomplete
(truncated) data. The errors are shown as a function of the truncation angle. The data is
between the forward scattering truncation angle and 180° in (a), between 0° and the
backscattering truncation angle in (b) and between the forward truncation angle and 120
° in (c). Mean (open symbols) and maximum relative errors (fill ed symbols) for the
radius (r) and the refractive index (n) are given. The input vectors were scaled linearly,
the weighting function used was g(θ) = (sin θ)4 and the width constant d was 1.


