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Abstract 

This paper describes one of the latest in a series of system dynamics models developed during the FEAST 

(Feedback, Evolution And Software Technology) investigation into software evolution processes. The 

intention of early models was to simulate real-world processes in order to increase understanding of such 

processes. The work resulted in a number of lessons learnt, in particular, with regard to the application of 

system dynamics to the simulation of key attributes of long-term software evolution. The work reported 

here combines elements of previous work and extends them by describing an approach to investigate the 

consequences on long-term evolution, of decisions made by the managers of these processes. The 

approach is illustrated by discussion of a model developed using the Vensim tool. This model of the 

impact on product and global process attributes of decisions regarding the fraction of work applied to 

progressive and to anti-regressive activities such as complexity control, for instance, exemplifies the 

results of the FEAST investigation. 

Keywords: anti-regressive activity, decision making, E-type systems, evolution, FEAST, feedback, global 

software process, laws of software evolution, management, planning, progressive activity, simulation, 

software process modelling, system dynamics, white-box modelling 
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1 Introduction 

Observations emanating from studies of attributes of the sequences of releases of OS/360-70 

(Lehman, 1969) and other software systems, initiated during the late 1960s and continued during the 

1970s and 1980s, led to the identification of the software evolution phenomenon (Lehman, 1974; Lehman 

and Belady, 1985). Evolution is here understood as the continuing fixing, adaptation and enhancement of 

software systems, version after version, release after release within changing application domain and 

stakeholder needs.  Results of the earlier studies of the software evolution phenomenon included, inter 

alia, the laws of software evolution (Lehman, 1974; 1978; 1980; 1991; 1996), a classification of software 

into types S, P and E (Lehman, 1980), a principle of software uncertainty (Lehman, 1989; 1990), and, 

more recently, the FEAST hypothesis (Lehman, 1994). 

Almost since its inception, the investigation of the evolution phenomenon has included modelling of 

process dynamics. This is exemplified by three models of evolutionary system growth developed in the 

1970s (Belady and Lehman 1975; Riordan, 1977;Woodside, 1979). These models, inspired by observed 

growth patterns of evolving software and by reasoning about the process, explored the impact on long-

term functional growth of pursuing different evolution policies. However, it was only in the early 1990s 

that modelling of software process dynamics gained wider interest, though these studies (Abdel-Hamid 

and Madnick, 1991) concentrated on ab initio projects. Modelling work addressing long-term software 

life cycle issues followed (e.g. Aranda et al., 1993; Wernick and Lehman, 1998; Williford and Chang, 

1998; McCray and Clark, 1999; Chatters et al., 1999). 

With the collaboration of ICL, Logica and Matra BAe Dynamics the FEAST/1 project (1996–1998) 

(Feast, 2001) was able to substantiate, refine and extend the earlier results. This was made possible by 

analysis of data provided by these companies on the evolution of their respective systems, VME Kernel, 

the FW Banking Transaction system and a defence system. Data on two real-time Lucent Technologies 

systems also became available for analysis during this time. In FEAST/1, system dynamics (SD) 

(Forrester 1961; Coyle, 1996) and the Vensim tool (Vensim, 1995) were used to build models of two of 
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the industrial software processes being investigated (Wernick and Lehman, 1998; Catters et al., 1999). 

The continuing model building work has produced models which are relatively simple when compared 

with other SD models reported in the literature (e.g. McCray and Clark, 1999). 

One of the objectives of FEAST/1 was to achieve a better understanding of the long-term dynamics 

of the global software process (Lehman, 1994). Such a process includes the activities of all those 

involved: developers, users, marketing and support personnel and their managers, etc. It encompasses, but 

extends beyond, the immediate technical software process . The on-going FEAST/2 project (1999–2001) 

(Feast, 2001), with BT Labs as an additional collaborator, has continued the investigation. It has produced 

amongst its results a set of management and planning guidelines (Lehman, 2000a), which are derived 

from analysis and interpretation of the evolution phenomenology gathered over the years (Lehman, 1974; 

Lehman and Belady 1985; Feast, 2001). Other results of the project included a set of lessons learnt in the 

application of quantitative models to the study of software processes (Ramil et al., 2000). 

