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ABSTRACT  

Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal 

genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping 

protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA 

individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to 

functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence 

of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection 

through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an 

SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which 

is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor 

Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted 

individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent 

negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA 

models and ameliorates pharmacologically induced endocytosis defects in zebrafish. 

Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects 

across species, including worm, zebrafish and mouse. In conclusion, our study identifies a 

previously unknown protective SMA modifier in humans, demonstrates modifier impact in three 

different SMA animal models and suggests a potential combinatorial therapeutic strategy to 

efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm 

that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of 

protective modifiers for understanding disease mechanism and developing therapies. 
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INTRODUCTION  

In monogenic disorders, genetic modifiers can influence disease-causing mechanisms 

resulting in incomplete penetrance1. Identification of such modifiers is of utmost relevance 

since they can uncover regulatory networks and pathological mechanisms, as well as allow 

identification of therapeutic pathways. For recessive disorders, full protection through modifiers 

is extremely rare, making their identification highly challenging.  

Spinal muscular atrophy (SMA), a motor neuron disease, is one of the most common and 

devastating autosomal recessive disorders, for which no treatment is available yet. However, 

various clinical trials using antisense oligonucleotides (ASOs), small molecules or gene 

therapy show highly promising ameliorations2. Most SMA individuals show homozygous 

absence of exon 7 of the survival motor neuron 1 (SMN1) [MIM: 600354]3, allowing easy and 

efficient genetic testing4. SMN1 encodes SMN, a housekeeping protein involved in snRNP 

biogenesis and splicing, microRNA biogenesis, transcription and translation regulation, and 

others5-8; full absence of SMN causes embryonic lethality9. Only humans have an almost 

identical copy, SMN2 [MIM: 601627], however this produces only ~10% correctly spliced full-

length transcript and protein, due to a single silent mutation affecting an exonic splicing 

enhancer and creating a new splice silencer10-12. In SMA individuals, SMN2 is the only source 

of SMN, thus its copy number (between 1-6) determines SMA severity13. In type 1 SMA (SMA1 

[MIM: 253300]), the severe and most common form (60%), the majority of individuals carry two 

SMN2 copies and die within the first two years of life. Most type 2 SMA (SMA2 [MIM: 253550]) 

affected individuals carry three SMN2 copies and are never able to walk. In type 3 SMA (SMA3 

[MIM: 253400]), the mild form, most individuals carry four SMN2 copies and are able to walk, 

but often become wheel-chair bound14.  

Despite the important housekeeping function of SMN, reduced levels primarily cause spinal 

motor neuron (MN) dysfunction in all types of SMA14. Thus, MN loss, impaired maturation and 

maintenance of neuromuscular junctions (NMJs), and decreased proprioceptive inputs on MN 

soma are hallmarks of SMA15-17. Nonetheless, dramatic reduction of SMN below a certain 

threshold, as seen in severely-affected SMA individuals or animal models, compromise almost 
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every organ and many different cellular processes, which is in line with the essential function 

of SMN in all cell types18; 19. Therefore, we reasoned that the search for the main cellular 

pathway specifically driving MN dysfunction has to be carried out in mildly affected SMA 

individuals, in whom only motor neuron function is impaired and moreover, that protective 

modifiers identified in these individuals may reveal the critical underlying cellular mechanism. 

To do so, we took advantage of very rarely occurring SMA-discordant families, in which 

relatives of SMA affected individuals carry a homozygous SMN1 deletion together with three 

or four SMN2 copies, but are clinically asymptomatic20-23. In seven of these families, we 

previously identified the Ca2+-dependent protein Plastin 3 (PLS3) as a protective modifier24; 25. 

PLS3 overexpression (OE) rescues SMA across species and is specifically upregulated in MNs 

of asymptomatic individuals produced from induced pluripotent stem cells24; 26-29. Moreover, 

PLS3 together with the second modifier found in this study, pointed us towards endocytosis as 

the key disturbed cellular mechanism in SMA29. 

Here, we report the identification of Neurocalcin delta (NCALD) [MIM: 606722], which encodes 

a neuronal Ca2+ sensor protein, as an SMA protective modifier in humans. We show that 

NCALD acts as a negative regulator of endocytosis, which is in contrast to PLS3 acting as its 

positive regulator. We show Ca2+-dependent interaction of NCALD with clathrin, a protein 

essential in endocytic vesicles coating. We demonstrate that low SMN levels reduce voltage-

dependent Ca2+ influx and that NCALD binds clathrin at low Ca2+ levels, thereby acting as a 

Ca2+-sensitive inhibitor of endocytosis. Our results, obtained from multiple in vitro and in vivo 

systems, show that NCALD suppression reestablishes synaptic function, most likely by 

restoring endocytosis. Most importantly, we prove that NCALD knockdown (KD) in various 

SMA animal models ameliorates major functional SMA disturbances, such as motor axon 

development in zebrafish or MN circuitry and presynaptic function of neuromuscular junction 

(NMJ) in mice. Moreover, we introduce a mild SMA mouse model generated by combined low-

dose SMN-ASO treatment and heterozygous Ncald knockout, and show restored motoric 

function. Our data support the notion that genetic modifiers reveal additional valuable 

treatment options, beyond existing therapies.  
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MATERIAL AND METHODS 

Individuals’ DNA, Fibroblast Cell Lines and Lymphoblastoid Cell Lines. Informed written 

consent was obtained from each subject or their legal guardians for all biological samples 

according to the Declaration of Helsinki. The study has been approved by the Ethical 

Committee of University of Cologne (04-138). Human fibroblast and EBV-transformed 

lymphoblastoid cell lines (LBs) from SMA individuals, carriers and asymptomatic SMN1-

deleted individuals used in this work are listed in Table S1. DNA was extracted from EDTA 

blood samples, primary fibroblast cell lines and LBs using standard protocols. SMN1 and 

SMN2 copy number were determined by qRT-PCR or MLPA lysis (MRC Holland) as 

described30. For haplotype analysis, polymorphic markers Ag1-CA (D5S1556), C212 

(D5F149S1/S2), VS19A (D5S435) and MIT-I105 (D5S351) were analyzed as described31. 

SMN2 coding region was sequenced in qRT-PCR products obtained from LBs-isolated RNA 

as described32. PLS3 expression was analyzed as described24. All cell lines used were tested 

for mycoplasma contamination.  

 

Genome-wide Linkage Analysis. Genome-wide scan was performed in 14 individuals of the 

Utah family using Affymetrix GeneChip Human Mapping 10K Array 2.0, which comprises total 

10,024 SNPs with a mean intermarker distance of 258kb, equivalent to 0.36cM (Affymetrix). 

Parametric linkage analysis was performed by ALLEGRO program33 assuming autosomal 

dominant inheritance with full penetrance and 0.0001 disease allele frequency. Haplotypes 

were reconstructed with ALLEGRO and presented graphically with HaploPainter34. All data 

handling was performed using the graphical user interface ALOHOMORA35.  

 

Transcriptome Analysis. For expression profiling, 400ng total RNA were amplified and 

biotinylated using Illumina TotalPrepTMRNA Amplification Kits (Ambion) according to 

manufacturer’s protocol. Human HT-12v3 bead arrays (Illumina) were hybridized with 750ng 

cRNA for 18h at 58°C according to Illumina Whole-Genome Gene Expression with IntelliHyb 
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SealSystem Manual. Arrays were washed with E1BC buffer, High-Temp Wash Buffer and 

100% ethanol, stained with streptavidine-Cy3, and washed with E1BC buffer. Fluorescence 

intensities were recorded on BeadArray Reader GX (Illumina). Average signal intensities 

without background correction36 were performed with BeadStudio3.1 (Illumina). All data 

analysis steps were performed in the statistical environment R (version 2.10-0) with several 

bioconductor packages (version 2.6.1). Signal intensities were normalized with VSN (variance 

stabilizing and normalization quantification method37) and non-informative probes were 

removed based on p-values. Signals were averaged for individual subgroups and a linear 

model was designed capturing the influence of the asymptomatic group on gene expression 

levels38. Differences between subgroups were extracted as contrasts and analyzed with the 

moderated F-test (empirical Bayes method) including a correction step for multiple testing with 

5%-FDR-based method39. To attribute significant regulations to individual contrasts, a decision 

matrix was generated based on the function “decide tests” within the “limma” package, where 

significant up- or downregulations are represented by values of 1 or -1, respectively.  

 

Targeted Resequencing. To identify a potential variant regulating differential NCALD 

expression, complete NCALD locus ±1Mb (chr8:101,505,353-104,404,346) was deep-

sequenced from gDNA of family members II-1, III-1, III-4, III-8, and IV-3 at Radboud University 

Medical Center Nijmegen using a 5500xl sequencing instrument (Life Technologies). ~3Mb 

genomic DNA from chromosome 8 were captured using a 385K NimbleGen SequenceCapture 

Array (Roche).  

On average, we obtained 2.7Gb of mappable sequence data/individual. Reads were mapped 

to the hg19 reference genome with LifeTechnologies BioScope software 1.3. On average, 94% 

of bases originated from the target region (mean 544-fold coverage). 99.8% of the targeted 

region was covered ≥20 times. Single-nucleotide variants were subsequently high-stringency 

called by the DiBayes algorithm. Small insertions and deletions were detected using the Small 

IndelTool. Variants were annotated using an in-house analysis pipeline. 
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Animal Models 

Zebrafish Experiments. All experiments were performed with the transgenic line tg(mnx1-

GFP)ml2TG 40 and approved by the local animal protection committee (LANUV NRW; reference 

number 84-02.04.2012.A251).  

 

Zebrafish Injection and Analysis. Morpholinos (MO) were designed against the translational 

start codons of respective genes (Gene Tools, LLC). smn-MO: 5’-

CGACATCTTCTGCACCATTGGC-3’; ncaldb-MO: 5’-GGAGCTTGCTGTTTTGTTTTCCCAT-

3’; control-MO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’. For NCALD mRNA injections, 

human NCALD cDNA was cloned into pCS2+ mRNA expression vector and transcribed in vitro 

using mMESSAGE mMACHINE SP6 Transcription Kit (Ambion) according to manufacturer’s 

protocol. Embryos from TL/EK wildtype and TL/EK-hb9-GFP40 crossings were used to 

visualize the MN phenotype. Embryos were injected with the respective dose of MOs or mRNA 

in aqueous solution containing 0.05% PhenolRed and 0.05% Rhodamine-Dextran (Sigma). Six 

hours after injection embryos were sorted according to homogeneity of the rhodamine 

fluorescence signal.  

 

Immunohistochemistry for Motor Axon Quantification. 34hpf zebrafish were manually 

dechorionated, fixed in 4% PFA-PBS and permeabilized by collagenase digest of the whole 

animal. To visualize the primary motor axons, zebrafish were incubated at 4°C overnight in 

PBS-T/1%DMSO/10%FCS containing znp-1 antibody (AB2315626, Hybridoma Bank) and 

stained in PBS-T/1%DMSO/10%FCS containing donkey anti-mouse secondary antibody 

labelled with AlexaFluor488 (Invitrogen) after all-day washing in PBS-T/1%FCS/1%BSA 

(changing solution hourly) and stored in 80% glycerol/20% PBS in the dark at 4°C or embedded 

in low-melting agarose microslides for microscopy analysis. The structure of first ten motor 

axons posterior to the yolk was analyzed, rated as: 1) normal, 2) truncated (truncation ventral 

from midline), 3) severely truncated (shorter than midline), 4) branched I (branching ventral 
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from midline), 5) branched II (branching at midline), or 6) branched III (branching dorsal from 

midline). 

 

Western Blot Analysis of Zebrafish. 48hpf dechorionated embryos were gently spinned 

down, sacrificed by incubation on ice and lysed in RIPA buffer (Sigma) containing protease 

inhibitors (Complete Mini, Roche). The following primary antibodies were used for overnight 

incubation: anti-beta-actin (zebrafish) (553399, Anaspec), anti-SMN (MANSMA7, Hybridoma 

Bank; 610646, BD Biosciences) and anti-NCALD (12925-1-AP, Proteintech). Signal detection 

was performed as described above.  

