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Abstract 

In this thesis, the process of optimizing Cooperative Spectrum Sensing in Cognitive Radio 

has been investigated in fast-fading environments where simulation results have shown that 

its performance is limited by the Probability of Reporting Errors. By proposing a transmit 

diversity scheme using Differential space-time block codes (D-STBC) where channel state 

information (CSI) is not required and regarding multiple pairs of Cognitive Radios (CR’s) 

with single antennas as a virtual MIMO antenna arrays in multiple clusters, Differential 

space-time coding is applied for the purpose of decision reporting over Rayleigh  channels. 

Both Hard and Soft combination schemes were investigated at the fusion center to reveal 

performance advantages for Hard combination schemes due to their minimal bandwidth 

requirements and simplistic implementation. The simulations results show that this 

optimization process achieves full transmit diversity, albeit with slight performance 

degradation in terms of power with improvements in performance when compared to 

conventional Cooperative Spectrum Sensing over non-ideal reporting channels. 

Further research carried out in this thesis shows performance deficits of Cooperative 

Spectrum Sensing due to interference on sensing channels of Cognitive Radio. Interference 

Alignment (IA) being a revolutionary wireless transmission strategy that reduces the impact 

of interference seems well suited as a strategy that can be used to optimize the performance 

of Cooperative Spectrum Sensing. The idea of IA is to coordinate multiple transmitters so 

that their mutual interference aligns at their receivers, facilitating simple interference 

cancellation techniques. Since its inception, research efforts have primarily been focused on 

verifying IA’s ability to achieve the maximum degrees of freedom (an approximation of sum 

capacity), developing algorithms for determining alignment solutions and designing 

transmission strategies that relax the need for perfect alignment but yield better performance. 
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With the increased deployment of wireless services, CR’s ability to opportunistically sense 

and access the unused licensed frequency spectrum, without causing harmful interference to 

the licensed users becomes increasingly diminished, making the concept of introducing IA in 

CR a very attractive proposition.  

For a multiuser multiple-input–multiple-output (MIMO) overlay CR network, a space-time 

opportunistic IA (ST-OIA) technique has been proposed that allows spectrum sharing 

between a single primary user (PU) and multiple secondary users (SU) while ensuring zero 

interference to the PUs. With local CSI available at both the transmitters and receivers of 

SUs, the PU employs a space-time WF (STWF) algorithm to optimize its transmission and in 

the process, frees up unused eigenmodes that can be exploited by the SU. STWF achieves 

higher performance than other WF algorithms at low to moderate signal-to-noise ratio (SNR) 

regimes, which makes it ideal for implementation in CR networks. The SUs align their 

transmitted signals in such a way their interference impairs only the PU’s unused 

eigenmodes. For the multiple SUs to further exploit the benefits of Cooperative Spectrum 

Sensing, it was shown in this thesis that IA would only work when a set of conditions were 

met. The first condition ensures that the SUs satisfy a zero interference constraint at the PU’s 

receiver by designing their post-processing matrices such that they are orthogonal to the 

received signal from the PU link. The second condition ensures a zero interference constraint 

at both the PU and SUs receivers i.e. the constraint ensures that no interference from the SU 

transmitters is present at the output of the post-processing matrices of its unintended 

receivers. The third condition caters for the multiple SUs scenario to ensure interference from 

multiple SUs are aligned along unused eigenmodes. The SU system is assumed to employ a 

time division multiple access (TDMA) system such that the Principle of Reciprocity is 

employed towards optimizing the SUs transmission rates. 
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Since aligning multiple SU transmissions at the PU is always limited by availability of spatial 

dimensions as well as typical user loads, the third condition proposes a user selection 

algorithm by the fusion centre (FC), where the SUs are grouped into clusters based on their 

numbers (i.e. two SUs per cluster) and their proximity to the FC, so that they can be aligned 

at each PU-Rx. This converts the cognitive IA problem into an unconstrained standard IA 

problem for a general cognitive system. 

Given the fact that the optimal power allocation algorithms used to optimize the SUs 

transmission rates turns out to be an optimal beamformer with multiple eigenbeams, this 

work initially proposes combining the diversity gain property of STBC, the zero-forcing 

function of IA and beamforming to optimize the SUs transmission rates. However, this 

solution requires availability of CSI, and to eliminate the need for this, this work then 

combines the D-STBC scheme with optimal IA precoders (consisting of beamforming and 

zero-forcing) to maximize the SUs data rates. 
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1. Introduction 

1.1.Wireless and Mobile Communications 

Increasing interest and demand in wireless applications has led to the continuous 

development of wireless technologies, none more so than in the last two decades, which have 

seen this development, grow at a geometric rate. Users of wireless applications are now more 

and more dependent on wireless devices that provide mobile data usage, real-time 

information processing, and multi-media sharing. This trend [1], [2] has led to a significant 

increase in demand and utilization of the spectrum resources and thus, an increased scarcity 

of the radio frequency spectrum [1], [3]. As a consequence, there have been marked changes 

in research and spectrum access policies aimed at ensuring that wireless resources meet the 

expectations and demands of wireless technologies. The current fixed spectrum access (FSA) 

policy is still very much based on the notion that the wireless radio spectrum is a limited 

resource that must be apportioned among licensed users and services. This FSA policy is 

based on a static allocation of the spectrum resources, where the radio spectrum is partitioned 

into frequency bands that are licenced to operators for certain periods of time, giving them 

exclusive rights of usage [4].  Interestingly, the FSA policy has been observed as the major 

factor in the current spectrum drought because those frequency bands are only active when 

the licensed users are active. This leaves several portions of the licenced spectrum 

unused/underutilized when the licensed users are idle, proving that indeed spectrum scarcity 

is a direct consequence of spectrum underutilization [5]. It is therefore clear that the scarcity 

of the frequency spectrum is not exclusively as a direct result of physical scarcity of spectrum 

resources, but rather as a result of the inefficiency of the FSA policy. As a consequence, there 

has been a growing demand for more efficient utilization of spectral resources, leading to the 

development of an alternative spectrum policy called dynamic spectrum access (DSA) [5]. 
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1.1.1. Dynamic  Spectrum Access and Cognitive Radio 
 

Recent regulatory considerations of dynamic radio spectrum access as encapsulated in [6], [7] 

create the potential for more intensive use of the spectrum in order to boost opportunities for 

technologically innovative and economically efficient solutions use with much greater 

robustness than in the past. To this end, the DSA policy is much more flexible and market-

oriented regulatory model. With DSA, the spectrum resources are still allocated to the 

licensed users, but its usage is not exclusively granted. Unlicensed users, referred to as SUs, 

can also access the spectrum resources. To support DSA, SUs are required to have cognition 

capabilities in order to sense the radio frequency spectrum environment, and SUs with such 

capabilities are referred to as cognitive radios (CR) [8], [9]. The CR unique technology which 

allows a cognitive wireless terminal to dynamically access the unused spectrum (otherwise 

known as spectrum holes) has enabled its emergence as one of the technologies for meeting 

the ever increasing growth of wireless communication services [8] – [10].  

A CR, as defined in [9], [10] is “a radio that is aware of its operational environment and can 

dynamically and independently adjust its radio operating parameters accordingly”. A more 

generalized definition was given in [6] as a radio that senses its electromagnetic environment 

and adjusts its operating parameters with the aim of maximizing throughput, mitigating 

interference as well as facilitating interoperability. Unlike traditional radios, a CR has two 

distinguishing features namely the cognition capability and the reconfigurability as shown in 

the cognition cycle of Figure 1.1 which aptly illustrates how these unique features of a CR 

continuously interact with the radio environment. 

1.1.2. Cognition Capability of a CR 

This refers to the CRs ability to observe and analyze the radio spectrum and make a decision 

about which spectrum band to make use as well as adopting an optimal transmission strategy. 
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Fig. 1.1 Cognition cycle of a Cognitive Radio [9] 

The cognition cycle follows three main components as follows: 

 Spectrum Sensing: This refers to the ability of a CR to measure spectrum usage 

(based on parameters such as cumulative power levels, user activities, etc.) over 

different spectrum bands in order to capture the existence of licensed users. Spectrum 

sensing is one of the most critical functions of a CR as it must make real-time 

decisions about exploiting dimensions of frequency, space and time [8], [11]. 

 Spectrum Analysis: This is defined based on the sensed radio environment, as the 

existence of spectral opportunities in the surrounding radio environment. A spectral 

opportunity refers to “a band of frequencies that are not being used by the licensed 

user at a particular time in a particular geographic area” based on the three dimensions 

of the spectrum space [12]. In more recent times, other dimensions of the spectrum 

space such as coding, beamforming and the use of Multiple-Input Multiple-Output 

(MIMO) at the physical layer, can present opportunities to be exploited [12].  

 Spectrum Access or Spectrum Decision: This is the last step of the cognition cycle 

that decides the set of actions to be taken based on the outcomes of the first two 

components of the cognition cycle. More specifically, a CR utilizes the information 

gathered regarding the spectrum bands identified as available spectral transmit 
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opportunities (TO) to define the radio transceiver’s parameters for the upcoming 

transmission(s) over such frequency bands. 

1.1.3. Reconfigurability of a Cognitive Radio 
 

The second key feature of a CR is its ability to re-tune its transceiver parameters based on its 

assessment of the surrounding radio environment. While traditional radios have considerable 

flexibility with their ability to reconfigure some of their transmission parameters, they are 

mostly designed to operate over specific frequency band(s). A CR on the other hand, is 

designed to be more flexible in order to exploit spectral holes over a wider frequency range. 

For instance, a CR must be able to configure its transmission bandwidth to adapt to transmit 

opportunities (TO) of different sizes be able to determine the appropriate communication 

protocol to be used over different spectral opportunities. CRs were originally referred to as 

software radios with extended self-awareness capabilities [13], given that software-defined 

radios were designated as the ideal implementation environment of radios with seamless 

configuration capabilities [9]. 

1.2. Spectrum Sensing in Cognitive Radio 

The cognition cycle earlier defined in 1.1.2 implies a wide range of hard research problems 

for CR. Therefore the scope of this research work will be limited to the “Spectrum Sensing” 

component of the cognition cycle. As stated under the Spectrum Sensing component of the 

cognition cycle, the most crucial task of each CR user is to detect whether the PUs are present 

or absent. This the CRs can do by sensing for the spectrum holes, gaining access and making 

use of these spectrum holes in an opportunistic manner, when the PU are absent/idle thus 

avoiding causing harmful interference to the PUs. Alternatively, the CR can make use of the 

licensed spectrum concurrently with the PU provided the CR can limit its interference to the 
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PUs to a predefined level [8]. Detection performance in spectrum sensing is therefore very 

crucial to the performance of both PU and CR networks and can be determined on the basis 

of two metrics: probability of false alarm, which denotes the probability of a CR user 

declaring that a PU is present when the spectrum is actually free, and probability of detection, 

which denotes the probability of a CR user declaring that a PU is present when the spectrum 

is indeed occupied by the PU. In terms of detection performance, Spectrum Sensing can 

further be separated into two techniques for implementation as shown in fig 1.2. below. 

 

Fig.1.2: Principle of Spectrum Sensing [15] 

Fig 1.2 shows the basic principle of how Spectrum Sensing works where the PU transmitter 

(Tx) sends data to its intended receiver in a certain licensed spectrum band. Sensing the 

nearby PU receiver (Rx) can directly identify the spectrum hole, which is called direct 

Spectrum Sensing. Similarly, sensing the surrounding PU-Tx environment can also identify 

the spectrum holes, but in an indirect way, which is called indirect Spectrum Sensing. Within 

the indirect Spectrum Sensing (SS) technique, there are a number of schemes that can be used 

for SS namely matched filter detection, energy detection, cyclostationary detection, 

covariance based detection and SS using multiple antennas.  
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In practice, spectrum sensing is usually hampered by two profound phenomena namely 

Multipath Fading and Interference, and their effects cannot be over emphasized. These 

drawbacks may significantly compromise detection performance, make Spectrum Sensing 

very unreliable and create the hidden node problems. A possible solution to these drawbacks 

lies in the concept of spatially distributed nodes in a network, as they are less likely to 

concurrently experience fading or receiver uncertainty. For example, if a number of CR users 

while performing their own local sensing, can exploit diversity by cooperatively sharing their 

sensing results with other users and the FC, the combined cooperative decision on spectrum 

utilization can combat multipath fading and improve overall detection performance.  

Another crucial task in the design of CR is about how best the SUs can avoid interfering with 

the PU in their vicinity [14]-[16]. It becomes particularly challenging nowadays where the 

PU is seldom idle, such that the availability of spectrum holes becomes very limited [16]. In 

trying to find solutions to this problem, the focus of research has shifted towards IA [17], as it 

naturally fits in with the CR networks effort of managing interference between the PU and 

SUs [17] - [19]. 

1.3.Interference Alignment in Cognitive Radio Networks 

IA is a radical cooperative interference management strategy that has emerged through 

rigorous analysis of interference channels (IC) and networks. This approach exploits the 

availability of multiple signaling dimensions either from multiple antennas, time slots or 

frequency blocks as the case may be. The transmitters linearly encode their signals over these 

multiple signaling dimensions, such that the resulting interference signal observed at each 

receiver lies in a lower dimensional subspace and is orthogonal to the one spanned by the 

signal of interest at each receiver while the other subspace is reserved for interference free 
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communication, hence achieving the IC’s maximum multiplexing gain, or degrees of freedom 

(DoF) [17], [18].  

The earliest work to explore the increase in DoF with message sharing in the manner of CR 

was done in [19], [20] for both the MIMO interference and “X”-channels. This is because the 

CR network can be seen as an IC when the SUs coexist with the PUs and the SU transmission 

is subjected to the PU-Rx threshold as well as the cross interference between the SUs 

themselves [11].  A number of other practical IA algorithms have also been developed in the 

manner of message sharing such as [21] to [23], where each Tx has an intended Rx, and the 

remaining Tx’s are considered as interferers for that Rx. These studies have provided a 

significant research platform that has translated into basically two main paradigms in the 

design and implementation of IA in CR networks.  

The first paradigm considers a CR network consisting of a number of SU pairs and the PU-Tx 

and Rx pair, where the PU-Tx is assumed far from its Rx and thus SU-Rx’s are considered 

not to be influenced by the interference from the PU-Tx (which is similar to the Direct 

Spectrum Sensing scenario). The second paradigm considers the same CR network as the first 

paradigm, but the SUs are in closer proximity to the PU-Tx (in the manner of Indirect 

Spectrum Sensing). However, instead of sensing for spectrum holes left by the PU, this 

paradigm proposes that under a power-limitation, a PU which maximizes its own rate on its 

MIMO channel singular values might leave some of them unused i.e. no transmission takes 

place along the corresponding spatial directions. These unused directions may become TOs 

that can be opportunistically utilized by the SUs to avoid interfere with the signal sent by the 

PU-Tx [24].  
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1.4.Research Aims and Objectives 

1.4.1. Aim 

The main aim of this research is therefore to combat multipath fading between the SUs 

through optimizing cooperative spectrum sensing, mitigating interference using IA between 

the PU and SUs and optimizing the transmission sum rates in the CR network. The metrics 

that validate performance of these aims include probability of detection and sum rate graphs. 

1.4.2. Objectives 

In order to improve the performance of CR systems, many works have focused on the 

collaboration of multiple CR users in SS whereby the possibility of detection errors can be 

reduced by introducing spatial diversity [25]. Through this collaboration of Cooperative 

Spectrum Sensing (CSS), each user may independently perform local SS and then report a 

binary decision to a combining user or FC. The FC then makes a decision on the presence or 

absence of the PU signal in order to reduce the probability of detection errors by exploiting 

spatial diversity. In terms of local SS techniques, energy detection (ED) has been shown to be 

more optimal as a solution, than other techniques especially in low-noise scenarios [8], [9]. 

Thus, the design of an ED based CSS model will be the focus for this research work. 

In CSS, the FC controls the three step process as follows: Firstly, the FC selects a frequency 

band for sensing and instructs all SUs to individually perform local sensing on the sensing 

channel i.e. the physical channel between the PU and each cooperating SU. Secondly, all the 

SUs report their local sensing results to the FC via a reporting channel. Lastly, the FC 

combines all the received local sensing information in order to determine the status of the PU, 

makes a decision on the presence/absence of the PU and then diffuses this information back 

to all cooperating SUs. The main objectives of this research will be centered on finding ways 

to optimize both the sensing and reporting channels. 
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Several works have shown that these reporting channels are also susceptible to fading effects 

and interference. It is shown in [26] that when the reporting channels become very noisy, 

CSS will get no advantages. Employing some additional forms of transmit diversity such as 

STBC can alleviate performance of decision reporting [27]. STBC can mitigate the effect of 

fading and improve the performance and reliability of digital transmission over wireless radio 

channels, hence its application in several SS research endeavors [28]. However, use of STBC 

becomes more impractical in higher mobility environments because of its dependence on 

global CSI. In order to optimize CSS, one of the main objectives of this research therefore is 

the optimization of reporting channels by incorporating differential strategies for decision 

reporting in CR networks that do not depend on availability of global CSI.  

With regards to managing interference between the SUs and the PUs, this work will focus on 

critically evaluating the two main paradigms in the design of IA in CR networks. It is well 

known from the literature that the first paradigm of implementing IA in CR networks which 

is more biased towards direct SS is somewhat less optimal than the second paradigm (whose 

bias leans towards Indirect SS). This is because, like direct SS, detecting a PU-Rx is a more 

challenging task than detecting the PU-Tx. Thus, this work will focus more on the second 

paradigm used to implement IA in CR networks, with the key objective being to develop 

appropriate algorithms that will optimize detection performance of the SUs as well as 

maximizing the overall sum rates of the CR network.  

For local sensing, since all CR users are tuned to the selected licensed channel to observe the 

PU on the sensing channel, it seems straightforward that some form of diversity can also be 

applied to the sensing channels in order to optimize its performance. However, the present 

demand on the licensed wireless spectrum makes it particularly challenging to find 

availability of spectrum holes. Interestingly, several studies have shown that when the PUs 
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transmission is maximized by a water-filling power allocation scheme over its spatial 

directions, some of these spatial directions (SD) could be left unused due to power 

limitations. As such, instead of the SUs sensing for spectrum holes, they can then 

opportunistically sense for these unused SDs as their TO, and IA can then be used to align the 

SUs transmission with these unused SD, thereby avoiding the SUs interfering with the PU 

transmission [24]. To optimize performance of the sensing channels, this work considers 

multiple cooperating SUs in the manner of CSS while implementing a WF scheme for PU 

link optimization. Since the success of SU communication depends on the accuracy of the 

sensing procedure for unused SDs [30], this work optimizes ED to give the SU a higher 

probability of correctly detecting TO’s.  

In terms of maximizing the achievable transmission rates for the SUs opportunistic link, 

several studies basically apply schemes such as uniform or optimal power allocation 

(UPA/OPA) and blind CSI estimation schemes, along with a few enhancements which makes 

them very optimal in terms of transmission rates. However, quite a number of these research 

studies are known to be more susceptible to noise impairments and are also mostly useful for 

high SNR regimes. Since implementing second order beamformers with optimal power 

allocation outperform UPA/OPA, this work considers that the multiple SUs use second order 

beamformers with OPA along with some form of transmit diversity in order to increase the 

data rates of the SU transmission without compromising the performance. 

1.4.3. Contribution 

CSS has been investigated in Rayleigh-fading environments over non-ideal reporting 

channels, where the simulation results have shown that its performance is limited by the 

probability of reporting errors. This work proposes a transmit diversity scheme using D-

STBC where CSI is not required. By regarding multiple pairs of CRs as virtual antenna arrays 
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in multiple clusters, D-STBC is applied for the purpose of decision reporting over Rayleigh 

channels. Hard combination schemes are employed at the FC due to their minimal bandwidth 

requirements. Simulations results show that this method achieves full transmit diversity, 

albeit with slight performance degradation in terms of power. The results also show 

improvements in sensing performance when compared to conventional CSS over non-ideal 

reporting channels. 

For a multiuser MIMO overlay CR network, a ST-OIA technique has been proposed that 

allows spectrum sharing between PU and SU while ensuring zero interference to the PU. The 

CR system consists of one PU and K SUs where local CSI is available at both the Tx’s and 

Rx’s of SUs. The PU uses ST-WF algorithm to optimize the PU’s transmission and in the 

process, frees up unused eigenmodes that can be exploited by the SU. Because ST-WF 

achieves higher capacity per antenna than other methods at low to moderate SNR regimes, it 

makes it ideal for implementation in CR networks. The SUs align their transmitted signals in 

such a way their interference impairs only the PU’s unused eigenmodes. For this solution 

with multiple SUs exploiting the benefits of CSS to work, there should be zero interference at 

the PU-Rx. Secondly, there should be zero interference to both the PU and SU Rx’s. The 

third condition caters for the multiple SU scenarios which require limited cooperation 

between the PU-Rx and the multiple SUs to ensure interference from multiple SUs are 

aligned along unused eigenmodes. In order to optimize the SUs transmission rates, this work 

assumes a TDMA system for the SU network such that principle of Reciprocity can be 

utilized [12].  

Naturally, the success of the SUs communication depends on the availability of unused DoFs 

as shown in the work in [15], which proposed a fast sensing method based on a generalized 

likelihood ratio test (GLRT) to more accurately decide the absence of individual PU streams 
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thereby determining the availability of unused DoFs. This work makes use of a double 

threshold (defined as 𝜆1, 𝜆2respectively) ED scheme similar to the work in [27], [28] for 

purpose of enhancing detection accuracy. The condition of this method states that “if the 

energy value exceeds 𝜆2, then the SU reports unavailability of used SD. Alternatively, if it is 

less than 𝜆1, then SU reports availability of unused SD. Furthermore, if energy value is 

between 𝜆1 and 𝜆2 , then the SU reports this observational energy value also, thus the FC 

receives two kinds of information; local binary decision and the observational value. This 

gives the SU a higher probability of correctly detecting TOs because the FC has a wider 

range of information from which available TOs can be found. 

The SU communication in this work is also based on fixed-rate communication where the 

transmission rate is independent of SNR level, implying it would support medium to low 

range SNR values. As mentioned earlier, the Alamouti structure used for STBC is an 

effective way of providing diversity for MIMO systems, albeit with local CSI requirements at 

the SU-Rx’s. Thus, this work has considered a DS-TBC scheme for independent, identically 

distributed (i.i.d) fading channels, where the channels spatial correlations were estimated 

without the need for local CSI or training symbols. With a focus on the SUs channels being 

spatially correlated, this would imply that even in fast-fading channel conditions, the 

channel’s spatial correlations would typically change slowly to corroborate with the 

assumption of fixed rate transmission. Thus, a transmission scheme is developed here that 

combines beamforming with D-STBC, where each transmitter encodes symbols using 

Alamouti codes followed by beamformers that align interference at unintended receivers. 

Unlike the threshold beamforming (TBF) protocol, this work first provides a reference 

symbol followed by differentially phase-shifted symbols (known as codewords) and given the 

fact that the channels correlations are assumed relatively constant for at least two symbol 
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periods, the receiver  processes the received data independent of CSI or training symbols. 

Any channels fluctuation outside this window implies outage and thus the SU remains silent. 

In order to improve sum rates of the SU transmission, a correlation matrix is computed which 

releases eigenvectors that are used to transmit the code words with proper power loading on 

each eigenvector, in a process called eigen-beamforming.  The receiver removes the aligned 

interference and decouples symbols using interference cancellation followed by symbol-by-

symbol decoding. 

1.5.Organization 

In Chapter 2, we design and analyze the performance of CSS in CR networks and IA in CR 

Networks. The rest of Chapter 2 is organized as follows: In Section 2.1, the properties of CSS 

in relation to local sensing are discussed and the cooperative system architecture is presented. 

In Section 2.2, we discuss the related mathematical statistics in terms of the probabilities of 

detection, false alarm as well as the receiver operating characteristics (ROC) of CR. Section 

2.3 discusses the classification of CSS into three main categories while Section 2.4, discusses 

the various data fusion techniques used in CSS. The performance offered by the CSS strategy 

is analyzed via numerical and simulation results in Section 2.5. In addition, we show how the 

use differing combination schemes at the FC improves performance. Section 2.6 introduces 

IA as an interference management strategy, which leads to the discussion of IA in CR 

networks in Section 2.7. The first and second paradigms used to implement IA in CR 

networks are presented along with various mathematical algorithms used to achieve this. 

Comprehensive analyses for both paradigms are presented in Section 2.8 using simulations to 

ascertain the inherent advantages of IA in CR networks.   
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In Chapter 3, we present D-STBC schemes for CSS. Since the reporting channels are also 

susceptible to fading effects and interference, then some other form of transmit diversity can 

alleviate performance of decision reporting. STBC being one of such diversity techniques can 

be applied to CSS in CR networks. The rest of Chapter 3 is organized as follows: In Section 

3.2, the network model is introduced (clusters based on metric distance). The performance 

limits of CSS are measured on the probability of reporting errors. In Section 3.3, a 

performance analysis of cooperative spectrum sensing over Rayleigh fading channels is 

given, which is followed by a transmit diversity model using DSTBC. In Section 3.4, the FC 

with hard and soft combinations is presented and detailed analyses for various fusion rules 

are presented. Simulation results and for multiple are clusters are presented in Section 3.4 and 

conclusions are drawn in Section 3.5. 

In Chapter 4, we design space-time opportunistic interference alignment in CR networks. The 

rest of Chapter 4 is organized as follows. In Section 4.2, the system model is described, and 

the main assumptions required for analysis are introduced. In Section 4.3, a comparative 

analysis is done between the spatial water-filling (SWF) and ST-WF schemes for the PU link 

and Section 4.4 presents the space-time opportunistic IA scheme (ST-OIA) by presenting the 

original OIA approach and describing the steps taken towards achieving the novelty of this 

work. Section 4.5 provides the reciprocity technique used to optimize the transmission rates 

of the SU network. Simulation results as well as a performance comparison between this 

work and [21] – [24] were then presented in Section 4.6, while section 4.7 presents the 

concluding remarks of this chapter. 

In Chapter 5, OIA is described where CSI acquisition is impractical. The rest of Chapter 5 is 

organized as follows: In Section 5.2, the system model and the main assumptions required for 

analysis are reviewed (given that the system model for this chapter is the same as Chapter 4). 
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In Section 5.3, a review on the comparative analysis between the MEB, SWF and ST-WF 

schemes is done, as well an analysis on outage probability of the ST-WF algorithm. Section 

5.4 presents the OIA by presenting the sensing phase (along with the double threshold 

method) and the IA phase with the SU selection process. Section 5.5 presents OIA with 

STBC by briefly reviewing the literature before presenting the algorithms required for the 

STBC-beamforming-IA technique. Section 5.6 then presents the OIA with D-STBC approach 

that describes the steps taken towards achieving diversity and higher data rates. Section 5.7 

provides an overview of simulation results as well as performance comparisons. Finally, 

Section 5.8 presents the concluding remarks. 

Finally, Chapter 6 concludes the thesis and gives directions for further research. 
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2. Cooperative Spectrum Sensing 

The process of CSS starts with local spectrum sensing at each cooperating CR user and 

similar to spectrum sensing without cooperation, the objective of local SS is PU signal 

detection. Being one of the crucial functionalities of CR in terms of learning the radio 

environment, the techniques used to carry out SS are crucial in helping networks achieve 

diversity and are one of the fundamental elements in CSS [30].  

SS techniques can be classified into two broad categories namely coherent and non-coherent 

detection as shown in fig 2.1 below [30]. In coherent detection, the PU signal can be detected 

by comparing the received signal or the extracted signal characteristics with a priori 

knowledge of PU signals. Examples of coherent detection include matched filter detection 

and cyclostationary feature detection. In non-coherent detection, no priori knowledge is 

required for detection. Examples in this category include ED, compressed sensing and 

wavelet detection. Our discussion here focuses on the ED techniques, rather than an 

exhaustive search for all detection methods. This is due to its simplicity, low implementation 

costs, low computational complexity and its wider applicability as it works irrespective of the 

signal format to be detected [31]. The detailed discussion of other sensing techniques can be 

found in [32] – [35].  

Sensing Techniques

Coherent Non-Coherent

Matched Filter 
Detection

Cyclostationary 
Feature Detection

Energy Detection Wavelet Detection 
Compressed 

Sensing

 

Fig. 2.1 Spectrum Sensing Techniques 
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2.1.Energy Detection Based Spectrum Sensing 

When the considered deterministic PU signal is unknown, it is sometimes appropriate to 

consider the signal as a sample function of a random process even if its spectral region to 

which it is approximately confined is known. In the absence of much knowledge concerning 

the signal, it seems appropriate to use an ED [35], [36] to determine the presence of a signal 

assuming the noise is considered to be Gaussian and additive with zero mean.  The ED 

technique is a simple and effective SS approach whereby the received signal energy is 

compared to a defined detection threshold to determine the presence or absence of the PU 

signal [34]. The received signal energy 𝑦(𝑡) at the CR user can be formulated as a binary 

hypothesis problem given as follows:  

                    𝑦(𝑡) =

{
 
 

 
 ∑ 𝑛𝑖(𝑡)

𝑚

𝑖=1

                                𝐻0   

∑ ℎ𝑖(𝑡)𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)

𝑚

𝑖=1

         𝐻1 

                                                                  (2.1) 

where 𝑦(𝑡) denotes the received signal at the CR user, 𝑠𝑖(𝑡) is the transmitted PU signal, 

ℎ𝑖(𝑡) is the channel of the sensing channel, 𝑛𝑖(𝑡) is the zero-mean additive white Gaussian 

noise (AWGN),  𝐻0 and 𝐻1 denote the hypothesis of the absence and the presence, 

respectively, of the PU signal in the frequency band of interest. 

In energy detection, the energy of 𝑦(𝑡) is pre-filtered by an ideal bandpass filter in a fixed 

bandwidth 𝑊 before being squared and integrated over an observation time window 𝑇 . The 

energy collected in the frequency domain is denoted by 𝐸𝑖, which serves as a decision 

statistic given as follows [35] – [37]: 

                 𝐸𝑖~ {
𝒳2𝑚

2                  ,              𝐻0   

𝒳2𝑚
2 (2𝛾𝑖 )       ,             𝐻1 

                                                                                      (2.2) 
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Where 𝒳2𝑚
2  denotes a central chi-square distribution with 2𝑚 DoF and 𝒳2𝑚

2 (2𝛾𝑖) denotes a 

non-central chi-square distribution with 𝑚 DoF and a non-centrality parameter 2𝛾𝑖. The 

instantaneous SNR of the 𝑖th CR is given as 𝛾𝑖, and 𝑚 = 𝑇𝑊 is the time-bandwidth product. 

The received signal energy is compared to a detection threshold 𝜆, which is a value set 

depending on the requirements of detection performance.  A decision saying that PU is idle 

 𝐻0 is made if it is less than the threshold. Otherwise CR thinks that PU is active 𝐻1. 

                    𝑑 = {
 𝐻𝑜    ,                     𝑖𝑓  𝑦(𝑡) <   𝜆 
 𝐻1     ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                                        (2.3) 

ED is not without its drawbacks as it is well known that the detection performance is affected 

when the noise variance is unknown to the sensing node especially in the lower SNR regimes, 

which makes it difficult to distinguish between the radio signal and noise signal. Therefore 

the knowledge of the noise power can be used to improve the detection performance of the 

energy detector. 

The CR’s detection performance is commonly measured by the probability of false alarm  𝑃𝑓 

and detection 𝑃𝑑  which are defined as follows: 

                𝑃𝑑 = 𝑃{𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐻1| 𝐻1} = 𝑃{𝑦 > 𝜆| 𝐻1}                                                            (2.4) 

                𝑃𝑓 = 𝑃{𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐻1| 𝐻0} = 𝑃{𝑦 > 𝜆| 𝐻0}                                                            (2.5) 

Based on these definitions, the probability of a missed detection is defined as 𝑃𝑚 = 1 − 𝑃𝑑 =

𝑃{𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐻0| 𝐻1}. The plot that demonstrates 𝑃𝑑 versus 𝑃𝑓 is called the ROC curve, 

which is the metric for performance evaluation of sensing techniques. 

