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Abstract

The measurement of distance is one of the key steps in the unsupervised learning
process, as it is through these distance measurements that patterns and correlations
are discovered. We examined the characteristics of both non-Euclidean norms and
data normalisation within the unsupervised learning environment. We empirically
assessed the performance of the K-means, Neural Gas, Growing Neural Gas and
Self-Organising Map algorithms with a range of real-world data sets and concluded
that data normalisation is both beneficial in learning class structure, and in reducing
the unpredictable influence of the norm.
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1 INTRODUCTION

The measurement of distance is fundamental in the unsupervised learning
process as most learning techniques require the calculation of a measure of
similarity (respectively dissimilarity) between training examples. Within the
artificial neural network unsupervised learning community, the choice of dis-
tance measure often seems quite arbitrary. Inspired by a claimed improve-
ment in nearest neighbour search and K-means class recovery accuracy when
using fractional norms [1], we empirically examined the characteristics of non-
Euclidean norms within the unsupervised learning framework. The claimed
improvement arising from the use of fractional norms was therefore the moti-
vation for this work.

Within the data driven sciences, the benefits of data pre-processing, such as
normalisation or standardisation, are well-known. However, in many fields of
research these benefits are often overlooked and our work reported in this
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paper examines the consequences of combining data normalisation and non-
Euclidean norms. The results presented here are an extension of our work
initially reported in [2]. The remainder of this paper is organised as follows: In
Section 2 we recapitulate the Minkowski metric. Section 3 describes data nor-
malisation. Section 4 describes the synthetic and real-world data sets examined
in this work. In sections 5, 6 and 7 we describe the results of nearest neigh-
bour search, K-means clustering and clustering using three neural-inspired
clustering algorithms, and finally, section 8 presents our conclusions.

2 THE MINKOWSKI METRIC

A family of distance measures are the Minkowski metrics [3], where the dis-
tance between the d-dimensional entities i and j (denoted by ‖ij‖r) is given
by:

‖ij‖r=

{
d∑

k=1

|xik − xjk|r
} 1

r

(1)

where xik is the value of the kth variable for entity i, xjk is the value of the
kth variable for entity j, and r > 0.

The most familiar and common distance measure is the Euclidean or L2 norm -
a special case of the Minkowski metric where r = 2. Human understanding and
experience makes us familiar with the results when applying L2 measurements
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Fig. 1. First quadrant plot of unit length loci from the origin with various Lr norms
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(to a problem space on a Euclidean plane), but the application of non-L2

norms can lead to some counter-intuitive results. Consider the unit length loci
from a point when plotted in the Euclidean plane with an Lr norm. In this
Euclidean 2-space, the L2 norm traces a circle, the fractional (r < 1) norms
trace a hypoellipse, the L1 norm trace a straight line and the higher order
norms (r > 2) produce hyperelliptical traces. See Fig. 1 for a plot of these loci
in the 1st quadrant.

Consider the three feature vectors a = (0, 1), b = (1, 0), and c = (7, 0). Let
‖xy‖r be the Lr distance between vectors x and y. Generating a measure of
dissimilarity with the L2 norm, we find (‖ab‖2 =

√
2) < (‖bc‖2 = 6). How-

ever, if we generate a measure of dissimilarity with the L 1
3

norm, we now find

(‖ab‖ 1
3

= 23) > (‖bc‖ 1
3

= 6). In a learning context when measuring dissimi-
larities between two entities, the use of a fractional norm reduces the impact
of extreme individual attribute differences when compared to the equivalent
Euclidean measurements. Conversely, the higher-order norms emphasise the
larger attribute dissimilarities between the two entities and taken to the limit,
L∞ reports the distance based on the single attribute with the maximum
dissimilarity. To further illustrate these points, consider the following feature
vectors a = (3, 2, 1, 40) and b = (3, 2, 1, 60), and let ‖x‖r be the Lr distance
between vector x and the origin. Table 1 shows the distances of vectors a and
b from the origin measured with the L2 and L 1

3
norms. The L2 norm clearly

emphasises the larger attributes. The L 1
3

norm reports the relative distance
from the origin to the vectors a and b in line with intuition - that is b is further
from the origin than a. However, the ratio of the ‖x‖ 1

3
distances is less than

the ratio of the equivalent ‖x‖2 distances demonstrating how the fractional
norm can reduce the effect of large differences in individual attributes.

