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ABSTRACT

It has been argued that greater intra-category structural similarity for living things may
make them more difficult to recognize and name (e.g. Humphreys et al., 1988).
Nevertheless, the precise meaning and quantification of ‘structural similarity’ remain
unclear. We developed three new visual measures derived from the Snodgrass and
Vanderwart (1980) corpus and examined their relationship with picture naming in a speeded
presentation paradigm. The three measures were: the proportion of black pixels (PB); the
degree of pixel overlap within subcategories using Euclidean Overlap (EO); and the degree
of consistency in inter-pixel distribution across each picture (IPC). Within-category EO was
greater for nonliving than living things, indicating less within-category visual overlap for
living things. Finally, EO correlated significantly with error rates (PB and IPC did not).
These findings contradict existing notions that line drawings of living things have greater
visual similarity than nonliving things. 
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INTRODUCTION

One interpretation of category-specific disorders suggests that the greater
intra-category structural similarity (visual overlap) of living things and the
subsequent ‘visual crowding’ makes them more difficult to recognize and name
for neurologically damaged individuals and normal subjects (Gaffan and
Heywood, 1993; Humphreys et al., 1988). For example, Gaffan and Heywood
(1993) found that five normal subjects made more living than nonliving errors
when naming the Snodgrass and Vanderwart (1980) corpus in a rapid
presentation paradigm (20 msec exposure). In a second part of the study, they
trained monkeys to discriminate between pairs of pictures of living or nonliving
things; and found that the monkeys took longer to learn the responses associated
with living things (especially as the number of stimuli in the set increased).
While normal subjects may be influenced by familiarity and name frequency,
monkeys are not and so, this has been viewed as strong evidence that living
things are more difficult to discriminate visually, or that they have greater
within-category visual crowding than nonliving things. 

In an attempt to quantify structural similarity, Humphreys et al. (1988)
measured the degree of contour overlap for subcategories of item from the
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Snodgrass and Vanderwart corpus of line drawings, e.g. animals, clothing1. This
measure was derived by overlaying a grid on each item with every other item
and calculating the average overlap between pictures as a function of the amount
of contour in each picture (at a gross visible level). The structurally similar
items were exclusively living things, while the structurally dissimilar items were
nonliving things. Moreover, they showed that normal subjects are slower to
name items that have greater structural similarity (i.e. living things). 

Tranel et al. (1997) examined within-category shape overlap for five
subcategories by measuring the number of pixels falling within the maximal
shape overlap, i.e. the common sub-category silhouette. Using a mixture of the
Snodgrass and Vanderwart corpus and photographs, Tranel et al. reported that
the greatest shape overlap occurred for fruits/vegetables, followed by vehicles,
animals and musical instruments, with tools/utensils the lowest. This only
partially accords with the speculation of Gaffan and Heywood (1993) that the
greater visual overlap for living things (and musical instruments) makes them
harder to identify than nonliving things. 

Critically, the measures developed by Humphreys et al. (1988) and Tranel et al.
(1997) focussed on the common contour and common shape overlap respectively
and so, do not incorporate the internal detail of items. A measure of internal detail
for the Snodgrass and Vanderwart corpus was developed by Kurbat (1997) based
upon the number of pixels internal to outer boundary divided by the total pixels;
however, it does not incorporate the spatial arrangement of the internal detail. So,
regarding line drawings, there have been some attempts to quantify the degree of
structural overlap within subcategories, though each has problems. No extant
measure takes account of the spatial arrangement of visual information and there
has been no attempt to specify the processes underlying subject ratings of visual
complexity (see Snodgrass and Vanderwart, 1980), e.g. does it reflect a high level
of internal detail? The latter is a critical question because given the measures of
structural overlap described earlier (e.g. Humphreys et al., 1988), visually complex
items would have greater potential for high structural overlap (given that they are
presumably depicted by a greater amount of line detail). Indeed, since line
drawings of living things tend to have greater visual complexity (Snodgrass and
Vanderwart, 1980) and greater within category contour overlap or structural
similarity (Humphreys et al., 1998), these apparently subjective measures may
relate more to basic visual aspects of the line drawings.