 

Transmission Electron Microscopy of Zebrafish. 48hpf zebrafish were fixed in 4%PFA for 

30min and postfixed in 0.6% glutaraldehyde for another day. Samples were prepared and 

embedded in resin as previously described27. The thickness of semi-thin and ultra-thin sections 

was 0.5 and 0.1mm, respectively. For immunogold stainings, pre-stained sections were 

blocked, incubated with primary antibodies (anti-clathrin, (ab273, Abcam), anti-NCALD), 

washed in PBS and stained with gold-labelled secondary antibodies (donkey-anti-mouse 6nm 

gold, ab39616, goat-anti-rabbit 20nm gold, ab27237; Abcam). Image acquisition was 

performed with TEM CM10 (Philips) microscope, Orius SC200W 1 Gatan camera and the 

Digital Micrograph software. 

 

Motor Behaviour Analysis of Zebrafish. 30 zebrafish treated with respective MOs were 

placed in 10cm petri dish containing embryo medium. To trigger a swimming response, 

zebrafish were stimulated with an electrical impulse (60V; delay: 60ms, duration: 4ms, 

frequency: 6pps (SD9 Stimulator)). Swimming behaviour was recorded with 120 

frames/second using a high-speed camera (FC-100, Casio). Swimming velocity and distance 

were analyzed using LoliTrack software (Loligo Systems). 
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Endocytosis Inhibitor Treatment. Dynasore (dynamin inhibitor) and Pitstop2 (clathrin 

inhibitor) (Abcam) were dissolved as stock solutions (50mM) in DMSO. Zebrafish were 

dechorionated and incubated with the respective inhibitors in the medium starting at 16hpf at 

28°C on a rocking platform (20rpm) until fixed in 4%PBS-PFA at 34hpf. Subsequent zebrafish 

immunohistochemistry was performed as described above. 

 

Electrophysiology. 72hpf zebrafish (control, smn-, ncald-, and smn+ncald-morphants) were 

anesthetized with 0.02% tricaine (in saline; Sigma) for 1-2min and rinsed with saline containing 

(in mM): 134 NaCl, 2.9 KCl, 2.1 CaCl2, 1.2 MgCl2, 10 HEPES, 10 glucose adjusted to pH7.8. 

Zebrafish were decapitated and pinned under saline in a Sylgard-coated (Dow Corning) 

recording chamber (~3ml volume). Skin was removed using a tungsten pin and forceps; 

preparation was incubated in 3M formamide (in saline; Carl Roth) for 2min to prevent muscle 

contractions. After rinsing the preparation, the superficial layer of ventral slow muscle cells was 

removed by scratching with a tungsten pin to expose deeper fast skeletal muscle cells and 

remaining superficial slow muscles were removed with a low resistance pipette (~2 MΩ). The 

preparation was continuously superfused with saline at a flow rate of ~2ml/min-1. Experiments 

were carried out at ~24°C. Muscle cells were visualized with a fixed-stage upright microscope 

(Zeiss Axio Examiner, Zeiss), using a 40x water immersion objective (Zeiss) with infrared-

differential interference contrast and fluorescence optics. Fast muscle cells were identified by 

their orientation to the spinal cord and ability to generate action potentials. 

 

Caenorhabditis elegans Experiments. Caenorhabditis elegans strains. LM99 smn-

1(ok355)I/hT2(I;III)41, HA1981 +/hT2(I;III), HA2530 +/hT2(I;III);ncs-1(qa401)X, HA2531 smn-

1(ok355)I/hT2(I;III);ncs-1(qa401)X, HA2599 +/hT2(I;III);uIs72, HA2623 smn-

1(ok355)I/hT2(I;III);uIs72, were maintained at 20°C under standard conditions. +/hT2 strains 

used as control for genetic background; RNAi studies were undertaken in a sensitized 

background (transgene uIs72) expressing the SID-1 dsRNA channel in neurons42.  
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C. elegans Pharyngeal Pumping. Pharyngeal grinder movement in any axis was scored as 

a pumping event. Average pumping rates (±SEM) were combined from at least three 

independent trials (n ≥ 25 animals in total). For RNAi knockdown, animals were reared for two 

generations (F2) on either control vector L4440 or C44C1.3/ncs-1(RNAi) in HT115. ncs-1 RNAi 

clone contains genomic DNA amplified by primers 5’-AAATCGTCTAGCTGTAGTGTCGC-3’ 

and 5’-TTGTGCTCCCTACACTTTGTTTT-3’ inserted into L4440. Clone was verified by 

sequencing. 

 

Mouse Experiments. All mouse experiments were approved by LANUV NRW (reference 

number 9.93.2.10.31.07.186 and 84-02.04.2014.A 126). The Taiwanese SMA mice (FVB.Cg-

Tg(SMN2)2Hung Smn1tm1Hung/J, Stock Number:005058) and heterozygous Ncaldko/wt 

(Bl6N(Cg)-Ncaldtm1.1(KOMP)Vlcg/J, Stock Number:018575) were purchased from Jackson 

Laboratory. The severe SMA [Smnko/ko; SMN2tg/0] mice and the corresponding heterozygous 

Smn (HET; [Smnkowt-; SMN2tg/0]) mice were produced as previously described9; 43. The breeding 

scheme and genotypes for SMA-Ncaldko/wt and HET-Ncaldko/wt are similar to SMA+ASO-treated 

mice (Figure 5A), except that all animals were on congenic C57Bl/6N and untreated.  

Primers used for mouse genotyping: mmu SmnKOfw: ATAACACCACCACTCTTACTC; mmu 

SmnKOrev1: 5`-AGCCTGAAGAACGAGATCAGC-3`; mmu SmnKOrev2: 5`-

TAGCCGTGATGCCATTGTCA-3`; hsa SMN2fw: 5`-CGAATCACTTGAGGGCAGGAGTTTG-

3`; hsa SMN2rev 5`-AACTGGTGGACATGGCTGTTCATTG-3`; mmu NcaldKOfw: 5`-

CGGTCGCTACCATTAC-3`; mmu NcaldKOrev: 5`-GCATGTGTGACAACAG-3`. 

A mild SMA mouse model was produced by suboptimal subcutaneous injection of severe SMA 

mice (50% FVB/N: 50% C57BL6/N) on P1 with 30µg of SMN-ASO (IONIS Phamaceuticals) 

using a MICROLITER syringe (Hamilton). The SMN-ASO was diluted as previously 

described19. SMA-Ncaldko/wt+ASO and HET-Ncaldko/wt+ASO were produced using the breeding 

scheme in Figure 5A. Unless stated otherwise, all mouse experiments were performed blinded 

for genotype and treatment.  
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Mouse Motoric Tests. Righting reflex test was performed as previously described44. Righting 

time scores were evaluated as followed: 0-2s=1; 3-4s=2; 5-6s=3; 7-8s=4; 9-10s=5; ≥11s=6. 

Muscle strength was assessed in P73 SMN-ASO injected mixed50 background mice by the 

animal’s grasp of a horizontal metal bar mounted to a high-precision force sensor (Grip 

strength meter, TSE Systems). Muscle force was recorded in pounds and converted to Newton 

[N].  

 

Quantification of Proprioceptive Inputs. Analysis of proprioceptive input on MN soma was 

performed as described29. The spinal cord was dissected from euthanized mice and fixed in 

4% PFA overnight. The lumbar L4-L5 region was rinsed in PBS, embedded in tissue freezing 

medium (Jung) after cryoprotection (first day: 20% sucrose, second day: 30% sucrose) and 

sliced into 100µm sections (cryostat, Leica). Samples were permeabilized, blocked in PBS/4% 

BSA/1% Triton/PBS for 1h and incubated with anti-CHAT (Choline acetyltransferase , a MN-

specific marker) (AB144P, Millipore) and anti-VGLUT1 (Vesicular glutamate transporter 1 or 

SLC17A, an excitatory neurotransmitter used for proprioceptive inputs) (135303, Synaptic 

Systems) antibodies overnight. Samples were washed and incubated with secondary 

antibodies (donkey anti-rabbit AlexaFluor488, donkey anti-goat AlexaFluor568) and mounted 

in Mowiol. Images were taken in Z-stacks of 30-60 slices of 0.3µm interval. Proprioceptive 

input numbers on MN and MN soma size were quantified using the ImageJ software.  

 

Quantification of NMJ Size and Maturity. The Transversus abdominis (TVA) muscle was 

prepared at the indicated time points, fixed in 4%PFA for 20min and stained with anti-NF-M 

(Neurofilament M, NEFM), used as neuronal axon and dendritic marker,  (Hybridoma-Bank)), 

secondary goat-anti mouse AlexaFluor488 and Bungarotoxin (Invitrogen, labeled with 

AlexaFluor555). Surface area of Bungarotoxin-positive post-synapse was measured by 

ImageJ with threshold set to the method established by Li. NMJ immaturity index was analyzed 

as described previously45: NMJs exhibiting ≥ 3 perforations were evaluated as mature, NMJs 

with < 3 perforations as immature.  
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FM1-43 Endocytic Uptake at NMJ under Electrical Stimulation. FM1-43 endocytic uptake 

at NMJ under electrical stimulation was undertaken as recently described29. Three animals per 

genotype and stimulation set were used. Imaging was performed as described above. All 

imaging processes and analyses were performed double-blinded. Images were analyzed with 

ImageJ using a macro setting and Li threshold method applied to the postsynaptic terminals 

to delineate the area of interest in the presynaptic site.  

 

Microscopy. Unless indicated otherwise, all microscopic experiments were performed with a 

fully motorized fluorescence microscope AxioImager M2 (Zeiss) equipped with an ApoTome. 

All quantitative measurements were performed using Zen software (Zeiss) and ImageJ and 

evaluated with indicated statistical packages.  

 

Primary Motor Neuron Culture. Spinal cords were dissected from E13.5 mouse embryos9. 

Neurons were singularized with trypsin (Worthington) and DNAse (Sigma), sieved, plated on 

poly-D-lysine/laminin (Sigma) coated coverslips and cultured in neurobasal medium with B27 

supplement, 2mM L-glutamine, 1x pen-strep (Invitrogen) containing 50ng/µl BDNF, 50ng/µl 

GCNF and 50ng/µl CNTF (Peprotech) at 37°C in a humidified incubator with 5%CO2.  

 

Quantitative RT-PCR. RNA was extracted from cell lines using RNeasy kit (Qiagen). 150ng 

RNA was reversely transcribed to cDNA (Quantitect Reverse Transcription Kit, Qiagen). For 

NCALD cDNA measurements, 9ng cDNA was used for RT-PCR (LightCycler, Roche). RT-

PCR was performed in triplicates according to manufacturer’s protocol (annealing temperature 

68°C, NCALD cDNA primers: 5’-GGAATGCCCAGAGCCCCAGTGT-3’; 5’-

GCCCCAACCCCCGAGTCTTACG-3’). Standard curve-based absolute transcript 

quantification was performed using Excel (Microsoft). For statistical evaluation, the Student´s 

t-test was applied. For quantitative measurements of SMN and PLS3, previously described 

protocols were used24. 
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siRNA-mediated RNA Knockdown. For all siRNA experiments NSC34 (CLU140)32 and 

PC1246 cells were transfected with Dharmafect1 (Thermo Scientific) according to 

manufacturer´s protocol. siTOX (Dharmacon) and AllStars Negative Control (Qiagen) siRNA 

were used as controls. siRNAs sequences: mmu-Smn: 5’-AAGAAGGAAAGTGCTCACATA-3’; 

mmu-Ncald 5’-CAGGTGATTCACCCATTATAA-3’; rn-Smn 5’-

CCCGACCTGTGAAGTAGCTAA-3’; rn-Ncald 5’- AGAGACTTCCTAGCAATTTAA-3. After 

incubation, cells were harvested for protein isolation or imaging. Every experiment was 

performed at least in triplicates. 

 

Transient Overexpression. Human NCALD cDNA was cloned into pcDNA™3.1⁄CT-GFP 

TOPO using primers NCALD-FWD 5’-ATGGGGAAACAGAACAGCAAG-3’ and NCALD-REV 

5’-GAACTGGCCGGCACTGCTC-3’ (IDT) and manufacturer’s protocol (Invitrogen). To 

overexpress human NCALD-GFP, NSC34 cells were transfected with Dharmafect1 according 

to manufacturer´s protocol.  