The present paper describes and exemplifies an approach to the application of SD models to the 

investigation of evolution policies. This work aims at contributing to the development of techniques for 

strategic management, planning and control of long-term software-product evolution. The need for 

modelling work addressing these issues within a long-term view has been highlighted in a summary of 

work in software process modelling (Kellner et. al., 1999). The approach proposed in the present paper 

combines elements presents in early models  (Belady and Lehman, 1975; Riordan, 1977; Woodside, 

1979), insights gained in FEAST/1 (Wernick and Lehman, 1998; Chatters et al., 1999) and those obtained 

in FEAST/2 (Feast, 2001). 

The present paper refers exclusively to E-type software system evolution, that, the evolution of 

systems regularly used to solve a problem in a real-world domain. The majority of the systems upon 

which businesses and organisations depend for their operation are of this type, hence its importance. Such 

systems display the intrinsic property that their functional capability must be continually adapted and 

enhanced, as long as they are in regular use (Lehman and Belady, 1985). Otherwise they deteriorate in 

effectiveness. The main criterion by which E-type software is judged is stakeholder satisfaction. 
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The results presented in this paper are restricted in their applicability to traditional software evolution 

paradigms. Whether, and to what degree, they are relevant in the context of emerging paradigms such as 

reuse-intensive processes, component-intensive and COTS-based software1 remains to be investigated. 

Evolution of open source software is also, here, excluded from the discussion. 

2 Process Modelling in FEAST 

The FEAST projects have focused on the long-term behaviour of product and global process 

attributes, such as system size and rate of work. In so doing they have pursued two classes, termed black-

box and white-box, respectively, of software process modelling. The former focuses on (mathematical) 

models that reflect externally observed process behaviour. This modelling activity looks primarily at 

patterns and structure in the metric data. White box models, on the other hand, reflect the operations of 

elements within the actual process. The two approaches are complementary and may be used in parallel, 

sequentially and/or iteratively as part of quantitative modelling support for evolution software process 

management and improvement (Ramil et al., 2000). The present paper focuses on white-box modelling. 

References to the black-box modelling work may be found on the FEAST web-site (Feast, 2001). 

The following list characterises the FEAST white-box modelling work. To date it has, inter alia: 

• sought to understand the phenomenon of software evolution and to identify significant feedback loops 

that drive evolutionary behaviour. This has included the development of models with a degree of 

explanatory power, not only such as focus on prediction of process attributes 

• focused on modelling of long-term attributes with time units of years or, alternatively, release 

sequence numbers. Release sequence numbers have been used as pseudo time indicators (Cox and 

Lewis, 1966), because the release point in time represents an instance in time where the system, its 

attributes and the code that implements them are clearly determined by the state of the product 

delivered. At other times, the artefacts manipulated by the process are in state of flux. 

• placed emphasis on models with a small number of variables. Models can then be refined by means of 

                                                      

1 Some of the issues relating to the long-term evolution of component-intensive software have been discussed in Lehman and Ramil, 1998. 
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a top-down approach (Zurcher and Randell, 1967) to achieve behaviour closer to that observed in the 

specific processes of interest and subsequently validate, calibrate and use the refined models as 

decision-aids 

• modelled the evolution processes and product attributes of processes studied using metrics such as 

module counts, which are considered to have a higher level of functional or semantic integrity than 

lines-of-code or other similar alternatives and hence, more meaningful in the context of long-term 

evolution studies. 

3 The Approach 

This section presents the basis for a system dynamics (SD) modelling approach to investigate and 

evaluate E-type system evolution policies. One starts by seeking to identify the major classes of 

influences that should be modelled to permit such evaluation. The following list identifies the elements 

considered by the present authors in their work. The ordering of the items is of no particular significance. 

Many others items could, of course, have been selected. The choice in any particular study will reflect the 

influences in a given application and evolution domain believed to be significant in that study, the 

concerns to be explored.  