The current study focuses upon the development of three new visual
measures derived from the Snodgrass and Vanderwart line drawing corpus; and
examines their relationship with naming of the whole corpus by normal
participants (in a speeded presentation paradigm: after Gaffan and Heywood,
1993). This corpus was chosen because the pictures have been and continue to
be used in the majority of studies examining category specific effects (the
authors reviewed over 50 studies between 1988-2000 and over 90% used this
corpus for their main results); and because much is already known about other

8 Keith R Laws and Tim M Gale

1 Humphreys et al. also considered the number of common parts within categories by having subjects rate the number
of partonomic attributes (e.g. has legs, has wheels) for items and found more common parts for living than nonliving
things (see Discussion).



characteristics of the pictures e.g. rated visual complexity, familiarity etc.The
three new visual measures tap different aspects of the pictures: the proportion of
black pixels per item (PB); the Euclidean Overlap (EO) between pairs of items
measured as the amount of pixel overlap; and inter-pixel correlation (IPC),
which is essentially a measure of the internal complexity for each picture. 

As with all measures attempting to capture visual characteristics of the items
represented (e.g. visual complexity, visual overlap), the patterns of results reflect
the specific properties of the stimuli examined (here the Snodgrass and
Vanderwart corpus) and do not necessarily reflect actual properties of the
referent objects. Line drawings are a peculiar type of stimulus representation that
may be processed in qualitatively different ways to other stimuli such as colour
pictures and photographs (Biederman and Ju, 1988; Ostergaard and Davidoff,
1985; Price and Humphreys, 1989); although all may of course differ from the
way in which the actual objects are processed. Nonetheless, most
neuropsychological investigations of category-specific deficits have utilised the
Snodgrass and Vanderwart corpus and many theories of object recognition
appear to be based on findings with line drawings, so the results will have
implications for the conclusions that may be drawn about factors that
purportedly contribute towards emergent category effects.

The stimuli were 254 digitised pictures from the Snodgrass and Vanderwart
(1980) line-drawing corpus, standardised for size such that the maximal
dimension of each image fitted exactly within a 256-by-256 pixel grid (see
Figure 1). The standardised images were stored in binary bitmap format such
that pixels could be either white (0) or black (1). 

Measures of Visual Information

1. Proportion of Black Line (PB)

The number of black pixels (i.e. those involved in the depiction of line
detail) was computed for each image and expressed as a proportion of the total
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number of pixels (i.e. 65,536) in each picture. This measure was termed
‘proportion black’ (PB) and was instantiated to tap an aspect of visual
complexity (VC). Snodgrass and Vanderwart (1980) define VC as ‘the amount
of detail or intricacy of line in the picture’, so the prediction is that pictures that
are more detailed should have higher PB scores.

2. Euclidean Overlap (EO)

As a measure of complexity, PB is unrelated to the pattern (or spatial
arrangement) of dark and light, and so ignores higher-level aspects of
complexity reflecting the retinotopic spatial arrangement of the pictures. To
examine the pixel-to-pixel spatial correspondence in pictures, we derived
measures of the Euclidean Overlap for each drawing with other drawings. This
measure was calculated by comparing the value of each individual pixel in turn
and subtracting its value in the first picture from its value in the second. The
difference is squared and summed for all pixels in the representation and the EO
between the two pictures is the square root of the sum of squared differences.
EO between an individual picture and all other pictures was computed to give a
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precise measure of the visual overlap between any two items in the corpus. 
Lower scores reflect greater EO; e.g. identical pictures would have an EO of

0 and, for binary bitmaps of size n by n, the maximum EO between any two
pictures is always n. EO was calculated between each individual image and
every other image in the set, thereby generating a matrix of 254 × 254 EOs. 