2.2.Related Mathematical Statistics 

2.2.1. Probability of False Alarm 

When PU is idle (𝐻0), the received signal 𝑦(𝑡) at the CR follows the central chi-squared 

distribution and non-central chi-squared distributed under ( 𝐻1) with 2𝑚 DoF [36].   
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Its PDF can be written as [38]  

                 𝑓(𝑦|𝐻0) =
y𝑚−1𝑒−

𝑦
2

Γ(𝑚) ∙ 2𝑚
                                                                                                    (2.6)  

 

Where Γ(∙) is the gamma function 

As there is only noise in the received signal, when PU is idle (𝐻0) as in(2.1),  𝑃𝑓 is 

independent of the statistics of the wireless channel [36], thus: 

                     𝑃𝑓 = ∫ 𝑓(𝑦|𝐻0)𝑑𝑦
∞

𝜆

=
Γ (𝑚,

𝜆
2)

Γ(𝑚)
                                                                               (2.7) 

2.2.2. Probability of Detection 
 

On the contrary, when PU is active (𝐻1) as in(2.1), the received signal energy is dependent 

on the channel type. The received signal energy for a particular instantaneous SNR also 

follows the non-central chi-squared distribution with 2𝑚 degree of freedom and non-

centrality parameter of 2𝛾𝑖, with the instantaneous SNR of 𝛾𝑖. Its PDF can be written as [38] 

                  𝑓(𝑦,  𝛾𝑖|𝐻1) =
y𝑚−1𝑒−

(𝑦+2𝑚 𝛾𝑖)
2

Γ(𝑚) ∙ 2𝑚
 0𝐹1(𝑚,

𝑚 𝛾𝑖𝑦

2
)                                                   (2.8)  

 

Where 0𝐹1(. , . )is the congluent function [39]. 

For an AWGN Channel, the instantaneous SNR at the CR user remains constant at 𝛾�̅�. The 

PDF for the received signal is given as  

             𝑓(𝑦|𝐻1) =
y𝑚−1𝑒−

(𝑦+2𝑚 𝛾𝑖̅̅ ̅)
2

Γ(𝑚) ∙ 2𝑚
 0𝐹1(𝑚,

𝑚 𝛾�̅�𝑦

2
)                                                               (2.9)  

Similar to (2.7),  𝑃𝑑  is given as 

                     𝑃𝑑 = ∫ 𝑓(𝑦|𝐻1)𝑑𝑦
∞

𝜆

= 𝑄𝑚(√2𝑚 𝛾�̅�√𝜆 )                                                              (2.10) 
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Where 𝑄𝑚 is the 𝑢th order Marcum-𝑄 function, 𝛾𝑖 = 𝐸𝑠|ℎ|2 𝑁0⁄ , 𝐸𝑠 is the power budget at 

the PU [39]. 

In conditions of multipath fading, the Rayleigh channel model is one of the most common 

and simple channel models that can be used. Assuming Rayleigh fading with random 

instantaneous SNR at the CR and a PDF of 𝑓ℎ( 𝛾𝑖), the PDF for the received signal energy 

can be obtained by 

𝑓(𝑦|𝐻1) = ∫  𝑓(𝑦,  𝛾𝑖|𝐻1) ∙ 𝑓ℎ( 𝛾𝑖)𝑑𝑦
∞

0

 

= ∫
y𝑚−1𝑒−

(𝑦+2𝑚 𝛾𝑖)
2

Γ(𝑚) ∙ 2𝑚
 0𝐹1(𝑚,

𝑚 𝛾𝑖𝑦

2
) ∙

1

 𝛾�̅�
𝑒

−
 𝛾𝑖
 𝛾𝑖̅̅ ̅𝑑 𝛾𝑖 

∞

0

                                                  (2.11) 

In terms of the incomplete gamma function Γ(∙), (2.10) can be rewritten as 

   𝑓(𝑦|𝐻1) =
𝑒

−
1

2(1+𝑚 𝛾𝑖̅̅ ̅)
𝑦

× [Γ(𝑚 − 1) − Γ (𝑚 − 1,
𝑚 𝛾�̅�𝑦

2 + 2𝑚 𝛾�̅�
)]

2 ∙ (1 + m 𝛾�̅�) ∙ (
𝑚 𝛾�̅�

1 + 𝑚 𝛾�̅�
)𝑚−1 ∙ Γ(𝑚 − 1)

                                (2.12) 

Where  𝛾�̅� is the average SNR received at the CR user. 

Hence, in Rayleigh fading channel, 𝑃𝑑 is given as 

𝑃𝑑(𝜆) = ∫ 𝑓(𝑦|𝐻1)𝑑𝑦
∞

𝜆

  

=
Γ (𝑚 − 1,

𝜆
2)

Γ(𝑚 − 1)
+ 𝑒

−
1

2(1+𝑚 𝛾𝑖̅̅ ̅) × (1 +
1

𝑚 𝛾�̅�
)𝑚−1 × [1 −

Γ (𝑚 − 1,
𝜆𝑚 𝛾�̅�

2(1 + 𝑚 𝛾�̅�)
)

Γ(m − 1)
            (2.13) 

 

While in Nakagami fading channel, the derivation of 𝑃𝑑 is presented in [36] as follows 

𝑃𝑑,𝑁𝑎𝑘(𝑔, 𝑚,  𝛾�̅�, 𝜆) = 𝛼 [𝐺1 + 𝛽 ∑
(
𝜆
2)

𝑛

2(𝑛!)

𝑚−1

𝑛=1

1𝐹1 (𝑔; 𝑛 + 1; 𝜆 2⁄
 𝛾�̅�

𝑔 +  𝛾�̅�
⁄ )]                (2.14)  

Where 

𝛼 =
1

Γ(g)2𝑔−1
(

𝑔

 𝛾�̅�
)

𝑔
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𝛽 = Γ(g) (
2 𝛾�̅�

𝑔 +  𝛾�̅�
)

𝑔

𝑒−
𝜆
2 

𝐺1 =
2𝑔−1(𝑔 − 1)!

(
𝑔
 𝛾�̅�

)
𝑔

 𝛾�̅�

𝑔 +  𝛾�̅�
𝑒

−
𝜆
2

𝑔
𝑔+ 𝛾𝑖̅̅ ̅ [(1 +

𝑔

 𝛾�̅�
) (

𝑔

𝑔 +  𝛾�̅�
)

𝑔−1

× 𝐿𝑔−1 (−
𝜆

2

 𝛾�̅�

𝑔 +  𝛾�̅�
)

+ ∑ (
𝑔

𝑔 +  𝛾�̅�
)

𝑛

𝐿𝑛 (−
𝜆

2

 𝛾�̅�

𝑔 +  𝛾�̅�
)

𝑔−2

𝑛=0

] 

Where 1𝐹1(. ; . ; . ),𝐿𝑛(∙), 𝑔, 𝑚 are the confluent hypergeometric function, Laguerre 

polynomial of degree 𝑛 ,Nakagami parameter and time-bandwidth product respectively [40]. 

2.2.3. Receiver operating characteristics (ROC) 

In order to compare the performances for different threshold values, ROC curves can be used 

to allow us to explore the relationship between the 𝑃𝑑 and 𝑃𝑓 of a sensing method for a 

variety of different thresholds, thus enabling the determination of an optimal threshold. 

This section provides simulation results to verify the analytical framework, and to compare 

the ROC curves for different channel scenarios presented in section 2.2 above. We first show 

the performance of ED in non-cooperative cases (for AWGN and Rayleigh Fading channels), 

which is an important starting point of the investigation for cooperative cases. 
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Fig 2.2 ROC curves for the ED for various SNR levels for the AWGN channel 

It can be seen in fig 2.2 for that even for the AWGN channel with more ideal parameters; the 

ED capabilities degrade when the average  𝛾𝑖 of the channel decreases from 10 dB to 1 dB 

Fig. 2.3 on the other hand illustrates ROC curves with the Rayleigh fading channel for 

different 𝛾𝑖 values, which shows a higher performance degradation of the energy detector 

when comparisons are made between Fig. 2.2 and Fig. 2.3. This deficit in performance can be 

attributed to the shadowing/fading effects of the channel. 
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Fig 2.3 ROC curves for the ED for various SNR levels for the Rayleigh channel 

2.3.Classification of Cooperative Spectrum Sensing 

CSS mitigates the problems of noise uncertainty, fading and shadowing as shown in fig 2.5 

below. The process starts with local SS where all CR users are tuned to the selected licensed 

channel or frequency band on a sensing channel. For data reporting, the channel linking each 

cooperating CR user and the FC for sending the sensing results is called a reporting channel 

[30]. To facilitate analysis, CSS can be classified into three categories based on how 

cooperating CR users share the sensing data in the network. These categories include 

centralized, distributed and relay-assisted [30], [31], [41] as illustrated in Fig. 2.4. 
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Fig 2.4 Receiver uncertainty and multipath/shadow fading [30] 

2.3.1. Centralized CSS 

In centralized CSS, the FC controls the three-step process by selecting a frequency band of 

interest for sensing and directs all the CRs to perform local sensing on the sensing channel. 

Secondly, all CR users report their sensing results via the reporting channels. Lastly, the FC 

collects the received local sensing information, identifies the available spectrum holes and 

diffuses the decision back to cooperating CR users [30].  
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Fig 2.5 Classification of CSS: (a) Centralized (b) Distributed (c) Relay-assisted 
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2.3.2. Distributed CSS 

Unlike centralized, distributed CSS does not rely on the FC for making the cooperative 

decision. Based on a distributed algorithm, CR users share sensing information between them 

and based on a local criterion, decide which portion of the spectrum is idle. If the criterion is 

not satisfied, CR users resend their sensing results to each other and repeat this process until 

there is convergence and a decision is reached. This category is more advantageous than 

centralized CSS in terms of cost because there is no need for a backbone infrastructure. Its 

major disadvantage lies in the fact that it may take several iterations to reach the unanimous 

cooperative decision, which can lead to large network overheads and prolonged sensing 

duration that will ultimately have a negative impact on the benefits of CSS.  

Several algorithms have been proposed in the literature such as the work done in [42] – [45] 

to optimize this process. Of particular interest is gossiping updates for efficient spectrum 

sensing (GUESS) approach [43]. By performing efficient coordination between CRs, this 

work is shown to have low-complexity with reduced protocol overheads. Another noteworthy 

endeavour is the work done in [44], where only final decisions are shared to minimize 

overheads.  

2.3.3. Relay Assisted 

This category is based on CR users observing weak sensing and reporting channels in one 

part as well as strong sensing and reporting channel in another and trying to complement and 

cooperate with each other to improve the performance of CSS. As seen in fig 2.6(c), the 

relay-assisted CSS can exist in both distributed and centralized structures based on the 

demands on sensing and reporting at any given time. This category can also be operated as a 

multi-hop CSS category. It should be noted that the relay for CSS has a distinctly different 

purpose from the relays in cooperative communications [46]. 
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Of the three categories outlined above, it becomes clear that the optimal strategy for 

deploying CSS is the centralized category because of its relative ease of implementation, 

reduced overheads and shorter sensing durations compared with the distributed and relay-

assisted categories of CSS, thus will be the preferred choice for this research. 

The centralized approach does have its drawbacks of incurring some overheads such as 

control channel bandwidth, energy efficiency, and reporting delay especially when a large 

number of CR users are involved in CSS.  

Grouping the cooperating users into clusters for CSS has been shown to be effective in 

reducing the cooperation range and the incurred overhead [47], [48]. In [49], four clustering 

methods are considered for user selection depending on the availability of location 

information. Random clustering is a method adopted that randomly divides CR users into 

clusters of equal size when the actual positions of CR users and PUs are not known. This is 

followed by reference-based clustering which depends on CR user positions with respect to a 

given reference. The third method is called statistical clustering, where clusters are formed by 

using the statistical information and the proximities of CR users when only the positions of 

CR users are known. In the case of distance-based clustering, when the positions of both CR 

users and PUs are known, only the CR users closest to the PU in the cluster participate in 

CSS. In [21], clustering is utilized to exploit user selection diversity to improve the detection 

performance through reporting channels under Rayleigh fading. In each cluster, the CR user 

with the largest reporting channel gain is selected as the cluster head (CH) to reduce the 

reporting overheads.  

As such, the next chapter of this research work (chapter 3) considers CSS in a more realistic 

environment showing how CSS performance is limited by the imperfect reporting channels, 

when both the sensing channels and reporting channels are characterized by fading. In order 
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to cope with this drawback, the work in Chapter 3 proposes a transmit-cluster scheme for the 

CR users to design a diversity based CSS method with STBC.  

2.4.Data Fusion  

There are a few fundamental elements of CSS that enables its successful operation and 

deployment. They include sensing techniques, hypothesis testing etc, which have already 

been introduced in earlier sections of this write up. The remaining elements which include the 

cooperation models and data fusion will be discussed in this section. 

The cooperation model, which consists of the parallel fusion and game theoretical models, 

simply consider how CR users cooperate to perform SS. However, the game theoretical 

model was not considered further as it is beyond the scope of this research. The parallel 

fusion (PF) model is basically the model that has been used to describe CSS so far in this 

work, with the CR users observing the licensed spectrum for TOs and diffusing these 

observations to the FC, which then fuses the reported data and makes a decision based on 

hypothesis testing [41]. 

Data fusion, which is also an element of CSS, is the process of combining local sensing data 

for hypothesis testing by the FC in centralized CSS. Based on bandwidth demands, Data 

fusion can be carried out in two different ways namely (1) soft combining and (2) hard 

combining.  

2.4.1. Soft combining (Quantized Soft combing) 

CR users can either transmit the entire local sensing samples or the complete local test 

statistics for soft decision. Quantized Soft Combining is similar to the Soft combining, but the 

CR users have the ability to quantize the local sensing results and send only the quantized 

data in order to reduce control channel overheads [30]. For the case of our considered ED 

based CSS, existing and simpler receiver diversity techniques of equal gain combining (EGC) 
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and selection combining (SC) have been utilized for soft combing in [36], with the EGC 

method having a slightly higher gain than the SC method. Another method, which is based on 

log-likelihood ratio test is the Chair-Varshney (CV) combining rule, which was shown to be 

optimal for fading as well as noisy channels [50] ,[51].  

2.4.2. Hard Combining 

It is very easy and convenient to transmit the one-bit decision for hard combining after binary 

local decisions have been reported to the FC. The commonly used fusion rules are AND, OR 

and Majority fusion rules.  In AND-rule, all sensing results should be 𝐻1 for deciding 𝐻1, 

where 𝐻1 is the alternate hypothesis, i.e. the hypothesis that the observed band is occupied by 

a PU. In OR-rule, the CR decides 𝐻1 if any of the received decisions plus its own is 𝐻1 . M-

out-of- N rule outputs 𝐻1 when the number of 𝐻1 decisions is equal to or larger than 𝑀 [33]. 

Another less popular fusion rule that shows better performance than the AND/OR rules is the 

Dempster-Shafers theory of evidence rule [52]. 

Using Soft combining at the FC can achieve better detection performance than hard 

combining, but at the cost of channel overhead, although quantized Soft combining could 

reduce control channel overheads with the possibility of having a degraded performance due 

to the loss of information from quantization. Hard combining rules on the other hand are 

found to perform as good as soft decisions when the number of cooperating users is 

sufficiently high [53].  

The false alarm 𝑄𝑓 and detection probabilities 𝑄𝑑 for CSS under this rule for data fusion are 

given by 

                                𝑄𝑓 = 𝑃𝑟𝑜𝑏{ 𝐻1| 𝐻0} = ∑ (
𝑁
𝑙
) 

𝑁

𝑙=𝑘

𝑃𝑓
1(1 − 𝑃𝑓)𝑁−𝑙                                       (2.15) 
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                               𝑄𝑑  = 𝑃𝑟𝑜𝑏{ 𝐻1| 𝐻1} = ∑ (
𝑁
𝑙
) 

𝑁

𝑙=𝑘

𝑃𝑑
1(1 − 𝑃𝑑)𝑁−𝑙                                      (2.16) 

2.5.Numerical Comparison 

This work focuses on cooperative cases were the impact of the number of CRs on detection 

performance is explored.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

P
ro

b
a

b
il

it
y

 o
f 

D
e

te
ct

io
n

 P
 d

Probability of False Alarm P f

Number of users 1, 2, 3, 4, 5

 

Fig 2.6 ROC curves for up to 5 users for the Rayleigh channel  

The upper bound of 𝑃𝑑  based on simulation results are shown in Fig. 2.6, where it is seen that 

increasing the number of CRs considerably improves the detection performance. The average 

SNR for other channels (from the PU to each CR and from each CR to the FC) is 5 dB.  If 

these sensing channels are identical and independent, then every SU achieves identical 𝑃𝑓 

and 𝑃𝑑. As shown in fig 2.2 and 2.3, when the average SNR of the direct link is improved 
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from -5 dB to 5 dB, ROC curves move rapidly to the left-upper corner of the ROC plot, 

which means better detection capability.  

Fig. 2.7 shows the ROC curves for 𝑘-out-of-𝑛 rule in decision fusion strategy for error-free 

channels, where three fusion rules: OR, AND, and Majority rules, are considered. The 

average SNR in each link (i.e. the sensing and reporting channels) is 5 dB. With error-free 

reporting channels, the OR rule always outperforms both AND and Majority rules because 

the FC can decide  𝐻1 when at least one CR user detects the PU signal.  
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Fig 2.7 ROC curves for up to 5 users for the AND, OR and Majority Combination 

However, deciding  𝐻1 for the AND rule requires that all CR users must detect the PU signal. 

The Majority rule has better detection capability than AND rule. The simulation results 

shown fig 2.8, in which Maximum Ratio Combining (MRC) has been proved experimentally 
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to be a nearly optimal soft combination scheme are all under i.i.d. Rayleigh channels. MRC is 

a coherent technique, where all the signals are co-phased and weighted according to their 

signal voltage to noise power ratios. Out of all the soft combining techniques, MRC provides 

the best performance. One of its major drawbacks is its significant hardware requirements. 

The soft combining schemes exhibit much better performance than the conventional hard 

combination schemes, thus verifying advantages of soft combination especially with lower 

SNR values (Section 2.4.2). It is observed from fig 2.8 that while the MRC scheme exhibits 

the best detection performance, it is completely dependent on full CSI. The SLC scheme, on 

the other hand does not require any CSI, but still gives less performance than the MRC 

scheme. In the absence of CSI, the SLC scheme provides the best performance. 
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Fig 2.8 ROC curves for up to 5 users for Soft Combination 
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2.6.Interference Alignment 

Traditionally, minimal interference is simply treated as background noise; considerable 

interference though, can first be decoded and then removed from the received signal (i.e., 

through interference cancellation); or avoided completely either by orthogonalizing the 

channels or adopting a medium access control (MAC) scheme [53, 54].  

As stated in Chapter 1, recent research has found IA as a significant breakthrough in 

interference management; a linear pre-coding technique which exploits interference in 

interference limited wireless networks [17, 55]. It is by definition a cooperative interference 

management strategy that results in sum capacities scaling up linearly at high SNR by taking 

advantage of the multiple signaling dimensions provided by the Tx’s time slots, frequency 

blocks or antennas to achieve the IC’s maximum multiplexing gain or DoF [19], [53] – [57].  
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Fig 2.9 Interference Channel (IC) 

The study of the DoF initiated in [55] presented the IA scheme in its linear form to be a 

general principle, in which users are able to transmit at a data rate equal to one-half of their 

capacity in an ideal interference-free channel to yield a normalized DoF i.e. the DoF could be 
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up to of 𝐾/2, where 𝐾 is the number of interfering users. This is all achieved by users 

linearly pre-coding their transmissions such that each of the interference signals are fully 

contained in a lower dimensional space and lie in a subspace orthogonal to the one occupied 

by desired signal, while the other subspace is reserved for interference free communication. 

Thus substantial system throughput gain can be achieved with IA when 𝐾 ≥ 1 despite its 

strong requirement for the global CSI at every node. 

Considering the symmetric 𝐾 −user MIMO 𝑀 × 𝑁 Gaussian IC shown in Fig. 2.9, there are 

𝐾 Tx-Rx pairs with 𝑀 antennas at each Tx and 𝑁 antennas at each Rx. The Rx of  𝐶𝑅 𝑇𝑥1  

user only needs to correctly decode the signal from the Tx of 𝐶𝑅 𝑅𝑥1 using zero forcing. 

There are therefore 𝐾 − 1  interfering signals at each Rx. The received signal 𝑌𝑘(𝑛) ∈

ℂ(𝑁×1) at 𝑘𝑡ℎ receiver at time 𝑛 can be expressed as  

                        𝑌𝑖(𝑛) = ∑ 𝐻𝑖𝑗(𝑛)𝑥𝑗(𝑛) + 𝑧𝑖(𝑛) ;  ∀𝑘 ∈ 𝜘 ≜ {1,2, . . . . . , 𝐾}                      (2.17)

𝑖

𝑗=1

 

Where 𝑌𝑖(𝑛) ∈ ℂ(𝑁×1) denotes the 𝑁𝑖 × 1 received signal (vector) at the 𝑖𝑡ℎ receiver 

𝑧𝑖(𝑛) ∈ ℂ(𝑁×1) denotes the 𝑁𝑖 × 1 zero mean unit variance circularly symmetric AWGN 

noise vector at the 𝑖𝑡ℎ receiver 

𝑥𝑗(𝑛) ∈ ℂ(𝑀×1) Denotes the 𝑀𝑗 × 1 signal (vector) transmitted from the 𝑗𝑡ℎ transmitter  

𝐻𝑖𝑗(𝑛) ∈ ℂ(𝑁×𝑀) is the 𝑁𝑖 × 𝑀𝑗  matrix of the channel coefficients between the 𝑗𝑡ℎ transmitter 

and the 𝑖𝑡ℎ receiver 

Also, 𝑃𝑗 = 𝐸[[||𝑥𝑗(𝑛)||2]            

Where 𝑃𝑗is the transmit power of the 𝑗𝑡ℎ transmitter. 

The DoF 𝑑 for the 𝑘𝑡ℎ user’s message is also defined as 𝑘𝑡ℎ ≤ (𝑀𝑗 , 𝑁𝑖) 

The next step in our review is to define the transmitted signal from the 𝑘𝑡ℎ user as  
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𝑥𝑗 = ∑ 𝑉𝑗
(𝑑)

�̃�𝑗
(𝑑)

=

𝑑𝑘

𝑑=1

𝑉𝑗�̃�𝑗                                                                                                          (2.18) 

Where �̃�𝑖 is a 𝑑𝑖 × 1 vector that denotes the independently encoded signal from the 𝑘[𝑡ℎ] user 

𝑉𝑗 Is the 𝑀𝑗 × 𝑑𝑗 transmit pre-coding (beam-forming) matrix  

The pre-coding filters are designed to ensure overlap of interference subspaces at the Rx’s 

while also ensuring desired signals remain linearly independent of the interference. This 

makes it possible for the Rx’s to zero-force all interference signals independent of the desired 

signals. 

Defining the zero-forcing filters as 𝑈[𝑖], the DoF allocation 𝑑 for each SU is feasible if there 

exists a set of transmit pre-coding matrices 𝑉[𝑗] and receive suppression matrices 𝑈[𝑖] defined 

as follows: 

                                                𝑉𝑗: 𝑀𝑗 × 𝑑𝑗 , 𝑉𝑗
†𝑉𝑗 = 𝐼𝑑[𝑗]                                                          (2.19) 

                                               𝑈𝑖: 𝑁𝑖 × 𝑑𝑖, 𝑈𝑖
†𝑈𝑖 = 𝐼𝑑[𝑖]                                                          (2.20) 

If interference is suppressed into the null space of 𝑈𝑖, then the following IA conditions must 

be satisfied 

                                                    𝑈𝑖
†𝐻𝑖𝑗𝑉𝑗 = 0, ∀𝑗 ≠ 𝑖                                                                     (2.21) 

                                            𝑟𝑎𝑛𝑘(𝑈𝑖
†𝐻𝑖𝑗𝑉𝑗) = 𝑑𝑖, ∀𝑖 ∈ {1,2, . . . . . , 𝐾}                                       (2.22) 

For the constant MIMO IC considered here, the channel matrix is assumed to remain constant 

for the duration of one extended symbol, i.e., each block in the extended channel matrix is the 

same and the channel coefficients are assumed to be drawn from a continuous distribution 

and all Tx’s and Rx’s are assumed to have global CSI of all links.  

The receiver 𝑖  premultiplies 𝑌𝑖(𝑛) with a linear filter 𝑊𝑖
𝐻 ∈ ℂ𝑆𝑑𝑖×𝑁𝑆 to obtain 
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                �̂�𝑖 = 𝑊𝑖
𝐻𝐻𝑖𝑖𝑥𝑖 + ∑ 𝑊𝑖

𝐻𝐻𝑖𝑗𝑥𝑗 + 𝑊𝑖
𝐻𝑧𝑘                                                           (2.23)

𝐾

𝑗=1,𝑗≠𝑖

 

The first term in the above represents the desired signal, while the second term represents the 

interference from the other Tx’s, and the last term is due to the noise at the Rx. 

IA can be therefore be summarized as a technique that calculates a set of precoders such that 

any user can cancel the interference it observes from all other users without destroying its 

desired signal [58], [59]. 

2.7.Interference Alignment in Cognitive Radio 

It was interesting to see that the potential interference free dimensions or DoF that can be 

created largely depended on the alignment techniques involved, implying that the signal 

space could potentially have as many spatial dimensions as the total number of Tx and Rx 

antennas across all the nodes in the network [60]. However, achieving optimal signal 

alignment is still a very challenging task [17] of which techniques such as message sharing, 

beamforming, zero forcing and successive decoding may be combined in many different 

ways across users, data streams, and antennas to establish inner bounds on the DoF [16].  

The earliest work to explore the increase in DoF with message sharing in the manner of CR 

was done in [19], [20], [55] for both the MIMO interference and X-channels. This is because 

the CR network can be seen as an IC when the SUs coexist with the PUs and the SU 

transmission is subjected to the PU-Rx threshold as well as the cross interference between the 

SUs themselves. Thus the IA technique tends to naturally fit in with CR systems effort of 

managing interference between the PU and SU [57]. The work in [19], [20] and [55] explored 

the impact of sharing one user’s message with other user’s Tx or Rx in that manner of 

singularity. In terms of performance, the DoF for the MIMO IC remained the same as without 

any form of cognition at either transmitters or receivers. Indeed, even this was a good enough 
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result for further research bearing in mind that all nodes were assumed to have equal number 

of antennas, and  increasing the number of antennas always led to higher data rates anyway. 

However, the IC was shown to achieve higher DoF if both users have some form of cognition 

at the same time i.e. they both have cognitive Txs, or they both have cognitive Rx’s or one 

has a cognitive Tx while the other has a cognitive Rx.                                                                                                                           

A number of other practical IA algorithms have been developed in the manner of message 

sharing such as [21] to [22], but these have been primarily developed for the single-tier K-

user IC. These studies focusing on single-tier systems have provided a significant research 

platform that has translated into mainstream two-tier CR networks i.e. CR networks 

consisting of both PUs and SUs, of which there are basically two main paradigms in the 

design for implementing IA in CR networks. 

2.7.1. First Paradigm of IA in CR 

The first paradigm considers a CR network consisting of a number of SU pairs and the PU-Tx 

and PU-Rx, where the PU-Tx is assumed far from its Rx and the SU-Rx’s are considered not 

to be influenced by the interference from the PU-Tx, which is somewhat similar to the Direct 

SS scenario [15]. The main goal of this IA approach is to choose appropriate Tx precoding 

matrices and Rx interference suppression subspaces for the SUs to make sure that each SU-

Rx can decode its own signal while also keeping an allowable interference level to the PU-Rx 

within the specified threshold. The transmit precoders and interference receiving matrices are 

chosen to minimize the interference leaked into the received signal subspace while 

simultaneously imposing an upper limit on the interference temperature, without the 

constraint on the number of SUs. This design is solved iteratively until the algorithm 

converges monotonically, where Tx’s and Rx’s shape the precoder and Rx subspaces by 

turns. 



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         37 

 

PU LINK

SU Tx 1

SU Tx n

SU Rx 1

PU Tx 1

H 11

SU Rx n

PU Rx 1

H n

H pp

SU NETWORK

SU Tx 2 SU Rx 2

H 22

 

Fig 2.10 First paradigm of IA in CR [61] 

Consider a K-user MIMO IC with a single PU link and K SUs, depicted in Fig 2.10. Each 

Tx/Rx pair are equipped with 𝑀𝑘  and 𝑁𝑘 antennas, respectively. It is assumed that the 

interference from the PU-Tx does not affect the SUs Rx’s. From the point of view of IA with 

a 𝑑𝑖 dimensional transmit signal vector 𝑑𝑖 ∈ ℂ𝑑𝑖×1, the signal obtained at receiver i is given 

as 

                  𝑦𝑖 = 𝐻𝑖𝑖𝑉𝑖𝑥𝑖 + ∑ 𝐻𝑖𝑗𝑥𝑗 + 𝑛𝑖 ,   𝑖 = 1, . . . . . 𝐾 

𝑖

𝑙=1,𝑙≠𝑘

                                                   (2.24) 

Where 𝐻𝑖𝑗 ∈ ℂ𝑀×𝑁 denotes the channel between jth transmitter to ith receiver, 𝑉𝑖 ∈ ℂ𝑁×𝑑𝑘is  

the precoding matrix with columns comprising of 𝑑𝑖, 𝑛𝑖 ∈ ℂ𝑀×1 denotes the receiver thermal 

noise, modelled as complex additive white Gaussian noise vector. 

The PU transmission is a point-to-point communication without considering the SU links. It 

is also assumed that the PU channel matrix 𝐻𝑖𝑖 is perfectly known at PU-Tx and PU-Rx. In 
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designing IA in single-tier networks (without PU links) over MIMO block fading channel, the 

precoding matrices {𝑉𝑖}𝑖=1
𝐾  k =1 and interference receiving matrices {𝑈𝑖}𝑖=1

𝐾  satisfy the 

conditions of (2.19) and (2.20). 

Condition (2.19) and (2.20) ensures no interference from other SU links at the output of the 

𝑘𝑡ℎ SU-Rx, and guarantees that the desired signal space at the 𝑘𝑡ℎ receiver achieves 𝑑𝑖 DoF 

when 𝐻𝑘𝑘 is full rank. The desired message for the 𝑘𝑡ℎ SU can be decoded by projecting onto 

the orthogonal complement of 𝑈𝑖 and zero forcing the interference. Note that, it is still an 

open problem for general IC to determine closed-form precoding matrices and received 

interference subspaces. Only for three-user IC has a closed-form solution of 𝑉𝑖 for any 𝑑𝑖 

been found [55], [58].  

For the two-tier CR network, the goal of IA is to choose precoder matrices {𝑉𝑘}𝑘=1
𝐾  and 

interference receiving matrices {𝑈𝑘}𝑘=1
𝐾  such that each SU-Rx can decode its own signal by 

forcing interfering SUs to share a reduced-dimensional subspace while keeping an allowable 

interference level to the PU within the specified limit. Firstly, Tx j adjusts 𝑉𝑗 to make sure the 

most of its induced interference at other Rx falls into the subspaces {𝑈𝑖}𝑖=1
𝐾 , and keep the 

interference to the PU below a pre specified level. Secondly, each SU-Rx chooses a subspace 

𝑈𝑖 to guarantee most of interference falls into the interference subspace when Tx precoding 𝑉𝑗 

is fixed. This distributed system model is the foundation on which various enhancements 

have been applied towards optimizing the operation of the first paradigm. 