Table 1
The distance of vectors a and b from the origin measured with L2 and L 1

3
. The ratio

of the L 1
3

distance between the two vectors is less than the ratio of the L2 distance,
demonstrating how the fractional norm reduces the effect of the large feature vector
attribute differences.

Norm ‖a‖r ‖b‖r ‖a‖r/‖b‖r

L2 40.18 60.12 1.5

L 1
3

361.27 441.94 1.2

3 NORMALISATION

Data normalisation (or ranging) is the linear transformation of data to within
the range [0, 1] [3]. Normalisation was one of seven data pre-processing meth-
ods examined in [4], where the influence of data pre-processing on the recovery
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of class structure was evaluated. The results showed that normalisation was
beneficial to the cluster recovery accuracy for the synthetic data sources con-
sidered. The accuracy of the recovered cluster structure improved when the
data were normalised with either:

x′ = (x − Xmin)/(Xmax − Xmin) (2)

or
x′ = x/(Xmax − Xmin) (3)

where x is the attribute value to be normalised, Xmax is the maximum value
of attribute x, and Xmin is the minimum value of attribute x.

4 DATA SETS

We performed our empirical tests of clustering accuracy using a selection of la-
belled data sets from the UCI Machine Learning Repository [5]. The data sets
considered were the Ionosphere, Image Segmentation (training data), Wiscon-
sin Diagnostic Breast Cancer (WDBC) and Wine data sets. These data sets
were selected to show our approach on data with a range of classes, dimen-
sionality and data distributions. The basic characteristics of each data set are
shown in table 2.
Table 2
The basic characteristics of the UCI data sets examined in this paper, showing the
dimensionality of the data, the number of instances in the data set and the total
number of classes (C).

Name Dimensionality Instances Classes

Ionosphere 34 351 2

WDBC 30 569 2

Image Segmentation 19 210 7

Wine 13 178 3

To repeat the experimental results presented in [1], we generated synthetic
data following the description in the paper: six Gaussian sources (all of equal
variance) in �20, distributed randomly in U [0, 100]. From each source we drew
10000 elements, giving a total of 60000 data points. The results in [1] were
presented as confusion matrices, in which the number of correct and incorrect
elements classified are displayed. Confusion matrices are commonly used for
measuring the performance of classification systems. We adjusted the variance
of the Gaussian sources until the degree of cluster overlap (indicated by the
number of incorrectly classified elements) was comparable to the overlap shown
in the confusion matrices of [1].
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5 NEAREST NEIGHBOUR SEARCH

Cluster analysis aims to identify natural groupings within a data set. The
notion of proximity is key in the identification of these natural groups. Gener-
ally, the assumption is made that two entities in close proximity are likely to
be members of the same group, or class. The nearest neighbour (NN) search
identifies entities in close proximity and is defined in [6] as: “Given a collec-
tion of data points and a query point in a d -dimensional metric space, find
the data point that is closest to the query point”. The natural extension to
NN search is K -nearest neighbours (K -NN), where the nearest K neighbours
to the query point are identified.

Table 3
K -NN search on a selection of raw UCI data sets. For a given K, the larger the
number of neighbours found belonging to the same class as the query point, the
better the K -NN search.

Ionosphere Data Set

K L0.1 L0.5 L1 L2 L4 L∞

3 972 935 929 893 910 927

5 1613 1554 1526 1460 1515 1553

9 2830 2773 2713 2600 2706 2783

Wisconsin Diagnostic Breast Cancer

K L0.1 L0.5 L1 L2 L4 L∞

3 1632 1637 1603 1564 1589 1573

5 2724 2708 2664 2594 2637 2627

9 4847 4844 4759 4639 4710 4714

Image Segmentation Training Data

K L0.1 L0.5 L1 L2 L4 L∞

3 518 539 494 450 446 437

5 818 874 772 692 720 678

9 1345 1424 1249 1184 1167 1066

Using the UCI Ionosphere, WDBC and Image Segmentation data sets we
performed a K -NN search. For each member of the data set of class c, where
c ∈ C (q.v. Table 2), the K -NNs are identified and a count maintained of those
neighbours whose class was also c. Table 3 shows our K -NN search results on
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Table 4
K -NN search on a selection of normalised UCI data sets. Prior to the K -NN search,
the data were normalised with equation 2. For a given K, the larger the number
of neighbours found belonging to the same class as the query point, the better the
K -NN search.