The mean and standard deviation EO values for each item was calculated in
two ways. First, the mean and sd EO were computed between each item and its
within-category associates (within-category EO) for the following categories (see
Appendix for list): animals (n = 29), insects (n = 8), birds (n = 9), body-parts (n
= 12), fruit (n = 11), vegetables (n = 12), furniture (n = 14), vehicles (n = 11),
musical instruments (n = 10), tools (n = 9), clothing (n = 17). The second
method involved calculating EO between each item and all other items in the
corpus, i.e. within the whole set of 254 images. 

The method of EO calculated here differs from that used by Humphreys et al.
(1988), who measured the structural overlap between line drawings by (i)
standardising items for size and orientation, (ii) positioning items from the same
semantic category within a comparison grid; (iii) calculating the average
percentage of contour overlap between each item and all its within-category
associates; and so (iv) did not take into account internal detail. We decided to
retain the original orientations for several reasons2. First, it is difficult to apply the
same procedures to all categories of object. For example, it is easy to align animals
so their heads point left and their tails point right; however, other categories, such
as musical instruments, are less clear-cut. Second, most neuropsychological
studies use the images in their standard presentation. Third, Snodgrass and
Vanderwart ensured that where orientation was an issue, living (e.g. animals), and
nonliving things (e.g. tools) were fairly equally distributed between left and right
facing; and so, would not especially bias living or nonliving things. 

3. Inter-Pixel Correlation (IPC)

A measure of average inter-pixel correlation (IPC) was computed as an
additional estimate of VC. Every pixel within each image was compared with its
immediate neighbours and the proportion of pixels with identical values to the
central pixel was recorded. Whilst the majority of pixels were compared with 8
neighbours, those pixels at edges and corners of an image were only compared
with 5 and 3 adjoining neighbours respectively. The average IPC was then
computed by taking the mean IPC for all 65,536 pixels within an image.

The reason for calculating average IPC is that whilst PB may capture the
amount of line detail in a picture, there are circumstances where it might give a
misleading estimate of VC: a drawing with lots of black shading (e.g. a black
square) might generate a high PB score yet would not be visually complex. IPC,
on the other hand, looks for consistencies in black or white pixel distribution
across the whole picture so images that predominantly comprise large areas of
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black or white, will both generate high IPC scores. However, items that are
depicted by a more random distribution of line information (e.g. highly textured
items such as pineapple) should generate lower IPC scores. The prediction
therefore is that IPC will correlate strongly but negatively with VC.

Picture Naming

This part of the study replicated the rapid presentation naming design of
Gaffan and Heywood (1993): whereby items from the Snodgrass and Vanderwart
(1980) corpus of line drawings were presented for 20 msec for naming.

MATERIALS AND METHODS

Subjects

Thirty-two normal undergraduates (16 males and 16 females: mean age = 22.78 (s.d. =
6.42)) participated. All had normal or corrected-to-normal vision and none had previously
seen the pictures.

Stimuli and Procedure

Two-hundred and forty-six items were drawn from the whole Snodgrass and Vanderwart
(1980) corpus. Ninety-one images were classified as living things and 155 as nonliving
things (n = 246). The living items included body parts; nonliving included musical
instruments. Items were excluded because they are difficult to classify, including for
example: natural objects such as ‘Moon’, ‘Tree’, ‘Star’ and ‘Mountain’; food items ‘Cake’,
‘Sandwich’, ‘Bread’; and people-related items such as ‘Clown’ and ‘Snowman’. 

The living things had significantly greater visual complexity (3.33 vs. 2.73: t = 5.4, 244,
p < .001), lower name frequency (23.32 vs. 42.05: t = – 2.0, 226, p = .046) and lower
familiarity (2.96 vs. 3.51: t = – 4.6, 244, p < .001). The images were presented against a white
background on a 30.5 cm Apple Macintosh monitor using SuperLab™ software. Each
drawing was standardized for size, having a maximum horizontal and vertical extent of 7.6
cm and was viewed from a distance of 50 cm. The pictures were presented for 20 msec
followed by a blank white screen until response (after Gaffan and Heywood, 1993). The order
of presentation was randomised for each subject and there was no time limit for responding.