One of such techniques is the idea of symbol extensions, where linear IA (i.e., those based on 

spatial beamforming) operate within the spatial dimensions provided by multiple antennas at 

the transmitting and receiving nodes, and seeks to divide those spatial dimensions into 

separable subspaces to be occupied by interference and desired signals at each Rx. This idea 

was first introduced in [19], [55] for the two user MIMO X channel where all nodes equipped 
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with M >1 antennas achieved enlarged DoF by using linear beamforming across multiple 

channel uses [53]. For the two-tier CR network, one way of exploiting symbol extensions was 

shown in the work in [61], where the SUs are trying to gain access to the licensed spectrum, 

without degrading performance of the PU network. The unique condition that avoids 

degrading the sum rate of the PU’s is a zero-impact threshold for the number of SU-Tx 

antennas, which is set in such a way that those SU-Tx’s with more (or equal) antennas than 

this threshold can utilize the licensed spectrum. A specific Successive IA (SIA) precoding is 

also proposed and shown to be optimum for various network setups determined by the 

number of PUs, SUs and antennas at each node [62].  

While the work presented in [19], [54] were significant, their closed form expressions still 

had significant drawbacks such as reliance on global CSI. Secondly, closed form solutions 

have only been found in certain cases. In general, analytical solutions to IA problem are 

difficult to obtain and even the feasibility of IA over a limited number of signaling 

dimensions remains an open problem. Thirdly, while IA performs well at high SNR, it can be 

far from optimal at moderate to low SNR [60]. 

These challenges have inspired the work done in [63], an IA scheme known to minimize 

leakage interference with only local CSI requirement in order by progressively reducing 

leakage interference at each Rx. For a two-tier CR network, the distributed IA algorithms can 

be applied with some enhancements such as the work in [64], which introduces the concept of 

matrix distance so that at Rx i, the distance between the subspace spanned by the interference 

signals 𝐻𝑖𝑗𝑉𝑗 , 𝑘 ≠ 1 and its interference receive subspace spanned by 𝑼𝒊 is kept as close as 

possible. Unlike the work done in [63], this work has no constraints on the number of users. 

Thus by assuming perfect local CSI, the distributed algorithm iteratively solves the 

optimization problem. Each secondary Tx updates its precoding matrix to minimize the total 
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interference leakage from interference subspace to signal subspace and guarantees its 

interference to the PU to be below a certain level. The matrix distance, used as a 

measurement metric, can be defined as the distance between two orthonormal matrices A and 

B, such that the following expression holds ||𝐴 − 𝐵𝐵𝐻𝐴||𝐹 [63]. The work in [64] is shown 

to improve sum rates of the CR network and employs a similar technique to [62] to protect 

the PUs, even though this particular solution consists of multiple PUs [65], [66]. 

To make improvements to the leakage interference performance at low-and-moderate SNR, 

[67] proposes a robust joint signal IA (JSIA) design that transforms the transmit optimization 

and Rx subspace selection constraints into a finite number of linear matrix inequalities that 

are both optimal and solvable by interior point methods [68]. The proposed design then 

simultaneously minimizes the leakage of interference signals from the SU-Tx while 

maintaining interference to the PU-Rx below an acceptable level. The drawback of this 

solution however, lies in its intricacy making it impossible to prove that the iterations 

converge to the global optimum [15]. 

2.7.2. Second Paradigm of IA in CR with Water filling 
 

It is well known that detecting the PU-Rx can be quite a significant challenge due to the fact 

that the PU-Rx does not transmit when the PU is active. This justifies the reason why most 

existing spectrum sensing schemes identify spectrum holes by detecting the PU-Tx [11], [15], 

[58]. A similar challenge is faced by the first paradigm of IA in CR due to the fact that the 

SUs are more concerned about the PU-Rx and how best to limit the interference level within 

the specified limit. As described above, the approach of the first paradigm is neither inferior 

nor less optimal than the approach of the second paradigm, because there are a number of 

solutions in the literature such as [61] that provide very interesting results. It is rather another 

aspect of this subject that this particular research will not focus on. 
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The second paradigm therefore considers the same CR network as the first paradigm, but the 

SUs are in closer proximity to the PU-Tx in the same manner of Indirect Spectrum Sensing 

where the SUs are required to detect the PU-Tx.  This paradigm proposes that under a power-

limitation, a PU which maximizes its own rate by water-filling on its MIMO channel singular 

values might leave some of them unused i.e. no transmission takes place along the 

corresponding SDs [69], [70]. These unused directions may be opportunistically utilized by 

the SU-Tx with OIA since its signal would not interfere with the signal sent by the PU-Tx. A 

linear pre-coder is designed, which perfectly aligns the interference generated by the SU-Tx 

with such unused SDs, thereby enabling the SUs to share the PU’s spectrum with zero 

interference to the PU transmission. An optimization scheme can also be designed to 

maximize the transmission rates of the SUs [24]. The system model consists of a single PU 

link (PU-Tx and PU-Rx) and a single SU link (SU-Tx and SU-Rx) as shown in Fig. 2.11. 

Every user is assumed to have 𝑀 transmit and 𝑁 receive antennas, where the PU and SUs 

operate in the same frequency band and all channels are Rayleigh flat-fading.  

 

SU Tx 1

PU Tx n

SU Rx 1

H ss

PU Rx n

H pp

Secondary System

Primary System

H 22

H 12

 

Fig. 2.11 Two-user MIMO interference channel for Second Paradigm of IA in CR [24] 
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The PU link is a single-user MIMO channel which is represented as a 𝑁𝑝𝑝 ×

𝑀𝑝𝑝 matrix, 𝐻𝑝𝑝 whose capacity can be defined as 

                       𝐶 = max
𝑄:𝑇𝑟(𝑄)=𝑃

𝑙𝑜𝑔|𝐼𝑁 + 𝐻𝑝𝑝𝑄𝐻𝑝𝑝
𝐻 |                                                                      (2.25) 

 Where 𝑄 is the 𝑀 × 𝑀 input covariance matrix.  

The channel matrices for both the PU and SU links are assumed fixed for the whole 

transmission duration or constant over each data block, which extends to the case of slow-

fading channels. The SU is assumed to have global CSI of all the channel transfer matrices 

which provides an upper bound on the achievable rate of the SU.  

Similar to(2.24), the IA condition states that the PU and SU received signals are given by 

             𝑦𝑖 = H𝑖𝑖𝑉𝑖𝑥𝑖 + ∑ H𝑖𝑗𝑉𝑗𝑥𝑗 + 𝑧𝑖

𝐾

𝑗=1

                                                                         (2.26) 

where 𝑦𝑖  denotes the 𝑁𝑖 × 1 received signal vector at the 𝑖𝑡ℎ receiver; 𝑧𝑖 denotes the 𝑁𝑖 ×

1 zero mean unit variance circularly symmetric AWGN noise vector at the 𝑖𝑡ℎ receiver; 

𝑥𝑖  denotes the 𝑀𝑖 × 1 signal vector transmitted from the 𝑗𝑡ℎtransmitter; 𝐇𝑖𝑗 is the 𝑁𝑖 ×

𝑀𝑖  matrix of the channel coefficients between the 𝑗𝑡ℎ transmitter and the 𝑖𝑡ℎ receiver; 

Also, 𝑃𝑖 = 𝐸[𝑥𝑖  𝑥𝑖
𝐻], where 𝑃𝑖  is the transmit power of the 𝑗𝑡ℎ transmitter. It should be noted 

that 𝑖 and 𝑗 are used as a generalization denoting each Rx and Tx pair. 

2.7.3. Water-filing 

One of the attractive features of MIMO systems is spatial multiplexing gain and consequently 

a higher capacity performance over single-input single-output (SISO) system, achieved by the 

classical water-filling (WF) algorithms [70]. WF algorithms are known to provide capacity 

achieving scenarios arising from MIMO systems taking advantage of the DoF offered by 

antennas to increase spectral efficiency as well as maximizing the mutual information 
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between the input and the output of a channel composed of several sub-channels with the 

availability of global CSI at the Tx’s [68]. 

 

Fig. 2.12 Classical water-filling power allocation [71] 

The diagram in Fig. 2.12 describes how the classical WF works, where units of water per 

sub-carrier are filled into the vessel and 𝜇 is the height of the water surface. For some sub-

carriers, the bottom of the vessel is above the water and no power is allocated to them, 

making them the unused spatial directions that could be utilized by the SU transmission. In 

these sub-carriers, the channel is too poor for it to be worthwhile to transmit on, thus allocates 

more power to the stronger sub-carriers. 

This WF technique can be broken down into the following steps: 

Step I: Solve the capacity maximization problem using WF algorithms. 

Under the assumption that the channel matrix 𝐻𝑝𝑝 is known at the Rx and Tx, the PU chooses 

its pre-coding 𝑉𝑝 and post-processing 𝑈𝑝 matrices in a way that their channel transfer matrix 

is diagonalized, which satisfies the singular value decomposition (SVD) 𝐻𝑝𝑝 = 𝑈𝑝Λ𝑝𝑉𝑝
𝐻  

where 𝑈𝑝 ∈ ℂ(𝑀𝑠𝑠×𝑀𝑠𝑠) and 𝑉𝑝 = ℂ(𝑁𝑝𝑝×𝑁𝑝𝑝) are unitary matrices and Λ𝑝 is a diagonal matrix 

which contains min (𝑁𝑝𝑝, 𝑁𝑠𝑠) non-zero singular values, 𝜆1, … … . 𝜆min (𝑁𝑝𝑝,𝑁𝑠𝑠).  
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Then, the achievable rate of the PU is maximized by the power allocation 𝑃𝑝 matrix as 

                                 𝑚𝑎𝑥 log |𝐼𝑁𝑟
+

1

𝜎2 𝐻𝑝𝑝𝑉𝑝𝑃𝑝𝑉𝑝
𝐻𝐻𝑝𝑝

𝐻
|                                              (2.27)    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜              𝑡𝑟𝑎𝑐𝑒(Q) ≤ P                            

Where 𝐻𝑝𝑝 is the MIMO channel between the PU-Tx and PU-Rx 

 𝑄 Is the autocorrelation matrix of the output vector 𝑥, defined as 𝑄 = 𝐸[𝑥𝑥†] 

 𝑃𝑝 is the power allocation matrix  

The solution to (2.27) is the classical WF algorithm. The general power optimization process 

can be carried out as �̃� = 𝑈𝑄𝑈† with �̃� being the capacity maximizing matrix [23], [24] such 

that 

                     ∀𝑛∈ {1, … . . 𝑁𝑡}, 𝑃1(𝑛, 𝑛) = (Γ0 −
𝜎2

𝜆𝑖
)

+

                                                      (2.28) 

Where 𝜎2 is the noise variance ; 

 𝑎+ Is the matrix max{0, 𝑎} ; 

The constant Γ0 is a Lagrangian multiplier that is determined to satisfy 

∑ 𝑃𝑝(𝑗, 𝑗) = 𝑝𝑚𝑎𝑥

𝑁

𝑗=1

 

Step II: Compute the Transmit Opportunities 

The power allocation matrix 𝑃𝑝 might contain zeros in its main diagonal implying that no 

transmission takes place along the corresponding spatial direction. This means that the SU 

can align its transmitted signal with the unused singular modes such that it does not interfere 

with the signal transmitted by the PU. 

The PU allocates it’s transmit power over an equivalent channel defined as a 𝑁𝑝 × 𝑀𝑝 matrix 

which consists of parallel sub-channels with non-zero singular values, (also referred to as the 
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transmit dimensions used by the PU).  The used dimensions can be denoted as 𝑚1 ∈

{1, . . . . . , 𝑀} , while 𝑁1 − 𝑚1 denotes the unused dimensions without any PU signal.  

This channel can be transformed from a set of 𝑚1 used transmit dimensions into a set of 

receive dimensions and a set of 𝑁1 − 𝑚1 unused receive dimensions without any PU signal.  

Step III: Design the Opportunistic SU transmitter 

In order to design IA pre-coding matrices that will take advantage of unused dimensions, a 

set of IA conditions must be defined that the SUs must meet in order to make use of the TO’s. 

The first condition states that the opportunistic transmitter has to avoid interfering with the 

𝑚1 dimensions used by the PU-Tx i.e. interference from the SU is made orthogonal to the 

𝑚1 receive dimensions used by the PU link, which is achieved by aligning the transmission 

from the SU using linear precoding, with the 𝑁1 − 𝑚1 unused receive dimensions of the PU 

link.  

As a consequence, in the spatial domain, the corresponding orthogonality condition (such that 

the SU generates no interference on the primary link is given by  

                          𝑈𝑝
𝐻𝐻𝑝𝑠𝑉𝑠 = 𝛼�̅�𝑝                                                                                                     (2.29) 

where the matrix  �̅�𝑝 is a diagonal matrix with entries 

       ∀𝑛∈ {1, … . . 𝑁𝑡},   �̅�𝑝(𝑛, 𝑛) = [
𝜎2

𝜆𝑛
2

− 𝛽]

+

                                                                             (2.30) 

It can easily be verified since both matrices are diagonal.  

Additionally, the constant 𝛼 is chosen to satisfy the power constraints with 𝑖 = 2. Assuming 

that 𝐻𝑝𝑝 and 𝐻𝑝𝑠  are available at the SU-Tx, then the SU precoder can be computed as: 

                                              𝑉𝑠𝑠 = 𝛼𝐻𝑝𝑠
−1𝑈𝑝�̅�𝑝                                                                                 (2.31) 

For the case where 𝑁𝑠  >  𝑁𝑝, i.e. the Rx has more antennas than the Tx, it is still possible to 

obtain the pre-coding matrix by using the Moore-Penrose pseudo-inverse relation [23]. 
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Once (2.31) has been satisfied at the SU-Tx, then no additional interference impairs the PU. 

The next step is to consider the interference that the SU-Rx undergoes from the PU-Tx, 

which has the effect of a being a colored noise [24] with covariance 𝑄 ∈ ℂ𝑁𝑠×𝑁𝑝 due to the 

channel 𝐻𝑠𝑝 and the pre-coder 𝑉𝑝. Thus 

                               𝑄 = 𝐻𝑠𝑝𝑉𝑝𝑃𝑝𝑉𝑝
𝐻𝐻𝑠𝑝

𝐻 + 𝛼2𝐼𝑁𝑟
                                                                          (2.32) 

The received signal at the SU can be solved by 𝐷𝑖 = 𝑄−(
1

2
)
 so that 

                               𝑟2 = 𝑄−(
1
2
)𝐻𝑠𝑠𝑉𝑠𝑠𝑠 + 𝑛𝑠

,                                                                                     (2.33) 

Where 𝑛𝑠
, = 𝑄−(

1

2
)(𝐻𝑠𝑠𝑉𝑠𝑠𝑠 + 𝑛2) is an i.i.d process with zero mean. The second condition 

also states that the opportunistic link is said to satisfy the IA condition if the PUs 

transmission achieves the same rate as a single-tier system (with no SUs), with the objective 

being to calculate the pre-processing matrix to satisfy the IA condition. This is followed by 

the post-processing matrix, which optimizes the SUs transmission rate. 

Step IV: Optimize the Opportunistic SU’s transmission rates               

The proposed pre-coding scheme is described in Step III guarantees that no interference is 

generated on the PU. Step IV defines the processes required in order to optimize the 

transmission rate for the SUs. For this purpose, the choice of the power allocation of the SU-

Tx termed �̃�𝑝𝑝 needs to be optimized. The first process is the simplest scheme implemented 

with UPA, before the second process which implements the optimization scheme using an 

OPA in order to maximize the SU transmission rates [24].  

Given that 𝑉𝑠𝑠 and 𝐷𝑠𝑠  are satisfied, the �̃�𝑠𝑠  input covariance matrix, which maximizes the 

achievable transmission rate for the opportunistic link is computed as follows: 

                        max
                                      𝑃2

  log2|𝐼𝑁𝑠𝑠
+ 𝐷𝑠𝑠𝐻𝑠𝑠𝑉𝑠𝑠

𝐻𝐻𝑠𝑠
𝐻𝐷𝑠𝑠

𝐻 𝑉𝑠𝑠𝑄
−1 2⁄ |                                                   (2.33) 

𝑠. 𝑡.              𝑇𝑟𝑎𝑐𝑒(𝑉𝑠𝑠𝑉𝑠𝑠𝑉𝑠𝑠
𝐻) ≤ 𝑀2𝑝2,max                                                      
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Uniform Power Allocation: The SU-Tx does not perform any optimization on its own 

transmit power, but rather uniformly spreads its total power among the TOs. The input 

covariance matrix is set to 𝑃𝑠 = 𝐼𝑁𝑡
 so that the rate achieved by the SU while generating zero-

interference to the PU-Rx is 

                                     𝑅𝑠 = log2 |𝐼𝑁𝑟
+ 𝑄−

1
2𝐻𝑠𝑠𝑉𝑠𝑠𝑉𝑠𝑠

𝐻𝐻𝑠𝑠
𝐻𝑄−

1
2|                                  (2.34) 

Optimal Power Allocation: The transmission rate for the secondary link is maximized by 

adopting a power allocation matrix 𝑃𝑠 which is a solution of the following optimization 

problem, 

          argmax
              𝑃𝑠

              𝑅𝑠(𝑃𝑠)                                                                                              (2.35) 

𝑠. 𝑡.     𝑇𝑟𝑎𝑐𝑒(𝑃𝑠𝑠𝑉𝑠𝑉𝑠
𝐻)  ≤   𝑝𝑚𝑎𝑥                                                                       

where 

                             𝑅𝑠(𝑃𝑠) = log2 |𝐼𝑁𝑟
+ 𝑄−

1
2𝐻𝑠𝑠𝑉𝑠𝑠𝑃𝑠𝑉𝑠𝑠

𝐻𝐻𝑠𝑠
𝐻𝑄−

1
2|                                             (2.36) 

Note that solving this optimization problem requires the knowledge of the covariance 

matrix 𝑄, which is calculated at the SU-Rx based on the knowledge of the channel 𝐻𝑠𝑝. This 

can be done if the SU-Rx estimates 𝑄 and feeds it back to the SU-Tx. Here, we assume a 

perfect knowledge of 𝑄 is available at the SU-Tx. Another process was then proposed for 

(2.35) which led to a WF solution. The idea here is to solve a priori non-trivial optimization 

problem defined by (2.35) by introducing an equivalent channel matrix 𝐺 to simplify the 

problem by applying a singular value decomposition to the new channel. 

The outcome of the work in [21] shows that the zero interference constraint to the PU-Rx that 

has to be satisfied  theoretically diminishes opportunities for some of the IA algorithms under 
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the first paradigm, such as Interference Cancellation (IntCan) and Distributed IA to be used 

as enhancements to improve overall performance of IA in CR.   

Given this fact, subsequent research such as the work done in [72] on interference 

cancellation introduce novel techniques other than the more conventional IA algorithms, that 

will provide enhancements to the base model of the second paradigm in [24] to improve 

overall performance of IA in CR.  These techniques are mostly focused on the PU link 

optimization, spectrum sensing employed by the SU as well as the SUs transmission rates.  

For example, the work in [73] investigates both orthogonal and non-orthogonal transmission 

of the SU, with the aim of determining spectral efficiency gain of an uplink MIMO CR 

system, where SU is allowed to share the spectrum with the PU by using a unique space 

alignment technique along with an interference temperature threshold technique to ensure a 

non-zero SU rate. The proposed scheme adopts a successive IntCan (SIntCan) technique so 

that the SU is not limited to exploiting the unused TOs of the PUs transmission, but it’s also 

allowed to exploit the used eigenmodes of the PU by respecting both total power and 

interference temperature constraints. Furthermore, this work analyses the SIntCan’s 

operational inaccuracy as well as the CSI estimation imperfection on the SUs power 

allocation. Taking this further, the research work done in [74] ensures zero LIF is only 

feasible when the SU-Tx has at least the same number of antennas as the DoF of the PU 

system. As the success of the SU communication depends on the availability of unused TOs, 

the work in [74] focuses on two very specific contributions. The first is a fast coarse sensing 

method that detects unused TOs, based on the eigenvalues of the received signal covariance 

matrix. Secondly, a more accurate sensing method based on the generalized likelihood ratio 

test (GLRT) is applied after coarse sensing to fine tune detection of the unused TOs.  
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On the subject of spectrum sensing, the work done in [75] described the SUs as sensing for 

the unused eigenmodes in the manner of cooperative spectrum sensing (CSS). After the 

decision made by the fusion center (FC) on which eigenmodes to use, the SUs were made to 

align their transmitted signals to the SDs associated with the PUs unused eigenmodes to 

ensure orthogonality between the PU and the SUs. This work proposed using maximum 

eigen-beamforming (MEB) algorithms to optimize the PUs transmission. While its operation 

is very close to the WF schemes used in [76], [77], the main advantage of using the MEB 

protocol is that the Tx of the PU puts all its power on the antenna corresponding to the largest 

eigenmode of its transmission channel, thus by default, the rest of the eigenmodes are left 

unused for the SUs’ transmission. The benefit of using the MEB scheme over existing WF 

approaches is its slightly lower computational complexity. However, this slight advantage is 

still very much debatable as the MEB scheme suffers from rigid allocation of power to the 

largest eigenmode given the fact that the largest eigenmode mode might not always be the 

optimum for the opportunistic transmission (as shall be discussed further in Chapter 5). 

Furthermore, this work proposed using a distributed power-allocation strategy called the 

threshold beamforming (TBF) algorithm to maximize the SUs transmission rates. It enables 

the SU links with a maximum eigenvalue above a certain threshold to transmit data at full 

power, while the rest remain silent, thus enabling the CR network to maximize the sum rate 

of both the PU and SUs. The overall solution causes no interference to the PU-Rx, provides 

significant throughput gain and senses the TOs of the PU network with higher detection 

probability.  

2.8.Simulation Results and Analysis 

For the first paradigm, this work considers a single-tier 3 − 𝑢𝑠𝑒𝑟 2 × 2  MIMO (as shown in 

Fig. 2.10) system configuration against a two-tier CR network consisting of a PU link and 3 
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SUs where the algorithm converges when the total interference power is less than 10−4, 

depicted in Fig 2.11. Each Tx/Rx pair are equipped with 𝑁𝑘 = 𝑀𝑘 = 2 antennas, 

respectively. It is assumed that the interference from the PU-Tx does not affect the SUs 

receivers. The numerical results presented in Fig. 2.14 illustrate the various performances of 

the SUs for the single-tier network, the first paradigms distributed CR network model as well 

as the enhanced matrix-distance model described in [64], which are measured by the sum rate 

achieved over the IC, i.e., the sum of the rates achieved by the 3 users, measured in bits per 

channel use versus SNR in dB.  

As expected, the single-tier IA algorithms are upper-bounded, linearly scaling upwards as 

SNR approaches infinity. As shown in Fig 2.13, the single-tier algorithms outperform the 

algorithms of the first paradigm owing to the presence of the PU as well as the SUs 

sacrificing performance to keep interference to the PU below the specified threshold.  The 

difference in performance becomes clearer as the SNR increases.  

The distributed algorithm which minimizes the interference leaked into the received signal 

subspace while simultaneously imposing an upper limit on the interference temperature is 

seen to have the least performance in terms of sum rates. Enhancements such as the one 

described in the work in [63] has a better performance compared to the base model, which 

implies that a higher multiplexing gain is achievable with improved optimization.  



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         51 

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

Single-Tier

Distributed

Matrix-Distance

A
ve

ra
ge

 S
u

m
 R

at
es

 (
b

/s
/H

z)

SNR (dB)

 

Fig. 2.13 Performance comparison of the Single-Tier IA against First Paradigm of IA in CR 

algorithm for the three-user IC with two antennas at each node 

A similar trend in performance can be seen in the numerical results obtained for the second 

paradigm (as seen in Fig 2.14), which compares the single-tier network with the OPA/UPA 

and the threshold based beamforming (TBF) schemes, where the performance of the single-

tier network remains upper bounded. The TBF scheme serves as a distributed power-

allocation strategy that is effective tool for sparing transmit power in poor channel conditions 

where the Rx of SUk, for k = 1, . . . , K, estimates only its local CSI and feeds back the Tx 

antenna index to the corresponding Tx if the largest eigenvalue of its own channel matrix, 

denoted as 𝜆𝑘,𝑚𝑎𝑥, is greater than a pre-specified threshold level 𝜆𝑡ℎ. If 𝜆𝑘,𝑚𝑎𝑥 > 𝜆𝑡ℎ, SUk’s 

Tx puts all its power on the antenna corresponding to the fed back index; otherwise, it 

remains silent and thus improves the spectrum efficiency for SUs. 
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While the two-tier algorithms experience a drop in performance as SNR increases, the SU-Tx 

always sees a nonzero number of TOs, even though the number of TOs is a non-increasing 

function of the SNR, thus opportunistic communications are always feasible [24]. This drop 

in performance can be attributed to the limited singular values left unused by the PU link. It is 

observed that for small number of antennas, the UPA and OPA have identical performances. 

This implies that the upper bound of performance depends on antenna ratios at the Tx and Rx 

as well as the number of SUs because a single SU is unlikely to perform reliable detection 

due to factors such as noise, multipath fading impairment and sensing time constraints [16].  
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Fig. 2.14 Performance comparison of the Single-Tier IA against the Second Paradigm of IA in 

CR algorithm for the three-user IC with two antennas at each node. 

Fig. 2.14 above also demonstrates the impact of one of the enhancements applied to the 

second paradigm, namely the TBF algorithm on the performance of the SUs.  
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Firstly, the TBF scheme employs a number of SUs, which increases the average sum rate due 

as a result of diversity gain introduced by multiple SUs. The diversity gain states that there is 

a higher probability of at least one of the SUs meeting the interference power requirement 

and ensuring reliable detection of the TOs.  

Secondly, the performance of the TBF algorithm increases exponentially when the SNR 

increases because with the TBF algorithm, the PU-Tx assigns all its power to the antenna that 

corresponds to maximum eigenmode of the channel matrix, thus leaving the other 

eigenmodes as TOs for opportunistic transmission. Therefore, there is always a nonzero 

numbers of TOs for the SU to exploit.  Another reason for the improved performance of the 

TBF algorithm is because it separates the SUs with the better and poorer channel conditions, 

according to a pre-specified threshold, so that those above the threshold are able to transmit. 

The SUs with the poorer channel condition stay on the silent mode to cooperate with the 

other links in order to enhance the performance of the network through controlling the 

interference among the SUs. Thus, the SUs transmission rates improve substantially in 

comparison with the UPA/OPA schemes when all the SUs employ the TBF protocol. Another 

observation is that, for intermediate SNRs, the SU’s data rate increases without significantly 

affecting the PU’s data rate [75]. 

2.9.Summary 

A review of the concise literature required in order to optimize spectrum sensing in CR using 

IA was given a critical evaluation in this chapter in the following steps. Since CSS is usually 

a three step process starting with local spectrum sensing, the first part of this chapter 

reviewed the various techniques used to carry out local spectrum sensing. Given the wide 

scope of literature available in this aspect, this work focused specifically on ED given its ease 

of implementation with due consideration to its inherent drawbacks. The related 
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mathematical statistics used to evaluate the performance of ED in ideal and non-ideal channel 

environments were reviewed and simulations carried out were presented using ROC curves.  

The next step involved classification of CSS into its various categories and the data fusion 

rules employed by the FC in deciding the presence or absence of spectral opportunities. 

Centralized CSS was shown to be the optimal solution in terms of implementation costs and 

performance. The results of the simulations carried out with similar parameters and channel 

conditions showed that SS using ED and cooperation performed better than the initial ROC 

presented for spectrum sensing using ED but without cooperation. Thus, the first strategy 

considered for optimizing CSS in CR using IA is ED based CSS.  

The general IA technique was then reviewed as a cooperative interference management 

strategy that results in sum capacities linearly scaling up at high SNR by taking advantage of 

the multiple signaling dimensions to achieve the IC’s maximum DoF. We then reviewed 

earliest work to explore the increase in DoF with message sharing in the manner of CR that 

gave the necessary impetus to integrate IA in CR. The research work done to implement in 

IA in CR seemed to have been done along two main areas, the first paradigm being in a direct 

way where the PU-Tx is assumed far from its Rx and the SU-Rx’s are considered not to be 

influenced by the PU-Tx. The second paradigm is more conventional, where SUs are in 

closer proximity to the PU-Tx in the same manner of indirect SS where the SUs are required 

to detect the PU-Tx. However, this second paradigm proposes that under a power-limitation, 

a PU which maximizes its own rate (mostly through WF) on its MIMO channel singular 

values leaves some of them unused. These unused directions may be opportunistically 

utilized by the SU-Tx since its signal would not interfere with the signal sent by the PU-Tx. 

As such, this chapter then provided a critical review on WF and the steps involved in making 
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the unused spatial dimensions into TOs that can be used to enhance the transmission of the 

SUs.  

The results of the simulations carried out for the two paradigms were compared to the 

conventional IA in a single-tier network, and the results showed that IA in single-tier 

networks performed significantly better than the work of the first and second paradigms. 

Interestingly, the first paradigm seemed to have better performance than the second, implying 

that there is a higher challenge as well as a wider opportunity with the second paradigm to 

improve its performance hence the objective of this work to introduce novel techniques that 

will provide performance gains for the second-paradigm. These techniques will touch on the 

PU link maximization under a power limitation; the sensing mechanisms adopted by the SU 

as well as optimization of the SUs transmission rates. 
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3. Cooperative Spectrum Sensing with Space-time Block Coding 

3.1.Introduction 

 

As discussed in the introductory chapter, the main aim of this research work is optimizing 

CSS in CR, with the objectives being to optimize the performances of the reporting and 

sensing channels. Thus, optimizing the performance of reporting channels in realistic 

channels conditions will be the main objective of this chapter. 

It has been well established that the FSA policy is fixed in terms of frequency band utilization 

[5]. As a result, spectrum usage is limited to certain parts of the frequency spectrum. With 

several research studies indicating that the rest of the spectrum remains under-utilized [5], 

dynamically accessing the spectrum with CRs can help improve spectrum utilization. CR is 

designed to sense and learn from the environment in order to provide the best services to 

users. Since it was first introduced by Mitola [9], CR has become the enabling technology for 

supporting DSA in wireless communications.  

The CRs detect spectrum holes and dynamically change their radio parameters to exploit the 

unused parts of the spectrum, making SS by far the most important component in the 

establishment of CRs [10]. Most existing SS schemes employ indirect sensing techniques 

which focus on PU-Tx) detection [15], where ED is the preferred local sensing solution for 

this research work [32], [36]. Despite the optimality of ED, it is well known that the detection 

channels are still impaired due to shadowing and fading conditions resulting in degraded 

sensing performance of CR. In order to alleviate detection performance especially against the 

hidden terminal [8], [10] problem, CSS has been proposed as a possible solution. In CSS, 

SUs individually perform local sensing and then report this information to a FC via a 

reporting channel. The FC then makes a decision on the presence or absence of the PU signal 

based on its received information. In other words, CSS can alleviate the hidden terminal 
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problems by exploiting spatial diversity, with the aim of reducing the probability of detection 

errors [34]. 

In practice however, the reporting channels are also susceptible to fading effects and 

interference. It is shown in [34] that when the reporting channels become very noisy, CSS 

will get no advantages and that the probability of false alarm is lower bounded and the bound 

tends to linearly increase with the probability of reporting errors.  

3.1.1. Diversity Techniques  

As discussed in Chapter 2, CSS with particular emphasis on centralized CSS may incur high 

overhead such as control channel bandwidth, energy efficiency, and reporting delay when a 

large number of CR users need to cooperate and report to the FC. To alleviate this problem, 

grouping the cooperating users into clusters is an effective approach aimed at reducing 

overheads [78], [79]. Employing some other form of transmit diversity can alleviate 

performance of decision reporting.  By introducing probability of reporting error 𝑃𝑒 in the 

CR network, the work in [34], [80] proposed a transmit diversity based CSS method which 

applies some existing STBC and space-frequency (SF) coding for multiple antennas systems 

to CRs that are coordinated to form a transmit cluster to mitigate the effect of reporting errors 

and improve the performance and reliability of CSS.  