Ionosphere Data Set

K L0.1 L0.5 L1 L2 L4 L∞

3 970 953 969 892 924 952

5 1609 1577 1596 1467 1530 1579

9 2835 2822 2810 2609 2712 2811

Wisconsin Diagnostic Breast Cancer

K L0.1 L0.5 L1 L2 L4 L∞

3 1623 1625 1635 1638 1610 1587

5 2703 2691 2707 2713 2681 2653

9 4839 4820 4845 4848 4795 4722

Image Segmentation Training Data

K L0.1 L0.5 L1 L2 L4 L∞

3 506 536 507 515 502 464

5 819 872 821 821 809 736

9 1371 1489 1404 1364 1400 1244

data which repeat the trends identified by [1], in that the L1 and fractional
norms successfully identified more nearest neighbours of the same class than
the L2 norm. However, the argument for K -NN search with fractional norms
is not that clear-cut, as for both the Ionosphere and WDBC data sets, the K -
NN search with the L4 and L∞ norms were also more successful than than the
search with L2. We have presented results for 3 different values of K since in [1]
the value of K was not specified, nor was it clear if the K -NN was performed
on the training or test data set; so although our results do not match their
results perfectly, they exhibit the same trend and are of the same order of
magnitude. We assume the data in [1] are raw - that is, the data are subjected
to the K -NN search without undergoing standardisation (to zero mean and
unit variance) or normalisation (to range 0 to 1). Table 4 shows the results of
repeating the K -NN search when the data are normalised with equation 2. The
result of the effectiveness of nearest neighbour search with fractional norms
when the data are normalised are not as convincing as the results obtained
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with raw data. With normalised Image Segmentation data, the L2 search for
both 3 and 5 nearest neighbours outperformed the same search using L0.1.
Moreover, the results for the normalised WDBC data set show that nearest
neighbour search with L2 outperformed the search with all the other norms
considered. These results suggest that the claimed improvement in nearest
neighbour search brought about by the use of fractional norms is likely to be
data dependent.

6 K-MEANS CLUSTERING

K-means [7] is a scalable partitioning process suitable for identifying data
structures that are convex, compact and well separated. However, the number
of codebook vectors must be prespecified, the partitioning process is suscep-
tible to distortion by noise and outliers, and the final partitioning is sensitive
to the initialisation of the codebook vectors.

For these experiments, the K-means algorithm was initialised with the number
of codebook vectors equal to the number of classes in the data set, and the
codebook vectors were initialised at a location drawn at random from the
set of all data points, thus eliminating unused codebook vectors. For each
data set, we performed the K-means training process using L2 or L0.3 for
the distance calculations. Once the algorithm reached a quiescent state, the
input data were classified based on the L2 and L0.3 distance from the nearest
codebook vector. We assessed the accuracy of the recovered class structures
with confusion matrices, which provided a valuable insight into the operation
of the partitioning algorithm with the differing distance metrics.

6.1 Synthetic Data

We examined the claimed improvement in [1], where an improvement in the
performance of K-means partitioning was reported when partitioning syn-
thetic high dimensional data sets (q.v. section 4) using fractional norms. The
reported improvement was an increase in class recovery accuracy from 89%
with K-means partitioning performed with L2 norm, to 99% using the L0.3

norm. With very compact and well separated clusters, the accuracy of the
recovered class structure was clearly related to the initialisation of the code-
book vectors. Training K-means with L2 or L0.3 generally resulted in one of
two results; either K-means placed one codebook vector per source and the
reported class recovery rate was 98%+, or the reported class accuracy recov-
ery dropped to 82% with one codebook vector classifying one and one half
sources, with another codebook vector classifying the remaining half of the
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split cluster. However with less compact clusters, we found a range of clus-
ter variances where K-means with L0.3 consistently resulted in the codebook
vectors being placed one per source and returning a consistent class recovery
accuracy of 98%+, but with the same data, the accuracy obtained with L2

K-means remained dependent on the codebook initialisation.