• CONSTRAINTS – the make-up of the relevant process together with the related organisational and 

managerial bounds and limits. Such constraints might include, for example, the maximum number of 

personnel and the time frame available for the evolution of a particular system. Others constraints 

could emerge from contractual agreements and from the economic environment and reward practices 

within which the evolution takes place.  Empirical underlying observations such as those expressed in 

Brook's law (Brooks, 1995, p. 274), and the laws of software evolution (Lehman 1974; Lehman and 

Belady 1985; Feast, 2001) can also be considered constraints 

• DYNAMICS OF DEMAND – characterisation of the demand for evolution work (e.g. rate of 

incoming work requests from users and other stakeholders). Demand may be described by attributes 

such as, for example, volatility of existing requirements, rate of arrival of change requests, changes in 
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type and/or size of the user constituency that impact on, for example, user response to changes in the 

software, step changes in demand due to market, legislation and so on 

• DYNAMICS OF RESOURCES – representing the size, skills, knowledge and experience, familiarity 

with evolving application, productivity, effectiveness and/or other relevant characteristics of the team 

responsible for software system evolution. These would relate to activities such as work 

identification, planning and preparation, analysis and design, implementation, validation and 

verification, support, sales, etc 

• DYNAMICS OF TECHNOLOGY – similar to the dynamics of the demand, but reflecting 

technological (software, hardware, process technology, design methodology and tools, etc.) domains 

and the  work demand therefrom generated 

• TECHNICAL EVOLUTION PROCESS – attributes of the immediate technical process steps such as 

preparation and planning, implementation, verification & validation, and rework rates that are 

relevant in an investigation of policies 

• PAYOFF FUNCTION(S) – the relationship(s) that are sought to be optimised over the long-term 

evolution process. This makes it possible to formalise in the model the objective(s) that managers are 

seeking or will seek to optimise, for example, the functional power of a system, its impact on 

stakeholder satisfaction,  the contribution of the system to the businesses it supports, etc;  

• POLICIES – such as those implicit in the operation of open or feedback-loop mechanisms, that are 

likely to include human decisors who seek optimisation of payoff functions and/or the stabilisation2 of 

the behaviour of the attributes of the product and/or the process over long-term evolution process. 

Such attributes include, for example, productivity, system growth, portion of system handled per 

release (Lehman and Belady, 1985), evolution effort, including release interval and content, system 

complexity and so on etc 

• STAKEHOLDER SATISFACTION – a set of attributes that reflect the degree of achievement of 

                                                      

2 Stabilisation here may include not only the achievement of constant values but also in some cases of constant change rates. 
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stakeholders' needs and desires by the evolving system. This may (or may not) explicitly form part of 

the payoff function, depending on whether its optimisation is actively sought. An alternative 

formulation is that stakeholders' satisfaction needs to meet or exceed some minimum threshold 

• STAGES OF SOFTWARE EVOLUTON – Bennett and Rajlich have recently discussed the role of 

stages in the long-term evolution of software products  (Bennett and Rajlich, 2000; Rajlich and 

Bennett, 2000). In one stage, for example, the emphasis may be on implementation of new function. 

In another stage the emphasis may be on adaptation and enhancement of existing functionality. A 

further stage may focus on essential fixing work to keep the system in operation. When one considers 

the evolution situation in and across stages one must expect to find differences in the models applied 

to investigate evolution policies. Thus, SD models may have to account for different stages for the 

models to remain useful. 

• STRUCTURAL CHANGES - Product and global process changes that are significant enough may 

impact the dynamics of the global process. These may be for example, changes in the user base, 

organisational changes or radically different methods and tools from those used previously. They may 

also be exemplified by major addition or change in requirements, major system reengineering, 

addition of a major subsystem with new functionality, changes in programming language. In a SD 

model, these changes may be appropriately accounted for by step changes in model parameters. Other 

cases may require more fundamental changes to the model. 

The model builders will find that some of these elements may be modelled, based, for example, on 

expert knowledge, relevant historical data and on the application of forecasting techniques. 