The work done in [34], [80] also applied STBC to improve performance of spectrum sensing 

in realistic environments with the condition that SUs were aware of each other’s decision. At 

high SNR, this work achieved higher diversity gain and reduced probability of reporting 

errors 𝑃𝑒, albeit with huge time losses. These time losses have been addressed in the research 

work done in [81], where clusters with higher sensitivity are set to adapt different sensing 

durations in order to overcome unnecessary energy consumption and ultimately improve 

performance. 
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The literature in [82] makes good use of the inter-user CSI and provides a dynamic STBC 

based-clustering scheme, which overcomes the limitation of fixed clustering. More recently, 

literature in [83] proposed a similar approach to [82], but the clustering scheme instead 

focuses on the quality of inter-user channels to achieve better results. There are clearly gains 

achieved from the existing literature in terms of performance. However, use of STBC 

becomes more tedious and impractical in realistic environment where both the sensing 

channels and reporting channels are characterized by fading channels.  

This then justifies the need to incorporate differential strategies to improve decision reporting 

in CR networks. The idea of differential strategies span from the use of differential schemes 

in multiple antenna systems [84], [85] and the work done in [85], [86] have shown that 

existing differential STBC are suitable for both single and multiple antenna networks, thus 

the need for a DSTBC based CSS scheme that does not require knowledge of CSI. 

3.1.2. Decision Fusion  

In practical wireless network scenarios, the reporting channels will most likely introduce 

errors in decision reporting, which may have a significant impact on performance of CSS 

[87] – [90]. Thus in the presence of non-ideal reporting channels between the CR and the FC, 

the question arises as to how to design the FCs decision rules [74]. Before applying the fusion 

rules, statistical hypothesis testing is typically performed to test the sensing results by each 

cooperating SU on the presence of PUs. There are two basic hypothesis testing methods in 

spectrum sensing namely the Neyman–Pearson (NP) test and the Bayes test [31].  

For the NP test, the objective is to maximize 𝑃𝑑  under the constraint that 𝑃𝑓  ≤  𝛼, where α is 

the maximum 𝑃𝑓. It can be shown that the NP test is equivalent to the following likelihood 

ratio test (LRT) given by 



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         59 

 

               Λ(𝑦) =
𝑓(𝑦|H1)

𝑓(𝑦|H0)
= ∏

𝑓(𝑦𝑘|H1)

𝑓(𝑦𝑘|H0)

H1

≷ 𝜆
H0

                                                                           (3.1)

𝑁

𝑘=1

 

Where Λ(𝑦) is the likelihood ratio, 𝜆 is the detection threshold and 𝑁 is the number of 

samples, of which the equality holds as long as the observations are independent and 

identically distributed (i.i.d.). As a result, the optimal test at FC in CSS is the NP-based LRT 

if the conditional independence is assumed [16]. Thus, the detector (local sensing) or the FC 

(cooperative sensing) declares H1 if 𝛬(𝑦)  >  𝜆 and declares H0 otherwise.  The design in the 

presence of possible channel errors has been previously addressed under the NP criterion [91] 

where it is shown that the optimal decision rule that maximizes the 𝑃𝑑  for fixed 𝑃𝑓 at the FC 

is the NP. Furthermore, it is shown that, in the case of noisy channels, the decision made by 

each SU will depend on the reliability of the corresponding transmission channel. Moreover, 

the 𝑃𝑓 at the FC is restricted by the channel errors. For a given decision rule, the probability 

of any channel being in error must be kept at a certain level in order to achieve a desired 

probability of false alarm at the FC.  

In a Bayes test, the objective is to minimize the expected cost called the Bayes Risk by 

declaring 𝐻𝑖 when 𝐻𝑗 is true. In other words, the Bayes risk to be minimized is the sum of all 

possible costs weighted by the probabilities of two incorrect detection cases ( 𝑃𝑓 and 𝑃𝑚) and 

two correct detection cases. The LRT of a Bayes test can be represented as 

             Δ(𝑦) =
𝑓(𝑦|H1)

𝑓(𝑦|H0)

H1

≷ 𝜆
H0

𝑃(H0)(C10 − C00)

𝑃(H1)(C01 − C11)
= 𝜆                                                                  (3.2) 

Thus, the detector or the FC can minimize the Bayes Risk by declaring H1 if Δ(𝑦) > 𝜆 and 

declaring H0 otherwise. 
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3.2.System Model 

For the purpose of this chapter, we consider a CR network that consists of a source PU, 𝑁 

single antenna SUs, an FC and wireless channels (reporting, sensing and inter-user channels) 

where transmission occurs over two phases. We will consider optimizing the second phase of 

transmission where the SUs make use of the reporting channels to send their sensing 

decisions to the FC. Assume that 𝑁 SU nodes are separated into a group of clusters based on 

their geographical proximity, where each cluster is composed of two nodes to ease 

computational complexity (as shown in fig 3.1) and form a virtual MIMO array. Differential 

space-time coding (DSTBC) for a two-to-one scenario can then be applied to exploit spatial 

diversity and improve performance.   

PU Tx
FC
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SU 2

SU 1

SU 2

SU 1

SU 2
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Cluster 2

Cluster n

Reporting 
Channels

Sensing 
Channels

DSTBC

Sensing 
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Sensing 
Channels

Reporting 
Channels

Reporting 
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Fig. 3.1 CR Network model showing CR clusters 

Assume that the wireless links between the SUs and the FC are independent flat fading 

Rayleigh channels and as such, received signals for each CR are conditionally independent 

and identically distributed (i.i.d.) under each hypothesis.  Thus, the detector or the FC can 

minimize the Bayes Risk by declaring 𝐻1 if 𝛬(𝑦)  >  𝜆 and declaring 𝐻0 otherwise. 
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3.2.1. Local Spectrum Sensing  

In order to counter the problem of coherent detection, non-coherent CSS detection can be 

achieved optimally with the use of energy-detectors [4], [6], which begins with a three-step 

process controlled by the FC. Recalling from chapter 2, the FC selects a licensed frequency 

and sends an instruction to all SUs to begin “local sensing”, a binary hypothesis testing 

problem denoted as  

                    𝑦(𝑡) =

{
 
 

 
 ∑ 𝑛𝑖(𝑡)

𝑚

𝑖=1

                                𝐻0   

∑ ℎ𝑖(𝑡)𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)

𝑚

𝑖=1

         𝐻1 

                                                                  (3.3) 

Where  𝑦(𝑡) = Received signal at the CR user 

𝑛𝑖(𝑡) = Additive white Gaussian noise (AWGN) 

𝑠𝑖(𝑡) = The transmitted PU signal 

ℎ𝑖(𝑡) = The channel gain of the sensing channel 

𝐷0/𝐷1 = Absence/Presence of the PU signal in the frequency band of interest   

Using energy-detectors, each SU collects the relevant information on the spectrum and 

calculates the individual sensing statistic over a sensing duration independently. Recall that 

𝐸𝑖 represent the output of the energy detector for the 𝑖th SU and that there are 2𝑚 samples 

over each sensing duration 𝑇𝑠, according to [15], 𝐸𝑖 follows a central chi-square distribution 

with 2𝑚 DoF if 𝐻0 is true; otherwise 𝐸𝑖 would follow a non-central chi-square distribution 

with 2𝑚 degrees of freedom. That is 

                 𝐸𝑖~ {
𝒳2𝑚

2                  ,              𝐻0   

𝒳2𝑚
2 (2𝛾𝑖 )       ,             𝐻1 

                                                                                      (3.4) 

Where 𝛾𝑖 = |ℎ𝑖(𝑡)|
2 𝐸𝑠 𝜎𝑖

2⁄   Instantaneous SNR of the 𝑖th SU; 

𝐸𝑠 = ∑ |𝑥(𝑘)|22𝑚
𝑘=1  Transmit energy during each sensing; 
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𝑚 = 𝑇𝑠𝐵 Is the time-bandwidth product 

When the detecting channels follow Rayleigh distribution, the 𝑃𝑑, 𝑃𝑓 and 𝑃𝑚 for the local SS 

at a single SU under Rayleigh fading are given respectively as [15], 

                            𝑃𝑑 = 𝑃𝑟𝑜𝑏{𝑌 > 𝛌|𝐻1} =
Γ(

𝑚
2 ,

𝜆
2 + 2𝛾)

Γ(
𝑚
2 )

                                                           (3.5) 

                        𝑃𝑓 = 𝑃𝑟𝑜𝑏{𝑌 > 𝛌|𝐻0} =
Γ(

𝑚
2 ,

𝜆
2)

Γ(
𝑚
2 )

                                                                         (3.6) 

𝑃𝑚 = 1 − 𝑃𝑑  

where 𝜆 = threshold value of the energy detector, 

Γ = complete gamma function 

Then the complementary ROC curves can be given to describe the performance of energy 

detector for the different values of average SNR and m.  

3.2.2. Performance Limits of Cooperative Spectrum Sensing 

It is impossible to transmit the decisions in practice without errors over the wireless channels. 

For example, when one SU reports a sensing result denoting the presence of the PU to the FC 

through a realistic fading channel, the common receiver will likely detect it to be the opposite 

result (i.e. denoting the absence of the PU) because of the disturbance from the random 

complex channel coefficient and CSI estimation errors. Eventually, the performance of CSS 

will be degraded by error reporting channels [80]. The performance of CSS is evaluated by 

taking the 𝑃𝑒,𝑖, defined as the error probability of signal transmission over the reporting 

channels between the 𝑖th CR and the FC, into full consideration.  

Recalling (2.15) and (2.16), 𝑄𝑓 and 𝑄𝑚 can then be given as, 
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     𝑄𝑓 = 1 − ∏[(1 − 𝑃𝑓,𝑖)(1 − 𝑃𝑒,𝑖) + 𝑃𝑓,𝑖𝑃𝑒,𝑖],                                                                       (3.7)

𝐾

𝑖=1

 

     𝑄𝑚 = ∏[𝑃𝑚,𝑖(1 − 𝑃𝑒,𝑖) + (1 − 𝑃𝑚,𝑖)𝑃𝑒,𝑖],                                                                            (3.8)

𝐾

𝑖=1

 

Where 𝑃𝑓,𝑖 and 𝑃𝑚,𝑖 are the false alarm probability and missed detection probability of the 

local SS of the 𝑖th CR, respectively.  

Suppose that every CR has an identical local SS performance and experiences identical but 

independent reporting errors such that 𝑃𝑒,𝑖 = 𝑃𝑒 , ∀𝑖= 1,2. . . . . . , 𝐾 

The false alarm probability is lower bounded by �̅�𝑓 such that 

                                                  𝑄𝑓 ≥ �̅�𝑓 = 1 − (1 − 𝑃𝑒)𝐾                                                              (3.9) 
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Fig. 3.2: Performance of Cooperative Spectrum Sensing for different number of SUs 𝑛 = 1,2,4  

with SNR 𝛾𝑖 = −1𝑑𝐵 and reporting error rate 𝑃𝑒 = 0.001 
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For a very small step 𝑃𝑒, the bound reduces to 𝑄𝑓 ≥ 𝐾𝑃𝑒 

It is also assumed that the local SS conducted by CR 𝑖 results in the very ideal scenario of 

𝑃𝑓,𝑖 = 𝑃𝑓  and 𝑃𝑚,𝑖 = 𝑃𝑚  = Pm, for all 𝑖 = 1, . . . . . , 𝐾, and that the 𝑃𝑒 is identical for all CRs. 

The ideal scenario is considered for the purpose of this research work. Furthermore, 𝑄𝑓 is 

bounded by 𝑄𝑓 ≥ �̅�𝑓 ≜ 𝑙𝑖𝑚𝑃𝑓→0𝑄𝑓 

The performance of CSS with respect to the number of CRs for an SNR �̅� = 1𝑑𝐵 and 𝑃𝑒 =

0.001 has been simulated to show that the higher number of cooperating SUs diminishes 

performance.  
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Fig. 3.3: Performance of Cooperative Spectrum Sensing for 𝑛 = 2 with SNR 𝛾𝑖 = −1𝑑𝐵 and 

different values of reporting error rates 𝑃𝑒 

For two SUs, the performance of 𝑄𝑓is slightly higher than four SUs (as seen in fig 3.2). 

However, 𝑄𝑚 will increase when 𝑄𝑓 decreases to the lower bound  �̅�𝑓. Equivalently, the 
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probability of detection 𝑄𝑑 will quickly fall down to zero. Thus, CSS will be impractical 

when 𝑄𝑓 → �̅�𝑓. Moreover, �̅�𝑓 increases with the increased number of CRs. Fig. 3.3 compares 

the performance results under different probabilities of reporting errors for two CRs and �̅� =

1𝑑𝐵. Fig 3.3 shows that the larger 𝑃𝑒 is, the larger the bound of 𝑄𝑓. Given that 𝑄𝑓 is the 

probability that the FC erroneously reports the presence of the PU while it is in fact absent, 

the graphs clearly show that a larger value of 𝑃𝑒 signifies a higher probability that the 

licensed frequency band will be vacant but not utilized. This can lead to significant loss of 

bandwidth efficiency loss. From Fig. 3.3, it can be concluded that the bandwidth efficiency 

loss increases with the increase of 𝑃𝑒. 

3.3.Differential Space-time Block Codes on the Reporting Channels 

The second-step involves each SU reporting a binary local sensing decision to the FC via the 

reporting channel. Assuming that 𝐷0 and 𝐷1 denote the local sensing decision from SU1 and 

SU2 respectively. In order to implement differential STBC, SU1 and SU2 are coordinated to 

form an array cluster where they can exchange their decisions and send these decisions to the 

FC (as seen in Fig 3.1).  

3.3.1. Differential Encoding 

For a single transmit antenna, differential schemes such as differential phase-shift keying 

(DPSK) exist that do not require knowledge of channel/ pilot symbol transmission. Such 

schemes have found applications in scenarios such as the one employed in the IEEE’s IS-54 

standard. Extensions of these differential schemes have been considered to provide simple 

differential encoding and decoding algorithms to either MIMO or virtual MIMO systems 

[84], [86]. The key to generating these codes depends on computing a set of coefficient 

vectors (𝑅1, 𝑅2) and mapping a block of information bits into the coefficient vector sets.  
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Although not very realistic in practice, we assume inter-user interference between SUs in 

each cluster is negligible; then the SUs can exchange their decisions and send these decisions 

to the FC [6]. This assumption is made in order to lessen the computational complexity that 

would otherwise be incurred if inter-user interference is taken into consideration. Also 

ssuming message exchange among the nodes is perfect due to geographical proximity, D-

STBC has been applied so that signal transmission begins by sending an arbitrary pair of 

signals 𝐷𝑠0 and 𝐷𝑠1 at time 𝑡1 simultaneously from the two SUs, followed by the related pair 

of signals −𝐷𝑠1
∗  and 𝐷𝑠0

∗  at time 𝑡2. These two transmissions do not carry any data but rather, 

provide the Rx with a known frame of reference for facilitating the D-STBC process.  

The SU’s encode the data sequence in a differential manner so that the signals to be 

transmitted are subsequently represented as linear overlays of those times at 𝑡1 and 𝑡2 , thus 

generating (𝐷𝑠0−1, 𝐷𝑠1) and (−𝐷𝑠1
∗ , 𝐷𝑠0−1

∗ ) from the two SUs at times 2𝑡 − 1 and 2𝑡. With 

information bits 𝐷0, 𝐷1 at the encoder used to select (𝑅1, 𝑅2), the modulated symbols for the 

next two transmissions are given as  

                        {𝐷0, 𝐷1} = 𝑅1(𝐷𝑠0−1, 𝐷𝑠1) + 𝑅2(−𝐷𝑠1
∗ , 𝐷𝑠0−1

∗ )                                                 (3.10) 

This process is mapped into the coefficient vector sets and inductively repeated until the end 

of the frame, the mapping process computing the transmitted symbols for different 

combinations of decision statistics until the end of the transmission.  

3.3.2. Differential Decoding 

For the sake of simplicity, we assume that only one Rx antenna is employed which is the FC 

in this case. The received data are processed by computing the differential phases between 

any two consecutive symbols. The differential phases are given by 

                                 𝜃𝑡 = 𝑎𝑟𝑔 𝑟𝑡−1
∗ 𝑟𝑡                                                                                                (3.11) 

Since 𝑒𝑗𝜃𝑡 = 𝑒
2𝜋𝑐𝑡

𝑀
 
and 𝑐𝑡 =

𝑀�̂�𝑡

2𝜋
; the decision rule can be formulated as follows 
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For 𝑖 − 1 2 ≤
𝑀�̂�𝑡

2𝜋
≤ 𝑖 + 1 2,    ⁄ �̂�𝑡 = 𝑖⁄                                                                                       (3.12) 

Where �̂�𝑡 is the estimate of the transmitted data symbol 𝑐𝑡 and 𝑖 ∈ {0,1,2. . . . . . . . , 𝑀 − 1}. 

The following parameters are defined as follows 

𝑟𝑡 = Received signal at time 𝑡   

𝑛𝑡 = Noise sample at time 𝑡,  

ℎ1, ℎ2 = Fading coefficients from transmit antennas one and two to the receive antenna. Let  

                 𝐻 = (
ℎ1 ℎ2

∗

ℎ2 −ℎ1
∗)                                                                                                             (3.13) 

and  

𝑁2𝑡−1 = (𝑛2𝑡−1, 𝑛2𝑡
∗ ) 

𝑁2𝑡 = (𝑛2𝑡, −𝑛2𝑡−1
∗ ) 

The vector representation of the received signals are given as 

       (𝑟2𝑡−1, 𝑟2𝑡
∗ ) = (𝐷0𝑖−1, 𝐷1𝑖) ∙ 𝐻 + 𝑁2𝑡−1                                                                                (3.14) 

       (𝑟2𝑡, 𝑟2𝑡−1
∗ ) = (−𝐷1𝑖

∗ , 𝐷0𝑖−1
∗ ) ∙ 𝐻 + 𝑁2𝑡                                                                                 (3.15) 

A decision statistics  �̂�1, at the FC is defined as the inner product of the two received signal 

vectors in (3.12) and (3.13). 

 �̂�1 = 𝑟2𝑡+1𝑟2𝑡−1
∗ + 𝑟2𝑡+2

∗ 𝑟2𝑡                                                                                              (3.16)    

From [17] and [18], (3.14) can be rewritten as 

  �̂�1 = (|ℎ1|2 + |ℎ2|2)𝑅1 + 𝑁1                                                                                        (3.17)    

Similarly, another decision statistic can be defined as the Inner product of the received 

signals in (3.12) and (3.13) as  

 �̂�2 = (|ℎ1|2 + |ℎ2|2)𝑅2 + 𝑁2                                                                                         (3.18)                                                   

These two decision statistics can summarized as follows 

( �̂�1,  �̂�2) = (|ℎ1|2 + |ℎ2|2)(𝑅1, 𝑅2) + (𝑁1, 𝑁2)                                                          (3.19)     
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The ML decoder then chooses the closest coefficient vector to the decision statistics 

( �̂�1,  �̂�2) and inverse mapping is applied to decode the transmitted block of bits (𝐷0, 𝐷1) 

[92], [93]. 

3.4.Fusion Centre 

After NP hypothesis testing is complete, the FC combines all the local sensing information, 

determines the presence or absence of a PU and diffuses the decision back to the SUs. When 

local decisions are reported to the FC, it is convenient to apply linear fusion rules to obtain 

the cooperative decision. In general, the sensing results reported to the FC will be combined 

using Soft Combining and Hard Combining in descending order of demanding channel 

bandwidth [94], [95].  

 Hard Combining  

The three decision rules used include AND, OR, and MAJORITY rules [31]. Consider all the 

individual test statistics Δ𝑁 given as either a 1 or 0 as the hard decision from FC, with the 

AND rule stating that a signal is present if all users have detected a signal i.e. 

𝐻1: ∑ Δ𝑁= 𝐾

𝑁

𝑖=1

 

                                                                       𝐻0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             (3.20) 

The OR rule states a signal is present if any of the users detect a signal i.e. 

𝐻1: ∑ Δ𝑁≥ 1

𝑁

𝑖=1

 

                                                                        𝐻0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             (3.21) 

The MAJORITY rules is a voting rule which decides the presence of a signal if a minimum of 

𝑀 out of the 𝑁 users have detected a signal where 1 ≤ 𝑀 ≤ 𝑁, i.e. 
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𝐻1: ∑ Δ𝑁≥ 𝑀

𝑁

𝑖=1

 

                                                                      𝐻0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                               (3.22) 

It can thus be said that the cooperative sensing probabilities of detection 𝑄𝑑, false 

alarm 𝑄𝑓 and missed detection 𝑄𝑚 can be represented by (3.7) and (3.8) and as follows: 

                               𝑄𝑑 = 1 − ∏[ 𝑃𝑑,𝑖𝑃𝑒.𝑖 + (1 −  𝑃𝑑,𝑖)(1 −  𝑃𝑒.𝑖)]

𝑁

𝑖=1

                                       (3.23) 

 Soft Combining  

In soft data fusion, CR users forward the entire local observations or test statistics 𝐸𝑘  to the 

FC without performing any local decision and the decision is made by combining these 

results at the FC by using appropriate combining rules such as square law combining (SLC), 

MRC and selection combining (SC). Soft combination provides better performance than hard 

combination, but it requires a larger bandwidth for the control channel [49]. It also generates 

more overhead than the hard combination scheme [53]. 

Square Law Combining (SLC) is one of the simplest soft combining schemes, where the 

outputs of the square-law devices (i.e. the estimated energies) are sent to the FC to be added 

to yield a new decision statistic. The decision is carried out in the FC when the summation is 

compared to a threshold to decide on the existence or absence of the PU [51]: 

                                                              𝐸𝑠𝑙𝑐 = ∑ 𝐸𝑘

𝐾

𝑘=1

                                                                      (3.24) 

Where 𝐸𝑘  denotes the statistic from the 𝑘th CR user. The detection probability and false 

alarm probability are formulated as follows [52]: 

                                                       𝑄𝑑,   𝑠𝑙𝑐 = 𝑄𝑚𝐾(√2𝛾𝑠𝑙𝑐√𝜆)                                                      (3.25) 
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                                                         𝑄𝑓,   𝑠𝑙𝑐 =
Γ(𝑚𝐾,   𝜆 2⁄ )

Γ(𝑚𝐾)
                                                         (3.26) 

Where 𝛾𝑠𝑙𝑐 = ∑ 𝛾𝑘 𝑘
𝑘=1 and 𝛾𝑘 is the received SNR at the 𝑘th CR user. 

The difference between the MRC method and the SLC is that the energy received at the FC 

from each user is pondered with a normalized weight which depends on the received SNR of 

the different CR users, before being added. The statistical test for this scheme is given by: 

                                                         𝐸𝑚𝑟𝑐 = ∑ 𝑤𝑘𝐸𝑘

𝐾

𝑘=1

                                                                    (3.27) 

The probabilities of false alarm and detection over Rayleigh channels can be given as  

                                                      𝑄𝑑,   𝑚𝑟𝑐 = 𝑄𝑚(√2𝛾𝑚𝑟𝑐√𝜆)                                                     (3.28) 

                                                       𝑄𝑓,   𝑚𝑟𝑐 =
Γ(𝑚,   𝜆 2⁄ )

Γ(𝑚)
                                                            (3.29) 

Where 𝛾𝑚𝑟𝑐 = ∑ 𝛾𝑘 𝑘
𝑘=1  

In Selection Combining (SC), the FC selects the branch with highest SNR on a continuous 

basis aided by a time constant. 𝛾𝑠𝑐 = max (𝛾1, 𝛾2, . . . . . . . 𝛾𝑘) 

Thus, the probabilities of false alarm and detection over Rayleigh channels can be given as  

                                                                    𝑄𝑑,   𝑠𝑐 = 𝑄𝑚(√2𝛾𝑠𝑐√𝜆)                                              (3.30) 

                                                                     𝑄𝑓,   𝑠𝑐 =
Γ(𝑚,   𝜆 2⁄ )

Γ(𝑚)
                                                 (3.23) 

Equal Gain Combining (EGC) is the simplest technique in terms of complexity of 

implementation. Similar to MRC, all weights are equal but co-phasing is still required to 

produce acceptable outputs from the FC. Of all the combination schemes, EGC has generated 

the least amount of research interest owing to the difficulty of finding the probability density 

function (PDF) of its output SNR. 
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3.5.Simulation Results and Numerical Analysis 

The PU is assumed to be transmitting a signal in the frequency range between 470MHz and 

710MHz whose bandwidth is 6MHz; modulation type is BPSK, code rate of ½, bit rate of the 

system being  𝑓𝑠 = 27 Mbit/s with a transmission power of 20dB. The average occupancy 

rate for the PU is set to 50% i.e. the probability of presence and absence of the PU signal is 

fixed to an equal probability (0.5), respectively. A Rayleigh channel is considered and a 

cluster of pairs of SUs are distributed randomly within a 500m-by-500m region. The SU’s 

employ ED to perform spectrum sensing with the received SNR 𝛾𝑖 of each SU’s detector set 

around -1dB, with the channel having a noise floor of -10dB and a local sensing time of 

25𝜇𝑠. The simulation is based on Monte Carlo method with 1,000,000 iterations.  

The simulation results presented in this section demonstrates that this work achieves full 

transmit diversity as well as improvements in detection performance through the ROC curves 

in relation to SNR. 

3.5.1. Probability of Reporting Errors 

Decision reporting to the FC is only able to employ transmit diversity based on the quality of 

the inter-user channel i.e. the channel between the SUs. Ideal conditions are thus assumed for 

the inter-user channel so that the SUs can always correctly decode their exchanged signals for 

DSTBC reporting to be implemented. Fig.3.4 below shows performance comparison of CSS 

with DSTBC reporting for two CRs against STBC reporting at SNR 𝛾𝑖 = 5𝑑𝐵, where the 

reporting channels are subjected to reporting errors.  

CSI has to be estimated before detection of the transmitted symbols can take place. In 

practice however, channel estimators cannot provide perfect CSI and the resulting channel 

estimation errors will cause a degradation of reporting performance [79], [80]. From fig. 3.4 

above, it is seen that the bandwidth efficiency is increased because of the obvious diversity 
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gain achieved as well as the negation of CSI estimation errors (channel estimation error 

reduces the effective SNR and causes saturation). 
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 Fig. 3.4: Performance of Cooperative Spectrum Sensing for 𝑛 = 2 with SNR 𝛾𝑖 = −1𝑑𝐵 and 

different values of reporting error rates 𝑃𝑒 

Also,  𝑄𝑓 of DSTBC reporting is bounded, implying that even with the expected loss of 3dB, 

DSTBC reporting provides a slightly upper bound of performance compared with STBC 

reporting. It can thus be concluded that with the increase of N, the bound of  𝑄𝑓will only 

increase. 

3.5.2. Diversity Gain  

Fig. 3.5 illustrates the bit-error-rate (BER) simulated performance of the differential scheme 

over Rayleigh fading channels with the two SUs sending their sensing decisions to the FC. 

The results for BPSK constellations are illustrated for non-coherent spectrum sensing without 

diversity, with STBC diversity and with DSTBC diversity. The performance curve of the 
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DSTBC scheme follows the same pattern to the one with STBC schemes implying that the 

orthogonality of the differential schemes also provides full transmit diversity. However at the 

threshold BER of 10−3, the DSTBC scheme has an approximate 3dB loss when compared to 

the STBC scheme. This can be attributed to the fact that neither the SUs nor the FC requires 

CSI, hence the degraded performance [94].  

 

Fig. 3.5: Performance comparison of CSS with STBC and with differential-STBC 

3.5.3. Hard Combination 

For the hard combination decisions, we present the ROC curves for the AND rule in Fig.3.6 

and the OR rule in Fig. 3.7 respectively. In Fig. 3.6, the cooperative sensing probability of 

detection 𝑄𝑑 is plotted against the cooperative sensing probability of false alarm 𝑄𝑓 for three 

clusters i.e. 6 nodes respectively firstly under ideal conditions (i.e. error-free reporting), then 

without D-STBC reporting and with D-STBC reporting. Additional simulations are carried 

out for four and five clusters with D-STBC reporting, of which their ROC curves are also 
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plotted. All simulations are carried out and with a locally received SNR 𝛾𝑖 of −10𝑑𝐵 at each 

SU node.  
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Fig. 3.6: Performance of Cooperative Spectrum Sensing with differential-STBC (n=6, 8 and 10) 

with SNR 𝛾𝑖= 5dB for AND fusion rule. 

The work done in [94] shows that for error-free reporting channels, the ROC curves for OR 

combination rule at an average received SNR of 5dB outperforms AND rule. However, with 

channels under deep fading, the relative performance of these rules can be quite varied.  

For 3 clusters each having a local SNR 𝛾𝑖 of 5dBm, the AND rule’s performance is below that 

of OR fusion. However, the comparative performance of CSS with diversity in [94] showed 

better performance than [80] for both the OR as well AND rules at 𝛾𝑖 = 5𝑑𝐵.  
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Fig. 3.7: Performance of Cooperative Spectrum Sensing with DSTBC (n=6, 8 and 10) with SNR 

𝛾𝑖= 5dB for OR fusion rule. 

For this work, it can be seen that the performance curves of DSTBC reporting are worse than 

the ideal curves but generally better than the performance of non-DSTBC reporting. It can be 

observed for example that at  𝑄𝑓 =0.1, the probability of detection for 3 clusters is 

approximately 0.35 for CSS with DSTBC. Even with the low SNR values 𝛾𝑖 and expected 

performance degradation of DSTBC, its performance is just slightly worse than that of non-

DSTBC reporting with AND fusion rule under the same conditions. It can also be seen that 

the sensing performance increases as the number of cooperative nodes/clusters increases, 

which is consistent [84], [94]. Similarly, in Fig. 3.7, the performance curves for the OR 

fusion rule are plotted at an average SNR 𝛾𝑖value of 5𝑑𝐵 for 3 clusters with DSTBC and 

without DSTBC reporting respectively. 
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When Rayleigh fading is considered, the work in [80] uses orthogonal channels based on 

TDMA for diversity to forward decisions to the FC. Comparing the results in [80] with the 

results in this work, it can be seen in Fig. 3.7 that the DSTBC CSS scheme performs better 

despite the lower values of 𝛾𝑖 . With regards to this work, it was observed that the 

performance curves for non-DSTBC reporting initially outperform the DSTBC reporting 

scheme, albeit for a very short period of time. 

The DSTBC scheme evidently has significant performance gains. For example, for 3 clusters, 

at  𝑄𝑓 = 0.1, 𝑃𝑒 is about 0.45 for D-STBC reporting, while it is less than 0.4 for non-DSTBC 

reporting. These results are consistent with the fact that OR fusion rule generally performs 

better than AND fusion, especially in cases of practical interest. It can also be seen that the 

sensing reliability increases as nodes increases.  

Due to the orthogonality between the sequences coming from the two transmit antennas, this 

scheme can achieve the full transmit diversity, despite the fact that the CSI is not available at 

the nodes [93]. Therefore, by exploiting DSTBC among nodes in a cluster, the sensing 

performance can significantly be improved for the reporting channel. 

3.5.4. Soft Combining 

For the soft combination decisions, we present the ROC curves for the EGC rule in Fig.3.8 

and the MRC rule in Fig. 3.9 respectively. In Fig. 3.8, the cooperative sensing probability of 

detection 𝑄𝑑 is plotted against the cooperative sensing probability of false alarm 𝑄𝑓 for three 

clusters i.e. 6 nodes respectively firstly under ideal conditions (i.e. error-free reporting), then 

without D-STBC reporting and with D-STBC reporting. Additional simulations are carried 

out for four and five clusters with D-STBC reporting, of which their ROC curves are also 

plotted. All simulations are carried out and with an SNR 𝛾𝑖 of −10𝑑𝐵 at each SU node.  
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Fig. 3.8: Performance of Cooperative Spectrum Sensing with differential-STBC (n=6, 8 and 10) 

with SNR 𝛾𝑖 = 5𝑑𝐵 for EGC fusion rule. 