 

Western Blot Analysis. Cells were lysed on ice in RIPA buffer (Sigma) containing protease 

inhibitors (Complete Mini, Roche). The following primary antibodies were used: anti-ACTB 

(actin, beta), used as control for equal loading (A5316, Sigma), anti-SMN (MANSMA7, 

Hybridoma Bank; 610646, BD Biosciences), anti-NCALD (12925-1-AP, Proteintech) and anti- 

CLTC (clathrin heavy chain) (C1860, Sigma). Signal was detected with HRP conjugated-

secondary antibodies and Chemiluminescence reagent (Thermo Scientific) according to 

manufacturer´s protocol. 

 

NCALD Co-immunoprecipitation. NSC34 cells transiently transfected with pcDNA⁄FLAG-

His-NCALD or control vector were lysed in the following buffer: 50mM Tris/HCl, 5% (w/v) 

glycerol, 270mM sucrose, 0.5%(v/v) Tween 20, 0.1%(v/v) β-mercaptoethanol, pH7.5, with 

protease inhibitor cocktail (Complete Mini, EDTA-free, Roche). Immunoprecipitations were 
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performed in 1mM EGTA/1mM EDTA or in the presence of 100µM free Ca2+. Cell lysates were 

immunoprecipitated with FLAG-M2 affinity beads (Sigma) under gentle agitation overnight at 

4°C. Bound proteins were eluted in laemmli buffer (240mM Tris-HCl, pH6.8, 6% SDS, 30% 

(v/v) glycerol, 0.06% bromophenol blue (w/v), 16%(v/v) β-mercaptoethanol) and analyzed by 

Western blots as described above. 

 

Immunocytochemistry. Cells were cultured on laminin-coated coverslips, washed with PBS, 

fixed in 4%PFA/4%sucrose (AppliChem), permeabilized in PBS-T (PBS/0.2%Tween20 

(AppliChem)) and blocked in blocking solution (PBS-T/5%BSA (Sigma)/5%FCS (Biochrom)). 

Cells were incubated with blocking solution containing primary antibodies (α-HB9, homeobox 

9; used as MN-specific marker, (1:100), AB2145209, Hybridoma Bank; α-SV2 (Synaptic 

vesicle glycoprotein 2, used as synaptic vesicle marker AB2315387, (SV2-c), Hybridoma Bank; 

α-NF- M, AB2314897, (2H3-c), Hybridoma Bank; α- CHAT, AB144P, Millipore; α-Tau (axon-

specific marker), sc-390476, Santa Cruz; α-NCALD) overnight at 4°C. After washing in PBS, 

cells were incubated with secondary antibodies labelled with AlexaFluor488, AlexaFluor647 or 

AlexaFluor568 (Invitrogen) in PBS, optionally with phalloidin-AlexaFluor568 (Invitrogen). Cells 

were washed and mounted on objects slides with Mowiol (Sigma) for imaging. 

 

Endocytosis Assay. Fibroblasts were plated in DMEM (Invitrogen) and starved for 10min in 

starvation media (DMEM transparent (HEPES), 2%FKS) prior to fluorescein isothiocyanate 

(FITC)-Dextran treatment (5mg/ml, Sigma) for respective time periods at 37°C. Subsequently, 

cells were washed with ice-cold PBS and fixed in 4%PFA for 10min. After washing, cells were 

stained with phalloidin-AlexaFluor568 and DAPI (Invitrogen) and mounted with Mowiol for 

imaging.  

 

Flow Cytometry Analysis. NSC34 cells were transfected with indicated siRNAs for 48h prior 

to 6h starvation and incubation with 5mg/ml FITC-Dextran (Sigma) for 20min at 37°C. Cells 

were trypsinized (Trypsin, Sigma) on ice and washed with PBS. Uptake of FITC-Dextran was 
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measured with FACS Calibur (BD Biosciences) and analyzed with Cyflogic software (CyFlo 

Ltd.). Dead cells were excluded by propidium iodide staining (10µg/ml, Sigma).  

 

Ca2+ Current Recordings in NSC34 and PC12. Whole-cell recordings were performed at 

24°C. Electrodes (tip resistance 2.5-3 MΩ) were made of borosilicate glass (0.86mm OD, 

1.5mm ID, Science Products) with a temperature-controlled pipette puller (PIP5, HEKA 

Elektronik) and filled with solution containing (in mM) 133 CsCl, 1 CaCl2, 2 MgCl2, 10 HEPES 

and 10 EGTA, adjusted to pH7.2 and osmolarity of 415mOsm. During experiments, cells were 

constantly superfused with saline solution containing (in mM) 84 NaCl, 20 CsCl, 2.5 KCl, 10 

CaCl2, 2 MgCl2, 10 HEPES and 30 glucose, adjusted to pH7.3 and osmolarity of 310mOsm. 

To isolate Ca2+ currents, a combination of pharmacological blockers and ion substitution were 

used. Transient voltage-gated Na+ currents were blocked by tetrodotoxin (10-6M TTX, T-550, 

Alomone). 4-Aminopyridine (4AP, 4×10-3M, A78403, Sigma) blocked transient K+ currents (IA) 

and tetraethylammonium (TEA, 2×10-3, Sigma) blocked sustained K+ currents (IK(V)) and Ca2+-

activated K+ currents (IK(Ca)). The pipette solution did not contain potassium. Whole-cell voltage-

clamp recordings were made with EPC10 patch-clamp amplifier (HEKA Elektronik) controlled 

by Patchmaster program (V2x53, HEKA-Elektronik). Electrophysiological signals were low-

pass filtered at 2.9kHz (3pole Bessel filter). Data were sampled at 50µs intervals (20kHz). The 

offset-potential and capacitance were compensated using ‘automatic mode’ of EPC10 and 

liquid-junction potential between intracellular and extracellular solution of 2.5mV (calculated 

with Patcher’s PowerTools plug-in) was compensated. Whole-cell capacitance was 

determined using EPC10 capacitance compensation (C-slow). To remove uncompensated 

leakage and capacitive currents, p/6 protocol was used47. Voltage errors due to series 

resistance (RS) were minimized using RS compensation of EPC10 to 70-80% with 100µs time 

constant (τ).  

 

Statistical Analysis. If not mentioned otherwise, all statistical analyses were performed using 

software programs Excel 2013 (Microsoft), GraphPad Prism 6 (GraphPad Software) and 
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Sigma Plot 11 (Systat Software); ANOVA, Mann-Whitney U-test, Fisher´s exact test or 

unpaired two-tailed Student’s t-tests were applied. All data are represented as mean±SEM/SD. 

Significance of RNA expression and protein levels was tested using a directional student's t-

test for uncorrelated samples. For experiments performed in C. elegans, Mann-Whitney-U test 

was performed. Significance in the differences of mouse behavioral analyses, NMJ and muscle 

fiber surface area size, motor axon length, proprioceptive inputs on MNs, NSC34 neurite length 

and width of the synaptic cleft was determined by the use of 1-way ANOVA or directional 

student's t-test for uncorrelated samples. Survival was analyzed using Kaplan-Meier method 

by log rank test.  

For all studies using mice, animals numbers were calculated prior to experiments by power 

calculation using the G*Power 3.1.7 software (Power=0.8 and alpha-error=0.05). Endpoint 

criteria for mouse experiments were defined in animal application prior to experiments. Animal 

samples were processed equally and allocated to experimental groups post-analysis. For all 

other experiments, sample size was estimated based on the known variability of the assay.  

Values of P<0.05 were considered significant. In all cases, three levels of statistical 

significance were distinguished: *P<0.05, **P<0.01 and ***P<0.001.  

Specific statistical tests, sample size and P-values are indicated in the figure legends.   

 

Statistical Analysis of Electrophysiology. Data were analyzed using Spike2 and statistical 

analysis was performed in GraphPad Prism 5.05 (GraphPad Software). All calculated values 

are shown as mean±SEM. The EEP frequencies for each cell were measured as mean 

frequencies over 30s intervals. Frequencies before and during NMDA application were 

compared by a paired t-test for each group. Kruskal-Wallis test followed by Dunns multiple 

comparisons was used to compare EPP frequencies in different groups. A significance level 

of P<0.05 was accepted for all tests.
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RESULTS 

 

Identification of NCALD as a Potential SMA Modifier by Genome-Wide Linkage and 

Transcriptome-Wide Differential Expression Analysis 

In a four-generation Mormon family from Utah, we identified seven individuals carrying 

homozygous SMN1 deletions, two affected by type 1 SMA and five fully asymptomatic, except 

for increased photosensitivity (Figure 1A) (See Supplemental Information for full clinical 

investigation description of Utah family members). 

Haplotype analysis of SMA regions showed a co-segregation of three different SMA alleles 

(Figure 1A). The two type 1 SMA individuals carried no SMN1 and two SMN2 copies. By 

contrast, all five asymptomatic individuals showed homozygous absence of SMN1 and 

presence of four SMN2 copies, resembling a genotype associated with type 3 SMA13 (Figure 

1A). SMN2 sequencing excluded any further variants affecting expression. In lymphoblastoid 

cells (LBs), SMN RNA and protein levels were similar to those in typical type 3 SMA individuals, 

thus excluding cis and trans-acting factors regulating SMN2. Increased PLS3 expression was 

not found (Figure 1A, GEO: GSE58316). Thus, we concluded that a previously unknown SMA 

modifier potentially protects these individuals.  

To identify the SMA modifier, we combined linkage with transcriptome-wide differential 

expression analysis. Assuming a dominant mode of inheritance, a parametric linkage analysis 

with 14 family members revealed eight positive peaks with a maximum LOD score of 1.5 

(Figure 1B). In parallel, a transcriptome-wide differential expression analysis with 12 total RNA 

samples was performed (GEO: GSE58316) and revealed 17 transcripts significantly 

differentially regulated in asymptomatic individuals (Table S2). NCALD was represented by 

two independent hybridization probes on the array, both showing a 4-to-5 fold downregulation 

in the asymptomatic group versus familial type 1 SMA or an independent type 3 SMA group. 

Most importantly, NCALD was the only transcript localized in one of the eight linked regions 
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on chromosome 8q22.3 (between rs28144 and rs958381), making it a highly likely candidate. 

Microarray data were confirmed by RT-qPCR and Western blot (Figure 1C and 1D).  

To search for the potential genetic mechanisms involved in reduced NCALD expression, 

targeted resequencing of ~3 Mb genomic DNA encompassing NCALD in five family members 

was carried out. On average 2,723 variants were called per sample. Based on previous 

haplotype data, we filtered for heterozygous variants shared between individuals II-1, III-1, III-

4, IV-3, but absent in III-8. This yielded 43 variants (21 previously annotated SNPs), none of 

which were in the NCALD coding region. Only the SNP rs147264092 in intron1 with a minor 

allele frequency=0.1079 (1000Genome database) was located in NCALD UTR (Table S3). 

~600kb upstream of NCALD we identified a 17bp deletion (nt103783522-38, rs150254064; 

MAF=0.056 in 1000Genome database) perfectly segregating with the modifier haplotype 

(Figure S1) that seemed interesting. The 17 bp deletion is localized adjacent to an H3K27AC 

block and a super enhancer (ENCODE), which may influence NCALD expression. We 

hypothesize that the combination of both variants acts on NCALD expression (Wirth, 

unpublished data). Both variants were further analyzed in 50 SMN1-deleted individuals, who 

were chosen because of a discrepant SMA severity according to their SMN2 copy number and 

65 controls. The combination of both variants was found in one individual, who unexpectedly 

carried only one SMN2 copy. This genotype is regarded as a type 0 SMA with death in utero 

or immediately after birth48. In contrast, this individual survived 9 months, suggesting a 

potential protection by a genetic modifier, which could be NCALD. No LBs were available to 

test expression. The combination of both variants on a haplotype is a very rare event 0.003 

(13/5008 haplotypes included in the Phase 3 1000Genome project, see LDlink). Since 

homozygous deletions of SMN1 occur with a frequency of 1:6,000 to 1:20,000 depending on 

ethnicity49, the combination of homozygous SMN1 deletion and the chromosome 8 modifier 

haplotype would statistically occur in less than 1:8,000,000 people. Further work is in progress, 

to fully understand the impact of these variants on chromatin structure and NCALD expression. 