The inclusion in the model of elements that may be particularly uncertain, such as those related to 

the dynamics of demand, may be achieved by modelling them as explicit assumptions to reflect, for 

example, different scenarios. The above list identifies some of the elements present, explicitly or 

implicitly, in some of the earlier models (Belady and Lehman, 1975; Riordan, 1977; Woodside, 1979, 

Wernick and Lehman, 1998; Chatters et al., 1999) and in the model presented in the next section as an 

example of the approach. 
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4 The Model 

It is generally agreed that the term software evolution encompasses activities that address functional 

fixing, adaptation, and enhancement of a software system over its lifetime. (Swanson, 1976). Within that 

broad description several classifications of maintenance and evolution activity, as summarised in a recent 

paper (Chapin et al., 2001), have been proposed over the years. One such classification, proposed by 

Lehman in 1974, is believed to have a significant implication in the context of long-term evolution 

management. It relates to the successive superposition of changes on individual modules of the evolving 

software. Such sequences are likely to lead to increasing complexity of the software and also give rise to 

other aging effects (Lehman 1974; Lehman and Belady, 1985; Parnas, 1994). If not adequately 

compensated for, these  lead, to a decrease in productivity of the evolution process (Swanson, 1999). 

Following Baumol's classification of work effort into progressive and anti-progressive types (Baumol, 

1967), Lehman proposed a further category, anti-regressive (Lehman 1974; Lehman 1985). Baumol's 

term progressive was applied to evolution activities that enhance system functionality by modification of 

or addition to the code and/or the documentation. The term anti-regressive was used to refer to work 

effort intended to compensate for the software aging effects. Such work consumes effort without any 

immediate visible stakeholder return as reflected, for example,  by system functional power or 

performance. Instead, it facilitates further evolution, reducing the effort required and enabling it to be 

achieved more quickly and more reliably. than would otherwise be required. But anti-regressive work in 

excess of some threshold may represent an investment of resources whose beneficial contribution to 

future evolvability is of less value than the contribution that resource could have made to progressive 

system evolution. The achievement of an adequate balance between the two categories is crucial to enable 

further evolution in a cost-effective manner. 

The approach and the SD model presented here are intended to explore the impact on product and 

global process attributes of policy decisions regarding the balance between progressive and anti-

regressive work. The objective is to provide a model that, once refined and calibrated to represent a real 

world process and its environment, can be used as a tool to explore the impact of different policies and 
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support decision making in this regard. 

Figure 1 shows a SD model that, in the main, addresses the problem of long-term system growth and 

explores the consequences of different levels of anti-regressive work. This involves the top right-hand 

portion of the model. The model also includes the view of the global process as a closed loop. It reflects 

the assumption, that delivery of functionality to the field is a source of future work requests as visible on 

the lower left corner of the model. Finally, the equations embedded in the two elements 'Progressive' and 

'Anti Regressive Work Productivity' force a non-linear relationship between productivity and team size. 

This is inspired by Brook's observation that as the team size increases, productivity losses in 

communication and similar tasks will grow by a factor that is proportional to the square of the team size 

(Brooks, 1995). The details of all these aspects of the model are given in the equations provided in the 

Appendix. 

This model inherits elements from earlier models (Belady and Lehman, 1975; Riordan, 1977; 

Woodside, 1979, Wernick and Lehman, 1998; Chatters et al., 1999). From the models of the 70s it 

inherits the view that an imbalance between cumulative progressive and cumulative anti-regressive work 

leads to deterioration in productivity. This allows one to consider the effect of growing complexity 

without having to select a software complexity measure. From the models of the 90s cited, the model 

inherits the view of the global process as a closed loop. 

The model is constructed in Vensim (Vensim, 1995) and is fully executable. Following the rationale 

underlying the simplifications made in the earlier FEAST SD models, the excluded elements are currently 

assumed either to be constant, and not to impact dynamic behaviour, or of not significantly affecting the 

particular policy being investigated. The structure of the model and the relations it incorporates have been 

discussed with some of our industrial collaborators. The model considers the software evolution process 

as a process of arrival, implementation, delivery and generation of change requests3. The term change is 

used here in a wide sense to encompass both new and changed requirements and the work required to 

                                                      

3 The model embeds the assumption that one can aggregate all the evolution activity in a sequence of homogenous change request units. One 
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implement them in the evolving software4. This includes verification or validation activities and 

deployment of the new version of the software in the operational domain. 

In principle, the model could equally well be based onto other measures of evolution effort. As 

already implied the actual selection of a particular measure must depend on data availability and other 

considerations. One also requires measures of work achieved, growth and/or change in functional power, 

for example and measures of change. The latter could reflect numbers of requirements units changed (e.g. 

paragraphs in a requirements specification document), number of function points added and changed, 

number of implemented addition and modification requests, counts of modules modified, counts of 

modules handled and number of changed lines of code. 