The work done in [34] shows that for error-free reporting channels, the ROC curves for EGC 

combination rule at an average received SNR of 5dB outperforms the hard combination 

rules. For this work, it can be seen in Fig. 3.8 that the performance curves of DSTBC 

reporting CSS are not as good as the ideal curves but generally better than the performance of 

non-DSTBC reporting for AND fusion.  

It can be observed for example that at  𝑄𝑓 =0.1, the probability of detection for 3 clusters is 

approximately 0.55 for CSS with DSTBC. It can also be seen that the sensing performance 

increases as the number of cooperative nodes/clusters increases, which is consistent [84], 

[94]. 
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Fig. 3.9: Performance of Cooperative Spectrum Sensing with differential-STBC (n=6, 8 and 10) 

with SNR 𝛾𝑖= 5dB for MRC fusion rule. 

Similarly, in Fig. 3.9, the performance curves for the MRC fusion rule are plotted at an 

average SNR 𝛾𝑖value of -10dB for 3 clusters with DSTBC and without DSTBC reporting 

respectively. 

The overall performance is just slightly worse than that of error-free reporting, even though 

channel conditions are ideal in the case of error-free reporting. Comparing the results in [80] 

with the results in this work, it can be seen in Fig. 3.9 that the DSTBC CSS scheme performs 

better despite the lower values of  𝛾𝑖 as the MRC is able to maximize SNR at the output of the 

combiner. The DSTBC scheme evidently has significant performance gains. For example, for 

3 clusters, at  𝑄𝑓 = 0.1, the probability of detection is about 0.60 for DSTBC reporting, while 

it is approximately 0.4 for non-DSTBC reporting. These results are consistent with the fact 
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that MRC fusion rule generally out performs EGC fusion, although in cases of practical 

interest, it is difficult to implement MRC due to its inherent implementation complexities. It 

can also be seen that the sensing reliability increases as nodes increases. Due to the 

orthogonality between the sequences coming from the two transmit antennas, this scheme can 

achieve the full transmit diversity, despite the fact that the CSI is not available at the nodes 

[93]. Therefore, by exploiting DSTBC among nodes in a cluster, the sensing performance can 

significantly be improved for the reporting channel. 

3.6.Summary and Conclusion 

This work has presented a DSTBC cooperative sensing scheme in order to improve overall 

sensing performance of CR networks by improving performance of non-ideal reporting 

channels under deep fading conditions. Firstly, it was shown through simulation results that 

DSTBC follows the same pattern in terms of BER performance, proving that it can also 

achieve full transmit diversity, albeit at the cost of approximately 3dB loss for DSTBC. 

Secondly, it was again shown through simulation results that despite not having prior 

knowledge of the reporting channel, DSTBC reporting with hard fusion rules (OR/AND) 

outperformed typical non-DSTBC reporting under the same conditions for various number of 

CR clusters. Therefore, not only can cooperative sensing be implemented with DSTBC, but 

its performance was shown to increase as the number of CR nodes increasers and at higher 

SNR. Thirdly, employing the OR fusion rule showed in simulations results significantly 

better performance than the AND fusion rule, making it the preferred option for future 

endeavors.   

Further simulations results were presented which compared the soft fusion rules, and as was 

expected, the MRC fusion showed higher performance gain compared to the EGC rules. 
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These results were obtained without taking the overheads introduced by soft fusion rules into 

consideration, therefore both hard fusion remain the optimal solutions.  

Given the fact in the presence of non-ideal reporting, the performance differential between 

the hard combinations rules do not always follow convention [35], i.e. the OR rule does not 

always outperform the AND rule in the presence of errors. With the introduction of DSTBC, 

the pattern of performance was seen to be restored, implying that the diversity gain achieves 

its main objective.  

Possible future work to this scheme includes taking path losses between CR nodes in a cluster 

into consideration. Also employing techniques that can achieve full diversity when linear 

receivers, such as zero-forcing (ZF) and minimum mean square error (MMSE) receivers are 

used could also be considered in future research work.  

It very clear that the number SUs in a cluster have been limited due to huge overheads and 

complexities a higher number of SUs will introduce into to the overall system model. In 

practice however, a higher number of SU nodes will introduce higher order block coding will 

which actually help to improve performance [84], [85]. There is thus a compelling reason for 

a higher number of SU to be considered as a vital part of the future work on this novelty.  

A significant part of this Chapter has been published in the proceedings of the 26th IEEE 

Annual Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) held 

in September, 2015 in Hong Kong, China (http://ieeexplore.ieee.org/document/7343515/). 
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4. Space-Time Opportunistic Interference Alignment in Cognitive Radio 

4.1.Introduction 

The previous chapter has provided both the description and analysis of a technique used to 

optimize the performance of reporting channels. It is therefore appropriate that subsequent 

objectives of this research work focus on optimizing the performance of sensing channels 

used in CSS. As previously discussed, the increased deployment of wireless services is not 

the main reason for the greater scarcity of the licensed frequency spectrum, but rather the 

under-utilization of the licensed spectrum due to the FSA policy. In recent times, CR 

technology whose main idea is based on the DSA policy has emerged as the technology for 

meeting this under-utilization of the licensed spectrum [15], [91]. The CRs sense for 

spectrum holes in the licensed spectrum and make use of these spectrum holes either in an 

opportunistic or concurrent manner, as long as the PU transmission can be protected [15], 

[91]. Since the SU transmission is considered of a lower priority than that of the PU, a crucial 

task in the design of CR is about how best the SU can avoid interfering with the PU in their 

vicinity [15], [16] and [96]. In the present circumstances of wireless communications, the PU 

is seldom idle such that the availability of spectrum holes becomes very limited [97]. In 

trying to find solutions to this problem, IA has recently been considered as it tends to fit in 

with the CRs effort of managing interference between the PU and SU [17], [18] and [98].  

The earliest work done to achieve IA in CR for the single-tier K-user IC developed a number 

of practical algorithms in the manner of message sharing between the PU and SU [19], [20],  

which have provided a significant research platform for continuous development of IA in CR. 

As a consequence, two main paradigms in the design of IA in CR networks have emerged, 

the first paradigm as mentioned earlier in Chapter 2 not being the main focus of this research, 

owing to the challenge involved in trying to detect the PU [11], [15] and [58]. The second 
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paradigm considers the same CR network, but the SUs are in closer proximity to the PU-Tx 

in the same manner of Indirect Spectrum Sensing where the SUs are required to detect the 

PU-Tx [11].   

One of the earlier research studies done towards implementing this second paradigm was 

OIA [23], [24], where the PUs link makes use of a WF PA scheme to maximize its 

transmission over its SDs. In doing so, the PU leaves some of the SDs unused due to power 

limitations. Instead of sensing for spectrum holes, the SU-Tx senses for these unused SDs and 

opportunistically takes advantage of them with a linear pre-coder that aligns the transmission 

from the SUs with the unused SD thus avoiding any interference to the PUs transmission. As 

discussed in Chapter 2, the OIA solution was broken down into a 3-step process as follows: 

The first step involved the PU performing SVD on its MIMO channel and then applying a 

WF algorithm to maximize capacity of the MIMO channel leaving some unused SDs. These 

translate into TOs for the SUs. The second step involved the PUs computing these TOs while 

the SUs make use of a linear precoder that would enable them to align their transmission with 

the TOs, thus satisfying a zero-interference constraint to the PU-Rx. The third and final step 

involved optimizing the SUs transmission rates. Satisfying the zero interference constraint to 

the PU-Rx implies that opportunities for the IA algorithms [63], [65] used to improve overall 

performance of IA in CR are quite diminished. Alternatively, subsequent research such as the 

work done in [73], [75] as well as this research endeavor are focused on introducing novel 

techniques that will optimize each of the above mentioned steps used to implement the OIA. 

The work in this chapter also follows on the 3-step process of implementing IA in CR by 

performing SVD on the PUs channel matrices, but unlike the OIA solution [24], this chapter 

will maximize the channel capacity by using an alternative ST-WF owing to the research 

done in [77], which shows that ST-WF achieves higher capacity per antenna than SWF at low 
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to moderate SNR regimes [20]. One factor common with [24], [100] is that their models 

make use of a single-user MIMO SU link thus ignoring the effect of multiple SUs on the 

performance of a CR network. In fact, a single SU is unlikely to reliably detect the presence 

of a PU due to factors such as multipath fading impairments, low SNRs and sensing time 

constraints [30], [101]. Thus the work done in [75], [102] – [105] have considered 

implementation of multi-user MIMO SUs that employ CSS, a CR technique that caters for 

multi-path fading and the hidden node problem. The SUs individually perform local sensing 

in order to detect the absence or presence of the unused SDs by a binary hypothesis test and 

then report this information to the FC. The FC then makes a final decision based on its 

received information. In this work, this issue is addressed for a MIMO overlay cognitive 

system consisting of one PU link and multiple SUs. A technique similar to the OIA of [24] 

was then proposed, where the PU computes the TOs and the multiple SUs compute a linear 

precoder that would enable them align their transmission with the TOs.  

The third and final step is optimization of the SUs transmission rates. While the OIA 

technique of [24] made use of an OPA/UPA to optimize transmission rate of the SU, this 

research introduced a novel technique that will enhance the UPA scheme to maximize the 

achievable transmission rate for the SUs opportunistic link. While the UPA/OPA schemes of 

[23] and [24] are very optimal in terms of transmission rates for a single user MIMO link, 

they will be more susceptible to noise impairments for multi-user SUs. They are also mostly 

useful for a higher number of antennas, which introduces higher computational complexity 

where IA is concerned. Hence this research will consider that the multiple SUs uses a TDMA 

mechanism and so channel reciprocity is assumed between the forward (Tx to Rx) and 

reverse (Rx to Tx) channels. Based on this, the SU receivers will periodically transmit 
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feedback through reverse channels in timeslots with channel parameters indicating a loss of 

fidelity or a change in the PUs transmission parameters.  

It is worth noting that, although close in notion to the research done in [24], [75] and [100], 

this paper distinguishes itself in the following key aspects. Firstly, this work adopts an SVD 

scheme for the PU link that is based on the ST-WF technique to achieve better channel 

capacity from the PU. Secondly, the work done in [24], [98] and [100] would be inefficient in 

CSS as their respective system models include a single SU link for the CR system. This work 

employs multiple SUs, similar to [94] to enhance performance by taking advantage of CSS. 

Finally, while the above mentioned research employs different schemes in order to optimize 

the transmission rates of SUs; this work utilizes channel feedback in the form of reciprocity 

to optimize the transmission rates of the SUs.  

The remainder of this chapter is organized as follows. In Section 4.2, the system model is 

described, and the main assumptions required for analysis are introduced. In Section 4.3, a 

comparative analysis is done between the SWF and ST-WF schemes for the PU link and 

Section 4.4 presents the space-time opportunistic IA scheme (ST-OIA) by presenting the 

original OIA approach and describing the steps taken towards achieving the novelty of this 

work. Section 4.5 provides the reciprocity technique used to optimize the transmission rates 

of the SU network. Simulation results as well as a performance comparison between this 

work and that of [the work done so far in the literature] were then presented in Section 4.6, 

while section 4.7 presents the concluding remarks of this chapter. 

4.2.System Model and Assumptions 

The system model for this paper is an overlay MIMO CR network that consists of a single PU 

link (PU-Tx and PU-Rx) and 𝑘  SUs (𝑆𝑈1, . . . , 𝑆𝑈𝑘) as shown in Fig. 4.1 below. Every user 
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has 𝑀 Tx and 𝑁 Rx antennas. The PU link is a point-to-point MIMO link, while the SU 

network is a multi-user MIMO network.  

PU TX

SU 1 TX

SU 2 TX

SU 3 TX

SU 1 RX

SU 2 RX

SU 3 RX

Hss

Hss

Hss

PU RX

Hsp

H sp

H sp

SU Network

PU Link

Desired signal

Interference signal

Unused eigen value

Hpp

Unused eigenmodes

Unused eigenmodes

 

Fig. 4.1: Multiuser CR network model consisting of one PU link and multiple SUs 

The following assumptions are made for the purpose of the system model as follows:  

(I). The PU and SUs operate in the same frequency band and all channels are Rayleigh 

fading. 

(II). The PU link is a single user MIMO channel which is represented as a 𝑁𝑖 ×

𝑀𝑗  matrix, 𝑯𝒊𝒋 with channel coefficients between Tx 𝑗 and Rx 𝑖, where elements of 𝐻𝑖𝑗  are 

drawn i.i.d. from a continuous distribution. The channels are assumed to be block fading, i.e., 

the channel state is fixed within a time slot and changes independently from one slot to the 



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         86 

 

other, and the CSI is known to all the nodes. The signal received at the PU-Rx can be defined 

as 

                                               𝑌𝑖 = ∑ 𝑯𝒊𝒋𝑉𝑗𝑥𝑗 + 𝑛𝑖 

𝑲

𝒋=𝟎

                                                                       (4.1)  

Where 𝑉𝑗  is the 𝑀𝑗 × 𝑑𝑗  precoding matrix of the 𝑖th user and 𝑑𝑖  represents the number of 

transmitted streams,  𝑥𝑗  is the 𝑀𝑗 × 1 transmitted vector, 𝑛𝑖 is the 𝑁𝑖 × 1 additive Gaussian 

noise vector at the 𝑖th receiver. The transmitted power is subject to an average power 

constraint 𝐸[𝑥𝑗
𝐻𝑥𝑗] ≤ 𝑃.  

(III). It is assumed the PU-Tx is oblivious to the presence of the SUs. We also assume that 

the PU channel matrix is known at the PU-Tx and PU-Rx [4]. The PU-Tx chooses its 

precoding matrix 𝑉𝑗 and the PU-Rx chooses its post-processing matrix 𝑈𝑗 such that the PU 

link channel transfer matrix is diagonalized. 

Then once SVD has taken place on 𝑯𝒊𝒋 of the PU, each SU will receive 

independent 𝑚𝑖𝑛(𝑀, 𝑁) parallel non-interfering channels. Since the sum capacity of MIMO 

broadcast channels increases linearly with 𝑚𝑖𝑛(𝑀, 𝑁, 𝐾) (where 𝐾 is the number of SUs), 

then having a number of SUs makes up for deploying considerable number of antennas for a 

single SU link [11], [23]. The received signal of at each SU-Rx is thus defined as 

                             𝑌𝑠𝑠
𝑘 = 𝑯𝑠𝑠

𝑘 𝑥𝑠𝑠 + 𝑛𝑠𝑠                                                                                                (4.2)  

And the transmit covariance of the input signal is ∑ ≜ 𝔼[𝑥𝑠𝑠𝑥𝑠𝑠
𝐻 ]𝑥  which is subject to an 

average power constraint, implying 𝑇𝑟(∑ ) ≤ 𝑃𝑥 . 
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(IV). The SU setup is assumed to be a multi-user MIMO channel. The PU has reserved rights 

to the spectrum, the SU-Tx’s sense vital information about the PU in order to avoid causing 

interference at the PU-Rx. 

In the standard IA conditions, each Tx therefore transmits a sequence of Gaussian encoded 

symbols to its corresponding Rx by processing its symbols using a 𝑀𝑖 × 𝑑𝑖 precoding matrix 

𝑉𝑖 to form the transmitted signal vector 𝑉𝑖𝑥𝑖 . The received signal at the 𝑖th Rx is linearly 

processed by the post-processing  matrix 𝑈𝑖 = 𝑁𝑖 × 𝑑𝑖 to extract the symbols sent by the 𝑖th 

Tx. The IA condition states that the primary and secondary received signals are represented 

by 

                                        𝑌𝑖 = 𝐇𝑖𝑖𝑉𝑖𝑥𝑖 + ∑ 𝐇𝑖𝑗𝑉𝑗𝑥𝑗 + 𝑧𝑖

𝐾

𝑗=1

                                                       (4.3) 

where 𝑦𝑖  denotes the 𝑁𝑖 × 1 received signal vector at the 𝑗𝑡ℎ receiver; 𝑧𝑖 denotes the 𝑁𝑖 ×

1 zero mean unit variance circularly symmetric AWGN noise vector at the 𝑖𝑡ℎ receiver; 

𝑥𝑖  denotes the 𝑀𝑖 × 1 signal vector transmitted from the 𝑗𝑡ℎtransmitter; 𝐇𝑖𝑗 is the 𝑁𝑖 ×

𝑀𝑖  matrix of the channel coefficients between the 𝑗𝑡ℎ transmitter and the 𝑖𝑡ℎ receiver; 

Also, 𝑃𝑗 = 𝐸[𝑥𝑗  𝑥𝑗
𝐻], where 𝑃𝑗  is the transmit power of the 𝑗𝑡ℎ transmitter [20]. It should be 

noted that 𝑖 and 𝑗 are used as a generalization denoting each Rx and Tx pair. 

4.3.PU Link Optimization 

4.3.1. The Numerical Comparison 

Most of the work on OIA in CR networks such as in [24], [97], [98] utilize SWF scheme for 

the PU link. The work in [75] makes use of the MEB scheme where the PUs Tx places all its 

power on the antenna that corresponds to the largest eigenmode of its channel matrix 𝐻𝑝𝑝. Its 
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advantage being that all other dimensions are clearly left unused for the opportunistic SUs to 

exploit. However, with the comparative study carried out in [76], [77], it is clear that the ST-

WF offers improved SU performance for the same PU parameters. Most significantly though 

is the ST-WF’s higher capacity at low to moderate SNR regimes, which fits well with CR 

networks [76].  

In order to implement the ST-WF algorithm, we take a look at the original approach for WF 

[70], [106] i.e. the SWF approach. For a single MIMO PU channel, recall that  

                                                       
max

𝑄
𝑙𝑜𝑔 |𝐼 +

1

𝜎2
𝐻𝑝𝑝𝑄𝐻𝑝𝑝

†| 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡𝑟(𝑄) ≤  𝑃
                                                   (4.4) 

where 𝑄 is the 𝑀 × 𝑀 input covariance matrix 

where 𝐻𝑝𝑝 is the MIMO channel, 𝑄 is the autocorrelation matrix of the input vector 𝑥, 

defined as 𝑄 =  𝐸[𝑥𝑥†], P is the instantaneous power limit, |𝐴| denotes the determinant of 𝐴, 

and 𝑡𝑟(𝐴) denotes the trace of matrix 𝐴 and  𝜎𝑖 is the noise variance. Let the SVD on 

matrix 𝐻𝑝𝑝 be given as 𝐻𝑝𝑝 = 𝑈𝑝𝑝𝛴𝑉𝑝𝑝
𝐻  where 𝑈𝑝𝑝 is 𝑀𝑝𝑝 × 𝑀𝑝𝑝 and unitary while 𝑉𝑝𝑝 is 

𝑁𝑝𝑝 × 𝑁𝑝𝑝 and unitary, Σ is 𝑀𝑝𝑝 × 𝑁𝑝𝑝 and diagonal with non-negative entries i.e. Σ =

diag{𝜆1, . . . . . . 𝜆𝑀}. The diagonal elements of the matrix Σ are the singular values of 𝐻𝑝𝑝, 

𝐻𝑝𝑝 has exactly 𝑅𝐻 positive singular values, where 𝑅𝐻 is the rank of 𝐻𝑝𝑝 which 

satisfies 𝑅𝐻 ≤ min (𝑀𝑝𝑝, 𝑁𝑝𝑝). The transmitter/receiver chooses precoding matrices as the 

columns of 𝑉𝑝𝑝(𝑈𝑝𝑝) that corresponds to a non-zero PA that is used to maximize the rate of 

the PU link under power constraints as shown (4.4). 

SWF can be used to optimally allocate power to the parallel channels as defined by the 

following equation [70]: 
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                                        𝑃i = (𝛽 −
𝜎𝑖

2

𝜆𝑖
)

+

; 1 ≤ 𝑖 ≤ 𝑅𝐻                                                                 (4.5) 

Where 𝑃i is the power of 𝑥𝑝𝑝. The WF level 𝛽 is chosen such that ∑ 𝑃i = P
𝑅𝐻
𝑖=1  as defined in 

equation (4.5). 

Once the PA matrix using SWF is set up according to [12], the diagonal matrix Σ contains 𝑚1 

non-zero/used entries and 𝑁1 − 𝑚1 zero/unused entries which crucially translate into a set of 

𝑚1 used receive dimensions and a set of 𝑁1 − 𝑚1 unused receive dimensions with no PU 

signal. 

4.3.2. Space-Time Water-filling 

In terms of implementing the ST-WF algorithm, the PU-Tx also chooses precoding matrices 

as the columns of 𝑉𝑝𝑝(𝑈𝑝𝑝) that corresponds to a non-zero PA that is used to maximize the 

rate of the PU link under power constraints as shown in (4.6) below. It should be noted that 

for ST-WF, the function 𝐸[𝑡𝑟(𝑄)] is present in all MIMO channel realizations, implying that 

the symbol rate changes faster than the channel variation where 𝑄 can be computed from all 

symbols but within one channel realization. 

                                          
max

𝑄
𝐸 [𝑙𝑜𝑔 |𝐼 +

1

𝜎2
𝐻𝑝𝑝𝑄𝐻𝑝𝑝

†|] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡𝑟(𝑄) ≤  𝑃
                                                      (4.6) 

For computation of the diagonal PA matrix by applying the so-called ST-WF algorithm, 𝛽 

can be found as follows 

                                                 𝑃i = (�̅� −
𝜎𝑖

2

𝜆𝑖
)

+

; 1 ≤ 𝑖 ≤ 𝑅𝐻                                                        (4.7) 
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Fig. 4.2: Average sum rate versus the SNR at the PU’s link for both water-filling (SWF and ST-

WF) and MEB algorithms 

where �̅� is the mean water-level that can be solved by the equation given below 

                                      ∑ ∫ (�̅� −
𝜎𝑛

2

𝜆𝑖
) 𝑓(𝜆𝑖) 𝑑𝜆𝑖

∞

𝜎𝑖
2

𝛽

𝐿𝑝

𝑙=1

= 𝐏                                                              (4.8) 

where 𝑓(𝜆𝑖) is the marginal probability density function (pdf) of the random variable(𝜆𝑖). To 

gain more insight into this issue, Fig. 4.2 shows the average sum rate versus the SNR for a 

single user PU MIMO link with the SWF, ST-WF and MEB PA schemes. 

For the Rayleigh channels in this work, Rayleigh fading is assumed to be pure due to the PU-

Tx and PU-Rx assumed to be in close proximity and hence the shadowing effect is negligible. 

The ST-WF algorithm with no shadowing variance achieves higher spectral efficiency over 

SWF at low SNRs, and has the highest gain of 5dB SNR over equal power distribution at a 
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spectral efficiency of 2.5bps/Hz/antenna. Furthermore, fig. 2 shows that the numerical results 

obtained from the Monte Carlo simulations support theoretical results [70], [77]. 

Implementing the MEB algorithm achieves a performance that is only close to that of the 

SWF scheme. The simulation results clearly shows that the ST-WF scheme outperforms the 

other schemes and shows the possibility of increased sum rates in two-tier CR networks when 

the PU participates in IA. 

4.4.Space-Time Opportunistic Interference Alignment 

The proposed ST-OIA will be divided into two phases, (a) the sensing phase and (b) the 

interference alignment phase. 

4.4.1. The Sensing phase 

This section describes how the SUs perform SS without causing interference at the PU’s Rx 

[24]. The unique feature of this work is that the SUs are only involved in sensing the TO’s. 

Because both PU and SU have been assumed to be operating in the same frequency band, the 

SUs will always opportunistically make use of the licensed spectrum as long as the TOs are 

available.  

We consider the channel with the PU-Tx acting as a base station transmitting in a broadcast 

mode to multiple SU’s. In this case, it would be recalled that the maximum achievable rate of 

the PU with the ST-WF algorithm is given as [77] 

                                                  𝑝(𝜆) =  (𝛽 − 
𝜎2

𝜆𝑖
)

+

                                                                        (4.9) 

At high SNR, the ST-WF PA strategy gets no benefit because it allocates equal power to each 

of the 𝑅𝐻  channels, thus the PU utilizes all its channels eigen-modes. 
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At low SNR however, the ST-WF algorithm allocates power to the strongest 𝑅𝐻 parallel 

channels according to the water-level 𝛽. These channels translate into the 𝑚1 used SDs, while 

the others can be classified as the 𝑁1 − 𝑚1 unused dimensions or TOs. The SUs make 

independent decisions about the unused 𝑁1 − 𝑚1 dimensions by setting the appropriate SS 

parameters, so that each SU can sense the absence or presence of the TO by the following 

binary hypothesis test [43], [75]: 

                   {
𝐻0;   𝑖𝑡ℎ 𝑒𝑖𝑔𝑒𝑛𝑚𝑜𝑑𝑒 𝑢𝑛𝑢𝑠𝑒𝑑 𝑏𝑦 𝑃𝑈

𝐻1;  𝑖𝑡ℎ 𝑒𝑖𝑔𝑒𝑛𝑚𝑜𝑑𝑒 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑃𝑈     
                                                                      (4.10)     

This is a somewhat static approach to SS due to the very deterministic nature of the system 

model. In practical environments however, there would always be multiple PU’s in which 

case the SUs would have to deploy dynamic SS which is beyond the scope of this work.      

As described in Chapter 2 (2.1), each SU employs the decision rule to make a decision about 

the unused SDs according to a threshold set either above or below the water-level as follows 

                  𝑑(𝑡) = {
𝑦(𝑡)  ≤   𝛽                             𝐻0   

𝑦(𝑡) >   𝛽                               𝐻1 
                                                                   (4.11) 

Each SU sends a summary of its own observations to the FC in the form of either 𝑃𝑑 ,  𝑃𝑓 for 

the SUs. The FC uses the hard combination fusion rule [46] – [48] for making the final 

decision based on the received information from SUs and relaying these decisions to the SUs. 

This work utilizes probability of missed detection as one of the parameters for measuring 

performance. It can be observed that the simulation results in fig. 4.3 are quite optimal 

yielding near perfect results when sensing ONLY for TOs. 

This work utilizes probability of missed detection as one of the parameters for measuring 

performance. It can be observed that the simulation results in fig. 4.3 are quite optimal 
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yielding near perfect results when sensing ONLY for TOs. From the analysis of chapter 2, the 

OR rule is the best among the fusion rules in many cases of practical interest due to its 

relative ease of implementation, therefore, it shall be considered for this phase of ST-OIA. 

The OR rule used compared very well to theoretical analysis, and the disparity in 

performance could be attributed to be the case when the SUs experience shadowing or fading. 
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Fig. 4.3: ROC curve showing the theoretical and simulated results for 2 SUs 

4.4.2. The Interference Alignment phase 

The main goal of this phase is to derive appropriate pre-coding and post-coding matrices 

which align the SUs transmissions to the 𝑁1 − 𝑚1 unused SD left by the PU. In order to 

achieve that, an ST-OIA strategy is proposed in which three separate conditions must be 

satisfied. The first condition defines a pre-processing matrix for the SU-Tx that aligns its 

transmission with orthogonal spaces at the PU-Rx. The opportunistic SU link is said to satisfy 

the IA condition if its opportunistic transmission is such that the PU link achieves the same 

transmission rate of an equivalent single-tier system. Similar to the first condition, the second 
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condition defines a post-processing matrix to be met by the SU-Tx, but this time by aligning 

its transmission with orthogonal spaces at the SU-Rx. These two conditions were sufficient in 

the earlier work done in [97], [100]. However, our research work consists of multiple SUs 

used in the manner of CSS and thus requires a third condition to be defined to ensure that 

each SU successfully aligns its transmission with the orthogonal spaces at both the PU and 

SU.  

Firstly, given the SVD channel matrix of the PU link as 𝑯𝒑𝒑 =

𝑈𝑝𝑝Σ𝑝𝑉𝑝𝑝
𝐻  where 𝑉𝑝𝑝 and 𝑈𝑝𝑝 are the 𝑀𝑝𝑝 × 𝑀𝑝𝑝 and 𝑁𝑝𝑝 × 𝑁𝑝𝑝 singular vector matrices and 

𝚺𝒑 is a 𝑁𝑝𝑝 × 𝑀𝑝𝑝 diagonal matrix containing singular values, the cognitive IA problem is 

formulated by defining the required conditions for IA. Given that the received signal at the 

𝑖th receiver due to the 𝑗th transmitter lies in the subspace spanned by the columns of 𝐻𝑖𝑗𝑉𝑗, 

the SU-Tx’s are guaranteed not to generate any interference on the PU-Rx as long as the 

following precoding and post-processing condition are met  

                                𝑈𝑝𝑝
𝐻 𝑯𝒑𝒋𝑉𝑗 = 0𝑑𝑝

;    ∀𝑖= 1, … … . 𝐾                                                                (4.12) 

                              𝑈𝑖
𝐻𝑯𝒊𝒑𝑉𝑝𝑝 = 0𝑑𝑖

;    ∀𝑖= 1, … … . 𝐾                                                                  (4.13) 

Equation (4.12) is the post-processing matrix that satisfies the orthogonality between the SU-

Rx’s and the PU-Tx, thus guaranteeing the PU link achieves similar data rates as an 

equivalent single-tier system despite the opportunistic transmission of the SUs. 𝑑𝑖 is defined 

as the DoF [8], thus satisfying the first condition. 

The second condition requires that the SU and PU signals be aligned to orthogonal 

subspaces at not only the PU receiver, but the SU receiver as well i.e. at output of the post-
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processing matrices of its unintended receivers. Therefore, a different strategy is used to 

design the SUs post-coding matrix in order to satisfy the second interference constraint.  

The first part of this constraint defined in (4.14) ensures that interference from each SU-Tx is 

aligned at the output of its corresponding unintended receivers.   

                               𝑈𝑖
𝐻𝑯𝒊𝒋𝑉𝑗 = 0𝑑𝑖

;    ∀𝑖= 1, … … . 𝐾                                                                  (4.14)  

                   𝑟𝑎𝑛𝑘{𝑈𝑖
𝐻𝑯𝒊𝒊𝑉𝑖} = 𝑑𝑖;    ∀𝑖= 1, … … . 𝐾                                                                    (4.15) 

The constraint in (4.15) guarantees that the 𝑖th SU can achieve 𝑑𝑖  DoF. 

However, because this work consists of multiple SUs, the third condition that must be 

satisfied requires that ALL the SUs do not impose any interference on the PU receiver 

For this third condition, it will be assumed that the channel coefficients are time varying such 

that constrained IA can be employed over multiple channel realizations to achieve the 

available 𝐾(𝑀 − 𝑑0)+ 2⁄  DoF. The first step towards achieving this transforms the cognitive 

IA problem into an unconstrained standard IA problem for a general cognitive system with 

𝐾 secondary pairs operating in the presence of a primary link with 𝑑0 DoF. Defining the 

matrices {�̃�𝑖}𝑖=1
𝐾 as (𝑀𝑖 − 𝑑0) × 𝑑𝑖  and the matrices {�̃�𝑖}𝑖=1

𝐾
 as (𝑁𝑖 − 𝑑0) × 𝑑𝑖 such that 

                                              𝑉𝑗 = 𝐴𝑗�̃�𝑗      ∀𝑗= 1, … … . . 𝐾                                                            (4.16) 

                                             𝑈𝑖 = 𝐵𝑖�̃�𝑖      ∀𝑖= 1, … … . . 𝐾                                                            (4.17) 

where the 𝐴𝑖 matrix (𝑀𝑖 − 𝑑0) × 𝑀𝑖   spans the nullspace of the matrix 𝑈0
𝐻𝐻0𝑖 i.e. 𝑈0

𝐻𝐻𝑜𝑖𝐴𝑖 =

0𝑑0×(𝑀𝑖−𝑑0). Similarly, the 𝐵𝑖 matrix (𝑁𝑖 − 𝑑0) × 𝑁𝑖  spans the nullspace of the matrix 

𝑉0
𝐻𝑈0𝑖

𝐻  i.e. 𝑉0𝐻𝑜𝑖𝐵𝑖
𝐻 = 0𝑑0×(𝑁𝑖−𝑑0) [87]. 
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Using the expressions defined (4.16) and (4.17) above for the precoding and post-processing 

matrices of the SUs eliminates the initially defined constraints in [102] due to the presence of 

the PU link, by substituting equations (4.16) and (4.17) in (4.14) and (4.15) to get the 

following equations 

                                       �̃�𝑖
𝐻𝐵𝑖

𝐻𝐻𝑖𝑗𝐴𝑗�̃�𝑗 = 0𝑑𝑖×𝑑𝑗
      ∀𝑖,𝑗= 1, … … . . 𝐾, 𝑖 ≠ 𝑗                            (4.18) 

                             𝑟𝑎𝑛𝑘{�̃�𝑖
𝐻𝐵𝑖

𝐻𝐻𝑖𝑖𝐴𝑖�̃�𝑖} = 𝑑𝑖     ∀𝑖= 1, … … . . 𝐾                                               (4.19) 

It can clearly be seen that the modified problem in (4.18) and (4.19) is a standard IA problem 

in the variables {�̃�𝑖}𝑖=1
𝐾  and {�̃�𝑖}𝑖=1

𝐾
. Recall that �̃�𝑖 =∈ ℂ(𝑀𝑖−𝑑0)×𝑑𝑖  and �̃�𝑖 =∈ ℂ(𝑁𝑖−𝑑0)×𝑑𝑖, 

which is in accordance the remark 2 where the effect of the presence of a PU link with active 

𝑑0 DoF is equivalent to removing 𝑑0 antennas from each SU-Tx and SU-Rx.  

