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THE POSITIVE FIXED POINTS OF BANACH LATTICES

BRUCE CHRISTIANSON

(Communicated by William Davis)

Abstract. Let Z be a Banach lattice endowed with positive cone C and an

order-continuous norm j.j . Let G be a left-amenable semigroup of positive

linear endomorphisms of Z . Then the positive fixed points Co of Z under

G form a lattice cone, and their linear span Z0 is a Banach lattice under an

order-continuous norm ||.||0 which agrees with |.| on Co. A counterexample

shows that under the given conditions Z0 need not contain all the fixed points

of Z under G , and need not be a sublattice of (Z, C). The paper concludes

with a discussion of some related results.

Let G be a semigroup. We denote by m(C7) the Banach space of all bounded

linear functions from G into the real numbers R, under the supremum norm.

We denote by m'iG) the Banach dual of w(C7). With each T g G we associate

an endomorphism Tm of /n(C7) defined by

iTmb)iU) = biTU)   for U G G and b G m(G)

where TU denotes the composite of T and U under the semigroup operation.

An element p G m*iG) is called a mean for G iff

inf biT) < pib) < sup biT)   for all b G G
T€G T€G

and left-invariant for G iff

T'mp=p   forallTGG,

where T'm denotes the adjoint of Tm .

Following M. Day [1, p. 108] we call the semigroup G left-amenable iff

there exists a left-invariant mean for G. In particular, any Abelian semigroup

is left-amenable [1, Theorem 4, p. 108].

A Banach lattice is said to have order-continuous norm iff every decreasing

sequence of positive elements is norm convergent [3, 5.12, p. 92; 5.10(d), p. 89].

Theorem. Let (Z,C, ||.||) be a Banach lattice with order-continuous norm. Let

G be a left-amenable semigroup of positive linear operators from Z into Z.

Define

C0 = {x G C : Tx = x for all T gG} ,       Z0 = C0 - CQ.
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Then (Z0, C0) is a vector lattice.

Further, let |.|0 be the corresponding lattice modulus and define ||.||0 on ZQ

ôy

Pifo = II Moll
Then (Z0, C0, ||.||0) ii a Banach lattice with order-continuous norm.

Proof. We begin by showing that each pair {x,y} in Z0 possesses a least upper

bound in Z0 . (Note that the cones C and C0 induce the same partial ordering

on Z0, since C n Z0 = C0.) Without loss of generality, suppose that x and y

are positive, and let x V y denote their lub in Z . The set {T(x V y) : T G G}

is bounded above, since

Tixvy)< Tix + y) = x + y   for all T G (7,

hence this set has a least upper bound z in Z by the order-continuity of the

norm [3, 5.10(a), p. 89]. We shall show that z is the required lub in Z0 of x

and y.

We show z G C0. Let Z* denote the Banach dual of Z , endowed with dual

norm and dual positive cone. Each T G G is bounded [3, 5.3, p. 84] and so

has an adjoint T' on Z*. Define (for the given x and y ) a positive linear

map j from Z* into m{G) by

a/)(r) = (r'/)(xvy).

Let p be a left-invariant mean for G and set w = j'p G Z**, where / is the

adjoint of j . Since jT' - Tmj we have for T G G that

T w = r U p) = j iTmp) = jp = w.

We show that w = iz where / is the canonical embedding of Z into Z**.

For each T we have

so

But

x = Tx <TixWy)   and   y = Ty < T(x V y),

x Vy < r(^vy) < z.

inf jfiT) < pijf) < sup ;/(T)   for all / G Z\
T€G TÇG

SO

/(xvy)< inf/(r(xvy))<w(/)

<sup/(r(xvy))</(z)   for all/>0.

Hence

z'(xVy) <w < iz.

Now we have

zT(x V y) = r"/(x V y) < r"u; = w   for all T G G.
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But iz is the lub of {iT(xVy) : T G G} since i preserves arbitrary suprema by

order-continuity [3, p. 89 ff 5.9C]. Hence iz < w . We already have w < iz,

so iz = w , giving Tz — z, whence z g Cq as promised.

If u G C0 with x V y < u then

Tix Vy)<Tu = u   for all T G G

so z < u. We already have x V y < z, thus z is the lub in Z0 of x and y .

This completes the proof that (Z0, C0) is a vector lattice.

It remains to show that ||.||0 has the required properties. Clearly it is a lattice

norm and agrees with the original norm on C0. We show that it is a Banach

norm for Z0 by an argument borrowed from [2, p. 326]. Suppose {xn) a

sequence in Z0 suchthat X)„llx„llo converges. Write

Xn=yn- Zn     Where yn > Zn € C0 with Vn + Zn = \Xn lo ■

Then

IUvU < II Kloll = Wo
so Z)„ ll^nll converges, whence Y^ny„ is (monotone) convergent in the norm

||.|| to some y G Z . But C0 is closed (since the elements of G are bounded) so

y G C0, and the norms agree on CQ, hence J2n yn ls a^so monotone convergent

to y in ||.||0. Similarly J2nzn converges to some z G C0 and so ¿2„x„

converges to y - z G ZQ in ||.||0 which is therefore complete for Z0.

The order continuity of ||.||0 is inherited from that of ||.||. For let (xn) be a

monotone decreasing sequence in C0, then (xn) is (monotone) convergent in

||.|| to some x G C. But C0 is closed in ||.|| so x G C0, and the norms agree

on C0 so (xn) is also monotone convergent to x in ||.||0.     G

Corollary. Let V be a Banach space and let V+ be a norm-closed cone in V

such that V — V+ - V+ . Suppose further that the Banach dual (Z, C, ||.||) of

V, endowed with dual norm and dual positive cone, is a Banach lattice. Let G

be a semigroup of bounded positive linear operators from V into V and suppose

that G is right-amenable iequivalently that G' — {T1 : T g G} is left-amenable,

where T' denotes the adjoint of T.) Define

C0 = {xgC:T'x = x for all t G G1},       ZQ = C0 - C0.