Definitions of model variables in the Appendix refer, in general, to changes, without reference to any 

particular measure. The relative merits of the candidate measures remain to be fully explored. Note that 

different measures may display the attribute at different levels of granularity and from different 

perspectives. It may, therefore, be beneficial to retrieve data and to develop a model family that can 

operate to operate on data reflecting several measures. It will then be of interest to determine whether the 

several measures reflect analogous general patterns and trends, sometimes called reference modes (Coyle 

1996) in SD terminology. If significant behavioural differences are observed then these must be 

investigated and clarified. 

The Appendix includes descriptions of all the variables in the model. We refer here only to the two 

that are directly related to the example that follows. These are 'Anti-Regressive Work Policy' and 

'Threshold Productivity'. In Fig. 1, ‘Anti-Regressive Work Policy’ represents the fraction of resources 

assigned to such work and is a fraction that may take any value between 0 and 1. 0 means that no resource 

is assigned to anti-regressive work, and 1, implying that all available resources are applied to that activity. 

The model simulates a management feedback control mechanism by starting the anti-regressive work if 

and when a decrease in productivity occurs with respect to a given 'Threshold Productivity'. Model output 

                                                                                                                                                                           

could refine the model to reflect at a higher level of granularity the existence of different types of work. 
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(Fig. 2), with ‘Anti-Regressive Work Policy’ set to 0, reproduces closely the growth trend of one of the 

systems studied in FEAST/2 over 180 months of its lifetime to late 1999. 

The software system from which the growth trend was derived is a large operational support system. 

Its evolution trends (growth, cumulative modules handled) are broadly similar to those of other software 

systems studied in FEAST. The actual growth trend in Fig. 2 (solid line) was extracted by analysing 

change-log records of source code. For this purpose several Perl scripts were developed. The script 

identifies the date of creation of each module, accumulates the number of modules created per month 

thereby enabling determination of the growth trend. Model parameters were adjusted so that the 

difference between the actual growth trend and model output was minimum. Although one must not 

presume that the similarity of the curves in Figure 2 indicates that the model is an adequate abstraction of 

the real process (this would have required, amongst other steps, the checking the values of model 

parameters against real data derived from the process being modelled. Unfortunately, such data were not 

available at the time of writing). It is, nevertheless, interesting to note that a model that is relatively 

simple by comparison with other published models that tend to involve hundreds of variables) can so 

closely approximate real world patterns. But model validation requires matching of model and real world 

mechanisms for it to be accepted as significant and meaningful. Model parameters have been set to values 

that are tentative in terms of our understanding of the phenomenon being simulated. This does not, 

however, constitute a valid calibration against a real world process nor can such a calibration be 

undertaken without preparatory work that relates the model mechanisms to real process mechanisms or 

procedures.  

5 Model Outputs 

As an example of the use of the model for policy evaluation, Figs. 3 and 4 show the significant impact 

of policy decisions on the predicted behaviour of productivity under simulated conditions over the next 90 

months of system evolution, that is for a period beyond the point in time for which actual system growth 

                                                                                                                                                                           

4 In this paper we do not make a distinction between changes to existing code and the addition of new code. All is subsumed by the term change. 
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data was available. 

In particular, Fig. 4 shows that the model predicts that 30 percent of resources assigned to anti-

regressive work results in significant extension of the potential system life span. This is only an example 

of a possible policy; one that would be refined in successive steps. More detailed policies, such as 

changing the degree of anti-regressive activity over time in response to some simulated circumstances, 

can be require only minor modification of the model for their exploration. 

6 Discussion 

Observation of industrial processes suggests that key attributes of the product and process do not tend 

to be actively and consistently managed over the entire product life cycle. Management decisions tend to 

deal primarily with relatively short-term issues and details. In a complex feedback-based process, local 

decision-making is likely to lead to sub-optimal global behaviour over the entire life cycle (Lehman, 

1969, 1994). In a time of increasing dependence on computer-based systems by businesses and 

organisations at large, it appears that there is a lack of decision models to support decisions related to 

long-term system evolution issues. The modelling approach and the model described in the previous 

sections is offered as a contribution towards that end. In general, the proposed approach may be used to 

support decisions related to, for example: 

• what is the functional growth that an evolving system is likely to achieve over a period of time 

based on an evolution policy? 