RESULTS

Analysis across subjects revealed more living than nonliving errors [10.2
(s.d. = 4.9) vs. 6.3 (s.d. = 3.3): t = 6.01, d.f. = 31, p < .001]. Gaffan and
Heywood (1993) did not present data for analysis by item; however, the greater
error rate for living things [2.63 (s.d. = 4.00) vs. 1.74 (s.d. = 3.34)] over
nonliving things approached significance (t = 1.9, 244, p = .06). Nevertheless,
when covarying for variables (word frequency, familiarity and visual
complexity), the category difference disappears (F = 0.53; d.f. = 1, 205; n.s.). 

Proportion Black (PB)

As predicted, proportion black (PB) correlated significantly with visual
complexity (VC) r = .50, p < .001. There was no difference in PB across living
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and nonliving categories. PB did not correlate significantly with normal errors (r
= .05, p = .4), although VC did (r = .22, p < .001).

PB did not differ significantly across living and nonliving things for: (a) the
whole corpus (t = .01, d.f. = 250, n.s.); (b) the 11 subcategories (t = .51, d.f. =
139, n.s.); or (c) after the removal of the two subcategories of body parts and
musical instruments (t = 2.56, d.f. = 118, p = .01). Post hoc (Bonferroni)
analyses of 11 subcategories revealed that musical instruments had greater PB
than all other subcategories, while tools and body parts had lower PB than all
other categories; no other differences were significant.

Euclidean Overlap (within Subcategories)

EO correlated significantly with: errors (r = .21, p = .013); PB (r = .89, p <
.001); VC (r = .52, p < .001). Although there were different numbers of item in
each subcategory EO did not correlate with subgroup size (r = – .02, p > .05).

EO did not differ significantly across living and nonliving things for: (a) all
items (t = 0.3, d.f. = 250, n.s.); (b) items from the eleven subcategories (t = –
1.6, d.f. = 139, n.s.); (c) however after removing body parts and musical
instruments (which are known to be unusual categories within the living and
nonliving domains), EO was significantly greater for nonliving than living things
(t = 3.9, d.f. = 118, p < .001).

Analysis comparing between subcategories themselves revealed four
homogeneous subsets i.e. that failed to differ within each grouping (using
Bonferroni): (1) tools and body parts; (2) body parts, clothing, vehicles and
birds; (3) clothing, vehicles and birds, animal, fruit, furniture, insects and
vegetables; (4) furniture, insects, vegetables and musical instruments.

Analysis of the mean EO scores for each of the subcategories shows how
they cluster into living and nonliving subcategories (see Figure 3). Moreover,
this also shows how body parts cluster with nonliving things, while musical
instruments cluster with living things. 

Euclidean Overlap (across Every Item)

To check that the above findings did not reflect imposing some form of
semantic categorisation on the items (i.e. within subcategories), EO was
examined for every item against every other item in the whole corpus. In other
words, do the same effects occur when every item is compared with every other
item i.e. when there is no inherent stimulus categorisation at all? 

Again the broad corpus of living and nonliving things did not differ
significantly (t = .01, d.f. = 244, n.s.). EO correlated significantly with PB (r =
.98, p < .001) and VC (r = .49, p < .001), but did not correlate with errors (r =
.14, p > .05). Within this undefined corpus, we examined the 20 items with the
smallest EO and the 20 showing the greatest EO. The 20 items with greatest
visual similarity included: 7/9 tools, 7/12 body parts; the remaining items came
from various categories. The items with least visual similarity included: 5/9
musical instruments, 4 visually distinctive animals (tiger, peacock, skunk,
giraffe) and 5 fruits/vegetables (strawberry, grapes, celery, artichoke, onion).
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This confirms the pattern found for the within-category analysis i.e. that
nonliving things tend to show greater similarity (EO) than living things.