We reproduced the claimed class recovery improvement in K-means clustering.
However, this improvement in performance must be treated with care - the
reported class accuracy improvement is not achievable with all data. To be
effective, there must be close proximity (in the Lr norm) between the clusters.
With very compact and well separated clusters there may be no improvement.

6.2 Real World Data

Table 5
K-means clustering on a selection of UCI data sets. Column 2 details the norm used
to train K-means, and column 3 details the norm used to classify the data. In all
cases, data normalisation improved the recovery of class structure, and the norm
dependent variations in the accuracy were minimised.

Class Recovery Accuracy (%)

Data Set Training
Norm

Classification
Norm

Raw Data Normalised
Data

Image
Segmentation

L2 L2 59.2 (±0.7) 63.0 (±2.3)

L2 L0.3 58.4 (±0.8) 62.0 (±1.7)

L0.3 L2 54.5 (±3.6) 63.3 (±0.6)

L0.3 L0.3 54.2 (±3.4) 62.5 (±0.3)

WDBC
Breast
Cancer

L2 L2 85.4 (±0.0) 92.8 (±0.0)

L2 L0.3 85.1 (±0.0) 91.0 (±0.0)

L0.3 L2 85.0 (±0.3) 92.1 (±0.0)

L0.3 L0.3 84.5 (±0.4) 89.8 (±0.0)

Wine

L2 L2 70.0 (±0.4) 94.9 (±0.0)

L2 L0.3 76.6 (±2.0) 93.6 (±0.4)

L0.3 L2 71.6 (±0.8) 95.7 (±0.3)

L0.3 L0.3 84.2 (±3.0) 92.9 (±0.3)

The improvement in the performance of K-means partitioning using fractional
norms was demonstrated in [1] on synthetic data. We extended this work,
and empirically examined the effect of fractional norms on the UCI Image
Segmentation, WDBC Breast Cancer and Wine data sets.
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We ran each K-means partitioning 10 times, and show the precision of our
estimates of class accuracy as 95% confidence limits (which define the likely
range of the true value in the population from which our results are drawn).
Table 5 shows the recovered class accuracy. The results for the raw data show
how the accuracy varies with the norm, but the results show no correlation
between the norm and the accuracy achieved. Comparisons of the raw and
normalised results suggest the normalisation of the data source with equation
2 minimises the effects produced by the use of a non-Euclidean norm. In addi-
tion and more significantly, the results suggest the recovery of class structure
improves when the data are normalised, irrespective of the norm used.

7 UNSUPERVISED LEARNING

We examined the impact of normalisation and the norm, on the class recovery
accuracy of three unsupervised competitive neural network algorithms [8,9];
the Neural Gas (NG) network [10], the Growing Neural Gas (GNG) network
[11] and the Self-Organising Feature Map (SOM) [12]. The three networks
use soft competition to distribute the network nodes, but the neighbourhood
function varies between the algorithms. The networks were trained using the
L2 and L0.3 norms for the distance measurements, and after training, the data
were classified based on the L2 and L0.3 distances to the nearest node. Again,
we ran each experiment 10 times and show the precision of our estimates of
class accuracy as 95% confidence limits (which define the likely range of the
true value in the population from which our results are drawn).

7.1 Neural Gas Class Recovery Accuracy

The NG algorithm is dependent on the number of adaptation steps, a neigh-
bourhood function and a temporal decay function. The NG neighbourhood
function is determined by the ordered ranking of the distance of the node to
the current input vector. Our investigations suggest that the algorithm is not
particularly sensitive to the parameter settings and for all tests we use the
default parameters described in [10]. The training was performed with the
number of nodes equal to the number of classes in the data set.