• is the software process likely to be able to cope with the work demand? 

• would it appear to be appropriate to replace an ageing system (and/or process) by a new one? If 

yes, when?5 

Answers to the above questions can be pursued from different perspectives and considering some of 

the many domains (e.g. application, market, technology, process) and the dimensions (e.g. stakeholder 

satisfaction, value, risk, cost) involved. 
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In the FEAST black-box modelling work the present authors have sought answer to the above 

questions by: retrieving data that reflect process and product attributes, detecting trends and extrapolating 

them using models such as the inverse square model of system growth (Turski, 1996; Feast, 2001). The 

inverse square model has exhibited a remarkable predictive power of growth trends over one or two 

individual segments, interpreted as stages, with accuracy within 10 percent of the actual size values over 

releases. However, such a black-box model does not account for the potential effect of either future 

structural changes in the global process or future active management of the growth trend. Nor do such 

models identify the mechanisms or phenomena to which the observed behaviour could be attributed or by 

changes to which t observed behaviour could be changed, improved in some sense for example. For this, 

white-box models such as the one described in the previous section may be useful. 

Active, conscious management of growth trends and other important attributes (e.g. maintainability 

(Swanson, 1999) may be desirable, in particular, in some organisations that are heavily dependent on 

computers and software, either as a product to be merchandised or as a vital part of their internal 

operation. As shown in the previous section, white-box modelling techniques can be used to investigate 

the consequences of different evolution policies and, hence, achieve, in some sense, optimal behaviour. 

Note that by considering a policy not as open-loop but as a feedback control, such as the one in the 

example shown, a degree of robustness is added against inaccuracies in the SD model. 

The parameters of the model presented here have been selected so that model output reflects a real-

world growth trend. This is, in fact, considered to be the first step in what then can become a calibration 

based on real-world data of the rest of model parameters, relying, when possible, on historial data and/or 

expert knowledge. Model validation must follow by, for example, assessing predictive accuracy of the 

model with data sets ‘not seen’ during model calibration, tracking a ‘live’ process and examining how 

closely the model's output follows real-world behaviour. One must document all the assumptions made 

during calibration and its validation. Such validation of the model and of all relevant model parameters 

                                                                                                                                                                           

5 The model proposed in this paper can be useful in connection with the replacement decision procedures discussed in Lehman et al., 2000. 
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may usually trigger a sequence of model modifications and refinements until the empirical validity of the 

model is established on a firmer basis. The latter is essential before attempting to use the model as a 

decision support tool for a real evolution process. In this sense, the main contribution of this paper is in 

proposing an approach, and indicating with a model exemplar, the scope and a level of abstraction for 

such modelling activity. 

7 Conclusions of the Modelling Exercise 

This section describes the differences between this model and those developed during FEAST/1 and 

reported previously. It sets out the conclusions which have so far been drawn from the process of building 

this new model. 

Differences from earlier models include: 

• the explicit modelling of changes in the software system, the creation of its demand and how that 

demand is met, which was abstracted in earlier FEAST studies 

• the splitting of effort applied during software evolution into progressive and anti-regressive 

activities, and the simulation of the effect of the ratio between these on changes made to the 

software product 

• the integration of a policy into the model, in this case a policy which determines the amount of 

anti-regressive activity based on the current productivity of developers 

• reflection of non-linearities in productivity 

Conclusions from the earlier FEAST SD model-building work reinforced by that reported here are that: 

• simulation studies such as this exemplify an application of the behavioural invariants encapsulated in 

the Laws of Software Evolution. Conversely, the model's success in replicating real-world behaviour, 

provides further support for the Laws. To increase confidence in the latter observation requires, 

however, that the model presented here must be fully calibrated and validated 

• it is possible to simulate long-term trends in the size of real-world software products using models of 

this type 
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• the approach adopted in the development of earlier FEAST models, including features such as an 

emphasis on simple models, and the modelling of the software production process at a high level of 

abstraction, supports more detailed model-building using an step-wise incremental refinement 

approach (Zurcher and Randell, 1967). This approach is now being used to concentrate on specific 

areas of the global software process, adding more detail as the need for this is indicated from a desire 

for greater accuracy in the simulation outputs 

• in this more complex model as in earlier simpler FEAST SD models, abstraction of areas not of 

current interest does not prevent the generation of broadly accurate simulation outputs. 