However, since understanding gene regulation and the interplay between cis and trans-

regulatory elements is extremely challenging and may not yield solid results, we decided to 
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take the direct approach and analyzed the impact of NCALD reduction in four different SMA 

animal models: C. elegans, zebrafish, a severe and a mild SMA mouse model.   

NCALD is one of 14 neuronal calcium sensor (NCS) proteins in mammals. These proteins are 

highly conserved across species and primarily involved in neuronal Ca2+ signaling50; 51. NCALD 

encodes a ~22 kDa protein that contains two pairs of EF-hand domains and an N-terminal 

myristoyl anchor, which enables switching from cytosolic to membrane-bound forms in a Ca2+-

dependent manner52; 53. A Ca2+-dependent mobility shift of both myristoylated and non-

myristoylated forms was reported54. NCALD is highly abundant in cerebral neurons, spinal 

MNs, and in axonal growth cones55. NCALD overexpression inhibits neurite outgrowth56. 

NCALD is important in phototransduction57, which may explain photosensitivity in 

asymptomatic individuals. Importantly, NCALD interacts with clathrin and actin, both of which 

are involved in endocytosis and synaptic vesicle recycling58; 59.  

 

NCALD Knockdown Triggers MN Differentiation and Restores Neurite and Axonal 

Growth in SMA  

First, we analyzed NCALD expression levels during MN differentiation and maturation in 

NSC34 cells treated with retinoic acid (RA)60 to induce differentiation and observed a steady 

increase in NCALD amount over time under RA treatment (Figure 2A). siRNA-mediated Ncald 

reduction  (Figure S2A) induced MN differentiation (indicated by HB9-positive staining) and 

triggered neurite outgrowth even without RA treatment (Figure 2B). In contrast, NCALD 

overexpression in RA-treated NSC34 cells impaired neurite outgrowth (Figure S2B  and S2C). 

NCALD is highly abundant in axonal growth cones of spinal MNs55. In addition, we show that 

it localizes at the presynaptic terminals of NMJs, suggesting a potential role at the NMJ (Figure 

S2D and S2E).  

We found that Ncald knockdown in Smn deficient NSC34 cells restored impaired neurite 

outgrowth to controls levels (Figure S2E). Similar results were obtained in cultured primary 

MNs from SMA (Smnko/ko;SMN2tg/0) versus HET (Smnko/wt;SMN2tg/0) embryos, where reduced 
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axon length of SMA MNs61 was restored by siRNA-mediated Ncald knockdown (Figure 2C). 

These findings indicate that reduced NCALD levels counteract the impaired axonal 

development of SMN-deficient MNs. 

 

ncald Knockdown Restores Axonal Growth and NMJ Functionality in Zebrafish smn 

Morphants 

Human NCALD and its ortholog in zebrafish are 98% identical, suggesting important 

conserved functions across species. We next investigated the modifying effect of ncald in vivo 

in a mnx1:eGFP-expressing zebrafish line40 by MO-mediated knockdown of either smn, ncald 

or both together. Consistent with previous results, smn depletion resulted in motor axon-

specific outgrowth defects, such as truncations and ectopic branches24; 62 (Figure 3A). 

Knockdown of ncald led to enhanced motor axons branching, whereas double smn+ncald 

knockdown fully rescued the truncated motor axon defect associated with Smn deficiency 

(Figure 3A, 3C and S3A). Knockdown efficiency was confirmed by Western blot (Figure 3B). 

We also found that overexpression of human NCALD mRNA in wildtype zebrafish caused 

truncation and branching of motor axons (Figure S3B), resembling the phenotype of smn 

morphant zebrafish (Figure 3A) similar to NSC34 cells (Figure S2C).  

During NMJ maturation the width of the synaptic cleft is increasing, which is essential in 

neurotransmission63. Ultrastructural analysis of the synaptic cleft revealed an impaired NMJ 

maturation in smn morphants (Figure 3D and 3E). The width of the synaptic cleft in smn 

morphants was significantly smaller than in controls or ncald morphants; double smn+ncald 

knockdown significantly restored synaptic maturation, resulting in a cleft width similar to control 

embryos (Figure 3D and 3E).  

To test the functionality of neuromuscular synapses between caudal primary MNs and ventral 

fast muscle cells64, we performed whole-cell patch clamp recordings from muscle cells during 

MN stimulation in control (ctrl), smn, ncald, and smn+ncald zebrafish morphants. We recorded 

spontaneous endplate potentials at rest (without stimulation) and during MN stimulation by 
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NMDA (N-methyl-D-aspartate, agonist of NMDA receptors) (Figure S3C). In controls, we 

recorded at rest small endplate potentials that were primarily not tetrodotoxin (TTX) sensitive 

(Figure S3D and S3E) and mostly resembled miniature endplate potentials (mEPPs)65. During 

NMDA stimulation, the mEPP frequency did not significantly increase, but large TTX-sensitive 

endplate potentials and muscle action potentials were induced by MN spike evoked 

transmission. In smn morphants, a significantly lower spontaneous mEPP frequency and only 

occasional action potentials during NMDA stimulation were observed (Figure 3F). In the 

smn+ncald morphants, the spontaneous mEPP frequency was slightly increased and the 

frequency of large NMDA-induced EPP was restored to control levels (Figure 3F and 3G). In 

line with the electrophysiological data, swimming velocity after electrical stimulation was 

reduced in smn morphants, but rescued in smn+ncald morphants (Figure S3F). Together, 

these results show that Ncald knockdown rescues neural circuit function at the NMJs of smn 

morphants. 

 

Loss of NCALD Ortholog Suppresses Defects of C. elegans SMA Model 

C. elegans lacking the SMN ortholog smn-1, referred to here as Cesmn-1, show 

neuromuscular defects, including decreased pharyngeal pumping rate (Figure S4A)26; 41. The 

C. elegans ortholog of NCALD is encoded by neuronal calcium sensor-1 (ncs-1)66. Either ncs-

1 knockdown by RNA interference or introduction of the ncs-1(qa401) loss of function allele in 

Cesmn-1 animals, significantly ameliorated pumping defects (Figure S4B and S4C), 

confirming that NCALD loss ameliorates the SMN loss-of-function-induced neuromuscular 

defects across species.  

 

Heterozygous Ncald KO Ameliorates Motor Neuron Development in Severe SMA Mice 

We took advantage of an Ncald knockout mouse (Ncaldko/ko) recently generated by the 

Knockout Mouse Phenotyping Program at the Jackson Laboratory. Heterozygous Ncaldko/wt 

mice are asymptomatic and show >50% reduction of NCALD levels in spinal cord and brain 
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(Figure 4A). Homozygous Ncaldko/ko mice are viable and fertile; however, preliminary reported 

data by the International Mouse Phenotype Consortium (IPMC) (online mouse phenotype data 

base) and our data revealed behavioral abnormalities, vision defects and metabolic 

impairment. In contrast, heterozygous Ncaldko/wt mice showed no gross morphological or 

behavioral problems even at 18 months of age. Since asymptomatic individuals show reduced, 

but not full loss of NCALD, we used the heterozygous Ncaldko/wt animals for all further 

experiments herein.  

The Ncaldko/wt allele was bred into a severe SMA mouse model9 on pure C57BL/6N 

background. Both SMA and SMA-Ncaldko/wt mice die at a mean age of 13 days and there is no 

difference in weight progression at this age (Figure S5A and S5B). Severe SMA mice show 

multi-organ failure27; 43; 67 due to very low SMN levels, which could not be rescued by 

heterozygous Ncald knockout alone. Nonetheless, we found that other hallmarks of SMA were 

improved upon heterozygous Ncald knockout: the size of the NMJs in the Transversus 

abdominis muscle (TVA) was increased and the number of proprioceptive inputs on MN soma 

was elevated in SMA-Ncaldko/wt versus SMA mice (P10) (Figure 4B and 4C). Moreover, SMA-

Ncaldko/wt mice showed more inputs per MN than SMA mice independent of cell size (Figure 

S5C). A comparison of axonal development in cultured primary MNs revealed a large impact 

of NCALD reduction on axonal growth and arborization (Figure 4D), confirming our initial 

results with siRNA-mediated Ncald knockdown (Figure 2C). Therefore, NCALD reduction 

counteracts impaired axonal development and restores NMJ size in SMN-deficient mice, but 

is not able to improve survival due to severe multiple organ impairment. 

 

Combinatorial Therapy with a Suboptimal Low-dose SMN-ASO and Reduced Ncald 

Expression Ameliorates SMA Pathogenesis in a Severe SMA Mouse Model 

In our study, we combined suboptimal low-dose SMN-ASOs with heterozygous Ncald knockout 

mice for four reasons: i) asymptomatic individuals carry four SMN2 copies similar to typical 

type 3 SMA individuals, but not two SMN2 copies as our severe SMA mouse model or most 



 

 24 

type 1 SMA individuals; ii) genetic modifiers efficiently protect against SMA only if a sufficient 

SMN level is present to suppress inner organ dysfunction29; iii) NCALD expression is mainly 

restricted to neuronal tissues, therefore its beneficial effect is directed to MN, but cannot 

improve other peripheral organs affected in severe type of SMA, and iv) type 1 SMA 

individuals, currently treated with SMN-ASOs, show only a moderate SMN elevation, and may 

need additional drugs/molecules supporting MN function. For these reasons, we chose to 

establish a mild SMA mouse model that shows no impairment in lifespan or peripheral organs, 

but has a prominent motoneuronal phenotype. Since presymptomatic subcutaneous (s.c.) 

injection of high dose SMN-ASO in severely-affected SMA mice fully rescues SMA68, and low 

dose SMN-ASO in C57BL6/N congenic mice increased survival to only 1 month (intermediate 

phenotype)29, we opted for a different strategy to produce a mild SMA phenotype. We crossed 

C57BL/6N Ncaldko/wt;Smnko/wt males with FVB/N Smnko/ko;SMNtg/tg females to produce 50% 

C57BL/6N:50% FVB/N (mixed50) offspring (Figure 5A). This breeding strategy was already 

performed previously and showed increased lifespan and more robustness when compared to 

pure C57BL6/N or FVB/N mice27. However, almost as expected, untreated mixed50 SMA and 

SMA-Ncaldko/wt mice live 16.5 and 17.0 days, respectively, showing that the modifier alone is 

still unable to counteract the massive loss of SMN (Figure 5B). Therefore, mixed50 offspring 

were injected s.c. with a single suboptimal dose (30µg) of SMN-ASO on P1. Elevated SMN 

levels were obtained in liver, but not in spinal cord or brain (Figure S6A). Survival of SMA+ASO 

mice was rescued (Figure 5B), but their motoric abilities were visibly impaired as determined 

by righting reflex and grip strength tests (Figure 5C and 5D). This suggests that slightly 

elevated SMN levels achieved by systemic SMN-ASO treatment rescued non-neuronal multi-

organ impairment29, but not MN function. In contrast, heterozygous Ncald knockout, in addition 

to low dose SMN-ASO treatment, significantly improved motoric abilities (Figure 5C and 5D). 

Analysis of NMJs maturation score on P2145 showed that both NMJ size and maturation were 

markedly restored by Ncald reduction as compared to SMA+ASO mice (Figure 5E). 

Heterogyous Ncald knockout did not rescue tail necrosis and slightly impacted weight 

progression in male mice (Figure S6B, S6C and S6D). Our data provide conclusive evidence 
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of the beneficial effect of reduced NCALD on the neuromuscular system and motoric function 

in SMA+ASO mice. 