Internal Pixel Correlation (IPC)

IPC correlated significantly with: PB (r = – .90, p < .001), EO (r = – .89, p
< .001) and VC (r = – .62, p < .001), but not with errors (r = – .06, n.s.). 

IPC did not differ significantly across living and nonliving things for: (a) all
items (t = .27, d.f. = 250, n.s.; (b) across items in the 11 subcategories (t = .90,
d.f. = 139, n.s.); or when body parts and musical instruments were removed (t =
– .88, d.f. = 118, n.s.). Post hoc analyses comparing subcategories revealed that
body parts and tools had greater IPC than all other subcategories; musical
instruments had lower IPC than all other subcategories. 

SUMMARY

The results show that PB plays a role in the appreciation of VC (sharing
25% variance) and that subjects use the VC rating scale (from Snodgrass and
Vanderwart) in a way that relates to a primitive but objective measure of visual
complexity i.e. amount of line. Since living and nonliving categories do not
differ in PB, but do for VC, minimally, the category differences in VC are not
related to the bottom-up aspects tapped by PB. Since normal error rates
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correlated with VC but not with PB (or IPC), it might be argued that the naming
errors reflect more the top-down cognitive – rather than bottom-up – aspects of
visual complexity (PB and IPC).

As predicted, IPC correlated more highly with VC than either PB or EO. In
other words, IPC distinguished between those items with intricate internal detail
and a low proportion of black pixels (e.g. chair, horse, yacht) and those that
simply have many black pixels though low internal correlation (e.g. spectacles,
ant, glove). Items with high IPC values are relatively simple shapes
characterised mostly by white space (e.g., heart, hanger). These results suggest
that IPC might feasibly be used when subjects make VC judgments. Third, and
critically, there is no difference between non-living/living in terms of IPC
(means = 0.899 and 0.900 respectively; p = 0.85). The fact that IPC correlates
highly with VC but does not differentiate between living/non-living gives even
greater support for the notion that VC is not a bottom-up measure.

The fact that EO correlated so highly with PB suggests that these measures
are highly inter-dependent. This is the case within the Snodgrass and Vanderwart
corpus because most pictures comprise a predominance of white space. Whilst it
might be argued that white space is not relevant to the actual structure of each
depicted item it must be borne in mind that, with line drawings, it is just as
critical to depiction as black information. Even the most visually complex items
(e.g. spool, basket) have PB scores of less than 25% and the mean PB score
across all items was only 6.7% (± 3.6%). Thus, white space accounts for in
excess of 90% pixels in the majority of pictures. If most pictures are
characterised by white space, it follows that the main source of variance between
pictures is black line information. Given that EO measures the variance in pixel
distribution between two items, low EO will be obtained when the items under
comparison have a greater level of black line. For this reason, PB accounts for
nearly 96% of the variance in EO (across all items). However, such high inter-
correlation only holds for this particular set of stimuli and cannot be
extrapolated to all ‘black-and-white’ pictures. 

As mentioned above, the three measures described here are only relevant to
this set of pictures; however, this is true also for other ‘standardised’ measures
such as CO, VC or any visually-based measures. So, although the essence of
similarity between structural descriptions may not be captured by EO (or indeed
any variable relating to the visual characteristics of any picture corpus), this
measure does have advantages. EO is an attempt to specify exactly what is
meant by visual similarity/structural overlap; it is not theory-laden; it cannot be
influenced by conceptual knowledge (cf. VC, partonomic separation or perhaps
CO); and moreover, EO can be applied to any other pictorial corpus

DISCUSSION

The new measures (PB, EO and IPC) developed here provide novel and
surprising information about the primary visual characteristics that affect
recognition and naming for the Snodgrass and Vanderwart (1980) corpus of line
drawings. Although the three measures were highly inter-correlated (positively
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for EO and PB, and negatively for IPC), each measured different aspects of the
visual properties of the pictures: the amount of pixels (PB); the retinotopic
spatial arrangement of pixels (EO); and the consistency of pixel distribution in
each picture (IPC). Furthermore, contrary to existing accounts of visual
similarity/crowding (Gaffan and Heywood, 1993; Humphreys et al., 1988), the
measure of EO developed here indicates that nonliving things have greater
within-category visual similarity than living things. 