In addition, the development and successful calibration of this new model against general trends in a real-

world software evolution process which embodies structures intended to simulate both the effect of the 

increasing complexity of software systems suggested by the 2nd law of software evolution (Increasing 

Complexity) (Lehman 1974, Lehman and Belady, 1985) on the ability to modify that system and the 

possible effects of a policy to reduce or counteract this complexity, provides additional specific support 

for this law. 

8 Future Work 

This model forms a potential starting point for the identification of inputs and building blocks of a more 

detailed generic SD model of software evolution processes than has previously been possible. Adding 

detail to the model implies progressive identification of exogenous and endogenous influences on the 

behaviour of evolution processes. It forms the second step (after previous modelling exercises in FEAST) 

in building a theory of software evolution (Lehman, 2000b;Lehman and Ramil, 2000). Work on the 

development of such theory will benefit from the availability of a set of models that will enable validation 

and future refinement of the theory. 

Steps to be taken in further refinement and use of the model presented here include the following: 

• employing simulations based on adjusting model policy variables to improve decision-making in the 

management of evolution for a real-world software system; 
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• extending the model to simulate different software evolution domains, including component-intensive 

and COTS based software processes (Lehman and Ramil, 1998); 

• exploring the possibility of building a generic model for different software application areas, 

development organisations, outside environments, and so on; 

• extending the modelling work to form a set of building blocks, enabling the instantiation of different 

areas of the model and the integration of these after calibration into a common model for each 

application; and 

• integrating it with black-box models in an iterative modelling procedure for improvement of 

evolution processes as suggested in (Ramil et al., 2000). 

9 Final Remark 

The summary of concepts relevant to the determination of policies for managing E-type system 

evolution, and their exemplification by means of a SD model, as illustrated in this paper contributes 

towards the achievement of systematic strategic planning, management and control of long-term software 

evolution. Much, however, remains to be done if quantitative models are to be successfully and widely 

used in industrial software evolution processes. 
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Figures belonging to main part of the paper 
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Figure 1 - System dynamics model to study aspects of the global software process 
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Figure 2 - Growth trend in modules and model simulated output for one of the systems studied in 
FEAST/2 

 

 

 

 

 

 

 

 

 
 



 - 23 - mml649.jss.final 

Growth trend  (actual) and model's output (simulated)
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Figure 3 - Simulated process behaviour with no resources assigned to anti-regressive work and with 
all three variables relative to the actual size of the system at month 12 

 
 

 

 

 

 

 

 

 

 

 

 

 



 - 24 - mml649.jss.final 

Growth trend  (actual) and model's output (simulated)
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Figure 4 - Simulated process behaviour with 30% of the resources applied to anti-regressive work 

and with all three variables relative to the actual size of system at month 12 
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APPENDIX 

Definitions of the Variables in the Model 

Variables Related to the Technical Software Process 

Change request – Represents changes to requirements currently being implemented or already part of 

software's functionality. It also includes incoming new requirements. 

Exogenous rate – Refers to the flow of change requests whose origin cannot be associated with adaptation of 

already implemented requirements. It has been modelled as a random process Poisson1 which is frequently used, 

in general, to represent request arrivals to a servicing queue. 

Change demand – Changes waiting to be implemented but not yet released. 

Rate of change completion – Refers to the rate of completion of changes including all necessary activity, 

such as implementation, quality verification and validation (QV&V), integration and system validation, etc. 

Changes implemented – Changes implemented but not yet released. This is consistent with the observation 

that completed changes are released to the final users in batches. This practice may be associated with reduction 

of system integration and validation costs, optimisation of resources involved in the latter, need for simplification 

of user documentation updates and training of support personnel, need for minimisation of costs of reinstallation 

and/or due to contractual, administrative or policy-related constraints (e.g. when periodic releases at fixed 

intervals are the case). 

Cumulative changes released – Changes already released as part of a version or release of the software. This 

represents the functionality already delivered to the users. 

