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Abstract

Designing arti�cial systems with ever more biologically-
plausible `brains' continues apace and permits investiga-
tions into the computational capabilities of engineered
systems. Creating arti�cial neurons with biologically-
realistic morphologies is however a non-trivial problem.
This paper addresses growing neurons to order, neurons
with morphologies exhibiting strong biological traits. A
biologically-inspired simulator of neural development is
coupled with a genetic algorithm to evolve 3-dimensional
neuron morphologies. The morphology of a biological
neuron provides the exemplar target against which the
developmental evolution process is gauged.

Realising the Potential of Brain Building

During the infancy of Arti�cial Life, the goal of building
arti�cial organisms and systems with arti�cial brains {

Brain Building (deGaris, 1990) { was often a mooted
topic. As the domain of Arti�cial Life has matured,

so has Brain Building, such that a number of leading-

edge, research corporations currently invest substantial
resources into developing arti�cial brains (RIKEN, 2000;

NASA, 2000; ATR-HIP, 2000). Much of the matura-

tion has come through the constant increase in compu-
tational resources which provide the means with which

to simulate arti�cial neural systems to ever higher levels
of biological-plausibility (Hines and Carnevale, 1997).

With biological-plausibility comes the opportunity to

fully exploit the complexities of neural computation.

Single neurons, let alone networks and systems, possess
adaptive, dynamic computational capabilities (Koch and

Segev, 1998). One of the key determinants of these ca-

pabilities is the relationship between a neuron's mor-
phology and its function (Mainen and Sejnowski, 1996).

However, only a handful of computer simulations have

explored the relationship between function and form in
biologically-plausible terms, e.g. (Mel, 1994).

Our research explores the feasibility of evolving devel-

opmental programmes that create biologically-plausible
structured neural systems (Rust, 1998). Previously we

y
topiary: a branch of gardening, the clipping of trees into

imitative and fantastic shapes.

have used simulated neural development to grow arti-

�cial neurons that were functionally evaluated against
biological neurons (Rust and Adams, 1999). Experi-

ments showed a strong relationship between function and

form in arti�cial neurons where for example, implausi-
ble morphologies possessed inappropriate functionality.

Even the �nal neurons, although functionally similar,
had morphologies which still di�ered from their biolog-

ical targets. So to mimic the computational capabili-

ties of real neurons and to speed up the search for ar-
ti�cial equivalents, we argue that a method of creating

biologically-cogent arti�cial neurons is required. Namely

we are interested in growing neurons to order. In this pa-
per the evolution of neuron morphology is explored.

Modelling Neural Development

Modelling of neural morphology using the re-writing

rules of L-systems (Lindemayer, 1968) has been ex-
plored by a number of groups (Burton et al., 1999;

Ascoli, 1999). (Ascoli, 1999) in particular has been us-

ing L-system rules whose grammar is derived from ob-
servations of biological neural morphology (e.g. typical

branching angles and rate of dendritic diameter reduc-

tion at branch points). L-system neuron models how-
ever, do not typically allow interactions between a grow-

ing neuron and its environment. The development of a

neuron and hence its visual form are dependent on the
implementation of the hand-crafted re-writing rules.

Fleischer and Barr developed an extensive simula-

tor which incorporated many self-organising bio-physical
phenomena expressed as di�erential equations (Fleis-

cher, 1995). Attempts were made at evolving neural

morphology but these were computationally intensive
due to the large parameter search space involved.

We have implemented a 3D model of neuro-biological

development, in which neuron-to-neuron connectivity is
created through interactive self-organisation (Rust et al.,

1998; Rust, 1998). Development occurs as a number of
overlapping stages, which govern how neurons extend

axons and dendrites, collectively termed neurites. Neu-

rons grow within an arti�cial embryonic environment,
into which neurons and their neurites emit local chem-

ical gradients. The growth of neurites is inuenced by
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the local gradients and the sets of interacting, develop-

mental rules. The interactive rules enable neurites to
navigate and branch in response to local developmental

conditions, and to prune unwanted connections.

The developmental rules are controlled by parameters,
much in the same way as gene expression levels can be

thought of as parameters for biological development. By
varying these parameters, a variety of neuron and net-

work morphologies can be achieved. Examples of indi-

vidual neurons are illustrated in Figure1.

Figure 1: Examples of 3 dimensional neurons grown us-

ing the developmental simulator.