 

Low SMN Decreases Ca2+ Influx in NSC34 and PC12 Cells 

Since NCALD is a neuronal Ca2+ sensor, and impaired Ca2+ homeostasis has been reported 

in SMA69, we tested if lowering SMN and NCALD levels could modulate voltage-dependent 

Ca2+ currents (ICa) in MN-like cells. We performed whole-cell patch-clamp recordings and 

ratiometric Ca2+ imaging with fura-2. We recorded ICa of RA-differentiated NSC34 cells that 

were treated with siRNAs specific to Smn, Ncald, or Smn+Ncald and analyzed the ICa tail 

currents with a series of increasing voltage pulses. In NSC34 cells, Smn depletion significantly 

reduced the voltage-dependent Ca2+ influx, which was not restored by additional Ncald 

reduction (Figure 6A). Ratiometric Ca2+ imaging with fura-2 revealed a reduced voltage-

dependent Ca2+ influx in SMN-depleted PC12 cells compared to controls (Figure S7A). These 

data show that low SMN levels impair Ca2+ influx, which is not restored by NCALD knockdown 

and that NCALD depletion rescues synaptic transmission through a different mechanism. 

 

Disturbed Endocytosis and Synaptic Vesicle Recycling is Ameliorated by NCALD 

Depletion 

We next sought for a common pathway in which both SMA modifiers, NCALD and PLS3, might 

operate. Since NCALD binds clathrin directly58 and PLS3 knockout in yeast impairs 

endocytosis58; 70, we hypothesized that low SMN levels may impair endocytosis, which in turn 

is rescued by reduced NCALD or increased PLS3 levels. Indeed, we recently reported impaired 

endocytosis as a disturbed cellular mechanism affected in SMA, which is rescued by elevated 

PLS3 levels29. Impaired endocytosis and endocytic trafficking have further been demonstrated 

in a C. elegans SMA model71.  

Co-immunoprecipitation studies in NSC34 revealed NCALD interaction with clathrin only in the 

absence of Ca2+ (Figure 6B) or at low Ca2+ levels (data not shown). TEM analyses after 
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immunogold staining of wild type zebrafish sections showed co-localization of Ncald and 

clathrin in the presynaptic sites of NMJs (Figure S7B).  

To study the effect of NCALD on endocytosis, we undertook FITC-dextran internalization 

assays in various cell culture systems. In primary fibroblast cell lines derived from SMA 

individuals, endocytosis rates were strongly reduced compared to controls, but were restored 

in fibroblasts of asymptomatic individuals (Figure 6C and S7C). Moreover, Smn knockdown 

in NSC34 cells significantly reduced FITC-dextran uptake, which was rescued by concomitant 

Ncald knockdown. Ncald knockdown alone increased the rate of endocytosis by 1.3-fold, 

demonstrating that low NCALD levels already facilitate endocytosis (Figure S7F).  

Moreover, we analyzed endocytic uptake of FM1-43 in mouse NMJs under stimulation at 5 and 

20 Hz as described29. FM1-43 uptake was markedly decreased in SMA mice at 5 Hz 

stimulation (triggering clathrin-dependent endocytosis), but heterozygous Ncald knockout fully 

restored the levels similar to HET mice (Figure 6D and S7D). Heterozygous Ncald knockout  

had no impact at 20 Hz stimulation (triggering bulk endocytosis), further strengthening the 

specific role of NCALD in the clathrin-dependent endocytosis at the NMJ (Figure S7E).  

Lastly, we investigated in vivo the mutual effect of endocytosis and the Smn-Ncald-clathrin 

network for SMA using pharmacological inhibition of endocytosis in zebrafish. Using sub-

phenotypical concentrations of either smn MO (2 ng) or a suboptimal dose of Pitstop2 (12.5 

µM), an inhibitor of clathrin72, showed almost no axon truncation and branching phenotype as 

compared to higher concentrations of smn MO (4 ng, Figure 3A and 3C) or Pitstop2 (25 µM, 

Figure S7G). Instead, combination of suboptimal smn MO (2ng) together with suboptimal 

Pitstop2 (12.5 µM) resulted in severe motor axons truncation, suggesting a synergistic effect. 

Notably, this SMA phenotype was strongly ameliorated by additional Ncald reduction (Figure 

6E), (Figure 3A and 3C). Moreover, the treatment with Dynasore (25 µM), an inhibitor of the 

endocytosis-driving GTPase dynamin73, either alone or in combination with low smn MO, 

resulted in an SMA-like axonal truncation (Figure 6E). These defects were ameliorated by 

additional treatment with ncald MO (Figure 6E and S7G). Together, these findings suggest 
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that SMN and clathrin interact genetically to promote endocytosis and MN axonogenesis, 

whereas NCALD negatively interferes with an SMN-dependent function of clathrin. 

 

DISCUSSION 

Here, we describe NCALD as a genetic SMA modifier in humans. In summary, we show that 

1) reduced NCALD levels protects individuals from developing SMA, despite lacking SMN1 

and carrying only four SMN2 copies, usually causing type 3 SMA13. Thus, unlike PLS3, which 

alleviates SMA pathology upon overexpression24, NCALD reduction acts as a genetic 

suppressor of SMA; 2) NCALD is localized at SMA relevant sites including MN soma and 

growth cones as well as the presynaptic site of the NMJ. Furthermore, NCALD knockdown is 

relevant for MN differentiation and restores neurite and axon outgrowth in MNs or MN-like cells; 

3) NCALD has a Ca2+-dependent interaction with clathrin and is thereby able to modulate 

endocytosis, and likely vesicle recycling at the motor endplate; 4) NCALD knockdown rescues 

neural circuit function of zebrafish smn morphants by restoring axonal outgrowth defects, 

endplate potentials and swimming velocity; 5) ncs-1 knockdown in smn-1 deficient C. elegans 

restores pumping to normal rates; 6) Heterozygous NCALD knockout in severely or 

intermediately affected SMA mice causes clear improvements on the structural level, such as 

NMJ size and architecture, MN outgrowth and proprioceptive inputs; 7) Heterozygous NCALD 

knockout in mild SMA mice with no lifespan impairment has beneficial effects on NMJ size and 

architecture as well as motoric abilities. Finally, 8) across species, the mechanism by which 

reduced NCALD level improves SMA pathology is restoration of endocytic function, 

strengthening the existing models holding endocytosis as a main impaired cellular mechanism 

in SMA.    

 

NCALD Downregulation as a Potential Therapy in Combinatorial Approach 

Clinical trials using ASOs to correct SMN2 splicing are highly promising and close to FDA-

approval2. However, for type 1 SMA children with only two SMN2 copies, these approaches 
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are likely insufficient to fully suppress SMA symptoms. It is also unclear, to which extent the 

elevation of SMN after disease onset will be able to protect from SMA and whether 

combinatorial therapies including SMN-dependent and SMN-independent pathways will be 

required to achieve full and long-term rescue74. There is increasing evidence – at least in 

mouse models – that systemic SMN elevation is required to fully counteract SMA; systemic 

injection of SMN-ASOs or AAV9-SMN led to a robust survival increase in various SMA mouse 

models in comparison to a central nervous system (CNS) restricted application68; 75. This is in 

line with the observation that additional non-neuronal organs and tissues are impaired in 

severe SMA mouse models and partially in type 1 SMA individuals (reviewed in18; 76).  

Recently, we have shown that PLS3 overexpression in combination with low SMN elevation 

using SMN-ASOs68 increased the survival of severely affected SMA mice from 14 to >250 

days29. This might resemble a hypothetic situation in which individuals with type 1 SMA are 

treated with a molecule/drug that increases SMN levels acting on the endogenous SMN2 

copies in combination with an additional molecule/drug acting on the genetic modifier. In 

contrast to PLS3, the effect of NCALD was less pronounced, which is in line with the 

observation that asymptomatic individuals protected by reduced NCALD require the presence 

of four SMN2 copies, while in case of elevated PLS3 three SMN2 copies are sufficient24; 25. In 

addition, the limited effect of NCALD might be due to the restricted expression in neuronal 

tissues as compared to PLS3, which is ubiquitously present. Moreover, the broader impact of 

PLS3 on F-actin dynamics that influences various cellular processes at NMJ level27; 29 may 

further contribute to the more prominent protection.  

Nonetheless, a combinatorial therapy that both elevates SMN and decreases NCALD (e.g. by 

ASO treatment) may provide a full protection, resulting in asymptomatic individuals. The 

advantage of NCALD, in comparison to PLS3, is that suppression of gene function is, in 

general, easier to achieved than its activation. 

 

NCALD Suppression Restores Endocytosis and Synaptic Vesicle Recycling in SMA 
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To allow rapid and repeated rounds of neurotransmission at the synaptic endplate, synaptic 

vesicle recycling is essential77. In brief, after Ca2+-dependent exocytosis and release of 

acetylcholine (ACh) into the synaptic cleft, the synaptic membrane has to be retrieved rapidly 

via endocytosis. Then, retrieved vesicular membranes need to be transformed into synaptic 

vesicles, which are refilled with ACh. These are eventually transported to the readily releasable 

pool near active zones78. Despite the robust fail-safe factor in the motor neuron endplate 

potential, disturbances in the presynaptic vesicle cycle can severely impact neurotransmission. 

In SMA, impaired neurotransmission, disturbed Ca2+ homeostasis, decreased synaptic vesicle 

number, and reduced F-actin caging of reserve pool synaptic vesicles have been reported16; 

69; 79; 80. For repeated neurotransmitter release, subsequent endocytosis is important81; 

furthermore, endo- and exocytosis are regulated by the Ca2+ dynamics within the presynaptic 

terminals82.  

We found that low SMN levels cause reduction of voltage-activated Ca2+ influx, in accordance 

with recent studies in a zebrafish SMA model and reported mislocalization of calcium channels 

in SMA83; 84. However, unlike SMA pathology, Ca2+ influx was not restored by reduced NCALD, 

suggesting a different counteraction mechanism. Since NCALD interacts with clathrin and 

actin, two major players in endocytosis58; 59, we hypothesized that reduced SMN may disturb 

endocytosis and synaptic vesicle recycling, possibly via decreased Ca2+, whereas NCALD 

knockdown subsequently compensates for SMN loss. We demonstrate in vitro and in ex vivo 

mouse NMJs that NCALD reduction restores impaired clathrin-dependent endocytosis. 

Furthermore, chemical endocytosis inhibition in zebrafish caused MN axonogenesis defects 

that were reversed upon Ncald suppression. Importantly, NCALD binds clathrin only at low 

Ca2+ levels (mimicking unstimulated MNs) but not at high Ca2+ levels (mimicking action 

potentials in MNs). For SMA MNs, with low Ca2+ levels even during action potential, we predict 

that NCALD constantly binds clathrin, thereby inhibiting/reducing NCALD function in synaptic 

vesicle recycling. However, low NCALD levels, as in asymptomatic individuals, may allow free 

clathrin to act in endocytosis and synaptic vesicle recycling even at reduced Ca2+ levels 

(Figure 7).  
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Implication of NCALD in other Neurodegenerative Disorders 

In agreement with this hypothesis, two other proteins connected to endocytosis cause various 

forms of SMA. Mutations in UBA1 [MIM: 314370], an E1 Ubiquitin-Activating Enzyme involved 

in monoubiquitination which serves as a signal for endocytosis and trafficking of cell surface 

proteins, has been associated to X-linked SMA (SMAX2 [MIM: 301830])85-87. BICD2 [MIM: 

609797], which when mutated, causes autosomal-dominant lower-extremity-predominant 

spinal muscular atrophy-2 (SMALED2 [MIM: 615290]), binds to clathrin heavy chain to promote 

its transport and augments synaptic vesicle recycling88-92. These findings provide additional 

evidence that disturbances in synaptic vesicle recycling underlie general SMA pathology. Our 

findings are further strongly supported by data in C. elegans, in which disturbed endocytic 

trafficking at synaptic level has been reported, and it has been suggested that an increased 

resistance against infection may explain the high SMA carrier frequency in the population93. 

Moreover, reduced NCALD amount might be beneficial for other MN or neurodegenerative 

disorders with impaired endocytosis and Ca2+-homeostasis, as was shown for Alzheimer´s (AD 

[MIM: 104300]), where NCALD is highly upregulated94, or Parkinson´s (PD [MIM: 168600]), 

hereditary spastic paraplegia [MIM: PS303350] and ALS [MIM: PS105400], where impaired 

endocytic trafficking was found95. Therefore, it is tempting to speculate that NCALD 

downregulation might become an efficient strategy against SMA and other neurodegenerative 

diseases.  

