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ABSTRACT

 The addition of noise to the deterministic
Hopfield network, trained with one shot Hebbian
learning, is known to bring benefits in the
elimination of spurious attractors.  This paper
extends the analysis to learning rules that have a
much higher capacity.  The relative energy of desired
and spurious attractors is reported and the affect of
adding noise to the dynamics is empirically
investigated. It is found that the addition of noise
brings even more benefit in the case of the higher
capacity rules.

Key-Words Associative memory, Attractor
basins, Hopfield neural networks, Learning rules,
Perceptron, Performance measures, Pseudo-inverse.

1 INTRODUCTION

In this paper we examine how a variety of high
capacity associative memory models respond to
noise in the dynamics.  The networks are all
variations on the standard Hopfield model, differing
in the weight matrix that is used to embed the set of
training patterns.

All models of this type function as associative
memories.  The learnt patterns act as attractors in the
state space of the network, so that network states that
are near to learnt patterns may move towards a learnt
pattern, under the network dynamics.  However the
learnt patterns are not the only attractors, there may
be many others: either correlated with mixtures of
the training patterns, or otherwise.  These spurious
attractors are normally unhelpful.

In the standard stochastic model the addition of
noise to the dynamics can be beneficial [1]: the free
energy landscape is changed so that, spurious local
minima of the energy function may no longer be
stable; the probability that the network ends in a
learnt pattern can be increased.

The work presented here empirically investigates
whether similar benefits can arise in the high
capacity versions.  All the networks examined share
the same dynamics, either deterministic or

stochastic; they differ in the way the weights are
calculated.  The variations of learning rule are
described in Section 3.

2 NETWORK DYNAMICS

All the high capacity models studied here are
modifications to the standard Hopfield network. The
net input, or local field, of a unit, is given by:

hi = wijS j
j ≠i
∑

where wij is the weight on the connection from
unit j to unit i.

The deterministic dynamics of the network is
given by:

′ S i =
1 if hi > 0

−1 if hi < 0

Si if hi = 0

 
 
 

  

Unit states may be updated synchronously or
asynchronously.  Here we use asynchronous, random
order updates.  A symmetric weight matrix and
asynchronous updates ensures that the network will

evolve to a fixed point.  If a training pattern  is
one of these fixed points then it is said to be a
fundamental memory, and is successfully stored.

In the stochastic case the update rule is
generalised to be probabilistic: whenever a unit is
chosen for updating its next state is given by:

  

Prob ′ S i = ±1( ) = 1

1+ exp m 2hi

T
 
 
  

 
 

where T  is the temperature of the network.

Now a symmetric weight matrix and
asynchronous updates guarantee that the network
reaches equilibrium.  That is the average over time
of the state of each unit in the network Si ,

eventually becomes constant.
With deterministic dynamics (T= 0) a network

state is stable if, and only if, all the local fields are of



the same sign as the corresponding unit, equivalently
the aligned local fields, hiSi , should be positive.

In the stochastic case a sufficiently high
temperature will result in ergodic dynamics, in which
there are no attractors: all states are equally likely
( S = ).  At lower temperatures, however the

network can be in equilibrium with a non-zero, mean
state vector. If this vector has a large overlap with a
particular network state then it is sensible to say that
the network has converged on that state.  Thus if
S > 1−  then the training pattern  is once

again a fundamental memory.

3 LEARNING RULES

In the basic Hopfield model the weights are given
by a one-shot Hebbian rule: wij = i j∑ .  The

resulting network (with deterministic dynamics)
performs reasonably at low loading but as the
loading increases performance becomes
progressively worse, until at a loading of above
0.14N, the network will no longer store the training
patterns.  Moreover correlation of the training
patterns significantly worsens performance.  Two
other types of training can be used with this type of
network, both of which give much higher capacity
and performance than the one-shot rule.  The first is
to use learning rules that find approximations to the
projection weight matrix, in which any linearily
independent set of patterns can be learnt.  The
second is to use perceptron like training, continuing
until all the local fields are correctly aligned.  The
capacity of this rule is at least 2N (for large N).