Neither PB nor IPC correlated with errors, suggesting that amount of black
and/or its spatial configuration (alone) are not critical determinants of naming
and identification. Nevertheless, the significant relationship for errors and
within-category EO emphasises the importance of category membership (and the
relations between members) for naming, i.e. prototypical items are more easily
named and more errors are made to items from categories with more atypical
items (e.g. musical instruments). Although within-category EO correlated with
normal errors, the correlation for EO (all items) was not significant. Since
category prototypicality predicts naming accuracy (but ‘general typicality’ does
not), one interpretation of this is that subjects initially interpret depicted items
within a superordinate categorical frame of reference. 

Within-category EO clearly differentiated (see Figure 3) those items
associated with nonliving thing disorders (all having greater EO) from those
associated with living thing disorders (all having less EO). Indeed, removing
body parts and musical instruments from the analysis revealed a significantly
larger EO for nonliving than living things. Hence, these line drawings of living
and nonliving things may be categorically separated at a low level of visual
analysis3. Furthermore, as subcategories, body parts and musical instruments
differed from all other subcategories on all three new visual measures; with
body parts (and tools) having the simplest visual structure, but greatest overlap,
while musical instruments were the most complex and showed the least overlap.
The discriminability of these subcategories from all other subcategories is
intriguing in the context that the measures for body parts were closer in values
to those for nonliving things; while those for musical instruments were more
similar to living things (indeed they were at the extreme end of the nonliving
and living groups respectively). Critically therefore EO incorporates the
exceptions that occur in the category-specific deficits literature, i.e. that musical
instruments tend to be impaired along with living things and body parts with
nonliving things. These counter-intuitive (though predictable) findings add
weight to the psychological reality and potential utility of EO as a measure of
structural similarity4.

The finding that EO was greater for nonliving things challenges both the
traditional idea that living things have greater visual similarity/overlap/crowding
and the idea that this necessarily results in worse naming of living things for
patients or normal subjects (Gaffan and Heywood, 1993; Humphreys et al.,
1988). For example, Gaffan and Heywood (p.119) have suggested that “…a
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hammer or a saw is each visually more distinct from other objects than an
antelope or a strawberry is” and so, a modality specific impairment of visual
representations might explain category specific deficits (for living things). The
current study shows that their ‘intuitive’ notion of structural similarity cannot be
synonymous with the visual characteristics of the drawings themselves (at least
as measured by EO or even PB and IPC). Furthermore, recent studies that have
controlled across category for various artefactual variables (e.g. familiarity, name
frequency, visual complexity) have consistently reported worse naming of
nonliving things by normal subjects (see Laws, 2000; Laws, 1999; Laws and
Neve, 1999). These studies cast doubt upon the validity of the idea that living
things are more structurally similar (than nonliving things) and that this partly
underlies category-specific disorders for living things and the naming
performance of normal subjects.