Release policy – Determines the points in time at which the completely changes are effectively released to 

the users. 

                                                      

1 D. Williams suggested us the use of the Poisson distribution. 



 

Variables Related to the Usage Domain 

Stakeholder response to change, multiplier of work requests and Stakeholder response to change, delay  

With regards to these part of the model a ripple effect in released functionality is postulated, that is, after 

changes are released to the users it is expected that need for further adaptations and customisations will arise. 

This mechanism is modelled using a 3rd order delay (Coyle, 1996), which in Vensim (Vensim, 1995) is invoked 

by the command: 

Output = delay3(input,delay) 

and in the model is implemented as: 

Endogenous rate = delay3(STAKEHOLDER RESPONSE TO CHANGE multiplier of work requests 

*Rate of release of changes,STAKEHOLDER RESPONSE TO CHANGE delay) 

Variables Describing the Resources Applied to Evolution 

Anti-Regressive effort – As defined by Lehman [leh74], effort devoted to activities which do not increase 

directly the power, function or performance of the software, but which will enable further evolution. Examples of 

these are software and documentation re-structuring and rewriting for complexity reduction, elimination of dead 

code, etc. 

Progressive effort – Development effort addressed to increase power or function, or to improve software 

performance. 

Average ab initio individual productivity - Average number of progressive changes implemented by a person 

in one month when working in an ab initio project. 

Team size – Total number of people assigned to the evolution team at any given moment in time. It is 

assumed that all the members are of average experience and productivity. A further refinement of the model 

might include the personnel training and learning dynamics. 

Staffing policy – Number of person-months assigned to the evolution team over software lifetime. Team size 

is directly derived from Staffing Policy. The effects of different staffing policies can be examined. 

Cumulative changes implemented – Total number of changes implemented over system lifetime. 



 

Cumulative anti-regressive changes – Total number of anti-regressive changes implemented over system 

lifetime. 

System type – A calibration constant. It reflects the impact of the neglected anti-regressive work in 

progressive productivity. The latter is defined as the difference between the cumulative changes implemented and 

the cumulative anti-regressive changes. 

Progressive work productivity – Number of changes implemented per person-month. In the model it is given 

by: 

Progressive work productivity = AVERAGE ab initio INDIVIDUAL PRODUCTIVITY*effect of team 

size*effect of neglected anti-regressive work. 

The formulation in Vensim (Vensim, 1995) is the following: 

Progressive work productivity  = AVERAGE ab initio INDIVIDUAL PRODUCTIVITY*(( TEAM 

SIZE^0.2) - ((1/1800)*TEAM SIZE^2))* 

(1-SYSTEM TYPE*(Cumulative changes implemented-Cumulative anti-regressive changes)) 

The effect of the team size is modelled by two terms. The first represents the effect of a mutually co-

operating group of people and hence gain in productivity as the team increases its size. The second reflects losses 

due to interpersonal communication overhead, needed to coordinate the work of large groups of people. The 

second term is calibrated such that in a group of 30 people working in a closely co-operative fashion 50 percent 

of work would be lost in meetings and communications, as suggested in (Adbel-Hamid and Madnick, 1991). This 

is exemplified in Fig. A.1, which shows the productivity function and its constituents, with maximum team 

productivy at a team size of approximately 20 people. It also shows that given such formulation, the total team 

output per unit of time reaches a maximum at 40 people. Adding people to a team of that size will reduce the total 

team output. Such a generic equation offers the basis for a productivity function, once calibration of its 

parameters to a particular process has been performed. 

Productivity threshold - Desired progressive productivity.  

Anti-regressive work productivity - Number of anti-regressive changes implemented per person-month. In 



 

the model it is given by: 

Anti-regressive work productivity = AVERAGE ab initio INDIVIDUAL PRODUCTIVITY*((TEAM 

SIZE^0.2) - ((1/1800)*TEAM SIZE^2)) 

Note that the same formula reflects changes in progressive work productivity due to team size. 

Anti-regressive work policy - A parameter between 0 and 1 to reflect the percentage of the Team Size to be 

dedicated to this type of work if the policy is activated. 



 

Figure belonging to Appendix of the paper 
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Figure A.1 - Theoretical average productivity of team members as a function of team size 
 