 

SUPPLEMENTAL DATA DESCRIPTION 

Supplemental Data includes seven figures, three tables and clinical description of Utah family 

members.  

 

Accession codes.  

Gene Expression Omnibus: all microarray data are available in GSE58316. 



 

 31 

 

ACKNOWLEDGMENT 

We thank SMA families, Jay Gopalakrishnan for critical reading of the manuscript and CECAD 

for help with imaging. This work was supported by grants from the Deutsche 

Forschungsgemeinschaft Wi-945/13-1, Wi-945/14-1, RTG 1970 (BW), SMA Europe (MR), EU 

FP7 NEUROMICS (BW), CMMC (BW), IGSDHD (AK, SS) AFM-Telethon (LTB) and NIH 

PO1NS066888 (ACH).  

C. Frank Bennett and Frank Rigo are employees of IONIS Pharmaceuticals. Brunhilde Wirth 

and Markus Riessland hold an US PCT/EP2014/066276 entitled “Neurocalcin delta inhibitors 

and therapeutic and non-therapeutic uses thereof” with the international publication number 

WO/2015/014838 A1. 

Web Resources 

Statistical environment R, http://www.r-project.org 

Bioconductor packages, https://www.bioconductor.org 

Patcher’s PowerTools plug-in, http://www.mpibpc.gwdg.de/abtei-

lungen/140/software/index.html (WaveMetrics) 

ENCODE, http://genome.ucsc.edu/ENCODE 

LDlink, https://dceg.cancer.gov/tools/analysis/ldlink 

IMPC, http://www.mousephenotype.org 

Clinical Trials, https://clinicaltrials.gov/ 

Cyflogic, http://www.cyflogic.com 

ImageJ, https://imagej.nih.gov/ij/ 

OMIM, http://www.omim.org 

RefSeq, https://www.ncbi.nlm.nih.gov/refseq/ 

UCSC Genome Browser, http://genome.ucsc.edu 

UniProt, http://www.uniprot.org 



 

 32 

 

 

REFERENCES 

1. Wirth, B., Garbes, L., and Riessland, M. (2013). How genetic modifiers influence the 
phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr 
Opin Genet Dev 23, 330-338. 

2. Kaczmarek, A., Schneider, S., Wirth, B., and Riessland, M. (2015). Investigational therapies 
for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 24, 867-881. 

3. Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., 
Cruaud, C., Millasseau, P., Zeviani, M., et al. (1995). Identification and characterization 
of a spinal muscular atrophy-determining gene. Cell 80, 155-165. 

4. Wirth, B. (2000). An update of the mutation spectrum of the survival motor neuron gene 
(SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15, 228-
237. 

5. Liu, Q., Fischer, U., Wang, F., and Dreyfuss, G. (1997). The spinal muscular atrophy disease 
gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal 
snRNP proteins. Cell 90, 1013-1021. 

6. Pellizzoni, L., Kataoka, N., Charroux, B., and Dreyfuss, G. (1998). A novel function for SMN, 
the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615-
624. 

7. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., 
Mann, M., and Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins 
containing numerous microRNAs. Genes Dev 16, 720-728. 

8. Akten, B., Kye, M.J., Hao le, T., Wertz, M.H., Singh, S., Nie, D., Huang, J., Merianda, T.T., 
Twiss, J.L., Beattie, C.E., et al. (2011). Interaction of survival of motor neuron (SMN) 
and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl 
Acad Sci U S A 108, 10337-10342. 

9. Hsieh-Li, H.M., Chang, J.G., Jong, Y.J., Wu, M.H., Wang, N.M., Tsai, C.H., and Li, H. (2000). 
A mouse model for spinal muscular atrophy. Nat Genet 24, 66-70. 

10. Lorson, C.L., Hahnen, E., Androphy, E.J., and Wirth, B. (1999). A single nucleotide in the 
SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl 
Acad Sci U S A 96, 6307-6311. 

11. Cartegni, L., and Krainer, A.R. (2002). Disruption of an SF2/ASF-dependent exonic splicing 
enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 
30, 377-384. 

12. Kashima, T., and Manley, J.L. (2003). A negative element in SMN2 exon 7 inhibits splicing 
in spinal muscular atrophy. Nat Genet 34, 460-463. 

13. Feldkotter, M., Schwarzer, V., Wirth, R., Wienker, T.F., and Wirth, B. (2002). Quantitative 
analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly 
reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum 
Genet 70, 358-368. 

14. Lunn, M.R., and Wang, C.H. (2008). Spinal muscular atrophy. Lancet 371, 2120-2133. 
15. Mentis, G.Z., Blivis, D., Liu, W., Drobac, E., Crowder, M.E., Kong, L., Alvarez, F.J., Sumner, 

C.J., and O'Donovan, M.J. (2011). Early functional impairment of sensory-motor 
connectivity in a mouse model of spinal muscular atrophy. Neuron 69, 453-467. 

16. Kariya, S., Park, G.H., Maeno-Hikichi, Y., Leykekhman, O., Lutz, C., Arkovitz, M.S., 
Landmesser, L.T., and Monani, U.R. (2008). Reduced SMN protein impairs maturation 
of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol 
Genet 17, 2552-2569. 

17. Monani, U.R., Sendtner, M., Coovert, D.D., Parsons, D.W., Andreassi, C., Le, T.T., 
Jablonka, S., Schrank, B., Rossol, W., Prior, T.W., et al. (2000). The human 
centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-



 

 33 

/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9, 333-
339. 

18. Hamilton, G., and Gillingwater, T.H. (2013). Spinal muscular atrophy: going beyond the 
motor neuron. Trends Mol Med 19, 40-50. 

19. Shababi, M., Feng, Z., Villalon, E., Sibigtroth, C.M., Osman, E.Y., Miller, M.R., Williams-
Simon, P.A., Lombardi, A., Sass, T.H., Atkinson, A.K., et al. (2016). Rescue of a Mouse 
Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-
IGHMBP2 Is Dose Dependent. Mol Ther 24, 855-866. 

20. Cobben, J.M., van der Steege, G., Grootscholten, P., de Visser, M., Scheffer, H., and Buys, 
C.H. (1995). Deletions of the survival motor neuron gene in unaffected siblings of 
patients with spinal muscular atrophy. Am J Hum Genet 57, 805-808. 

21. Hahnen, E., Forkert, R., Marke, C., Rudnik-Schoneborn, S., Schonling, J., Zerres, K., and 
Wirth, B. (1995). Molecular analysis of candidate genes on chromosome 5q13 in 
autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of 
the SMN gene in unaffected individuals. Hum Mol Genet 4, 1927-1933. 

22. Wang, C.H., Xu, J., Carter, T.A., Ross, B.M., Dominski, M.K., Bellcross, C.A., 
Penchaszadeh, G.K., Munsat, T.L., and Gilliam, T.C. (1996). Characterization of 
survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal 
muscular atrophy. Hum Mol Genet 5, 359-365. 

23. Prior, T.W., Swoboda, K.J., Scott, H.D., and Hejmanowski, A.Q. (2004). Homozygous 
SMN1 deletions in unaffected family members and modification of the phenotype by 
SMN2. Am J Med Genet 130A, 307-310. 

24. Oprea, G.E., Krober, S., McWhorter, M.L., Rossoll, W., Muller, S., Krawczak, M., Bassell, 
G.J., Beattie, C.E., and Wirth, B. (2008). Plastin 3 is a protective modifier of autosomal 
recessive spinal muscular atrophy. Science 320, 524-527. 

25. Heesen, L., Peitz, M., Torres-Benito, L., Holker, I., Hupperich, K., Dobrindt, K., 
Jungverdorben, J., Ritzenhofen, S., Weykopf, B., Eckert, D., et al. (2016). Plastin 3 is 
upregulated in iPSC-derived motoneurons from asymptomatic SMN1-deleted 
individuals. Cell Mol Life Sci 73, 2089-2104. 

26. Dimitriadi, M., Sleigh, J.N., Walker, A., Chang, H.C., Sen, A., Kalloo, G., Harris, J., Barsby, 
T., Walsh, M.B., Satterlee, J.S., et al. (2010). Conserved genes act as modifiers of 
invertebrate SMN loss of function defects. PLoS Genet 6, e1001172. 

27. Ackermann, B., Krober, S., Torres-Benito, L., Borgmann, A., Peters, M., Hosseini Barkooie, 
S.M., Tejero, R., Jakubik, M., Schreml, J., Milbradt, J., et al. (2013). Plastin 3 
ameliorates spinal muscular atrophy via delayed axon pruning and improves 
neuromuscular junction functionality. Hum Mol Genet 22, 1328-1347. 

28. Lotti, F., Imlach, W.L., Saieva, L., Beck, E.S., Hao le, T., Li, D.K., Jiao, W., Mentis, G.Z., 
Beattie, C.E., McCabe, B.D., et al. (2012). An SMN-Dependent U12 Splicing Event 
Essential for Motor Circuit Function. Cell 151, 440-454. 

29. Hosseinibarkooie, S., Peters, M., Torres-Benito, L., Rastetter, R.H., Hupperich, K., 
Hoffmann, A., Mendoza-Ferreira, N., Kaczmarek, A., Janzen, E., Milbradt, J., et al. 
(2016). The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel 
Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am J 
Hum Genet 99, 647-665. 

30. Arkblad, E., Tulinius, M., Kroksmark, A.K., Henricsson, M., and Darin, N. (2009). A 
population-based study of genotypic and phenotypic variability in children with spinal 
muscular atrophy. Acta Paediatr 98, 865-872. 

31. Zerres, K., Wirth, B., and Rudnik-Schoneborn, S. (1997). Spinal muscular atrophy--clinical 
and genetic correlations. Neuromuscul Disord 7, 202-207. 

32. Sun, Y., Grimmler, M., Schwarzer, V., Schoenen, F., Fischer, U., and Wirth, B. (2005). 
Molecular and functional analysis of intragenic SMN1 mutations in patients with spinal 
muscular atrophy. Hum Mutat 25, 64-71. 

33. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L., and Kong, A. (2000). Allegro, a new 
computer program for multipoint linkage analysis. Nat Genet 25, 12-13. 

34. Thiele, H., and Nurnberg, P. (2005). HaploPainter: a tool for drawing pedigrees with 
complex haplotypes. Bioinformatics 21, 1730-1732. 



 

 34 

35. Ruschendorf, F., and Nurnberg, P. (2005). ALOHOMORA: a tool for linkage analysis using 
10K SNP array data. Bioinformatics 21, 2123-2125. 

36. Dunning, M.J., Barbosa-Morais, N.L., Lynch, A.G., Tavare, S., and Ritchie, M.E. (2008). 
Statistical issues in the analysis of Illumina data. BMC Bioinformatics 9, 85. 

37. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. (2002). 
Variance stabilization applied to microarray data calibration and to the quantification of 
differential expression. Bioinformatics 18 Suppl 1, S96-104. 

38. Wettenhall, J.M., and Smyth, G.K. (2004). limmaGUI: a graphical user interface for linear 
modeling of microarray data. Bioinformatics 20, 3705-3706. 

39. Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing. [Royal Statistical Society, Wiley] 57, 289-
300. 

40. Flanagan-Steet, H., Fox, M.A., Meyer, D., and Sanes, J.R. (2005). Neuromuscular 
synapses can form in vivo by incorporation of initially aneural postsynaptic 
specializations. Development 132, 4471-4481. 

41. Briese, M., Esmaeili, B., Fraboulet, S., Burt, E.C., Christodoulou, S., Towers, P.R., Davies, 
K.E., and Sattelle, D.B. (2009). Deletion of smn-1, the Caenorhabditis elegans ortholog 
of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced 
lifespan. Hum Mol Genet 18, 97-104. 

42. Calixto, A., Chelur, D., Topalidou, I., Chen, X., and Chalfie, M. (2010). Enhanced neuronal 
RNAi in C. elegans using SID-1. Nat Methods 7, 554-559. 