Then (Z0, C0) is a vector lattice.

Further, let |.|0 be the corresponding lattice modulus and define ||.||0 on ZQ

by

IWIo = ll KII-
Then (Z0, C0, ||.||0) is a Banach lattice.

Proof. As for the Theorem, but define j from V into m(C7) by jf{T) —

(xVy)(T/) and set z = j'p directly.     D
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Remark. In both the Theorem and the Corollary we could equally well have

defined ||.||0 tobe the Minkowski functional of cxiS0U-S0) where ex denotes

convex hull and

S0 = {xgC0:||x|| = 1}.

The Theorem holds in particular for Z any (abstract or concrete) Lp space

with 1 < p < oo, and in this case ZQ is also an Lp space for the same p . The

Corollary gives a weaker result for L°° spaces.

Examples. The following examples show that the Theorem is in some sense the

strongest result we can hope for under such general conditions.

Example 1. The conclusion of the Theorem may fail if G is not left-amenable.

Consider R   as a Lebesgue space with five atoms, and define P, Q by

Piv ,w,x,y ,z) = iv,w ,x,y ,v + w),

Qiv ,w ,x,y,z) = iv,w,x,y,x + y).

Let G be the semigroup {P, Q}, then C0 is the cone with square base

{is, 1 -s,t,l -t) :s,tG [0,1]}

so (Z0, C0) is not a lattice. For example (1,1,2,0,2) and (1,1,1,1,2) are

incomparable upper bounds in Z0 for (1,0,1,0,1) and (0,1,1,0,1).

Example 2. Z0 need not equal the set of all fixed points of Z under G, and

this latter set need not be a lattice. Consider R2 as a Lebesgue space and let

G be the semigroup {Tn} where T(x ,y) = (2x + y ,x + 2y). The fixed points

are the line x + y = 0 and C0 = {0}.

Example 3. ZQ need not be a sublattice of (Z, C) and the two norms need

not agree on the whole of Z0 . Consider R as a Lebesgue space and let G be

the semigroup {Tn}' where T(x,y,z) = (x,y,x + y). The points

a = il,0,l)       ¿» = (0,1,1)

have

aA6 = (0,0,l)       ¿zA0¿> = (0,0,0)

\\a -b\\ = 2       ||a-¿>||0 = 4.

However we do always have ||.|| < ||.||0 on Z0 .

Example 4. Z0 need not be norm closed in (Z, ||.||) and the two norms need

not therefore be equivalent on Z0. Let Z be the Lebesgue (ie L ) sum of

countably many copies of R? considered as a Lebesgue space, and define T by

(7^ = (xk ,yk,xk+yk + (i- 2~k)zk)

for w gZ with wk = (xk ,yk , zk).
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Let G = {Tn} and define v by vk = (1/2 , - 1/2 ,0). Then v is in the

closure of Z0 under ||.|| but is not in ZQ. This example also satisfies the

assertions of Examples 2 and 3.

Related Results. If more is assumed about Z or G then stronger results can

be proven, i.e., that Z0 includes all the fixed points of Z under G (and hence

is norm closed), is a sublattice of Z, or is the range of some projection or

conditional expectation operator with nice properties. Such results are known

in a number of cases, i.e.

(1) if G is mean-ergodic [3, 8.4, p. 188; 11.6, p. 214]. (In case G is

compact in the weak operator topology this is equivalent to amenability

[3, 17(a)(c), p. 222].)

(2) if G is a group [3, s. 10, p. 201; 2.6C, p. 60].
(3) if G is (uniformly) equicontinuous [3, p. 184].

(4) if G is an L   space and G is contractive [3, p. 184, p. 193 proof].

In these cases, more can often be said about the geometry of C0 as a subcone

of C, i.e., that there is a bijection between the extreme rays of C0 and the

minimal ideals (or irreducible components) of G (which correspond to minimal

C7-invariant faces of C )[3, 8.7, p. 190; 8.11, p. 192].

This kind of refinement is difficult in the more general context of our Theo-

rem since the required structure can be quite intricate, although partial results

have been obtained by the author under the more restrictive conditions of the

Corollary. Nevertheless, the Theorem by itself sometimes provides sufficient

information to be useful.

For example, let 5 be any set of probability measures such that S is a

linearly compact simplex (so that Z = lin span S is a vector lattice) and S

is closed under the formation of countable convex combinations. Then by [3,

8.2, p. 113] or [2, p. 325] Z can be normed as an L space with 5 precisely

the set of positive elements of unit norm in Z (although the lattice join in Z

may not be the usual measure join.)

A special case of this occurs when S is a set of (normalized) states for a

physical system. Let G be the (Abelian) semigroup generated by some linear

mapping (defined on the cone with base S ) corresponding to an evolution of the

system. Then the Theorem says that the stationary states of the system generate

a vector lattice, even when the evolution is nonconservative (i.e. noncontractive)

irreversible (i.e. noninvertible) nonergodic, nonequicontinuous etc.

In some cases, notably if >S is vaguely compact or has the Radon-Nikodym

property, and if the evolution operator is appropriately continuous, this is suffi-

cient to show that the stationary states possess unique decompositions into pure

phases as barycentres (resultants) of boundary measures on SQ

[4, pp. 44, 50]. In other cases, the fact that the stationary states form a simplex

is of independent interest.
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