Table 6 shows the recovered class accuracy for the raw and normalised data
sets. In general, for the raw data sets, there would appear to be no correlation
between the norm and performance of the NG algorithm across all of the data
sets. More significant is the class recovery accuracy obtained with normalised
data, when compared to the equivalent raw data results. In all cases, the
recovery of class structure improved with normalised data.
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Table 6
Neural Gas clustering on a selection of UCI data sets. Column 2 details the norm
used to train Neural Gas, and column 3 details the norm used to classify the data.
In all cases, data normalisation improved the recovery of class structure, and the
norm dependent variations in the accuracy were minimised.

Class Recovery Accuracy (%)

Data Set Training
Norm

Classification
Norm

Raw Data Normalised
Data

Image
Segmentation

L2 L2 47.2 (±1.9) 61.4 (±3.4)

L2 L0.3 46.0 (±0.1) 60.3 (±3.4)

L0.3 L2 48.4 (±6.2) 57.5 (±4.2)

L0.3 L0.3 52.1 (±2.6) 62.3 (±0.2)

WDBC
Breast
Cancer

L2 L2 72.9 (±8.1) 92.7 (±0.3)

L2 L0.3 85.4 (±7.4) 91.1 (±0.2)

L0.3 L2 82.0 (±8.9) 87.8 (±7.0)

L0.3 L0.3 84.9 (±7.3) 89.2 (±1.2)

Wine

L2 L2 70.4 (±0.2) 95.3 (±0.4)

L2 L0.3 77.0 (±1.0) 93.7 (±0.3)

L0.3 L2 66.5 (±0.4) 95.4 (±1.3)

L0.3 L0.3 69.8 (±0.3) 93.0 (±0.4)

7.2 Self Organising Map Recovery Accuracy

The classification performance of the SOM algorithm is also dependent on the
number of adaptation steps, a neighbourhood function and a temporal decay
function. Determined by the topological layout of the SOM, the neighbourhood
function is restricted to the direct topological neighbours of the winning node.
Initially, the neighbourhood function must be large enough to ensure the map
is ordered globally, but the neighbourhood extent is typically reduced over
time. The algorithm is not particularly sensitive to parameter settings and we
followed the suggestions for setting the parameters in [13]. We performed the
clustering with a linear SOM. Configured with the number of network nodes
equal to the number of classes in the data set, we are essentially mapping the
data on to a line.

Table 7 shows the accuracy of the recovered class structure for the raw and
normalised data sets. Once again, the results obtained with the raw data
suggest there is no correlation between the training and classification norm,
and the performance of the linear SOM across all the data sets. Again, in all
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Table 7
SOM clustering on a selection of UCI data sets. Column 2 details the norm used to
train the SOM, and column 3 details the norm used to classify the data. Again, data
normalisation improved the recovery of class structure, and the norm dependent
variations in the accuracy were minimised.

Class Recovery Accuracy (%)

Data Set Training
Norm

Classification
Norm

Raw Data Normalised
Data

Image
Segmentation

L2 L2 43.5 (±1.3) 62.1 (±1.5)

L2 L0.3 43.5 (±0.7) 60.7 (±0.5)

L0.3 L2 50.9 (±2.2) 63.2 (±0.1)

L0.3 L0.3 51.8 (±1.9) 63.0 (±0.2)

WDBC
Breast
Cancer

L2 L2 85.1 (±1.8) 92.8 (±0.5)

L2 L0.3 84.3 (±1.4) 91.4 (±0.6)

L0.3 L2 84.2 (±1.1) 91.0 (±1.2)

L0.3 L0.3 84.0 (±1.2) 88.6 (±1.6)

Wine

L2 L2 70.0 (±0.8) 94.5 (±0.9)

L2 L0.3 77.8 (±1.7) 93.7 (±0.8)

L0.3 L2 71.9 (±0.6) 95.1 (±0.7)

L0.3 L0.3 84.5 (±2.4) 93.1 (±0.7)

the cases, the accuracy of the recovered class structure improved when the
data are normalised, and the impact of the norm value is minimised.