43. Riessland, M., Ackermann, B., Forster, A., Jakubik, M., Hauke, J., Garbes, L., Fritzsche, 
I., Mende, Y., Blumcke, I., Hahnen, E., et al. (2010). SAHA ameliorates the SMA 
phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19, 1492-
1506. 

44. El-Khodor, B.F., Edgar, N., Chen, A., Winberg, M.L., Joyce, C., Brunner, D., Suarez-
Farinas, M., and Heyes, M.P. (2008). Identification of a battery of tests for drug 
candidate evaluation in the SMNDelta7 neonate model of spinal muscular atrophy. Exp 
Neurol 212, 29-43. 

45. Bogdanik, L.P., Osborne, M.A., Davis, C., Martin, W.P., Austin, A., Rigo, F., Bennett, C.F., 
and Lutz, C.M. (2015). Systemic, postsymptomatic antisense oligonucleotide rescues 
motor unit maturation delay in a new mouse model for type II/III spinal muscular 
atrophy. Proc Natl Acad Sci U S A 112, E5863-5872. 

46. Greene, L.A., and Tischler, A.S. (1976). Establishment of a noradrenergic clonal line of rat 
adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad 
Sci U S A 73, 2424-2428. 

47. Armstrong, C.M., and Bezanilla, F. (1974). Charge movement associated with the opening 
and closing of the activation gates of the Na channels. The Journal of general 
physiology 63, 533-552. 

48. Dubowitz, V. (1999). Very severe spinal muscular atrophy (SMA type 0): an expanding 
clinical phenotype. Europ J Paediatr Neurol 3, 49-51. 

49. Sugarman, E.A., Nagan, N., Zhu, H., Akmaev, V.R., Zhou, Z., Rohlfs, E.M., Flynn, K., 
Hendrickson, B.C., Scholl, T., Sirko-Osadsa, D.A., et al. (2012). Pan-ethnic carrier 
screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory 
analysis of >72,400 specimens. Eur J Hum Genet 20, 27-32. 

50. Burgoyne, R.D., and Haynes, L.P. (2012). Understanding the physiological roles of the 
neuronal calcium sensor proteins. Mol Brain 5, 2. 

51. Di Sole, F., Vadnagara, K., Moe, O.W., and Babich, V. (2012). Calcineurin homologous 
protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 303, 
F165-179. 

52. Ladant, D. (1995). Calcium and membrane binding properties of bovine neurocalcin delta 
expressed in Escherichia coli. J Biol Chem 270, 3179-3185. 

53. Hidaka, H., and Okazaki, K. (1993). Neurocalcin family: a novel calcium-binding protein 
abundant in bovine central nervous system. Neurosci Res 16, 73-77. 



 

 35 

54. Viviano, J., Krishnan, A., Wu, H., and Venkataraman, V. (2016). Data on the calcium-
induced mobility shift of myristoylated and non-myristoylated forms of neurocalcin 
delta. Data Brief 7, 630-633. 

55. Iino, S., Kobayashi, S., and Hidaka, H. (1998). Neurocalcin-immunopositive nerve 
terminals in the muscle spindle, Golgi tendon organ and motor endplate. Brain Res 
808, 294-299. 

56. Yamatani, H., Kawasaki, T., Mita, S., Inagaki, N., and Hirata, T. (2010). Proteomics 
analysis of the temporal changes in axonal proteins during maturation. Dev Neurobiol 
70, 523-537. 

57. Venkataraman, V., Duda, T., Ravichandran, S., and Sharma, R.K. (2008). Neurocalcin 
delta modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 47, 
6590-6601. 

58. Ivings, L., Pennington, S.R., Jenkins, R., Weiss, J.L., and Burgoyne, R.D. (2002). 
Identification of Ca2+-dependent binding partners for the neuronal calcium sensor 
protein neurocalcin delta: interaction with actin, clathrin and tubulin. Biochem J 363, 
599-608. 

59. Haucke, V., Neher, E., and Sigrist, S.J. (2011). Protein scaffolds in the coupling of synaptic 
exocytosis and endocytosis. Nat Rev Neurosci 12, 127-138. 

60. Cashman, N.R., Durham, H.D., Blusztajn, J.K., Oda, K., Tabira, T., Shaw, I.T., Dahrouge, 
S., and Antel, J.P. (1992). Neuroblastoma x spinal cord (NSC) hybrid cell lines 
resemble developing motor neurons. Dev Dyn 194, 209-221. 

61. Rossoll, W., Jablonka, S., Andreassi, C., Kroning, A.K., Karle, K., Monani, U.R., and 
Sendtner, M. (2003). Smn, the spinal muscular atrophy-determining gene product, 
modulates axon growth and localization of beta-actin mRNA in growth cones of 
motoneurons. J Cell Biol 163, 801-812. 

62. McWhorter, M.L., Monani, U.R., Burghes, A.H., and Beattie, C.E. (2003). Knockdown of 
the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon 
outgrowth and pathfinding. J Cell Biol 162, 919-931. 

63. Drapeau, P., Buss, R.R., Ali, D.W., Legendre, P., and Rotundo, R.L. (2001). Limits to the 
development of fast neuromuscular transmission in zebrafish. J Neurophysiol 86, 2951-
2956. 

64. Westerfield, M., McMurray, J.V., and Eisen, J.S. (1986). Identified motoneurons and their 
innervation of axial muscles in the zebrafish. J Neurosci 6, 2267-2277. 

65. Fatt, P., and Katz, B. (1951). An analysis of the end-plate potential recorded with an 
intracellular electrode. J Physiol 115, 320-370. 

66. Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai, T., 
Bargmann, C.I., and Nef, P. (2001). Ca2+ signaling via the neuronal calcium sensor-1 
regulates associative learning and memory in C. elegans. Neuron 30, 241-248. 

67. Somers, E., Riessland, M., Schreml, J., Wirth, B., Gillingwater, T.H., and Parson, S.H. 
(2013). Increasing SMN levels using the histone deacetylase inhibitor SAHA 
ameliorates defects in skeletal muscle microvasculature in a mouse model of severe 
spinal muscular atrophy. Neurosci Lett 544, 100-104. 

68. Hua, Y., Sahashi, K., Rigo, F., Hung, G., Horev, G., Bennett, C.F., and Krainer, A.R. (2011). 
Peripheral SMN restoration is essential for long-term rescue of a severe spinal 
muscular atrophy mouse model. Nature 478, 123-126. 

69. Ruiz, R., Casanas, J.J., Torres-Benito, L., Cano, R., and Tabares, L. (2010). Altered 
intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy 
mice. J Neurosci 30, 849-857. 

70. Kubler, E., and Riezman, H. (1993). Actin and fimbrin are required for the internalization 
step of endocytosis in yeast. Embo J 12, 2855-2862. 

71. Dimitriadi, M., Derdowski, A., Kalloo, G., Maginnis, M.S., O'Hern, P., Bliska, B., Sorkac, A., 
Nguyen, K.C., Cook, S.J., Poulogiannis, G., et al. (2016). Decreased function of 
survival motor neuron protein impairs endocytic pathways. Proc Natl Acad Sci U S A. 

72. von Kleist, L., Stahlschmidt, W., Bulut, H., Gromova, K., Puchkov, D., Robertson, M.J., 
MacGregor, K.A., Tomilin, N., Pechstein, A., Chau, N., et al. (2011). Role of the clathrin 



 

 36 

terminal domain in regulating coated pit dynamics revealed by small molecule 
inhibition. Cell 146, 471-484. 

73. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., and Kirchhausen, T. (2006). 
Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839-850. 

74. Wirth, B., Barkats, M., Martinat, C., Sendtner, M., and Gillingwater, T.H. (2015). Moving 
towards treatments for spinal muscular atrophy: hopes and limits. Expert opinion on 
emerging drugs 20, 353-356. 

75. Benkhelifa-Ziyyat, S., Besse, A., Roda, M., Duque, S., Astord, S., Carcenac, R., Marais, 
T., and Barkats, M. (2013). Intramuscular scAAV9-SMN injection mediates widespread 
gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 
21, 282-290. 

76. Shababi, M., Lorson, C.L., and Rudnik-Schoneborn, S.S. (2014). Spinal muscular atrophy: 
a motor neuron disorder or a multi-organ disease? J Anat 224, 15-28. 

77. Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547. 
78. Parsons, R.L., Calupca, M.A., Merriam, L.A., and Prior, C. (1999). Empty synaptic vesicles 

recycle and undergo exocytosis at vesamicol-treated motor nerve terminals. J 
Neurophysiol 81, 2696-2700. 

79. Kong, L., Wang, X., Choe, D.W., Polley, M., Burnett, B.G., Bosch-Marce, M., Griffin, J.W., 
Rich, M.M., and Sumner, C.J. (2009). Impaired synaptic vesicle release and immaturity 
of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29, 842-851. 

80. Murray, L.M., Comley, L.H., Thomson, D., Parkinson, N., Talbot, K., and Gillingwater, T.H. 
(2008). Selective vulnerability of motor neurons and dissociation of pre- and post-
synaptic pathology at the neuromuscular junction in mouse models of spinal muscular 
atrophy. Hum Mol Genet 17, 949-962. 

81. Stevens, C.F. (2003). Neurotransmitter release at central synapses. Neuron 40, 381-388. 
82. Sudhof, T.C. (2012). Calcium control of neurotransmitter release. Cold Spring Harb 

Perspect Biol 4, a011353. 
83. Jablonka, S., Beck, M., Lechner, B.D., Mayer, C., and Sendtner, M. (2007). Defective Ca2+ 

channel clustering in axon terminals disturbs excitability in motoneurons in spinal 
muscular atrophy. J Cell Biol 179, 139-149. 

84. See, K., Yadav, P., Giegerich, M., Cheong, P.S., Graf, M., Vyas, H., Lee, S.G., Mathavan, 
S., Fischer, U., Sendtner, M., et al. (2014). SMN deficiency alters Nrxn2 expression 
and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol 
Genet 23, 1754-1770. 

85. Wishart, T.M., Mutsaers, C.A., Riessland, M., Reimer, M.M., Hunter, G., Hannam, M.L., 
Eaton, S.L., Fuller, H.R., Roche, S.L., Somers, E., et al. (2014). Dysregulation of 
ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J 
Clin Invest 124, 1821-1834. 

86. Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of 
ubiquitin in endocytosis and signaling. Science 315, 201-205. 

87. Ramser, J., Ahearn, M.E., Lenski, C., Yariz, K.O., Hellebrand, H., von Rhein, M., Clark, 
R.D., Schmutzler, R.K., Lichtner, P., Hoffman, E.P., et al. (2008). Rare missense and 
synonymous variants in UBE1 are associated with X-linked infantile spinal muscular 
atrophy. Am J Hum Genet 82, 188-193. 

88. Li, X., Kuromi, H., Briggs, L., Green, D.B., Rocha, J.J., Sweeney, S.T., and Bullock, S.L. 
(2010). Bicaudal-D binds clathrin heavy chain to promote its transport and augments 
synaptic vesicle recycling. Embo J 29, 992-1006. 

89. Neveling, K., Martinez-Carrera, L.A., Holker, I., Heister, A., Verrips, A., Hosseini-Barkooie, 
S.M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., et al. (2013). Mutations in 
BICD2, which Encodes a Golgin and Important Motor Adaptor, Cause Congenital 
Autosomal-Dominant Spinal Muscular Atrophy. Am J Hum Genet 96, 946-954. 

90. Oates, E.C., Rossor, A.M., Hafezparast, M., Gonzalez, M., Speziani, F., Macarthur, D.G., 
Lek, M., Cottenie, E., Scoto, M., Foley, A.R., et al. (2013). Mutations in BICD2 Cause 
Dominant Congenital Spinal Muscular Atrophy and Hereditary Spastic Paraplegia. Am 
J Hum Genet 92, 965-973. 



 

 37 

91. Peeters, K., Litvinenko, I., Asselbergh, B., Almeida-Souza, L., Chamova, T., Geuens, T., 
Ydens, E., Zimon, M., Irobi, J., De Vriendt, E., et al. (2013). Molecular Defects in the 
Motor Adaptor BICD2 Cause Proximal Spinal Muscular Atrophy with Autosomal-
Dominant Inheritance. Am J Hum Genet 92, 955-964. 