Evolving the developmental model for a speci�c net-
work then becomes equivalent to the search for optimal

sets of developmental parameters using, for example a
genetic algorithm (GA). Previously we have used a GA

to evolve developmental parameters which lead to the

creation of an edge-detecting retina (Rust et al., 1998).
In this paper the simulator is used to grow single neurons

within developmental environments rich with gradients

of chemical attractants. The single neurons are then
evaluated in terms of their morphological characteristics

against the dendritic structure of a biological neuron.

Analysing Neural Morphology

Numerical Evaluation

In order to verify the match between an arti�cial neuron

and a desired biological counterpart, means of charac-

terising biological neurons are required. However, no
one set of benchmark measures (quantitative, topolog-

ical and/or qualitative) exists within neuroscience lit-
erature, with which separate classes of neurons can be

reliably characterised or compared. Hence in the exper-

iments reported in this paper, as with complementary
work (Ascoli, 1999), a minimal set of characteristics is

speci�cally selected. The chosen set aims to reliably rep-

resent the geometrical and spatial characteristics of the
target biological neuron in the least terms.

Some approaches seek to �nd generic solutions for

classes of neurons by averaging measures from neuron
databases. In this paper we aim to gain an understand-

ing of how the morphological characteristics of individ-
ual neurons arise before attempting more generic, class-

based approaches. Consequently we seek a methodology

to clone arti�cial neurons from a given target neuron.
The chosen exemplar neuron for this paper, a layer 5

pyramidal neuron, is shown in Figure 2.

Figure 2: The dendritic morphology of the target, layer

5 pyramidal neuron, where the cell soma is located at
the centre of the proximal dendritic tree. Morphology

obtained from (Mainen and Sejnowski, 1996).

Visual Evaluation

One proviso in using only representative numerical char-

acteristics is, that although particular arti�cial solutions
may satisfy the selected criteria, they may not necessar-

ily be solutions which are visually satisfying. For ex-

ample, although a neuron may be evolved to have the
correct number of tips (terminal segments), it does not

mean that the overall geometry of a solution is neces-
sarily consistent with its biological counterpart. In this

paper we therefore examine evolving arti�cial neurons

to criteria based upon numerical characteristics alone as
well as criteria based on visual appearance alone.

Simply using a GA to traverse the parameter space

looking for visually desirable morphologies is not how-
ever an e�ective method. In early generations due to

the large diversity in initial populations, visual discrim-

ination will be slow since most morphologies will be dis-
carded until relevant, morphological search sub-spaces

are found. A more directed search, where the paths be-
tween generations of morphologies could be more directly

traversed, would be desirable in this instance.

One such directed approach was used by Dawkins to
evolve his arti�cial biomorphs (Dawkins, 1991). An anal-

ogous approach towards the evolution of neuron mor-

phology based on visual discrimination is used here. De-
velopmental parameters are selected to form a genome.

Each generation of neuron is created by selecting each

gene in turn and creating 2 mutated copies of the gene by
simply incrementing and decrementing its current value

by a pre-determined delta. The values of the remain-

ing genes in the genome remained �xed. Genes are
given minimum and maximum values which they can

not exceed and a start value is randomly selected from
within this range. For each generation, a neuron for each

genome is grown and displayed on the screen. Based on

a visual comparison between the evolved neuron mor-
phologies and the target biological neuron, a morphology

is selected for the next generation.
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Figure 3: Arrangement of chemical attractants for the 2

developmental environments. The soma of the pyrami-
dal neuron is the lowest object in (a) and the cone at the

centre of the sphere of attractants in (b).

Developmental Strategies

Self-Organising Interactions

A feature of the developmental simulator is the ability to

inuence or sculpt the growth of neurons by exploiting
the potential of the interactive, self-organising mecha-

nisms. This was achieved by using the placement and

temporal expressions of chemical attractants to guide
dendritic growth. For example, the placement of attrac-

tants can allow asymmetrical growth, orientated along
one particular axis. Being able to specify characteristics

of the attractants, provides a more intuitive approach to

growing neurons to order. This can avoid relying upon
adapting developmental rules and parameters, which can

often feel like tinkering with a black box.