7.3 Growing Neural Gas Recovery Accuracy

The GNG dynamically “grows” a structure until either a user defined per-
formance criterion or network size is met. The topology representing network
[14] generated by the Competitive Hebbian Learning not only determines the
insertion point for a new node as the network grows, but also describes the
neighbourhood of the winning node used for the soft competition update of
the neighbouring nodes. Our own experiments, and the work of others [15],
suggest that the network is reasonably insensitive to the network parameters,
and for these experiments the parameters were set to the values in [11]. The
maximum number of nodes was set equal to the number of classes in the data
set.

Table 8 shows the accuracy of the recovered class structure for the raw and

11



Table 8
GNG clustering on a selection of UCI data sets. Column 2 details the norm used
to train Growing Neural Gas, and column 3 details the classification norm. In all
cases, data normalisation improved the recovery of class structure, and the norm
dependent variations in the accuracy were minimised

Class Recovery Accuracy (%)

Data Set Training
Norm

Classification
Norm

Raw Data Normalised
Data

Image
Segmentation

L2 L2 46.0 (±1.4) 65.3 (±0.9)

L2 L0.3 45.2 (±1.0) 62.8 (±1.3)

L0.3 L2 51.3 (±2.0) 62.0 (±0.6)

L0.3 L0.3 51.6 (±2.0) 61.6 (±0.5)

WDBC
Breast
Cancer

L2 L2 85.1 (±1.2) 92.3 (±1.2)

L2 L0.3 85.2 (±1.2) 90.8 (±1.4)

L0.3 L2 86.1 (±1.2) 90.8 (±1.7)

L0.3 L0.3 86.1 (±1.5) 88.8 (±2.6)

Wine

L2 L2 70.1 (±1.2) 94.4 (±1.2)

L2 L0.3 77.3 (±3.5) 93.1 (±1.2)

L0.3 L2 71.6 (±1.0) 93.9 (±1.1)

L0.3 L0.3 83.5 (±2.1) 92.7 (±1.0)

normalised data sets. Once again, the results for the raw data show no corre-
lation between the performance of the GNG classifier and the norm. Again,
in all the cases, the accuracy of the recovered class structure improved when
the data are normalised.

8 CONCLUSION

Our results obtained with the three unsupervised neural clustering algorithms
showed that with raw data, there was no consistent improvement in class
recovery accuracy with the fractional norm. Indeed, no single training and
classification norm pair produced consistent, good quality results. However,
normalising the data to the range [0,1] consistently increased the accuracy of
the recovered class structure. Using normalised data resulted in very similar
accuracy levels for the K-means clustering and the three neural inspired mod-
els. These results are not surprising, as essentially the three neural algorithms
are attempting to perform a minimisation of a sum squared error criterion,
similar to K-means, but with the added constraint of the soft competition
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update of the neighbourhood nodes.

When performing a K -NN search on the raw UCI data sets, fractional norms
identified more nearest neighbours than the L1 and Euclidean norms, repeat-
ing the findings of [1]. However, these results are not clear-cut in suggesting
fractional norms outperform higher-order norms, as a K -NN search with L4

and L∞ on the raw Ionosphere and WDBC data sets out-performed a similar
K -NN search with L2. The results of our experiments show that any claimed
improvement is likely to be data set dependent.

The application of fractional norms to the K-means partitioning algorithm can
produce vast improvements in clustering accuracy. However, we have demon-
strated the improvement is data dependent. With well separated clusters, there
is no guarantee the performance improves, and the K-means algorithm remains
susceptible to codebook vector initialisation and can remain trapped in a local
minimum.

The results presented in this paper very clearly demonstrate the beneficial
effect normalisation of the data has on the recovery of class structure with both
K -NN search and squared error minimisation clustering. The improvement
in the results achieved by normalising the data prior to analysis dwarfed the
smaller, unpredictable influence of the norm to such an extent that our overall
conclusion is that the data should always be normalised, and unless a strong
argument can be made for the use of a specific measure of distance, the norm
used for distance measurements might as well be the L2 norm due to its
familiarity.
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