92. Martinez-Carrera, L.A., and Wirth, B. (2015). Dominant spinal muscular atrophy is caused 
by mutations in BICD2, an important golgin protein. Frontiers in neuroscience 9, 401. 

93. Dimitriadi, M., Derdowski, A., Kalloo, G., Maginnis, M.S., O'Hern, P., Bliska, B., Sorkac, A., 
Nguyen, K.C., Cook, S.J., Poulogiannis, G., et al. (2016). Decreased function of 
survival motor neuron protein impairs endocytic pathways. Proc Natl Acad Sci U S A 
113, E4377-4386. 

94. Suszynska-Zajczyk, J., Luczak, M., Marczak, L., and Jakubowski, H. (2014). 
Hyperhomocysteinemia and Bleomycin Hydrolase Modulate the Expression of Mouse 
Brain Proteins Involved in Neurodegeneration. J Alzheimers Dis. 

95. Schreij, A.M., Fon, E.A., and McPherson, P.S. (2016). Endocytic membrane trafficking and 
neurodegenerative disease. Cell Mol Life Sci 73, 1529-1545. 

96. Burgoyne, R.D., and Morgan, A. (2003). Secretory granule exocytosis. Physiological 
reviews 83, 581-632. 

 

  



 

 38 

FIGURE LEGENDS 

Figure 1. Genome-wide Linkage and Transcriptome Analysis Uncovered NCALD as 

Candidate Modifier of SMA.   

(A) Pedigree of the Utah family: haplotype analysis of microsatellite markers in the 5q13 SMA 

region and SMN1 and SMN2 copies are indicated. Black filled symbols: SMA-affected 

individuals, grey filled symbols: asymptomatic SMN1-deleted individuals and symbols with a 

dot: SMA carriers. Quantification of PLS3 expression in LBs was done according to24. Note 

weak PLS3 have no impact on SMA phenotype24.  

(B) Genome-wide linkage analysis identified eight regions with positive LOD scores. Open 

arrow marks 8q22.3 region containing NCALD.  

(C) Verification of microarray results (Table S2) of NCALD RNA and protein in lymphoblastoid 

(LB) cells (NCALD levels are relative to NCALD in SMA patients of Utah family (set to 100%)). 

NCALD is represented by two independent probes on the expression array, showing a 4-to-5 

fold downregulation in the asymptomatic group versus familial type 1 SMA or an independent 

type 3 SMA group. Three independent experiments including all 17 cell lines (asymptomatic, 

N = 5; symptomatic, N = 2; independent SMA-III, N = 10) were performed. * P ≤ 0.05.  

(D) Expression analysis of NCALD RNA and proteins in fibroblasts (FB) derived from the Utah 

family (asymptomatic, N = 5; symptomatic, N = 2). Three independent experiments including 

all seven cell lines were performed. ** P ≤ 0.01; *** P ≤ 0.001.  

 

Figure 2. NCALD Downregulation Restores Neurite Outgrowth Defect in SMN-deficient 

Neuronal Cells.  

(A) Western blot of NSC34 cells treated with 1µM retinoic acid (RA) for 0-120h as a model of 

MN differentiation and maturation (n = 3 independent experiments).  

(B) Ncald siRNA-treated NSC34 cells show signs of MN differentiation (HB9-positive staining, 

marked with white arrows) even in absence of RA (right panel). As positive control, cells were 



 

 39 

differentiated with RA and treated with control siRNA (middle panel). Negative control was 

treated only with control siRNA (left panel). Scale bar, 100 µm.  

 (C) Primary MNs from SMA or HET murine embryos were fixed at 8 DIV and stained with anti-

neurofilament M (anti NF-M). Quantitative analysis of axon length of MNs. SMA: N = 7, HET: 

N = 6, n = 100 per measurement; *** P ≤0.001; dashed line = mean; straight line = median. 

Scale bar, 100 µm. 

 

Figure 3. Ncald Reduction Corrects the Phenotype in Smn-deficient Zebrafish  

(A) First 10 motor axons posterior to the yolk globule of 34 hpf zebrafish embryos injected with 

respective morpholinos (MO). White arrows mark truncated motor axons. Arrowheads mark 

extensive branching in ncald or smn+ncald morphants; green = Znp1 staining, for motor axons. 

Scale bar, 100 µm.  

(B) Western blot of lysates of zebrafish embryos injected with indicated MO.  

(C) Quantification of motor axon phenotype. Dashed lines mark the rescue of the truncation 

phenotype (**P≤ 0.01). smn+ncald and ncald morphants showed increased branching. n >500 

motor axons per MO injection.  

(D) TEM images of NMJs of 48 hpf zebrafish embryos injected with respective MO. White 

arrows mark synaptic clefts including basal lamina. M = muscle fiber, T = nerve terminal. Scale 

bar, 100 nm.  

(E) Quantification of synaptic cleft width of MO-injected 48 hpf fish (n = 15 per treatment). **P 

≤0.01, dashed line=mean; straight line=median.   

(F, G) Whole-cell current clamp recordings EPPs (F) and quantification (G) of mean EPP 

frequencies in ventral fast muscle cells of control (n = 12), smn (n = 10), ncald (n = 11) and 

smn+ncald (n = 12) morphants under control conditions or NMDA induction. White bar parts 

reflect the mEPP frequencies, grey bar parts reflect the frequency of the TTX-sensitive large 

EPPs. **P ≤0.01; ***P ≤0.001.  
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Figure 4. Heterozygous Ncald KO Improves Axonal Outgrowth, Proprioceptive Input and 

NMJ Size in Severe SMA Mice  

(A) Western blot and quantification of NCALD and ACTB (loading control) in spinal cord and 

hippocampus of P10-old wt and Ncaldko/wt mice. *P ≤ 0.05.  

(B) Representative images and quantification of NMJ area [µm2] in TVA muscle from P10-old 

mice stained with antibodies against NF-M and SV2 (green, for presynaptic terminals) and 

Bungarotoxin (magenta, for postsynapse). NMJ area was analyzed with ImageJ software (N = 

3, n =100-120 NMJs/mouse). ***P ≤ 0.001. Scale bar, 10 µm.  

(C) Representative images and quantification of proprioceptive inputs (VGLUT1, green) on MN 

soma (CHAT, magenta) in lumbar spinal cord sections from P10-old mice. Mean input number 

within 5 µm of MN soma was analyzed (N = 3, n = 100-120 MNs/mouse). ***P ≤ 0.001. Scale 

bar, 25 µm. Note, colour code for genotypes is identical to panel D. 

(D) Representative merged images of 6 DIV MNs isolated from E13.5 embryos and stained 

with DAPI (blue, for DNA) and antibodies against HB9 (green, for MN) and Tau (red, for axon). 

The longest axon and axonal branches were quantified with ImageJ (N = 3-5, n = 20-40 axons 

per mouse). Scale bar, 25 µm. Each box plot covers values from 25-75% with line at median 

and dotted outliers at <5% and >95% CI. For each experiment, image analysis was double-

blinded. n.s. non-significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.  

 

Figure 5. NCALD Reduction Improves Motoric Function, NMJ Size, and NMJ 

Architecture in SMA+ASO Mice  

(A) Breeding scheme to produce mixed50 SMA and HET mice. All mixed50 offspring were 

injected with 30 µg SMN-ASO at P1.  

(B) Kaplan-Meier curves of uninjected mixed50 mice show no differences in survival between 

SMA (17 days, N = 7) and SMA-Ncaldko/wt (16.5 days, N = 12). Injection of 30 µg SMN-ASO on 
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P1 increases survival to >180 days for both SMA+ASO (N = 10) and SMA-Ncaldko/wt+ASO (N 

= 12) mice.  

(C) Righting reflex test shows improvement in SMA-Ncaldko/wt+ASO, but not SMA+ASO mice 

during P2-P6 (n ≥12 per genotype). Error bars represent SEM. n.s. non-significant, **P ≤ 0.01, 

***P ≤ 0.001.  

(D) Grip strength test performance at P73 reveals enhanced strength for SMA-Ncaldko/wt+ASO 

mice compared to SMA+ASO mice (N ≥12 per genotype).  Error bars indicate SEM.  *P ≤0.05, 

**P ≤ 0.01, ***P ≤ 0.001.  

(E) Representative images of NMJs of ASO-treated mixed50 mice at P21 stained with the 

antibody against NF-M (green, for presynaptic terminal) and Bungarotoxin (magenta, for 

postsynaptic terminal). Scale bar, 20µm. Box plot shows quantification of NMJ area in µm2 in 

TVA muscle which was analyzed and represented as in Figure 4  

(F) Bar graph shows percentage of immature NMJs in TVA muscle (mean ± SD). N = 3 mice 

per genotype; n = 60-100 NMJs per mouse. n.s. non-significant, *P ≤0.05, **P ≤0.01, ***P ≤ 

0.001.  

 

Figure 6. Interconnection Between SMN, NCALD, Voltage-dependent Ca2+ Influx, 

Endocytosis and SMA  

(A) Measurement of I-V relations of Ca2+ tail currents in differentiated NSC34 cells treated with 

respective siRNAs and depolarized for 5 ms to 60 mV, in 5 mV increments, at holding potential 

-80 mV. Currents were not different between wildtype (N = 7), control siRNA (n = 33) and Ncald 

KD (n = 13) and were significantly reduced upon Smn KD (n = 15) and Smn+Ncald KD (n = 

12) at current pulses above -35 mV. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.  

(B) Western blot of co-immunoprecipitation experiment. NSC34 cells were transiently 

transfected with FLAG-His-NCALD or control vector. Co-immunoprecipitations with FLAG-M2 

affinity beads were performed in the presence or absence of Ca2+. NCALD interacts with 

clathrin only in the absence of Ca2+ (addition of EGTA to the cell lysate) but not in the presence.  
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Note the positive clathrin band in the test-CoIP (fourth lane) in the absence but not in the 

presence of Ca2+ (last lane). .  

(C) Quantification of endocytosis by FITC-dextran uptake in fibroblasts from SMA (N = 10), 

controls (N = 3) and asymptomatic individuals (N = 5); n = 50 per cell line and time point. Mean 

±SD.*P≤ 0.05, **P ≤ 0.01.  

(D) Quantification of FM1-43 intensity at presynaptic terminals in TVA muscles under low 

frequency stimulation (5 Hz, 1s). N = 3 per genotype, n ≈100 per mouse. Mean ±SEM. n.s. 

non-significant; ***P ≤ 0.001.  

(E) Quantification of MN axon phenotype of zebrafish embryos treated with sub-phenotypical 

doses of smn MO (2 ng), ncald MO (2 ng) and the endocytosis inhibitors Pitstop2 and 

Dynasore, respectively. Dashed lines highlight the synergistic effect of smn MO and Pitstop2 

and the effect of Dynasore on axon truncation. Additional ncald MO injection ameliorates the 

truncation defect. ***P ≤ 0.001. Motor axons per treatment: Pitstop2: n ≥100, Dynasore: n ≥150.  

 

Figure 7. NCALD Acts as a Ca2+-dependent Regulator of Endocytosis in Synaptic 

Vesicle Recycling 

 
Diagrammatic presentation of the mode of action of NCALD in synaptic vesicle recycling in 

normal, SMA, and asymptomatic pre-synapse of neuronal cells. From left to right: 1) following 

neurotransmitter release, clathrin binds to empty vesicle membrane causing membrane 

bending and vesicle formation. High concentration of local Ca2+ which is present after vesicle 

release96 causes NCALD conformational change and thereby a release of clathrin so that it 

can perform its function. NCALD may fine-tune recycling speed and help to coordinate proper 

clathrin coating. 2) In SMA, voltage dependent Ca2+ influx is reduced, decreasing NCALD-

clathrin dissociation, thus inhibiting clathrin coating of vesicles. In our model NCALD regulates 

(increases) the Ca2+ dependence of clathrin function. 3) When NCALD level is reduced the 

Ca2+ dependence is reduced too and even at relative low intracellular Ca2+ levels clathrin can 

mediate endocytosis. 
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