Developmental environments of attractants were

therefore constructed to interact and sculpt the neurons

as they grow. These are illustrated in Figure 3. In the
case of the proximal dendritic tree, its morphology is

approximately radial and symmetrical, hence an envi-
ronment of attractants placed on the surface of a sphere

is used (Figure 3(b)). The dendritic tree is not how-

ever perfectly symmetrical as the upper dendrites have
shorter lengths compared to their neighbours. To sculpt

the arti�cial neurons to this subtle degree of asymme-

try, a small proportion of the attractants are positioned
marginally closer to the centre of the sphere.

The morphology of the distal dendrites is directly re-
ected in the arrangement of attractants (see Figure

3(a)). Intermediate attractants are placed to guide den-
drites vertically before the arc of attractants at the top

of the environment are encountered. In both sets of de-

velopmental environments the attractants were placed
to reect the spatial dimensions (�m) occupied by the

biological neuron.

Phased Development

Neurons are known to respond to di�erent environmen-
tal cues in accordance with their spatial and temporal

locations (Hall, 1992). Trying to reproduce the shape of

a complex dendritic tree is therefore unlikely to succeed

using an algorithmic model with global settings.
One potential solution to this problem is to split the

development of the morphology into di�erent phases

and optimise these phases separately. Criteria for sub-
dividing the morphology can then be based on such

properties as branching frequency and the orientation of
growth. For each phase of development growth control

parameters can be given di�erent ranges of potential val-

ues at di�erent times. Branching for example, may then
be controlled by inhibitory values when it is not required

and excitatory values when it is required.

The development of the arti�cial pyramidal neuron
is divided into 3 such phases. The �rst phase consists

of the initial vertical development of the dendritic tree

away from the soma, where preliminary branches are es-
tablished. The e�ects of attractants are time dependent

during this phase to induce interactive branching at the
desired times. The end points of phase 1 are then used

as the starting points for the second phase of branching,

directed towards the arc of uppermost attractants. The
�nal phase produces the development of the proximal

dendrites into the environment of attractants arranged

on the surface of a sphere (see Figure 3(b)).
A complete pyramidal neuron is achieved by combin-

ing all 3 phases of the developmental process.

Results

Since the proximal dendrites are basically `spherical', vi-

sual selection is neither useful nor necessary. Instead, we

used automated evolution based on numerical measures
of morphology. Visual selection was used to sculpt the

asymmetrical distal dendritic tree.

Visual Selection: Distal Dendrites

For both phases 1 and 2, 4 developmental parameters

were evolved. Any number of parameters could have

been chosen but 4 parameters which have key e�ects on
branching interactions were selected. Speci�cally the pa-

rameters adapted were: (i) the probability of branching
as a function of local attractant gradients, (ii) inhibition

of branching following a previous branch, (iii) branch in-

hibition due to saturation caused by nearby attractants
and (iv) local repulsion between growing dendrites.

Figure 4 shows the various stages of the visual selec-

tion process. Since the genome of the neuron contained
4 genes, 8 morphologies are grown for each generation

(each gene is mutated both positively and negatively

whilst the other genes remain �xed). A typical screen-
shot of an intermediate generation of phase 1 is shown

in Figure 4(a). The �nally selected morphology is illus-
trated in Figure 4(b). The morphology for phase 2 was

evolved in the same manner.

Numerical Selection: Proximal Dendrites

Six morphological properties of the proximal dendrites

were chosen to be the criteria upon which evolved neu-
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Figure 4: Typical images from phase 1 of the visual se-
lection process. (a) A screen-shot of one generation of 8

neurons during an intermediate stage (25 generations).

(b) The �nal, visually selected neuron (52 generations).

rons were evaluated. The criteria were: (i) total length of

the dendritic tree, (ii) number of dendritic segments (i.e.
the number of dendritic lengths between branch points

(iii) number of tips, (iv) average length of tips, (v) length
of the longest tip and (vi) the centre of gravity. (vi) was

aimed at providing a spatial perspective.

These properties were extracted from data from the
neuron and were chosen to e�ectively describe the mor-

phology of the neuron in the least possible terms. The

error value of a neuron was calculated using:

e =

6X

i=1

jai � tij

ti

(1)

where ai is the value of a property of the evolved neuron
and ti is the target value for the proximal dendrites.

The GA used in these experiments was GENESIS

(Grefenstette, 1990). 14 developmental parameters were
encoded in the GA using 44 bits. The encoded parame-

ters controlled the times at which dendrites could branch
and how the growing tips would interact with the attrac-

tants in its environment. The population size was 50 and

each population was randomly initialised. The crossover
rate was 0.6 using dual point crossover. The mutation

rate was set such that at each generation approximately

15% of the population would undergo a bit mutation.
The role of the GA was to minimise the error from the

evaluation function (1).