The conditions for estimating 𝐵𝑖 by the 𝑖-th SU-Rx is done by listening to the PU-Tx and 

estimating the subspace spanned by 𝐻𝑖0𝑉0. Similarly, the𝑗-th SU-Tx can estimate 𝐴𝑖  by 

listening to the transmission and estimating the subspace spanned by listening to the 

transmission from the PU-Rx and estimating the subspace spanned by�⃖�  𝑗0𝑈0. 

Since the work in [11] proposed a precoding scheme for the 𝐾-user symmetric MIMO IC that 

can asymptotically achieve a DoF of 𝐾𝑀 2⁄  with 𝑀 antennas at each node, then using the 

above equations in (4.18) and (4.19), the 𝐾–user cognitive MIMO channel with 𝑀 antennas 

at each node equates to a standard IC with (𝑀 − 𝑑0)+antennas at each node where the 

channel between the 𝑖th equivalent Tx and the 𝑗th equivalent Rx is given by 𝐵𝑖
𝐻𝐻𝑖𝑖𝐴𝑖. Hence, 

this same technique [5] can then be used to prove that 𝐾(𝑀 − 𝑑0)+ 2⁄  DoF are 

asymptotically achievable for the CR network. 
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4.4.3. Feasibility Conditions 

This third condition is essentially equitable to having two non-interfering systems in the 

cognitive system, the first being a PU that equates to a MIMO-PTP channel with transmit and 

receive antennas. The second is a k–user IC having transmit and receive antennas where the 

presence of the PU is equivalent to removing antennas from the Tx/Rx of the SU, thus 

converting its own channel to a MIMO-PTP channel as well. 

Following [11], the outer bound in can be obtained by picking two secondary users and 

ignoring the interference from the other secondary users, because in the presence of the PU, 

the DoF 𝑑0 of the 𝑖th user cannot exceed those that can be obtained in the absence of the 

other 𝐾 − 1 SUs. The DoF of the resulting 2-user IC can be found using the results of [4] and 

is given by in (18) for the pair. Since there are user pairs resulting in times the sum of the 

individual rates, we get (4.18). 

In this section, the feasibility of the proposed method and the conditions in which the 

cognitive system can limit the number of SUs that will be picked to ensure perfect IA will be 

discussed. The conditions for which the system is proper were first determined, i.e., the 

number of variables to be determined is greater than or equal to the number of equations in 

the system. In order to find the number of equations, the IA conditions were reformulated in 

(5) as the following: 

                                                 𝑁𝑣 ≥ 𝑁𝑒 ⇒ 𝑀 + 𝑁 − (𝐾 + 1)𝑑 ≥ 0                                          (4.20) 

For the sake of simplicity, we limit our initial design to a 3-SU cluster i.e. each SU having 

𝑀 = 𝑁 = 3 antennas. It is well know from the Bezout’s theorem that generic polynomial 

systems are solvable if and only if the number of equations does not exceed the number of 

variables. As such, signal space IA problems can either be proper or improper [76]. Thus, 



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         98 

 

from the Theorem of Proper Characterization [49] which states that “A symmetric system 

(𝑀 × 𝑁, 𝑑)𝐾 is proper if and only if 𝑁𝑣 ≥ 𝑁𝑒 ⇒ 𝑀 + 𝑁 − (𝐾 + 1)𝑑 ≥ 0”. 

Simply comparing the total number of variables of equations and the total number of 

variables suffices to determine if a system is proper or improper.  As an example, consider a 

(1 × 1,1)4 system i.e. a four user system where each Tx has 𝑀 = 𝑁 = 1 antennas with each 

user demanding a 1 DoF. From(4.20), this system can be categorized as being proper and can 

subsequently have four Tx’s with one antenna each and two Rx’s with two antennas each 

[49]. Therefore this example will automatically achieve 4 DoF, which automatically 

surpasses the DoF achievable by the X channel.  

Thus, this system can be designed according to the algorithms defined in equations (4.14)  

and (4.15)  to satisfy the IA condition of (4.18). Similarly, we can also design the CR as an 

Asymmetric system whose conditions state that “if a system is improper, then simply 

comparing the total number of equations and total number of variables may suffice  

i.e. “An Asymmetric system defined as 𝜋𝑘=1
𝐾 (𝑀[𝑘] × 𝑁[𝑘], 𝑑[𝑘]) is improper if 

                                     𝑁𝑣 < 𝑁𝑒 ⇔ ∑ 𝑑[𝑖](𝑀[𝑖] × 𝑁[𝑖], 𝑑[𝑖])

𝐾

𝑖=1

< ∑ 𝑑[𝑖]𝑑[𝑗]

𝐾

𝑖,𝑗∈𝜅
𝑖≠𝑗

                   (4.21) 

This advantage of this optimization technique is that it will show how the DoF limitations of 

the X channel can be improved and it also allows more nodes to be incorporated into the CR 

network. From the analysis of results done in cfapter 2; detection performance of CSS is 

considerably enhanced with increased number of nodes. However, this does create a greater 

number of IA conditions to be met thus increasing computational complexity. 
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4.5.Optimizing SU transmission rates 

The work in [24] proposed an OPA as described in Chapter 2, where the transmission rate for 

the SU link is maximized by adopting a power allocation matrix 𝑃𝑠 which is a solution of the 

following optimization problem, 

           argmax
              𝑃𝑠

              𝑅𝑠(𝑃𝑠)                                                                                                          (4.22) 

𝑠. 𝑡.     𝑇𝑟𝑎𝑐𝑒(𝑃𝑠𝑠𝑉𝑠𝑉𝑠
𝐻)  ≤   𝑝𝑚𝑎𝑥                                                                                       

where 

𝑅𝑠(𝑃𝑠) = log2 |𝐼𝑁𝑟
+ 𝑄−

1
2𝐻𝑠𝑠𝑉𝑠𝑠𝑃𝑠𝑉𝑠𝑠

𝐻𝐻𝑠𝑠
𝐻𝑄−

1
2|  

This optimization problem requires the knowledge of the covariance matrix 𝑄, which can be 

done if the SU-Rx estimates 𝑄 and feeds it back to the SU-Tx. In simpler terms, it is assumed 

there is a perfect knowledge of 𝑄 at the SU-Tx. Furthermore, the transmission rates for the 

SUs can also be optimized as shown in [12], which adopts a UPA scheme by spreading its 

total power among the identified TOs. In other endeavors, the work in [100] enables the SU 

link to estimate required CSI by blindly estimating its covariance matrices 𝑄, albeit with a 

huge computational complexity.  

Since the conditions for estimating 𝐵𝑖 and 𝐴𝑖  have been defined earlier where the 𝑖-th SU-Rx/ 

SU-Tx listens to the PU-Tx/PU-Rx in order to estimate the subspace spanned 

by 𝐻𝑖0𝑉0/�⃖�  𝑗0𝑈0, this provides an opportunity for this work to consider the multi-user SUs and 

not the PU link as using a time division duplex (TDD) mechanism [90] so that channel 

reciprocity is assumed between the forward (Tx to Rx) and reverse (Rx to Tx) channels.  

The Reciprocity property of wireless networks is considered due to the drawbacks of existing 

closed form solutions of IA which typically include global CSI requirements optimal 
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performance only in high SNR conditions. The work done in [63] is was a technique designed 

to address the drawbacks of such existing closed form solutions of IA for the IC with 

arbitrary number of antennas at each transmitter and receiver to achieve the following 

objectives: require only local CSI, improve performance of IA solutions in lower SNR 

conditions and introduce diversity techniques in IA solutions [55]. These objectives all come 

about due to the reciprocity property of wireless networks is considered which states that “the 

signaling dimensions along which a receiving node sees the least interference is the same 

dimension along which this node will cause least interference when the roles of Tx’s and 

Rx’s are switched. 

Considering the same 𝐾 − 𝑢𝑠𝑒𝑟 IC as per the “third condition” for our design, let 𝐾𝑡ℎTx 

and Rx have 𝑀 Tx antennas and 𝑁 Rx antennas respectively, such that the channel is defined 

as stated in (2.17) 

                                                      𝑌𝑖(𝑛) = ∑ 𝐻𝑖𝑗(𝑛)𝑥𝑗(𝑛) + 𝑧𝑖(𝑛) ;                                        (4.23)

𝑖

𝑗=1

 

Where symbols have the same meanings as previously discussed in(2.17). 

For the 𝐾 − 𝑢𝑠𝑒𝑟 IC defined above, a reciprocal channel can be defined as the role of Tx’s 

and Rx’s being switched so that all elements on the original channel corresponds equally but 

opposite to the elements on the reciprocal channel.  

If interference is nulled into the null space of 𝑈𝑖   as defined in equation (4.14), then the IA 

condition of equation (4.15) must be satisfied, where the desired signals are then received 

through a 𝑑𝑖 × 𝑑𝑖 full channel matrix defined as �̅�𝑖𝑖 ≜ 𝑈𝑖𝐻𝑖𝑖𝑉𝑖 

The Reciprocity then goes on to state that for the 𝐾 − 𝑢𝑠𝑒𝑟 reciprocal channel defined above, 

“if IA is feasible on the original IC, then it is also feasible on the reciprocal IC”.  
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In mathematical terms, if �⃖� 𝑖 and �⃖�  𝑖 denote the transmit pre-coding and interference 

suppression filters on the reciprocal channel, then the IA conditions on the reciprocal channel 

can be defined as defined in equations (4.24) and (4.25)below [55]: 

                                                           �⃖� 𝑖: 𝑁𝑖 × �⃖�𝑖,   �⃖�  𝑖
† �⃖�  𝑖 = 𝐼𝑑[𝑖]                                                    (4.24) 

                                                          �⃖�  𝑖: 𝑀𝑖 × �⃖�𝑖,   �⃖�  𝑖
† �⃖�  𝑖 = 𝐼𝑑[𝑖]                                                    (4.25) 

such that feasibility conditions on the reciprocal channel can be similarly satisfied as follows 

                                                         �⃖�  𝑖
𝐻†�⃖�  𝑖𝑗�⃖� 𝑗 = 0𝑑[𝑖]×𝑑[𝑗], ∀𝑖,𝑗 𝑖 ≠ 𝑗                                          (4.26)  

                                              𝑟𝑎𝑛𝑘{�⃖�  𝑖
𝐻†�⃖�  𝑖𝑖�⃖� 𝑖} = 𝑑𝑖, ∀𝑖 = 1, … … 𝒦                                          (4.27) 

This shows the duality of reciprocity with the original feasibility of IA. We will design 

transmit and receive filters that iteratively update their filters to approach interference 

alignment. The quality of IA is measured by the power in the leakage interference at each 

receiver, i.e., the interference power remaining in the received signal after the receive 

interference suppression filter is applied. The aim of this iterative approach is to 

progressively and iteratively reducing the leakage interference until it converges to zero [63]. 

The total leakage interference due to undesired transmission at each SU is given as 𝐼[𝑖∗] =

𝑇𝑟[𝑈𝑖
†𝑄𝑖𝑈𝑖] Where 𝑄𝑖 = ∑

𝑃𝑖

𝑑𝑖
𝐻𝑖𝑗𝑉𝑗𝑉𝑗

†𝐻𝑖𝑗
†𝑑𝑖

𝑗=1,𝑗≠𝑖  is the interference covariance matrix at 

receiver 𝑖. For the reciprocal channel, if �⃖� [𝑘] > 0 is the power constraint at every SU, then the 

total leakage interference can also be defined as 

                                                                    𝐼[𝑗∗] = 𝑇𝑟[�⃖�  𝑖
†�⃖� 𝑖�⃖�  𝑖]                                                      (4.28) 

Where  

�⃖� 𝑖 = ∑
𝑃𝑖

𝑑𝑖

 ⃖ 
�⃖�  𝑖𝑗�⃖� 𝑗�⃖� 𝑗

†�⃖�  𝑖𝑗
†𝑑𝑖

𝑗=1,𝑗≠𝑖  is the interference covariance matrix at Rx 𝑖. 
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Recall that the SU-Rx can estimate by listening to the PU-Tx and estimating the subspace 

spanned by 𝑈𝑖. Similarly, the SU-Tx can estimate by listening to the transmission from the 

PU-Rx and estimating the subspace spanned by 𝑈𝑗 

 The algorithm is modeled to alternate between both the original and reciprocal 

network.  

 The iterations for the pre-coding matrices are set as�̃�𝑗: 𝑀𝑗 × 𝑉𝑗 , 𝑉𝑗𝑉𝑗
† = 𝐼𝑑[𝑗] 

 The next step defines the Rx’s covariance matrices that will be received at each SU 

𝑄𝑖 = ∑
𝑃𝑖

𝑑𝑖
𝐵𝑖

𝐻𝐻𝑖𝑗𝐴𝑗�̃�𝑗�̃�𝑗
†𝐴𝐽

𝐻𝐻𝑖𝑗
† 𝐵𝑗

𝑑𝑖
𝑗=1,𝑗≠𝑖              (4.29) 

The Reciprocity is the key aspect to accurate algorithms and for the 𝐾 − 𝑢𝑠𝑒𝑟 reciprocal 

channel defined above, as it states that “if IA is feasible on the original IC, then it is also 

feasible on the reciprocal IC.  

 The suppression matrices at each receiver are defined as 

�̃�𝑖 = 𝑣𝑑[𝑄𝑖],   𝑑 = 1, .  .  .  . 𝑑[𝑘] 

 Setting the pre-coding matrices as reciprocals �̃�𝑗
 ⃖ 𝑎𝑛𝑑 �̃�𝑗

 ⃖  , begin iterations 

 

 The next step defines the receivers covariance matrices received at each receiver 

 �⃖� 𝑖 = ∑
𝑃𝑖

𝑑𝑖

 ⃖ 
𝐴𝐽

𝐻�⃖�  𝑖𝑗𝐵𝑗�⃖� 𝑗�⃖� 𝑗
†𝐵𝑗

𝐻�⃖�  𝑖𝑗
† 𝐺𝑖                                                                          (4.30)

𝑑𝑖
𝑗=1,𝑗≠𝑖           

 The reciprocal suppression matrices at each receiver are then computed as 

�̃�𝑖
 ⃖  = 𝑣𝑑[𝑄𝑖] ⃖      ,   𝑑 = 1, .  .  .  . 𝑑[𝑘] 

 The communication channels are continuously reversed back and forth between the 

original and reciprocal, until convergence to zero. 

The significance of this reciprocity is about two things: firstly, the SU’s are only required to 

learn the effective channel of their desired PU. This lessens the burden of global channel 
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information of all available matrices. Secondly, the algorithms can be used for further 

analytical study of IA solutions. While IA solutions are optimal at high SNR, they are not so 

optimal at intermediate SNR making it impossible to obtain optimal array gain for the SUs 

signals.  

4.6.Simulation Results and Analysis 

In this section, numerical results have been provided to evaluate the performance of the ST-

OIA algorithm against others such as the SU-IA-OPA. It is quite clear from the results 

obtained that this scheme provides improved throughput when compared with other schemes. 

-5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

SU-IA-UPA

ST-OIA

SU-IA-TBF

A
ve

ra
ge

 S
u

m
 R

at
es

 (
b

/s
)

SNR (dB)
 

Fig. 4.4: Average Sum Rate (b/s) against SNR (dB) for a single PU link and two SUs 

Monte-Carlo simulations were carried out for 2 SU pairs (Tx and Rx) and a single PU link 

with each node equipped with two antennas. From Fig 4.4, three separate techniques are 
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compared namely the legacy SU-IA-PA, the SU-MEB and of course the proposed ST-OIA. It 

can be seen that the SU-MEB performs best at moderate to high SNR while the SU-IA-PA 

performance takes a sharp drop when the SNR increases. 

This could be indicative of the fact that the TOs become almost non-existent at highest SNR. 

However, the work in [28] shows that for practical values of SNR, there exists a non-zero 

number of TOs the SUs can always exploit. At intermediate to high SNR, the SU-MEB 

scheme performs consistently. Even at 30dB, the sum rate remains consistent and does not 

drop-off. The proposed scheme’s (ST-OIA) performance peaks between 5dB to 15dB, but 

then there is a sharp drop-off as the SNR increases. 
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Fig. 4.5: Average Sum Rate (b/s) against SNR (dB) for a single PU link and two SUs with 

Reciprocity 
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The graph shown in fig 4.5 demonstrates the performance of employing schemes to enhance 

throughput. Implementing Reciprocity requires that the transmitter – receiver pair become the 

receive-transmitter pair. The main essence of implementing reciprocity in this work is so that 

the SU receivers can be setup with a threshold to sense for the unused spatial dimensions. 

The essence of this is setting a threshold value of SNR so that once the receiver does not 

attain this threshold; it ceases to communicate with the transmitter. So the SU Tx in this case 

becomes quiet and continues to listen for the unused dimensions. It can be seen in Fig 4.5 that 

this implementation has a very drastic response in terms of performance. As the SNR 

increases, the effect of optimizing the transmission rate of the SU is clear to see as there is a 

marked increase in terms of sum-rates. 

4.7.Conclusion  

A ST-OIA has been proposed in which SVD is performed on the PU channel matrix where a 

ST-WF algorithm is applied to free up some unused eigenmodes. Both PU and SU can utilize 

the licensed spectrum by aligning the interference from the SUs to these unused eigenmodes.   

A comparative analysis between the ST-WF and other WF algorithms was carried out to 

show its achievable gains. Multiple SUs utilizing the benefits of cooperative spectrum 

sensing were used to sense the unused eigenmodes. Simulation results showed the probability 

of missed detection to be quite marginal with respect to theoretical values for three SUs. 

Finally, three separate conditions were defined and met to ensure that interference to the PU 

and SU receivers are perfectly aligned to the unused eigenmodes. Most significantly is that 

limited cooperation between the PU receiver and the multiple SUs was implemented to 

ensure the SUs avoided interfering with the PU-Rx. Lastly, the SU transmission rates were 

maximized by using the principle of reciprocity where the SU receivers can be used to 

transmit feedback information to the transmitters.  
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Simulation results showed improved performance in terms of sum rates for the three IA 

conditions, although there was significant performance drop with increased SNR. It was also 

shown that implementing feedback through reciprocity greatly increased the performance of 

the multiple SUs and bodes well for future work in this area.  

One significant drawback of ST-WF is that its CSI requirement is based over a definite 

period of time that could span the whole duration of transmission, thus negating the benefits 

derived from the block transmission of the that ST-WF technique gives the PU. The solution 

to this problem and a strong consideration for future work is to assume causal knowledge of 

the CSI, which can then be exploited to intelligently allocate the power over the causal blocks 

(and hence vary the channel mutual information) to minimize the average transmitted power 

per block.  

A significant part of this Chapter has been published in the proceedings of the 14th IEEE 

Wireless Communications and Networking Conference (WCNC) held in April 2016 in Doha, 

Qatar (http://ieeexplore.ieee.org/document/7564913/).  
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5. Opportunistic Interference Alignment with Space-time Coding 

5.1.Introduction 

This chapter’s main objective continues the process of optimizing the sensing channels used 

in CSS. Similar to research done in [71] – [75], the work done in Chapter 4 towards has been 

able to establish the following key novelties. It was established that due to power limitations, 

the PU link makes use of a WF PA scheme to maximize its transmission over its SD’s to 

leaves some of them unused. Secondly, the SU link can detect and take advantage of these 

unused SDs with a linear pre-coder that aligns the SUs transmission with the unused SDs of 

the PU link thereby avoiding any interference to the PU. Given the fact that a single SU is 

unlikely to reliably detect the presence of a PU [16], the third considers the possibility of 

employing multiple SU’s to take advantage of CSS, where the SUs individually perform local 

sensing in order to detect the absence or presence of the unused TOs. Additionally, the ST-

WF algorithm for PA of the PU link rather than the SWF algorithm used in [24], [71] – [74], 

which showed a slight performance advantage in terms of capacity per antenna at low to 

moderate SNR regimes [25], [26]. Lastly, it was also shown that the multiple SUs can make 

use of a TDMA mechanism so that channel reciprocity is assumed between the Tx to Rx and 

reverse Rx to Tx channels in order to optimize the SUs transmission rates. Based on this, the 

SU receivers will periodically transmit feedback through reverse channels in timeslots with 

channel parameters indicating a loss of fidelity or a change in the PUs transmission 

parameters.  

The work in this chapter goes on to establish that these incremental novelties are in fact a 

means to an end and not the end in their own selves, by showing that incremental 

enhancements can still be introduced within the above mentioned novelties towards 

optimizing the sensing channels used in CSS. To be more specific, this chapter will focus on 
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the aspect of improving the detection accuracy and transmission rates of the SUs towards 

further optimization of CSS. 

As previously shown in Chapter 4, there are three conditional statements that must be defined 

to ensure the functionality of ST-OIA. The SU-Tx’s must not generate any interference on 

the PU-Rx, the SU and PU signals must be aligned to orthogonal subspaces at not only the 

PU receiver, but the SU receiver as well. Lastly, the multiple SUs must not impose any 

interference on the PU-Rx. On this last condition, simultaneously aligning all SU 

transmissions at the PU-Rx is always limited by availability of spatial dimensions as well as 

typical user loads [27]. Therefore, instead of only relying on feasibility conditions to 

simultaneously align sets of SUs at every PU-Rx, the work in this chapter proposes an SU 

selection algorithm by the FC, in which only the two SUs that are closest to the FC are 

aligned at each PU-Rx. 

With the selection algorithm clearly defined, this chapter then goes on to explore further 

means of improving the detection accuracy employed by the SUs. Naturally, the success of 

the SUs communication in this SU model depends on the accurate availability of unused 

DoFs. The work in [15] proposed a fast sensing method based on GLRT that gives a more 

accurate outcome on the absence/presence of individual TOs, albeit with huge computational 

complexity. Thus to enhance accuracy of detection of TOs without the huge computational 

complexity associated with the GLRT, this work makes use of a double threshold ED scheme 

[107], [108] to enhance the detection accuracy and availability of DoF. Typically, the sensing 

condition states that “if the SD exceeds the water-level 𝛽 value, then the SU reports 

unavailability of used SD. Alternatively, if it is less than 𝛽, then the SU reports availability of 

unused SD. However, if the detected value is between �̇�1 and �̇�2 (i.e. values that are slightly 
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above or below𝛽 ), the SUs still report this energy value, implying that the FC receives two 

kinds of information from which to base its decision on. This increased range of values 

available to the FC leads to higher detection accuracy and thus increased DoF.  

Furthermore, this research is also focused on maximizing the achievable transmission rate as 

well as diversity gain for the opportunistic SU links. The more legacy work of [23] and [24] 

use two power allocation schemes to find a covariance matrix that maximizes the achievable 

transmission rate for the opportunistic SU link. In was shown in [24] that the power 

allocation technique turns out to be a beamformer with multiple beams formed using the 

orthogonal eigenvectors of the correlation matrix of the estimated channel at the SU-Tx 

according to the WF principle. The water-level saturates the power constraints, which makes 

the 𝐾-user cognitive MIMO SU network equivalent to a standard IC with multiple antennas 

at each node.  

To increase the data rate performance, parallel transmissions equipped with STBC across 

eigen-beams were developed in [109] – [111], which yielded a two-directional eigen-

beamformer that performs better than the conventional one-directional beamformer with 

negligible increase in computational complexity [111], [112]. Conversely, to achieve full 

transmit diversity without losing sum rates, IA schemes were proposed in [113], [114] that 

use STBC to achieve full transmit diversity, where the STBC structure of the equivalent 

channels where preserved after zero-forcing the interfering users [115].  These IA schemes 

were shown to achieve higher diversity gain than other conventional methods [115] with only 

local CSI. Since the work in [116] – [119] reveals that the fundamental SU transmission is 

not changed by the transmit eigen-beamforming matrices, this work proposes wedding 

optimal precoding with STBC and IA that will achieve higher transmit diversity at the same 

symbol rates as the work done in [12]. 
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The ST-WF scheme is also not without its drawbacks as was shown in [77] to be associated 

with a higher channel outage probability, thereby setting a lower-bound in terms of the SUs 

transmission rates. In order to solve this problem of maximizing the SUs rates without the 

need for CSI and in the presence of channel outage, this work proposes that the multiple SUs 

employ a DSTBC scheme that is then combined with optimal IA precoders [119], [120] that 

align interference at unintended Rx’s thereby eliminating the need for local CSI. D-STBC 

encodes the transmitted information into phase differences between two consecutive symbols, 

where information is transmitted by first providing reference symbols which determine 

whether the SUs transmit or remain silent. This is then followed by linearly encoded 

combinations of both the original phase-shifted symbols and their conjugate. After 

performing zero forcing, the multiple SU-Rxs decodes the information in the current symbol 

by comparing its phase to the phase of the previous symbol. This scheme achieves maximum 

symbol rate with a much higher reliability.  

It is worth noting that, although close in notion to the research done in [24], [75] and [93], 

this work differentiates itself in the following key aspects. Firstly, the PU’s power allocation 

technique is based on a SVD parallel channel decomposition scheme that employs the ST-

WF algorithm for the PU link to achieve better channel capacity. Secondly, this work then 

takes advantage of multiple SUs, similar to [75] to enhance performance by employing CSS, 

and proposing a double-threshold ED scheme that improves the 𝑃𝑑. Finally, this work 

proposes an IA technique that manages interference between the SUs, by proposing a full 

diversity technique which combines the merits of DSTBC and linear precoding, yielding a 

two-dimensional (2-D) beamforming solution. It was shown that this works shows better 

performance in terms of the SUs transmission rates.  
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The remainder of this chapter is organized as follows. In Section 5.2, the system model and 

the main assumptions required for analysis are reviewed (due to the fact that the system 

model for this chapter is the same as Chapter 4). In Section 5.3, a review on the comparative 

analysis between the MEB, SWF and ST-WF schemes is done, as well an analysis on outage 

probability of the ST-WF algorithm. Section 5.4 presents the opportunistic IA scheme (OIA) 

by presenting the sensing phase (along with the double threshold method) and the IA phase 

with the SU selection process. Section 5.5 presents OIA with STBC by briefly reviewing the 

literature before presenting the algorithms required for the STBC-beamforming-IA technique. 

Section 5.6 then presents the OIA with DSTBC approach that describes the steps taken 

towards achieving diversity and higher data rates. Section 5.7 provides an overview of 

simulation results as well as a performance comparison between this work and that of [23] 

and [24]. Finally, Section 5.8 presents the concluding remarks. 

5.2.System Model and Assumptions 
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Fig. 5.1: Multiuser CR network model consisting of one PU link and multiple SUs 
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The system model for this work is also an overlay MIMO CR network that consists of a 

single PU link (PU-Tx and PU-a) and 𝑘  SU-Tx/Rx pairs (𝑆𝑈1, . . . ,𝑆𝑈𝑘) as shown in Fig. 5.1 

below. All assumptions made in Chapter 4 Section 4.2 apply to the CR network in Fig. 5.1. 

In the standard IA conditions, the primary and secondary received signals are represented by 

                                          Yi = HiiVixi + ∑ HijVjxj + zi

K

j=1

                                                            (5.1) 

where the coefficients of (5.1) have the same meaning as those defined in system model of 

Chapter 4.2., with the slight difference being that this Chapters system model will employ a 

2-SU cluster with each SU having 𝑀 = 𝑁 = 2 antennas (as will be discussed in the later 

sections of this Chapter). It should be noted that 𝑖 and 𝑗 are also used as a generalization 

denoting each Rx and Tx pair. 

5.3.PU Link Optimization  

5.3.1. Review on the Numerical comparison 

Referring to Chapter 4 Section 3 (4.3) on PU link optimization, the ST-W’s ability to operate 

at low to moderate SNR regimes as well as its higher capacity performance than SWF makes 

it fit more appropriately for the work in this chapter.  

In order to implement the ST-WF algorithm, we took a look at the original approach for WF 

[76], i.e. the SWF approach, which can be used to optimally allocate power to the parallel 

channels [26]. As described in Chapter 4 in terms of implementing the ST-WF algorithm, the 

PU-Tx also chooses precoding matrices as the columns of 𝑉𝑝𝑝(𝑈𝑝𝑝) that corresponds to a 

non-zero power allocation that is used to maximize the rate of the PU link under power 

constraints such that  
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max

𝑄
𝐸 [𝑙𝑜𝑔 |𝐼 +

1

𝜎2
𝐻𝑝𝑝𝑄𝐻𝑝𝑝

†|] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡𝑟(𝑄) ≤  𝑃
                                             (5.2) 

For computation of the diagonal PA matrix by applying the so-called ST-WF algorithm, 𝛽 

can be found as follows 

                                                  𝑃i = (�̅� −
𝜎𝑖

2

𝜆𝑖
)

+

; 1 ≤ 𝑖 ≤ 𝑅𝐻                                                       (5.3) 

Where �̅� is the mean water-level that can be solved by the equation given as 

                                           ∑ ∫ (�̅� −
𝜎𝑛

2

𝜆𝑖
) 𝑓(𝜆𝑖) 𝑑𝜆𝑖

∞

𝜎𝑖
2

𝛽

𝐿𝑝

𝑙=1

= 𝐏                                                         (5.4) 

Where 𝑓(𝜆𝑖) is the marginal probability density function (pdf) of the random variable(𝜆𝑖). 

Recalling from chapter 4 (Fig. 4.2), the average sum rate performance for a single user PU 

MIMO link with the ST-WF algorithm outperforms both the SWF and MEB schemes. 

5.3.2. Outage Probability of ST-WF 

A condition exists for the ST-WF algorithm, when SDs from PU channel matrix is not high 

enough to properly utilize transmission power. This can result in blockage of transmission, or 

more specifically channel outage. The channel outage probability defined in [121] is 

equivalent to the probability that the largest eigenvalue of 𝐻𝑝𝑝
†𝐻𝑝𝑝 is smaller than 𝜎𝑖

2/𝛽. 