Why should the results for Euclidean Overlap be the converse of those found
for Contour Overlap (Humphreys et al., 1988)? One possibility centres on the
notion that ‘structural similarity’, as measured by Humphreys et al., places
greater emphasis on cognitive processing; by contrast, EO is a purely visual
variable. Certainly, Humphreys and colleagues emphasize on common
partonomic features and even their coarse-grained measure of Contour Overlap
may more readily incorporate partonomic features (this clearly would not happen
with the current pixel-based analyses). It is, however, less clear whether
‘structural similarity’ or ‘visual crowding’ (Humphreys et al., 1988; Gaffan and
Heywood, 1993) refer to attributes of the stimuli themselves, the stored mental
representations or both. If such measures are meant to capture stimulus
characteristics (as EO does), then they will encounter problems. These would
include, for example, the following: (i) parts with the same name may not have
the same conceptual reference – for example, do a table and tiger share the
commonality of having four legs? Do a toothbrushand caterpillar share the
commonality of having bristles? In a purely visual sense, the answer must be
yes; (ii) how does one define the type of parts that will be considered – only
those parts that are visible or also those parts that, whilst not depicted, are
conceptually part of the whole – for example, in the Snodgrass and Vanderwart
corpus, swandoes not appear to have any legs and has only one eye. Moreover,
should we count more general parts like torso, trunk, body, casing, sides, front
and so on? (iii) Shared parts may have no visual similarity at all – for example,
the tail of a fish bears no resemblance to that of a dog; similarly the feet of a
penguin and a giraffe. They also fail to capture any internal detail. Such issues
do not arise with EO. Nevertheless, Humphreys et al.’s notion of structural
similarity does appear to refer more to some notion of stored representations
than characteristics of the stimuli or real-world items. Of course, our measure of
stimulus similarity (EO) and some more cognitive or ‘top-down’ measure of
representational similarity (e.g. shared part information) may both influence
object recognition. Moreover, they may influence object recognition in
conflicting directions: for example, top-down similarity affecting living things
more greatly, while bottom-up EO has greater impact on nonliving thing
recognition). 
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APPENDIX 1

PB, EO and IPC Values for Subcategory Items

Item PB EO IPC Item PB EO IPC

Animals

Birds

Body Parts

Clothing

Category-specificity and visual similarity 19

Alligator 0.04 10.99 0.91
Bear 0.06 11.68 0.92
Camel 0.06 11.99 0.90
Cat 0.06 12.26 0.92
Cow 0.05 11.36 0.90
Deer 0.08 12.57 0.92
Dog 0.04 10.69 0.92
Donkey 0.06 11.73 0.90
Elephant 0.10 13.47 0.85
Fox 0.05 11.60 0.91
Frog 0.08 12.87 0.90
Giraffe 0.09 13.64 0.86
Goat 0.05 11.93 0.92
Gorilla 0.07 12.39 0.90
Horse 0.06 11.92 0.89

Kangaroo 0.06 11.96 0.90
Leopard 0.08 12.32 0.86
Lion 0.04 11.00 0.91
Monkey 0.05 11.42 0.91
Mouse 0.05 11.43 0.93
Pig 0.04 10.84 0.94
Rabbit 0.05 11.45 0.91
Racoon 0.07 12.08 0.90
Rhino 0.05 11.40 0.90
Seal 0.05 11.60 0.92
Sheep 0.05 11.18 0.91
Skunk 0.15 15.25 0.82
Squirrel 0.07 12.03 0.91
Tiger 0.11 13.71 0.83
Mean 0.06 12.03 0.90

Bird 0.04 11.01 0.93
Chicken 0.05 11.35 0.91
Duck 0.05 11.70 0.92
Eagle 0.07 11.86 0.89
Ostrich 0.06 11.83 0.91

Owl 0.08 12.69 0.89
Peacock 0.12 14.21 0.77
Penguin 0.05 10.91 0.94
Rooster 0.07 12.16 0.88
Mean 0.07 11.97 0.89

Arm 0.04 9.39 0.95
Ear 0.05 10.47 0.93
Eye 0.10 12.64 0.87
Finger 0.03 9.44 0.95
Foot 0.03 9.38 0.95
Hair 0.11 12.92 0.84
Hand 0.05 10.75 0.92

Leg 0.04 9.47 0.96
Lips 0.03 9.32 0.96
Nose 0.03 9.31 0.97
Thumb 0.02 8.98 0.97
Toe 0.03 9.44 0.95
Mean 0.05 10.13 0.94

Belt 0.04 10.64 0.93
Blouse 0.06 11.18 0.89
Boot 0.07 12.16 0.91
Cap 0.05 10.91 0.93
Coat 0.05 11.35 0.91
Dress 0.04 10.55 0.93
Glove 0.09 12.69 0.90
Hat 0.04 10.81 0.94
Jacket 0.06 11.98 0.88