Ten simulations were performed on a 400MHz Pen-
tium PC running Linux. Each population of neurons

was evolved for 150 generations where each population,
on average, took 50 minutes to grow and to be evalu-

ated. The best individual neuron evolved had a �tness

value of 0.195, which is equivalent to an average error of
3.25% per evaluated property. The average error for the

10 experiments was 0.296 (4.93% per property).

(a) Dt=500 (b) Dt=710 (c) Dt=820

(d) Dt=1000 (e) Dt=1620 (f) Dt=1820

Figure 5: Snapshots of the growth of the pyramidal neu-

ron in all 3 developmental phases, at various develop-
mental times (Dt). (c) is the end of phase 1, (e) is the

end of phase 2 and (f) shows the �nal phase.

Combining the Phases

Figure 5 shows the complete developmental process com-

bining all 3 phases of the developmental evolution pro-
cess. The morphology of the evolved arti�cial neuron is

compared against its biological target in Figure 6.

(a) (b)

Figure 6: A comparison of morphologies between (a) the

target biological neuron and (b) the best evolved neuron.

Discussion

The evolution of the proximal dendrites demonstrated
that if visual discrimination of a neuron is not critical

and its dendritic tree can be assumed to be approxi-

mately symmetrical, then numerical measures alone can
be suÆcient. Due to the radial, symmetrical morphology

of the proximal dendrites a regular spacing of attractants
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was adequate. Growing neurons in this way can then be

a blind, automatic process.

Where the morphology of the dendritic tree is more
complex, then a blind process may fail. To evolve the

morphology of the distal dendrites using numerical se-
lection alone, would require a larger set of numerical

characteristics to be extracted and used as guides for de-

velopment. Choosing representative measures is a non-
trivial task and there is no guarantee that these mea-

sures can be e�ectively interpreted by the evolutionary

process to produce desired morphologies. (Evolution-
ary computation (EC) literature contains many exam-

ples of algorithms adapting to unwanted behaviours and

functions.) Evolving using visual examples of morpholo-
gies enables a more directed approach, somewhat more

intuitive than a black box method. Greater control of
the developmental process was also a�orded by splitting

the morphology of the pyramidal neuron into separate,

tractable sub-problems.

The modelled mechanisms of interaction encapsulate
the self-organising principles inherent in bio-physical

processes. These interactions are shared between a grow-

ing neuron entity and its developmental environment.
Due to these interactions, fewer parameters which con-

trol the growing behaviour of the neuron need to be en-
coded and evolved in the genome. This thereby leads to

a reduction in the size of the genome under evolution,

which has 2 potential bene�ts. Firstly, it reduces the
reliance on the chosen EC tool alone to identify optimal

solutions by modifying the developmental control param-

eters. The evolutionary workload can be more evenly
divided between the bio-physical interactions of the de-

velopmental model and the EC method. Secondly, re-

duced genome sizes should lead to shorter evolutionary
searches.

Future Work

As well as validating the model further on other exem-
plar neurons, the coupling of evaluation of evolved mor-

phologies with dynamical membrane models needs to be
explored. Previous work (Rust and Adams, 1999) ex-

plored the relationship between function and morphol-

ogy but without directing the growth process to produce
more visually biological-like morphologies. The question

to be addressed is, having selected a morphology based

on its similarity to a biological neuron, does functionality
(e.g. the pattern of spike trains) come for `free'?

During previous experiments evolving arti�cial neu-

rons with functional characteristics akin to biological ex-
amples (Rust and Adams, 1999), the major bottleneck

was the computational cost of evaluating evolved neu-

rons with the chosen compartmental membrane model.
On-going work aims to identify a computationally less-

intensive membrane model to permit faster evaluations.

Conclusions

A biologically-inspired developmental simulator subject
to evolutionary adaptations, was presented in this pa-

per which was capable of generating biologically-realistic

neuron morphologies. Growing dendritic trees were
sculpted through self-organising interaction with chemi-

cal attractants positioned within the developmental en-

vironment. In-conjunction with this, dividing the search
for the morphology of a complex neuron into separate

and solvable phases proved to be a bene�cial strategy.

Such a combination of techniques and strategies provides
a jumping o� point to explore even more dynamic arti-

�cial neurons and networks.
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