Since the eigenvalues {𝜆𝑖}𝑘=1
𝑀  of 𝐻𝑝𝑝

†𝐻𝑝𝑝 are in descending order, the channel outage 

probability can be expressed as 

                                    𝑃i(𝜎
2, 𝑀) = 𝑃 {𝜆𝑖 ≤

𝜎2

�̅�
}                                                                             (5.5) 
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The exact channel outage probability is expressed in terms of the maximal eigenvalue 

distribution, denoted as 𝜀𝑚𝑎𝑥(𝜆𝑖). If 𝜆1 =  𝑠ℎ𝑡1, where  𝑠ℎ is the shadowing random variable 

and 𝑡1 is the maximal eigenvalue of 𝐻𝑝𝑝
†𝐻𝑝𝑝, the distribution of 𝑡1 denoted as  𝛿𝑚𝑎𝑥(𝑡1) and 

can be obtained by integrating out 𝑡𝑀 , 𝑡𝑀−1, . . . . . 𝑡2, that is, 

𝛿𝑚𝑎𝑥(𝑡1) = ∫ . . . .
𝑡1

0

∫ ∫ 𝐾
𝑀𝑒− ∑ 𝑡𝑖𝑖 × ∏(𝑡1 − 𝑡𝑗)

2
𝑑𝑡𝑀𝑑𝑡𝑀−1. . . . 𝑑𝑡2

𝑖<𝑗

𝑡𝑀−1

0

𝑡𝑀−2

0

                    (5.6) 
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Fig. 5.2: Outage probability curves for SWF and ST-WF 

 

Given that 𝛿(𝑡) was defined by [122] as the probability density function (pdf) of an 

instantaneous eigenvalue 𝑡 , it was found in [123] that the cumulative distribution function 

(cdf) of 𝜆𝑖 is given as  
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                                        𝜖(𝜆𝑖) = ∫ ∫ 𝑟(𝑠)𝛿(𝑡)𝑑𝑡𝑑𝑠                                                               (5.7)

𝜆
𝑠⁄

0

∞

0

 

Differentiating (5.6) yields the pdf of 𝜆𝑖 given as 

                                      𝜀(𝜆𝑖) =
10

𝜌𝑙𝑜𝑔10√2𝜋
∫ 𝛿𝑚𝑎𝑥 (

𝜆𝑖

𝑠
)

1

𝑠2
𝑒−(10𝑙𝑜𝑔10𝑠)2/2𝜌2

𝑑𝑠                 (5.8)
�̅�

0

 

Similarly, 𝜀𝑚𝑎𝑥(𝜆𝑖) can be calculated with 𝑡 and 𝛿(𝑡) being replaced by (𝑡1) and 𝛿𝑚𝑎𝑥(𝑡1) 

respectively. Thus, the channel outage probability becomes  

𝑃out(𝜎
2, 𝑀)

=  ∫  𝜀𝑚𝑎𝑥(𝜆𝑖)𝑑𝜆

𝜎𝑖
2

�̅�

0

=
10

𝜌𝑙𝑜𝑔10√2𝜋
∫ ∫ 𝛿𝑚𝑎𝑥 (

𝜆𝑖

𝑠
)

1

𝑠2
𝑒−(10𝑙𝑜𝑔10𝑠)2/2𝜌2

𝑑𝑠𝑑𝜆𝑖                                                  (5.9)
∞

0

𝜎𝑖
2

�̅�

0

 

Given the closed-form nature of the outage probability calculations, solving for 𝛿(𝑡) is seen 

to be computationally complex, and as such, only an approximated value of 𝛿(𝑡) will be 

utilized to simplify the calculation of �̅�.  

The achievable spectral efficiencies per antenna of the two cases of SWF and ST-WF are 

compared by Monte Carlo simulations performed over 106 channel realizations.  

Since we are considering practical multi-antenna systems where the channel coefficients 

fluctuate relatively fast, their antennas may exhibit strong correlation among fading channels, 

which implies that the channel’s spatial correlations will typically change slowly, even when 

the channel coefficients fluctuate relatively fast [124]. The channel’s spatial correlation is 

considered as a slowly varying effect similar to log-normal shadowing. 
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Therefore, the Rayleigh MIMO channel has variance of 1 2⁄  for both real and imaginary parts 

with a standard deviation of 𝜂 =  0 for a pure Rayleigh fading scenario, and 𝜂 =  8 for log-

normal distribution [125].  

With the average power 𝑃 set to be 1, Fig. 5.2 shows the channel outage probabilities for 

both WF techniques for 2 × 2 Rayleigh channels but with and without shadowing. For 𝜂 =

 8, it can be seen that the SWF technique incurs a higher channel outage probability than the 

ST-WF technique. The case of pure Rayleigh fading for the ST-WF technique results in 

lower channel outage because the increase of 𝜂 in log-normal shadowing conditions changes 

much slower than fast fading. Therefore, the distribution of the shadowing variable dominates 

the outage probability.  

The conservative approach in terms of the number antennas (i.e. the 2 × 2 setup) at each SU-

Tx also accounts for the outage probabilities of both cases, as was observed in [76], [77]. The 

general observation is that as the number of antennas increases, the channel outage 

probability decreases to such an extent that the outage probability for a 30 × 30  SU-Tx 

antenna set becomes zero for Rayleigh fading channels [76].  

Due to the high channel outage probability, the transmission of ST-WF is similar to block 

transmission. For SWF, the transmission mode is continuous for every channel realization 

since the SU-Tx always has power to transmit. Hence ST-WF is more suitable for burst mode 

transmission when the channel gain distribution has a heavy tail, and SWF is preferred for 

continuous transmission when the channel gain distribution is close to Rayleigh or is 

unknown.  
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5.4.Opportunistic Interference Alignment 

The proposed approach will be divided into two phases, the first being the sensing phase and 

the second being the interference alignment phase. 

5.4.1. The Sensing phase 

The SUs are always looking for TOs to gain access to the PU’s channel [96] – [100] and will 

always opportunistically make use of the licensed spectrum as long as the TOs are available. 

This is based on the assumptions made about the system model that the PU – SU link is 

assumed to be operating as a MIMO broadcast (BC) channel with the PU seemingly 

broadcasting to many SUs, given that capacity benefits can be achieved by simultaneously 

transmitting to multiple users [26], [31].  

At low SNR, the ST-WF algorithm allocates all power to the strongest 𝑅𝐻  parallel channels 

while at high SNR, it allocates equal power to each of the 𝑅𝐻 channels. The strongest 

channels are the 𝑚1 used dimensions, while the others can be classified as the 𝑁1 −

𝑚1 unused dimensions or TOs. The SUs make independent decisions about the unused 𝑁1 −

𝑚1 dimensions. 

Each SU senses the absence or presence of the unused TO such as is the case in conventional 

energy detection theory [4], [46], where each SU makes its local decisions by comparing its 

observational value with a pre-fixed threshold 𝛽, as shown in Fig. 5.3(a), and a decision is 

made when  𝐸ℎ is greater or less than the threshold value �̅� under the following binary 

hypothesis test [22]: 

                          {
𝐻0;  𝑚1 𝑒𝑖𝑔𝑒𝑛𝑚𝑜𝑑𝑒 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑃𝑈             
𝐻1; 𝑁1 − 𝑚1 𝑒𝑖𝑔𝑒𝑛𝑚𝑜𝑑𝑒 𝑢𝑛𝑢𝑠𝑒𝑑 𝑏𝑦 𝑃𝑈

                                                       (5.10) 
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Naturally, the success of the SU communication depends on the availability of unused DoFs 

and as shown in the work in [74], a fast sensing method based on a generalized likelihood 

ratio test (GLRT) can be implemented in two phases to more accurately decide the absence of 

individual PU streams thereby accurately determining the availability of unused. In this 

chapter, a double threshold method as shown in Fig. 5.4(b) is introduced, where two 

thresholds are used to help the decision of the SU [107], [108].  

The WF solution can be thought of as tracing out the bottom of a vessel or curve. If 𝛫 units 

of water per sub-carrier are filled into the vessel, the depth of the water at sub-carrier 𝑛 is the 

power allocated to that sub-carrier, and 𝜆−1 is the height of the water surface of sub-carriers 

(which are ideally placed to be below the water level 𝛽 that has been solved to satisfy the 

power constraint). The sub-carriers in which the bottoms of their vessels are above the water 

and no power is allocated to them are the unused SD. The condition for the conventional 

detection method states that “if the energy value 𝐸𝑖 exceeds 𝛽, then the SU reports 𝐻1. If 𝐸𝑖 is 

less than 𝛽, SU reports 𝐻0. However, there are some sub-carriers that are just slightly below 

the water level i.e. �̇�2, that the normal single threshold detection classifies as used. However, 

the channels of these sub-carriers are actually too poor for it to be worthwhile for 

transmission by the PU [126], with the same applying for the reverse situation of the sub-

carriers being slightly above water-level (�̇�1), which are classified as unused.  
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Fig. 5.3: Double detection 

Therefore, the double detection technique states that if 𝐸𝑖 is between �̇�1 and �̇�2 , then the SU 

also reports this observational energy value i.e. 𝐸𝑖 Hence, the FC receives two kinds of 

information; local decision and the observational value of the SU. 

It is assumed that each secondary user has identical threshold values. If 𝐸𝑖 satisfies�̇�1 < 𝐸𝑖 <

�̇�2, then the 𝑖𝑡ℎ SU sends the measured energy value 𝐸𝑖 to the FC. Otherwise, it reverts back 

to reporting its local decision 𝐿𝑖  according to 𝐸𝑖, i.e. the conventional detection technique. 

Each SU sends a summary of its own observations to the FC in the form of 𝑃𝑚𝑑 ,  𝑃𝑓. 

Let 𝑅𝑖  denote the information that the FC receives from the 𝑖𝑡ℎ SU given by 

                                               𝑅𝑖 = {
𝐸𝑖       �̇�1 < 𝐸𝑖 ≤ �̇�2

𝐿𝑖           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                (5.11) 

and 

                                                    𝐿𝑖 = {
𝐻0      0 < 𝐸𝑖 ≤ 𝛽
𝐻1              𝐸𝑖 > 𝛽

                                                             (5.12)  



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         120 

 

Hence the FC collects their observational values and makes an upper decision on availability 

of used and unused SDs. The FC then uses the hard combination fusion rule [9], [21], [46] for 

making the final decision based on the received information. This work utilizes probability of 

missed detection as one of the parameters for measuring performance. 

It can be observed that the simulation results in fig. 5.5 are quite optimal yielding near perfect 

results when sensing ONLY for TOs. 
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Fig. 5.4: Performance comparison of a conventional ED and a double threshold ED scheme 

Fig. 5.4 illustrates that the detection probability of the proposed double threshold CSS 

scheme increases compared with the conventional detection scheme. Fig. 5.6 illustrates the 

performance variation of the 𝑃𝑑  in relationship to SNR (dB) with multiple cognitive relays 

(2, 4 and 6). It can be observed that by increasing the number of SUs,  𝑃𝑑 is increased. 

Additionally, the  𝑃𝑑  increases as the SNR increases, which is consistent with performance 

criteria in CR networks. 
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Fig. 5.5: Pd vs. SNR with Pf = 0.1 and 0.01 using a conventional ED and a double threshold ED with 

𝑅 = 5 scheme. 

5.4.2. The Interference Alignment Phase 

The main goal of this subsection is to derive appropriate pre- and post-coding matrices which 

align the SU transmissions to the 𝑁1 − 𝑚1 unused dimensions. In order to achieve that, the 

ST-OIA strategy was proposed in chapter 4, in which three separate conditions must be 

satisfied. The cognitive IA problem is formulated by defining the required conditions for IA. 

Given that the received signal at the 𝑖th receiver due to the 𝑗th transmitter lies in the subspace 

spanned by the columns of 𝐻𝑖𝑗𝑉𝑗, the SU-Tx’s are guaranteed not to generate any interference 

on the PU-Rx as long as the following precoding and post-processing condition are met  

                         𝑈𝑝𝑝
𝐻 𝐻𝑝𝑗𝑉𝑗 = 0𝑑𝑝

;    ∀𝑖= 1, … … . 𝐾                                                                       (5.13) 

                        𝑈𝑖
𝐻𝐻𝑖𝑝𝑉𝑝𝑝 = 0𝑑𝑖

;    ∀𝑖= 1, … … . 𝐾                                                                        (5.14) 
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Equation (5.13) thus guarantees the PU link achieves similar data rates as an equivalent 

single-tier system despite the opportunistic transmission of the SUs, while (5.14) ensures that 

interference from each SU-Tx is aligned at the PU-Tx, thus satisfying the first condition as 

defined in Chapter 4 (where 𝑑𝑖 is defined as the DoF [8]). 

The second condition requires that the SU and PU signals be aligned to orthogonal 

subspaces at not only the PU receiver, but the SU receiver as well, thus a different strategy 

was then used to design the SUs post-coding matrix in order to satisfy the second interference 

constraint. The first part of this constraint defined in (5.14) ensures that interference from 

each SU-Tx is aligned at the output of its corresponding unintended receivers.   

                                             𝑈𝑖
𝐻𝑯𝒊𝒋𝑉𝑗 = 0𝑑𝑝

;    ∀𝑖= 1, … … . 𝐾                                                    (5.15)  

                                 𝑟𝑎𝑛𝑘{𝑈𝑖
𝐻𝑯𝒊𝒊𝑉𝑖} = 𝑑𝑖;    ∀𝑖= 1, … … . 𝐾                                                      (5.16) 

Similar to(5.13), the constraint in (5.15) guarantees that the 𝑖th SU can achieve 𝑑𝑖 DoF. 

However, because this work consists of multiple SUs, the third condition that must be 

satisfied requires that ALL the SUs do not impose any interference on the PU receiver. 

Similar to the approach proposed in [64], [101] this work proposes to perform IA with user 

selection in order to optimize the performance of this third condition. 

While the work done in [102] – [105] rely strictly on the feasibility conditions of IA [49], 

[50] to ensure multiple SUs are aligned along the PU null spaces, the number of SUs that can 

actually be aligned at the PUs null spaces is generally limited by the spatial dimensions 

available for IA based on the number of antennas at the PU-Rx. Therefore simultaneously 

aligning all SUs at the PU-Rx is not always feasible for typical user loads. Instead of 
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attempting to align the set of SUs at every PU, this work proposes an efficient clustering 

strategy for the SU selection. 

5.4.3. The SU Clustering  

The objective of this clustering strategy is to gather SUs with similar locations i.e. the SUs 

that are closest to the FC are aligned at each PU-Rx, into the same cluster. Its operation is 

similar to [128], but without making clear distinctions between cluster heads and users. 

Typically, the SUs are elected by the FC in a centralized way. In order to select appropriate 

SUs, the FC collects information from each SU node such as the distance from FC and the 

SUs received signal power from PU. Based on the information gathered, the FC elects the 

SUs that will form a cluster according to a given election algorithm and broadcasts the 

election to all nodes. The message broadcasted contains not only the node ID of elected SU 

but also the information of time synchronization, resource allocation and the maximum 

number of permitted access nodes in one cluster. The number of nodes in a cluster is limited 

to avoid too many nodes crowding in one cluster. Let Δ denote the average distance from 

nodes to FC, where the selected SUs are expected to be located at minimal Δ away from FC. 

The SU election algorithm is described as follows:  

(I).Initialization: Calculate Δ of all SUs from the FC and place nodes in ascending order of Δ 

in a queue. Choose 2𝑘 nodes with the shortest Δ in the queue as a set of candidate SUs to 

form clusters denoted as ∁𝑖. 

(II).Randomly assign 𝐾 nodes as SU set from ∁𝑖 where ∁𝑖 =  {𝑖1,· · · , 𝑖𝑘} and initialize �̅� =

 { �̅�1,· · · , �̅�𝑘}, where  �̅�𝑘 =  𝑚   𝑖𝑘 

(III).Allocate each node into the cluster, where  
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                                                       𝑘 = arg min
1≤𝑘≤𝐾

(|𝑚   𝑖 −�̅�𝑘|) , 𝑖 1, 2                                           (5.17) 

Where  �̅�𝑖  denotes the observation vector for each given SU node 𝑖 . For each cluster, 

update �̅�𝑘 by averaging 𝑚      of all nodes in cluster k. Similarly, update the node ID of each 

selected SU as  

                                                       𝑖𝑘 = arg min 
𝑖∈𝐶𝑐𝑎𝑛

(|𝑚   𝑖 −�̅�𝑘|)                                                     (5.18) 

And then return to Initialization.  Else, GOTO Step IV. 

(IV).Restore all node IDs of selected SUs 𝑖𝑘, 𝑘 =  1 · · · 𝐾  where 𝑖𝑘 denotes the node ID of 

each SU and 𝐾 is the number of cluster obtained. 

The number of SUs aligned at each PU-Rx cannot exceed 𝑛 = 2, which is introduced to 

control the maximum number of elements of each set. It should be noted that limiting the 

selection of SUs to a bare minimum can negate the benefits of multi-user diversity. However, 

our selection scheme will be justified in section 5.5 of this chapter. 

5.4.4. Feasibility conditions of IA 

This section discusses the feasibility of the proposed method as well as the conditions for 

perfect IA. The conditions for which the system is proper are first determined by establishing 

that the number of variables to be determined is greater than or equal to the number of 

equations in the IA system. In order to find the number of equations, we reformulate the IA 

conditions in [128] as the follows: 

                                          𝑑𝑖 ≤ 𝑚𝑖𝑛 {𝑀𝑖 − (∑ 𝑑𝑗

𝐾𝑝

𝑗=1

) , 𝑁𝑖 − (∑ 𝑑𝑗

𝐾𝑝

𝑗=1

)}                                   (5.19) 
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Our model looks to design a cluster of SUs based on geographical proximity as discussed in 

section 5.4.3 above, and for the sake of simplicity, we limit our initial design to two SUs per 

cluster with each SU having two Tx/Rx antennas, and as is generally well known from the 

Bezout’s theorem that generic polynomial systems are solvable if and only if the number of 

equations does not exceed the number of variables [128]. As such, signal space IA problems 

can either be proper or improper [63]. Thus, from the Theorem of Proper Characterization as 

described in Chapter 4 (subsection 4.4.3), “a symmetric system (𝑀 × 𝑁, 𝑑)𝐾 is proper if and 

only if 

                                                   𝑁𝑣 ≥ 𝑁𝑒 ⇒ 𝑀 + 𝑁 − (𝐾 + 1)𝑑 ≥ 0                                        (5.20) 

5.5.Opportunistic Interference Alignment with Space-time Coding 

5.5.1. Background  

In [12], a source covariance matrix was chosen in which the SU-Tx can allocate power to 

maximize its achievable rate. This was achieved by using UPA and OPA schemes. In the 

UPA case, the opportunistic SU-Tx does not perform any optimization on its transmit power, 

but rather uniformly spreads its total power among the previously identified TOs, which 

saturates the transmit power constraint [12]. The OPA scheme, on the other hand takes on a 

WF solution with an 𝑁𝑑𝑖 × 𝐿2 SVD matrix such that the OP can be rewritten as 

max
𝑃𝑖

log2 |𝐼𝑑𝑖
+

1

𝜎𝑖
2 𝐻𝑖𝑖𝑈𝑖

𝐻𝑃𝑖𝑉𝑖𝐻𝑖𝑖
𝐻𝑈𝑖 

                                                    𝑠. 𝑡. (𝑃𝑖) ≥ 𝑇𝑟𝑎𝑐𝑒(𝑉𝑖
𝐻𝑃𝑖𝑉𝑖) ≤ 𝑃𝑖                                                (5.21) 

Given that the SVD of the matrix 𝑈𝑖
𝐻𝐻𝑖𝑖𝑉𝑖 is given as �̃�𝑖

𝐻Σ𝑖�̃�𝑖, where the columns of �̃�𝑖 and 

�̃�𝑖 contain the singular vectors and Σ𝑖  is the 𝑁𝑑𝑖 × 𝐿2 diagonal matrix containing the 
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corresponding singular values {𝛾𝑖}. The optimal solution is thus given as �̃�𝑖
𝐻�̃�𝑖 �̃�𝑖 = 𝑃𝑖. The 

diagonal matrix �̃�𝑖 is used to represent the OPA solution and the optimal values of its 

diagonal elements translates into the WF solution  

                                                                       �̃�𝑖 = (�̅�𝑖 −
𝜎𝑖

2

𝛾𝑖
2
)

+

                                                      (5.22) 

where �̅�𝑖 is the lagrangian multiplier chosen to satisfy (5.21). The optimal SU precoder 

described above turns out to be a generalized beamformer formed using the eigenvectors 

matrices of the optimized channel at the SU-Tx, which could be used to enhance throughput 

as shown in the work done in [75], where even after the SUs use a covariance matrix to 

maximize their throughput, a TBF power-allocation strategy is proposed to improve both the 

spectral and power efficiency of the SUs. The TBF scheme is an effective tool for saving SU-

Tx power and improving spectrum efficiency in poor channel conditions. With this scheme, 

the SUs transmit pilot signals at the start of each transmission block which are used by each 

SU-Rx to estimate their own channel matrix (local CSI). This is then fed back as 𝑀𝑘  bits 

(which denotes the SU-Tx antenna index) to the corresponding SU-Tx as long as the largest 

eigenvalue of the channel matrix is greater than a pre-specified threshold level 𝜆𝑇𝐻. The 

selected SU-Tx puts all its power on the antenna corresponding to the feedback index 

when 𝜆𝑘,𝑚𝑎𝑥 > 𝜆𝑇𝐻; otherwise it remains silent. 

If the receiver can acquire the CSI as reliably as shown in [75] or when partial CSI is 

available at the transmitter, coherent detection along with orthogonal space–time block 

coding (STBC) [84], [110], [111] can be employed to increase data rate leading to the so-

called two-directional (2D) eigen-beamformer (which consists of parallel transmissions 

equipped with STBC across optimally loaded eigen-beams). With minimal variation in 
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computational complexity compared with traditional one-directional (1D) beamforming, 2D 

beamforming was shown to achieve better performance [110] – [113]. 

In addition to network throughput, reliability in terms of diversity gain is another aspect of 

performance measurement for the SUs. When channels experience fading, the SNR level at 

the Rx becomes low and is usually dominated by outage events. As a result, techniques such 

as Alamouti codes and STBC in point-to-point MIMO channels [113] have been proposed to 

explore the spatial diversity gain. Recently, the work in [113] presented the scenario where a 

trade-off between symbol-rate, diversity, and IA was possible in a multi-user network, thus 

motivating the work in [114], [115]. Leaning on Alamouti’s property of improving the 

diversity of double-antenna systems [116], the work in [113], [114] proposed a new IA 

scheme that uses Alamouti codes to achieve full transmit diversity without losing rate, i.e., a 

diversity gain of two, at the same symbol-rate from node-to-node. The Tx’s in this proposed 

scheme only require CSI from themselves to both Rx’s instead of global channel information 

as assumed in [10]. 

It is clear that the scope of the literature on wedding optimal precoding/eigen-beamforming 

with orthogonal STBC to improve throughput does not delve into the full process of IA i.e. 

zero forcing (ZF) at the multiple Rx’s. The scope of the literature on the latter i.e. achieving 

higher diversity gain on, does incorporate STBC with beamforming where ZF is used to 

decouple symbols at the interfering users, but obviously without optimal precoding. As such, 

this work found an opportunity to propose an IA scheme where each Tx needs only channel 

information from itself to both Rx’s that can achieve the same symbol-rate as the scheme in 

[10] but with a higher diversity gain. Given the fact that Alamouti codes achieve full transmit 

spatial diversity in point-to-point MIMO systems [116], this work incorporates Alamouti 

codes in the design of optimal precoding matrices, the product of which is a 2D eigen-
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beamformer without rate reduction. Since the equivalent channels are linearly independent, 

ZF is conducted at each Rx to cancel interference and separate useful symbols to obtain 

symbol-by-symbol decoding.  

5.5.2. STBC BEAMFORMING IA PROCESS 

The initial approach considered a two-user IC as shown in Fig. 5.7 where 𝐻1, 𝐺1, 𝐻2, 𝐺2 are 

used to denote the 2 × 2 channel matrices where the channel matrices 𝐻1 and 𝐺1 are perfectly 

known at SU-Rx 1, and 𝐻2 and 𝐺2 are known at SU-Rx 2 and each of the entries are i.i.d. 

Gaussian distributed. It is also assumed that the channels are block fading (or constant), i.e., 

all channels keep unchanged during transmission. Two double antenna Tx’s send symbols to 

two double antenna Rx’s where the desired signals at SU-Rx 1 are only from SU-Tx 1 while 

the interference at SU-Rx 1 only comes from SU-Tx 2 [113]. Each of the two Tx’s have 

independent symbols, generated from modulators with fixed BPSK constellation for each of 

the two Rx’s. 

At a given symbol period, two signals are simultaneously transmitted from the SU-Tx 

antennas, denoted as 𝑠𝑖𝑗. 
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Fig. 5.6: STBC process 
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At the next symbol period, two complex conjugate signals are then transmitted from the two 

antennas of the SU, denoted as 𝑠𝑖𝑗
∗ . The superscript in 𝑠𝑖𝑗

𝑘  denotes the index of symbol and the 

first subscript 𝑖 denotes the index of the transmitter and 𝑗 the index of receiver.  

SU-Tx 𝑖 linearly combines four symbols 𝑠𝑖𝑗
𝑘  and generates a block code 𝑋𝑖. The equivalent 

transmitted vectors can be expressed as 

                                    𝑋1 = 𝑉11 [
𝑠1

11 𝑠2
11

−𝑠2
11∗ 𝑠1

11∗] + 𝑉12 [
𝑠1

12 𝑠2
12

−𝑠2
12∗ 𝑠1

12∗]                                      (5.23) 

                                   𝑋2 = 𝑉21 [
𝑠1

21 𝑠2
21

−𝑠2
21∗ 𝑠1

21∗] + 𝑉22 [
𝑠1

22 𝑠2
22

−𝑠2
22∗ 𝑠1

22∗]                                       (5.24) 

where 𝑉𝑖𝑗 denotes the beamforming matrix from Tx 𝑗 to Rx 𝑖. The symbols 𝑠𝑖𝑗
1   intended for 

SU-Rx 1 become interference for SU-Rx 2, and �̅�11 aligns them with SU-Rx 2. The 

decompositions in (4.18) and (4.19) for the precoding and post-processing matrices of the 

SUs can be modified due to the presence of the PU link to get the following equations 

                                              𝑈𝑖
𝐻𝐻𝑖𝑗𝐷𝑝𝑙�̃�𝑗 = 0𝑑𝑖×𝑑𝑗

      ∀𝑖,𝑗= 1, … … . . 𝐾, 𝑖 ≠ 𝑗                         (5.25) 

                                 𝑟𝑎𝑛𝑘{�̃�𝑖
𝐻𝐻𝑖𝑖𝐷𝑝𝑙𝑉𝑖} = 𝑑𝑖      ∀𝑖= 1, … … . . 𝐾                                              (5.26) 

The modified equations in (5.25) and (5.26)represent a standard IA problem with the 

variables {𝑉𝑖}𝑖=1
𝐾  and {𝑈𝑖}𝑖=1

𝐾 . Given that 𝑉𝑖 =∈ ℂ(𝑀𝑖−𝑑0)×𝑑𝑖  and 𝑈𝑖 =∈ ℂ(𝑁𝑖−𝑑0)×𝑑𝑖 as being 

the beamforming matrices at the 𝑖th SU-Tx and SU-Rx, (5.25)  ensures that all the 

interfering signals at 𝑖th SU-Rx lie in the subspace orthogonal to �̃�𝑗, while (5.26)  assures 

that the signal subspace 𝐻𝑖𝑗𝐷𝑝𝑙�̃�𝑗, has dimension 𝑑𝑘  and is linearly independent of the 

interference subspace. The constant 𝐷𝑝𝑙  is a diagonal matrix which contains power loading 
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coefficients. By exploiting the knowledge of the covariance matrix, the power loading 

coefficients will be derived based on the SER values. From [12], the SNR of the covariance 

matrix 𝑃𝑖   for a fixed channel realization can be found as follows: 

                                                 𝛾 = ∑ 𝜑𝜇|ℎ𝜇|
2 𝐸𝑠

𝑁0

𝑁𝑡

𝜇=1

                                                                        (5.27) 

where 𝑁𝑡 denotes the independent eigen value channels, ℎ𝜇 is the Rayleigh distribution of the 

𝜇th sub-channels, 𝜑𝜇 denotes the 𝜇th eigenvalue of 𝑈𝑖
𝐻𝐻𝑖𝑖𝑉𝑖 that is non-negative: and 

𝜑𝜇|ℎ𝜇|
2

𝐸𝑠 𝑁0⁄ denoting the 𝜇th sub-channel’s SNR [110]. 

This implies that we can approximately compute the SER using [110] 

                                  𝑃𝑆𝐸𝑅 =
1

𝜋
∫ ∏ 𝐼𝜇 (

𝜑𝜇𝐸𝑠

𝑁0
, 𝑔𝐵𝑃𝑆𝐾, 𝜃)

𝑁𝑡

𝜇

(𝑀−1)𝜋
𝑀

0

𝑑𝜃                                       (5.28) 

where 𝑔𝐵𝑃𝑆𝐾 = 𝑠𝑖𝑛2 𝜋

ℳ
, 𝐼𝜇(𝑥, 𝑔, 𝜃) = ℳ is the moment generating function of the probability 

density function of the Rayleigh distribution. The power loading coefficients contained in the 

diagonal matrix 𝐷𝑝𝑙  based on the approximate SER values are shown to also come very close 

to the actual SER values at low SNR 

                                 𝑃𝑆𝐸𝑅 =
(𝑀 − 1)

𝑀

1

∏ [1 +
𝑔𝐵𝑃𝑆𝐾𝜆𝑄𝐸𝑠𝐷2

𝑝𝑙

2𝑁0
]

𝑁𝑡
𝜇=1

                                          (5.29) 

where 𝜆𝑄 is the eigenvalue of the channel covariance matrix 𝑄. To select power loading 

coefficients, we now formulate the following optimization problem: 
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               max
𝐷

∑ log [1 +
𝑔𝑃𝑆𝐾𝜆𝑄𝐸𝑠𝐷

2
𝑝𝑙

2𝑁0
]

𝑁𝑡

𝜇=1

                          

                                           𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝐷2
𝑝𝑙 = 1

𝑁𝑡

𝜇=1

                                                                    (5.30) 

Using the Lagrange multiplier method, we can find power loading coefficients as follows: 

                                         𝐷2
𝑝𝑙 =

1

�̅�𝑡

+
𝑁0

𝑔𝑃𝑆𝐾𝐸𝑠
(

1

�̅�𝑡

∑
1

𝜆𝑄𝑗
−

1

𝜆𝑄𝑖

�̅�𝑡

𝜇=1

)                                         (5.31) 

where �̅�𝑡(0 < �̅�𝑡 < 𝑁𝑡) is the number of beamformers that transmit signals, given the 

transmitted power budget 𝐸𝑠. Each Tx sends two symbols to one Rx. The transmitted block 

codes are designed as follows: 

                        𝑋1 = √
𝜌

𝜇
([

𝑠1
11 𝑠2

11

−𝑠2
11∗ 𝑠1

11∗] 𝐷𝑝𝑙𝑉11 + [
𝑠1

12 𝑠2
12

−𝑠2
12∗ 𝑠1

12∗] 𝐷𝑝𝑙𝑉12)                         (5.32) 

                        𝑋2 = √
𝜌

𝜇
([

𝑠1
21 𝑠2

21

−𝑠2
21∗ 𝑠1

21∗] 𝐷𝑝𝑙𝑉21 + [
𝑠1

22 𝑠2
22

−𝑠2
22∗ 𝑠1

22∗] 𝐷𝑝𝑙𝑉22)                         (5.33) 

The coefficients 𝜌 and 𝜇 are the average SNR and the normalization factor at each SU-Rx 

respectively that are introduced to ensure average energy of the coded symbols are unitary 

across all the antennas. 