Pants 0.04 10.74 0.92
Shirt 0.07 12.11 0.88
Shoe 0.07 12.10 0.90
Skirt 0.04 10.59 0.95
Sock 0.05 10.83 0.93
Sweater 0.09 12.94 0.87
Tie 0.05 11.01 0.92
Vest 0.06 11.69 0.91
Mean 0.06 11.43 0.91



Item PB EO IPC Item PB EO IPC

Fruit

Furniture

Insect

Musical Instrument

Tool

Vehicle
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Apple 0.04 11.15 0.94
Banana 0.03 10.57 0.95
Cherry 0.03 10.65 0.96
Grapes 0.12 14.03 0.85
Lemon 0.06 12.10 0.93
Orange 0.07 12.23 0.91

Peach 0.07 12.06 0.91
Pear 0.03 10.64 0.96
Pineapple 0.10 13.48 0.82
Strawberry 0.18 16.45 0.85
Tomato 0.06 11.75 0.09
Mean 0.07 12.28 0.83

Ashtray 0.06 12.38 0.91
Bed 0.06 12.77 0.90
Chair 0.06 12.40 0.89
Clock 0.07 12.57 0.90
Couch 0.05 12.09 0.91
Desk 0.07 12.32 0.90
Dresser 0.07 12.32 0.86
Lamp 0.04 11.39 0.95

Record play 0.07 12.79 0.86
Rocking 0.10 14.02 0.82
Stool 0.10 13.88 0.87
Table 0.05 12.23 0.90
Television 0.08 13.58 0.84
Vase 0.08 13.01 0.88
Mean 0.07 12.70 0.89

Ant 0.07 12.80 0.91
Bee 0.09 12.99 0.87
Beetle 0.07 12.57 0.91
Butterfly 0.08 13.14 0.84
Caterpillar 0.06 12.06 0.93

Fly 0.12 14.11 0.88
Grasshopper 0.07 12.49 0.89
Spider 0.09 13.10 0.89
Mean 0.08 12.91 0.89

Accordion 0.17 15.26 0.72
Bell 0.10 14.89 0.85
Drum 0.12 15.68 0.86
Flute 0.04 12.57 0.96
French horn 0.13 15.54 0.83

Guitar 0.07 13.67 0.89
Harp 0.10 14.50 0.82
Trumpet 0.06 13.20 0.91
Violin 0.08 13.97 0.89
Mean 0.10 14.36 0.86

Axe 0.03 8.60 0.96
Chisel 0.03 8.91 0.95
Hammer 0.04 9.19 0.94
Ladder 0.05 9.85 0.90
Pliers 0.06 10.53 0.91

Ruler 0.03 8.79 0.94
Saw 0.02 8.20 0.95
Screwdriver 0.03 8.65 0.95
Wrench 0.03 8.84 0.95
Mean 0.04 9.06 0.94

Airplane 0.05 11.14 0.91
Bike 0.07 12.09 0.85
Bus 0.08 12.13 0.83
Car 0.05 10.99 0.91
Helicopter 0.07 12.00 0.87
Motorbike 0.09 12.61 0.85

Roller skate 0.07 12.04 0.88
Sled 0.04 10.75 0.91
Train 0.07 11.56 0.87
Truck 0.05 10.99 0.92
Wagon 0.07 12.06 0.87
Mean 0.06 11.67 0.88



Item PB EO IPC Item PB EO IPC

Vegetable

The values for the excluded items are available from the authors on request.
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Artichoke 0.12 14.56 0.86
Asparagus 0.04 11.58 0.93
Carrot 0.04 11.82 0.93
Celery 0.12 14.49 0.82
Corn 0.08 13.30 0.86
Lettuce 0.08 13.35 0.86
Mushroom 0.06 12.25 0.91

Onion 0.10 13.99 0.86
Peanut 0.06 12.65 0.90
Pepper 0.07 12.71 0.90
Potato 0.05 12.39 0.93
Pumpkin 0.11 13.64 0.85
Mean 0.08 13.01 0.89