Each symbol is sent using Alamouti codes and each transmitter sends linear combinations of 

both the original symbol and their conjugate. To this end, 𝑋1 is transmitted along the 

eigenvectors of the channel correlation matrix with power loaded on each eigenvector. 
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Recalling that the received 𝑇 × 2 signal matrix at Rx 𝑖 can be represented as  

                                     𝑌1 = 𝑋1𝐻 + 𝑋2𝐺 + 𝑊1,   𝑌2 = 𝑋1𝐴 + 𝑋2𝐵 + 𝑊2                                 (5.34) 

where 𝑊𝑗 denotes the 𝑇 × 2 additive white Gaussian noise (AWGN) matrix at Rx 𝑗, therefore 

                      𝑌1 = √
𝜌

𝜇
[

𝑠1
11 𝑠2

11

−𝑠2
11∗ 𝑠1

11∗] 𝐷𝑝𝑙𝑉11𝑯𝟏 + √
𝜌

𝜇
[

𝑠1
22 𝑠2

22

−𝑠2
22∗ 𝑠1

22∗] 𝐷𝑝𝑙𝑉21𝑮𝟏 + 𝑊1     (5.35) 

                      𝑌2 = √
𝜌

𝜇
[

𝑠1
21 𝑠2

21

−𝑠2
21∗ 𝑠1

21∗] 𝐷𝑝𝑙𝑉12𝑯𝟐 + √
𝜌

𝜇
[

𝑠1
12 𝑠2

12

−𝑠2
12∗ 𝑠1

12∗] 𝐷𝑝𝑙𝑉22𝑮𝟐 + 𝑊2     (5.36) 

Both the second terms in (5.35) and (5.36) represent interference, which then makes it clear 

to see how the post-processing filters of (5.25) and (5.26) align symbols  𝑠𝑖𝑗
22 and  𝑠𝑖𝑗

22∗ at 

SU-Rx 1, while  𝑠𝑖𝑗
12 and  𝑠𝑖𝑗

12∗ are aligned at SU-Rx 2.  

After completing IA at both SU-Rx’s, the individual symbols can be decoded using symbol-

by-symbol decoding. As mentioned earlier, the Alamouti structure ensures the corresponding 

definite channel matrices �̅�1, �̅�1, �̅�2, �̅�2 at the SU-Rx retain the same structure due to the 

completeness of its multiplication and addition properties [116]. 

Therefore, 𝑠𝑖𝑗
11 can be decoded with the following equation: 

                                               𝑠𝑖𝑗
11 = arg max

𝑠
∑ ℎ̅𝑘

∗ 𝑦𝑘𝑠, 𝑘 = 1,2

𝑘=1

𝑗

                                       (5.37) 

Equation (5.37) therefore applies to the remaining symbols at SU-Rx 1 and SU-Rx 2 that 

result in four separate procedures for symbol-by-symbol decoding to recover the desired 

symbols. 
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5.6.Opportunistic Interference Alignment with Differential-STBC 

This research endeavor, along with the other work described in [110], [116] require some 

form of CSI at the SU-Rx. However, channel estimation becomes difficult or requires too 

many training symbols, especially when the channel is rapidly changing in a mobile 

environment. In such cases, space–time modulation and differential space–time modulation 

[53], [130] are well motivated because they bypass CSI acquisition at the SU-Rx. 

As such, this work considers differential space–time modulation based on orthogonal STBC, 

without partial CSI at the SU-Tx for independent, i.i.d. fading channels. One of the 

advantages of MIMO systems is their ability to exhibit strong correlation in the presence of 

fading due to multiple Tx antennas. This implies that the channel’s spatial correlations in fast 

fading channels will still fluctuate slowly [55], [130]. Thus, while there is no knowledge of 

CSI in differential space–time transmission, the channel’s spatial correlations can easily be 

estimated at the SU-Rx due to slower fluctuation and be fed back to the SU-Tx. Similar to 

[116], the differential modulation based on orthogonal STBC is also much easier to construct 

and leads to low-complexity symbol-by-symbol decoding. Given its inherent advantages, this 

work will consider incorporating D-STBC into the STBC beamforming solution described in 

5.5.2. The following sections will look at how the DSTBC-beamforming-IA (DSTBC-BF-IA) 

solution can be used to save the SU-Tx power in rapidly changing channel conditions and 

improve the spectrum efficiency. 

The schemes used in differential modulation encode the transmitted information into phase 

differences between two consecutive symbols i.e. the Tx first provides a set of symbols that 

contain no information but only serve as reference symbols that contain no information, but 

only serve as reference symbols for differential encoding. These reference symbols generate 

consecutive phase-shifted information carrying symbols, which are recovered at the Rx by 
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comparing the phase differences between the received symbols [101]. As an example, 

consider a PSK modulated symbols sequence 𝑠(𝑡) that is transmitted such that under ideal 

Nyquist signaling conditions the received samples can be represented by: 𝑟(𝑡) = 𝑠(𝑡)ℎ(𝑡) +

𝑧(𝑡), Where ℎ(𝑡) represents the path gain at the 𝑡𝑡ℎ time interval and 𝑧(𝑡) denotes the 

corresponding noise. If the phase of ℎ(𝑡) fluctuates rapidly and randomly with respect to  𝑡, it 

is impractical to estimate the channel from transitions in the carrier phase. However, if ℎ(𝑡) 

fluctuates slowly enough with minimal degree of randomness such that it can be estimated 

over at least two consecutive symbol intervals, then phase transitions can be used to estimate 

the channel and thus recover the information symbols. 

The spectral efficiency gain of ST-WF is typically associated with a higher channel outage 

probability, which sets a lower-bound on optimizing the SUs transmission rates. It is 

therefore necessary to find a solution that not only helps with optimizing transmission rates, 

but also encourages the SUs to use their power more efficiently. Thus similar to work done in 

[75], where the SU-Rx depends on pilot signals transmitted at the start of each transmission 

to estimate its own channel matrix (local CSI) and determine whether the SU-Tx remain 

silent or transmit, this work considers using DSTBC, but without local CSI at SU-Tx’s for 

independent, identically distributed (i.i.d.) fading channels. This solution states that if the 

channel is approximately constant for a time at least two symbol periods without any outage 

i.e. within 3 dB of the coherent demodulation in Gaussian channels, then the SUs transmit. 

Otherwise, the SUs remain silent. 

5.6.1. Differential Encoding 

Extensions of differential schemes have been considered to provide simple differential 

encoding and decoding algorithms to either MIMO or virtual MIMO systems [49]. The key to 
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generating these codes depends on computing a set of coefficient vectors (𝑅1, 𝑅2) and 

mapping a block of information bits into the coefficient vector sets.  

In order to implement D-STBC for the SUs, signal transmissions begins by sending a 

reference codeword matrix 𝐶0 which consists of an arbitrary pair of symbols 𝑐1 and 𝑐2 at 

time 𝑡1 from the two SU-Tx’s, followed by the related pair of symbols −𝑐2
∗ and 𝑐1

∗ at time 𝑡2 

that provide the receiver with a known frame of reference for facilitating the D-STBC 

process. Where the channel has a phase response that is approximately constant from one 

symbol period to the next defined by a threshold 𝜏𝑡ℎ, the SU-Rx is able to decode the 

information in the current symbol. 

Where the channel has a phase response that fluctuates from one symbol period to the next 

and the SU-Rx is not able to decode current symbol by comparing its phase to the phase of 

the previous symbol defined by a threshold τth, the SU-Rx feeds back Mth bits (denoting the 

phase index) to the corresponding SU-Tx’s. For this case, the SU-Tx’s puts all its power in 

the corresponding feedback index when 𝜏𝑡ℎ > 𝑀𝑡ℎ , implying they are free to transmit, 

otherwise they remain silent; thereby use their power more efficiently. 

The SUs encode the data sequence in a differential manner so that the signals to be 

transmitted are subsequently represented as linear overlays of those times at 𝑡1 and 𝑡2 , thus 

generating 𝑠2𝑡−1, 𝑠2𝑡 and −𝑠2𝑡
∗ , 𝑠2𝑡−1

∗  from the two SU-Txs at times 2𝑡 − 1 and 2𝑡. With 

information bits 2𝑚 at the encoder used to select two complex coefficients (𝑅1, 𝑅2), the 

modulated symbols for the next two transmissions are given as  𝑠2𝑡+1
𝑘 , 𝑠2𝑡+2

𝑘 =

𝑅1(𝑠2𝑡−1
𝑘 , 𝑠2𝑡

𝑘 ) + 𝑅2(−𝑠2𝑡
𝑘∗, 𝑠2𝑡−1

𝑘∗ ). The transmitter therefore sends 𝑠2𝑡+1
𝑘  and 𝑠2𝑡+2

𝑘  at time 

2𝑡 + 1 from antenna one and two, and sends −𝑠2𝑡+2
𝑘∗  and 𝑠2𝑡+1 

𝑘∗ at time 2𝑡 + 2 from antennas 

one and two respectively. 
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This process is mapped into the coefficient vector sets and inductively repeated until the end 

of the frame, the mapping process computing the transmitted symbols for different 

combinations of decision statistics until the end of the transmission.  

Specifically, the information matrix 𝑠𝑖𝑗
𝑘  is transmitted according to its matrix structure defined 

in (5.37), first collected in an 𝑁 × 𝑁 STBC matrix comprising the linear combinations of 

both original symbol and their conjugate as follows 

                                                       𝑠𝑖𝑗 = √
𝜌

𝜇
∑(𝑠𝑖𝑗

𝑘 + 𝑗𝑠𝑖𝑗
𝑘∗)

𝑝

𝑝=1

                                                        (5.38) 

It follows that the 𝑁 × 𝑁 D-STBC matrix 𝐶0 can be written as follows 

                                                       𝐶0 = 𝑠𝑖𝑗
𝑘 𝐶𝑘−1,      𝑖 > 0                                                              (5.39) 

where the codeword matrix also has the following structure 

                                                     𝐶𝑘(𝑖,𝑗) = [
𝑐1

𝑖𝑗
𝑐2

𝑖𝑗

−𝑐2
𝑖𝑗∗

𝑐1
𝑖𝑗∗

]                                                              (5.40) 

Similar to the STBC solution, 𝐶0 will be transmitted along the eigenvectors of the correlation 

matrix with power loaded on each channel eigenvector. As such, the transmitted signal at the 

𝑖th block can be expressed as: 

                                                     𝑋𝑖 = ∑ √
𝜌

𝜇
𝐶0𝑉𝑖𝑗𝐷𝑝𝑙                                                               (5.41)

𝐾

𝐾=𝑖,𝑗

 

where 𝐷𝑝𝑙  contains power loading coefficients. Due to the unitary property of the codeword 

matrix 𝐶𝑘(𝑖,𝑗) and the works in [116], [130] the SU-Tx power remains unchanged, implying 
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that the fundamental differential transmission equation is not changed by the power loaded 

eigen-beamforming matrices. 

Similar to the STBC-Beamforming solution, the SER is also used to derive power loading 

coefficients using (5.29) − (5.31). Using the Lagrange multiplier method, we can find 

power loading coefficients as follows [37]: 

                                             𝐷2
𝑝𝑙 =

1

�̅�𝑡

+
2𝑁0

𝑔𝑃𝑆𝐾𝐸𝑠
(

1

�̅�𝑡

∑
1

𝜆𝑄𝑗
−

1

𝜆𝑄𝑖

�̅�𝑡

𝜇=1

)                                     (5.42) 

Equation (5.42) above is similar to [33] for coherent STBC except for a factor 2 in the 

second term, which is used to compensate for the 3 dB discrepancy between the 𝑃𝑆𝐸𝑅 for D-

STBC and its counterpart in coherent STBC [130]. 

5.6.2. Differential Decoding 

The first step towards differential decoding entails removing the aligned interference. Given 

that the equivalent channels spanned by the useful signals have Alamouti structure, and since 

the equivalent channels for interference 𝐼1 and 𝐼2 are constant, the aligned interference I1 and 

I2 can simply be cancelled. 

From(5.35) and (5.36), 𝐼1 = √
𝜌

𝜇
[

𝑠1
22 𝑠2

22

−𝑠2
22∗ 𝑠1

22∗] 𝐷𝑝𝑙𝑉21𝐺1 and  

𝐼2 = √
𝜌

𝜇
[

𝑠1
12 𝑠2

12

−𝑠2
12∗ 𝑠1

12∗] 𝐷𝑝𝑙𝑉22𝐺2 

For clarity, we first consider a single Rx antenna. The received data are processed by 

computing the differential phases between any two consecutive symbols. 
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The following parameters are defined as follows 

𝑌𝑘 = Received signal at time  , 𝑊𝑘 = Noise sample at time 𝑡, 𝐻𝑖, 𝐻𝑗 = Fading coefficients 

from the two SU-Tx to the SU-Rx antenna, which also has the following structure 

                                       𝐻 = (
ℎ1 ℎ2

∗

ℎ2 −ℎ1
∗)                                    

and  

                                        
𝑊2𝑡−1 = (𝑛2𝑡−1, 𝑛2𝑡

∗ )

𝑊2𝑡 = (𝑛2𝑡, −𝑛2𝑡−1
∗ )

                            

The signal received is given in vector form by the following equations 

                                                       𝑌𝑘 = ∑ √
𝜌

𝜇
𝐶0𝑉𝑖𝑗𝐷𝑝𝑙𝐻𝑖𝑗 + 𝑊𝑖𝑗                                            (5.43)

𝐾

𝑘=𝑖,𝑗

 

The received signal matrix 𝑌𝑘 is measured at the SU-Rx, while the codeword matrix 𝐶𝑘, the 

radio channel transfer matrix 𝐻𝑖𝑗 and the noise 𝑊𝑖𝑗 are totally unknown for the SU-Rx. The 

decoding process is performed by multiplying the Rx signal matrix 𝑌𝑘 by the Hermitian of the 

previous receive signal matrix 𝑌𝑘−1; which is given as follows 

𝐷𝑘  = 𝑌𝑘  ·  𝑌𝑘−1
∗  

                             =  (𝐶𝑘𝐻𝑖𝑗  +  𝑊𝑖𝑗) ·  (𝐶𝑘−1𝐻𝑖𝑗−1 + 𝑊𝑖𝑗−1)
∗

    =  𝐶𝑘𝐻𝑖𝑗𝐻𝑖𝑗−1
∗ 𝐶𝑘−1

∗ +  𝑛𝑜𝑖𝑠𝑒

                                                 (5.44) 

where 𝐷𝑘 denotes the demodulation matrix. Assuming that 𝐻𝑖𝑗 ≈  𝐻𝑖𝑗−1 i.e. the channel 

remains fixed over two successive code blocks: 
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                                                     𝐻𝑖𝑗𝐻𝑖𝑗−1
∗

= (|ℎ1,𝑖𝑗|
2

+ |ℎ2,𝑖𝑗|
2
) . 𝐼2                                                                                     (5.45) 

Therefore, 𝐷𝑘 can be written as: 

                                             𝐷𝑘 = (|ℎ1,𝑖𝑗|
2

+ |ℎ2,𝑖𝑗|
2
) 𝑆𝑖𝑗 + 𝑊𝑖𝑗                                                 (5.46) 

Where 𝐷𝑘 = 𝑌𝑘 ∙ 𝑌𝑘−1
∗  has the same structure as the information matrix 𝑆𝑖𝑗 and the codeword 

matrix 𝐶𝑘 such that:  

                            𝐷𝑘 = (
𝑑1,𝑘 𝑑2,𝑘

−𝑑2,𝑘
∗ 𝑑1,𝑘

∗ )                                       

It can be seen from (50) that 𝐷𝑘 is proportional to 𝑆𝑖𝑗 and that the real valued scaling factor 

given as (|ℎ1,𝑘|
2

+ |ℎ2,𝑘|
2
) is unknown at the SU-Rx, making it impossible for the SU-Rx to 

estimate the absolute Tx power. However, the relative phase and amplitude of the coefficients 

of 𝑆𝑖𝑗 can be recovered. 

Therefore, the information symbols can be estimated according to (5.47) and (5.48) below, 

directly from the demodulation matrix 𝐷𝑘 and then processed by a maximum likelihood 

demodulation technique, which chooses the closest coefficient vector to the decision statistics 

[53]: 

                                                             �̂�1,𝑖𝑗 =
𝑑1,𝑘

√|𝑑1,𝑘|
2

+ |𝑑2,𝑘|
2
                                                 (5.47) 

                                                           �̂�2,𝑖𝑗 =
𝑑2,𝑘

√|𝑑1,𝑘|
2

+ |𝑑2,𝑘|
2
                                                    (5.48) 
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5.7.Simulation Results and Analysis 

In this section, numerical results have been provided to evaluate the performance of the OIA-

STBC algorithm against the SU-IA-OPA and SU-IA-TBF algorithms. It is quite clear from 

the results obtained that this scheme provides improved throughput when compared with 

other schemes. 

The performance curves of conventional STBC with coherent detection are shown to be 

parallel to those of the DSTBC schemes, indicating that the DSTBC schemes also achieve 

full transmit diversity due to the orthogonal designs. Traditionally, the one drawback of the 

differential scheme is that it is almost always 3 dB worse than the respective STBC with 

coherent detection since it does not require any CSI. The inherent requirement of perfect CSI 

by the coherent STBC scheme introduces channel estimation errors as well as additional 

power consumed by training symbols, particularly in this work that employs optimal power-

loading, making it inapplicable to fast fading channels. DSTBC on the other hand does not 

require CSI at the SU-Rx, making it well suited to perform well in fast fading channels. 

In our simulations, both coherent STBC and DSTBC use BPSK, where the channel is both 

fixed and independent over a pair of successive blocks in each run (i.e. channel variation is 

negligible in two consecutive blocks) making our simulations valid for fast fading channels. 

As stated earlier, practical multi-antennas systems may exhibit strong correlation among 

fading channels, which implies that the channel’s spatial correlations will typically change 

slowly, even when the channel coefficients fluctuate relatively fast, which is a requirement 

common to all differential schemes. 
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The SER performance curves of coherent STBC and DSTBC with beamforming with two Tx 

antennas and both one and two RX antennas are evaluated by simulations as shown in Fig. 

5.7 below. 

-5 0 5 10 15 20
10

-4

10
-3

10
-2

10
-1

10
0

10
1

 

 

SE
R

SNR (dB)

2 Rx 
Ant

1 Rx 
Ant

STBC

STBC

D-STBC

D-STBC

 

Fig. 5.7: SER Curves for coherent STBC and DSTBC-beamforming schemes 

If we take into account the channel estimation error and the transmitted power consumed by 

training, coherent STBC with two Rx antennas shows better performance than with one Rx 

antenna. On the other hand, we see that for one Rx antenna, the proposed DSTBC-

beamforming scheme initially outperforms the coherent STBC at very low SNR since 

DSTBC does not require CSI at the Rx. With two Rx antennas, the DSTBC-beamforming 

scheme eventually shows better performance than coherent STBC with an increasing margin 

as the SNR was increased. Therefore, our results demonstrate that in highly correlated 

channels, the proposed DSTBC modulation scheme has better or comparable error probability 

performance to coherent STBC, proving the point that the training symbols used in coherent 

STBC incur a significant loss in data rate. This is a clear demonstration that combining 
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DSTBC with optimally loaded beamforming offers higher data rates. The downside of this 

work is the significant difference of the diversity order between STBC and DSTBC. This 

discrepancy could most likely be attributed to DSTBC having no prior knowledge of CSI. 

The analysis of the performance curves presented in Fig. 5.8 and Fig. 5.9 provide further 

insight into the improved data rates of the DSTBC-beamforming scheme. 

Monte-Carlo simulations were carried out for 2 SU pairs (Tx and Rx) and a single PU link 

with each node equipped with two antennas. As shown in Fig. 5.8, three separate techniques 

are compared namely the legacy SU-IA-PA [12], the SU-IA-TBF [22] and of course the 

proposed STBC-BF-IA scheme.  

For the SU-IA-PA scheme, it is observed that at low and high SNR for the PU link,  the 

performances of both the uniform PA and optimal PA are unsatisfactory and almost identical, 

even when the SU-Tx spreads its power amongst all the available TOs or performs optimal 

PA which translates into a WF solution. This poor outcome is most probably due to 

transmission power of the PU-Tx being at lower and higher ends of the transmit power 

spectrum, thus not leaving any unused SDs. Indeed, in that case, we are faced with the 

conventional CR system in which SUs can only utilize the PUs frequency band in an 

opportunistic manner to avoid imposing the interference on the PU i.e. when the PU is idle. 

At intermediate SNR values however, significant data rates for the IA-OPA and IA-UPA 

approaches are achieved by the SUs. 
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Fig. 5.8: Average Sum Rate (b/s) against SNR (dB) for two SUs 

For the TBF scheme shown in Fig. 5.8, while the discrepancy in performance of the PU link 

optimization using the MEB technique is very little in comparison to the ST-WF algorithms 

(see Fig. 4.2), the throughput performance the of SUs on the other hand, increases 

exponentially at high SNR values when compared to the SU-IA-OPA scheme at almost no 

cost to the PU. The improved performance of the SUs sum rates can be attributed to two 

things: Firstly, the MEB algorithm ensures that at least one of the PUs eigenmode will always 

be available to convey the SU’s data. Secondly, the SUs with the poor channel condition stay 

silent as per TBF to cooperate with the other SU links to enhance the performance of the 

network through controlling the interference. It could also be suggested that as the number of 

candidate SUs increases, the average sum rate also increases. It should be noted that the 

observations are all predicated on the fact that the achievable rates of the SUs have to be 
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computed using the following equation: 𝑅𝑠𝑢(𝑃, 𝐻𝑖) = 𝑙𝑜𝑔𝑑𝑒𝑡(𝐼𝑑𝑖
+

1

𝜎2 𝑃𝑖𝐻𝑖𝑖
𝐻𝐻𝑖𝑖) for all 𝑖 ∈ 𝑗. 

From Fig. 5.8, the proposed STBC-BF solution clearly performs better than the TBF solution 

even with the TBF solution seemingly enjoying the advantage of increased number of 

candidate SUs and its efficient SU rate optimization scheme that is applied after threshold 

beamforming to help keep the sum rates above a prespecified threshold level. This improved 

performance is initially founded on the fact that the SU selection scheme limits the number of 

SUs in a cluster, which was otherwise not the case in other works such as the [22]. While an 

increased number of SUs can improve detection accuracy, it could also be an additional 

source of interference to the PU transmission. Helped by the double detection scheme, the 

SUs are therefore almost assured free TOs that they could align their transmission with. 

Secondly, the increased sum rates of this scheme is a direct manifestation of employing 

coherent STBC with beamforming and optimal power loading to improve reliability in terms 

of diversity gain without much discrepancy in terms of computational complexity.  

The graph shown in fig. 5.9 demonstrates the performance comparison between SU-IA-

STBC and SU-IA-DSTBC where the channel’s spatial correlations are considered to have a 

slowly varying effect similar to shadowing.  

Both the DSTBC and the STBC technique are seen to significantly outperform the SU-IA-

UPA technique because implementing 2D eigen-beamforming minimizes the error 

probability and outperforms 1D beamforming especially at moderate to high SNR. This is 

indicative of the fact that for the SU-IA-UPA scheme, the TOs become almost non-existent at 

highest SNR. However, this work shows that for practical values of SNR, there are a non-

zero number of TOs the SUs can always exploit. At intermediate to high SNR, the SU-IA-
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DSTBC scheme performs consistently better than the SU-IA-STBC scheme. Even at 30dB, 

the sum rate remains consistent and does not drop-off. 
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Fig. 5.9: Average Sum Rate (b/s) against SNR (dB) for two SUs 

The graph shown in fig. 5.9 demonstrates the performance differential between the SU-IA-

TBF against the SU-IA-DSTBC schemes. It has been shown that even though the ST-WF PA 

scheme provides efficient performance for the SUs only in the intermediate SNRs, this work 

combines the benefits of double ED as well as the SU-IA-STBC algorithm to release even 

more eigenmodes, thus achieving higher data rate performance than the SU-IA-TBF 

algorithm. The essential drawback of the MEB algorithm used in TBF is that the PU-Tx puts 

all its power on the antenna corresponding to the largest eigenmode of its singular allocated 

channel matrix 𝐻00. This makes the MEB scheme less dynamic than ST-WF and more 

susceptible to lower data rates. 
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It can also be seen in Fig. 5.9 that the data rate performance of the SU-IA-DSTBC is higher 

than that of the SU-IA-DSTBC schemes, owing to the fact that the threshold function of the 

DSTBC scheme is an effective tool for saving the PUs transmit power due to the WPA’s 

channel outage conditions (see Fig. 5.2). The consequence of saving the SUs transmit power 

can be seen in Fig. 5.9, where the sum rate performance of the SU-IA-DSTBC curve 

increases even further especially at moderate to high SNR, when compared with the SU-IA-

STBC curve. Also, with two SU-Rx antennas, the DSTBC-beamforming scheme shows better 

SER performance than coherent STBC with an increasing margin as the SNR was increased, 

demonstrating that in highly correlated channels, training symbols used in coherent STBC 

incur a significant loss in data rate. Hence, its deficit in performance compared to the SU-IA-

DSTBC modulation scheme. 

5.8.Conclusion  

An opportunistic interference alignment (OIA) scheme has been proposed that is based on the 

literature described in [11] – [23]. However, this work differentiates itself in a number of key 

areas to achieve significantly higher data rate performance. Firstly, the SVD that is performed 

`1Both PU and SU can utilize the licensed spectrum by aligning the interference from the 

SUs to these unused eigenmodes. The ST-WF achieves higher capacity per antenna than 

SWF, and even though ST-WF has a higher channel outage probability than that of SWF, its 

transmission is similar to block transmission, which makes this scheme operate in conditions 

more suited to CR networks. 

Secondly, to further enhance accuracy of detection of TOs, this work makes use of a double 

threshold energy detection (ED) scheme where, the FC receives two kinds of information 

from which to base its decision on. This increased range of values available to the FC leads to 

higher detection accuracy and thus increased number of TOs. 
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Thirdly, to increase the SUs sum rate performance, a new IA scheme equipped with STBC 

across eigen-beams were combined to yield a two-directional eigen-beamformer that 

performs better than the conventional one-directional beamformer with negligible increase in 

computational complexity. The incremental gains in performance achieved from the ST-WF 

and double ED detection schemes coupled with a careful SU selection scheme that always 

ensures a 2𝑇𝑥 ×  2𝑅𝑥 for the SUs are combined with the SU-IA-STBC scheme to give 

higher data rates. Lastly, the new IA scheme was used to achieve full transmit diversity 

without losing sum rates by wedding optimal precoding with orthogonal DSTBC, where the 

DSTBC structure of the equivalent channels where preserved after zero-forcing the 

interfering users. Since the fundamental SU transmission is not changed by the transmit 

eigen-beamforming matrices, these IA schemes were shown to achieve higher diversity gain 

than other conventional methods. 

A significant portion of this chapter has been submitted to IEEE Transactions of Cognitive 

Communications. 
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6. Conclusion and Future Work 

6.1.Conclusion 

 

The rapid advancement in research, design and deployment of wireless systems has been 

largely instigated by the massive demand for wireless applications. Users of wireless 

applications are more dependent on real-time data rate transmission and mobile broadband 

communication, prompting the need for ‘high quality of service’ in the principal design 

objective of wireless technologies. There are however two main phenomenon inherent in 

wireless technology that have so far hindered the realization of high quality of service in 

wireless communications namely fading and interference. Fading occurs when the 

transmitted signal is affected by objects in the wireless environment thereby causing 

deficiency in the quality of the received signal, which leads to the phenomenon of 

interference, which constructively amplifies or destroys the signal. 

One of such technologies that has recently emerged and is at the forefront of enhancing high 

quality of service in wireless communications is CR, a technology which attempts to optimize 

underutilization of the wireless spectrum. However, CR is also hampered by the two 

phenomena mentioned earlier, with fading occurring mostly on the reporting channels when 

the SUs are reporting presence/absence of the PUs. The latter phenomenon occurs on the 

sensing channels when the SUs are in the process of sensing for spectrum holes. 

It is on this note that this thesis set out to investigate novel and practical solutions towards 

improving the performance of cognitive radio. By considering a number of secondary users 

with single antennas grouped to form a virtual MIMO array, diversity techniques namely 

spatial diversity was considered to combat the detrimental effects of fading on the reporting 

channels of cognitive radio. This thesis thus presented a differential space-time block coding 
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cooperative sensing scheme in order to improve performance of non-ideal reporting channels 

under deep fading conditions. Firstly, it was shown through simulation results that 

implementing DSTBC in CR follows the same pattern in terms of BER performance (with 

approximately 3dB loss), proving that it can also achieve full transmit diversity. Secondly, it 

was again shown through simulation results that despite not having prior knowledge of the 

reporting channels, DSTBC reporting with varying fusion rules (OR/AND/MRC/EGC) 

outperformed typical non-DSTBC reporting under the same conditions for various number of 

CR clusters. In terms of managing interference between the PU and SUs on the sensing 

channels, IA has recently been employed for CR in the manner of direct or indirect SS. Of 

particular interest in this thesis is indirect SS, where the SUs are compelled to sense for the 

PUs unused eigenmodes. By performing optimal power allocation on the PUs link using WF 

techniques, some of the PUs spatial dimensions are left unused for the SUs to align their 

transmission with. This curbs the possibility of there being harmful interference between the 

PU and SUs transmission. This thesis explores two key areas of performance namely the 

PU’s power allocation algorithms as well as the secondary user’s transmission rates.  

For the former, this thesis deploys ST-WF algorithms which tend to have increased 

performance gains per antenna. As for the latter, the conditional statements that make it 

possible for the SUs to avoid interfering with the pu transmission converts the cognitive IA 

solution into an unconstrained one where the SUs can operate in complete oblivion to the PU. 

The principle of reciprocity was applied for the SU network to optimize their transmission 

rates. This principle was founded on the basis that if the DoF allocation is feasible on the 

original interference network, then IA on the reciprocal interference network is simply 

achieved by choosing the Tx filters and Rx filters on the reciprocal channel as the Rx filters 

and the Tx filters of the original channel. It was shown through simulation results that 



 

PhD Thesis by Idris Abdulkadir Yusuf 

University of Hertfordshire, Hatfield AL10 9AB United Kingdom         150 

 

implementing feedback through reciprocity greatly increased the performance of the multiple 

SUs.  

Given the fact that spatial diversity has gained the widest attention because of the simplicity 

of implementation and the feasibility of deployment, it was considered for the unconstrained 

secondary user’s network. In spatial diversity, multiple antennas are deployed to produce 

multiple independent fading paths for the transmitted information signals and because it is 

unlikely that the multiple independent paths will experience identical fading events, the 

advantages of spatial diversity are clear to see. Therefore, this research combined DSTBC 

with capacity benefits if interference alignment to linearly scale up the transmission rates of 

SUs. It was seen through simulation results that the data rate performance of this technique is 

higher than other more conventional schemes, owing to the fact that the threshold function of 

the diversity technique is an effective tool for saving the PUs transmit power, the 

consequence of which the sum rate performance increases even further especially at moderate 

to high SNR.  

6.2.Future Work 

6.2.1. Cooperative Spectrum Sensing with DSTBC Reporting 

The design of DSTBC has generally led to other diversity schemes such as orthogonal 

frequency division multiplexing (DSTBC-OFDM) schemes and distributed space-frequency 

coding (DSFC) schemes. DSTBC-OFDM schemes are able to exhibit maximum spatial and 

temporal gain at the expense of frequency diversity and inherent processing delay. To exploit 

the achievable frequency diversity and counteract the processing delay, DSFC transmits 

information symbols across multiple sub-carriers within a single OFDM block. Further 

comparative analysis on these schemes shows that while DSTBC-OFDM is insensitive to 

high delay spread, it is highly susceptible to Doppler frequency. This limits the application of 
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the scheme to slow fading channels. On the other hand, DSFC is more robust to fast fading 

channels such that the scheme exhibits maximum frequency and spatial diversity when 

utilized in fast fading environments. The outlined benefit of DSFC over DSTBC-OFDM 

makes it an attractive proposition for improving non-ideal reporting channels.  

6.2.2. Opportunistic Interference Alignment with Space-time Coding 

Relative to the applications of interference alignment in this thesis, the IC setting with three 

or more users presents a fresh challenge in that each signal needs to satisfy more than one 

alignment condition, thus creating a chain of alignment conditions that could make the 

problem can quickly appear infeasible. This integration of 3 or more users with the already 

discussed diversity techniques poses a new research question and could be considered further 

in future works.  
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