3.1 Psuedo-Inverse Learning (PI)

The projection weight matrix is given by:

W −1  where  is the matrix whose columns are

the , and −1 is its pseudo-inverse, the matrix

with the property that: −1 = I  ( −1  exists if the
patterns have no linear dependencies).   It is a
symmetric matrix.

A variety of iterative methods are available for
approximating W, some of which are in the spirit of
neural computational methods [2,3].

Here we use  the Blatt and Vergini algorithm [3]:
Beginning with a zero weight matrix
For each pattern in turn
  Clamp the pattern onto the network and set s = 0

Repeat until  1− hi i
i,
∑ <

Increment s
For each processing element in turn

Update incoming weights according to:

∆wij =
k s−1

N

 

 
 

 

 
 i − hi( ) j − h j( )

The parameter k can be any value that satisfies 1 <
k ≤ 4.  Since the larger the value of k the faster the
rule converges, we set k to 4.

3.2 Repeated Hebbian Learning (SLL)

It is also possible to use the perceptron learning
rule to find a set of weights that will produce
correctly aligned local fields.  Originally suggested
in this context by Forest[4], the rule in its simplest
form is:
Begin with a zero weight matrix
Repeat until all aligned  local fields are correct
Set the state of network to one of the .

For each unit, i, in turn
    Calculate hi i , If less than M

 then set ∆wij = ∆w ji = i j

N

M (> 0) is the learning threshold (or margin).
The larger M the better the attractor performance of
the network is likely to be.  Earlier work [5] has
shown that a value of 10 is suitable for networks of
the size used here.

The symmetric form of the weight update ensures
that the final weight matrix is symmetric.

4 ANALYSING PERFORMANCE

4.1 Energy of Attractors

The energy of a state, S, in a network with
symmetric weights is:

E S{ } = −1
2 wij Si

i, j
∑ Sj = − 1

2 hi
i
∑ Si .

With deterministic dynamics the energy of the
network always decreases when a unit changes state.
The stable points of the dynamics are therefore
(local) minima of the energy, and the actual minima
reached is largely determined by the initial state of
the network.

With stochastic updates the network minimises its
free energy[1], which is a function of the probability
distribution of the network at any time:



If t : S{ }→ 0,1[ ] is a probability distribution of states,

 then the free energy is:

F( t ) = E S{ } − T.H t( )
where H t( ) is the entropy of the distribution.

This means that the network is minimising its mean
energy whilst maximising its entropy, with the
balance mediated by the temperature of the network.

The effect of noise on the dynamics of these
networks can be beneficial if the desired attractors
(the trained patterns) have lower (more negative)
energy than the spurious ones.  So even when the
network passes close to a local minima in the energy
function the presence of noise may prevent this from
becoming dominant, in equilibrium.

The first analysis undertaken is of the average
energy of random attractors in the network. The
network is started in a random state and allowed to
relax, under noiseless dynamics, into an attractor,
which is then identified as one of the training
patterns or otherwise.  Its energy is calculated and
finally the mean of these energies is reported.

4.2 Affect of Noise

The second analysis seeks to ascertain how the
addition of noise affects the probability of a random
state arriving at one of the training patterns.  When
the network is stochastic it will never actually
converge to a specific state.  To estimate its
asymptotic behaviour we allow the network to
evolve from its starting state and after a specific,
large number of updates, find the maximum overlap
of the final state with each of the stored patterns.

That is max
S.

N

 
 
 

 
 
 

is calculated.  Whenever this is

larger than a prespecified threshold the network is
designated as having converged on a stored pattern.

The network is started in a number of random
initial states, at a variety of temperatures and the
nature of its final states are then identified.

4.3 Basins of Attraction

We use, R, the normalised mean radius of the
basins of attraction[6], as a measure of attractor
performance in these networks.  It is defined as:

R =
1− m0

1 − m1

where m0 is the minimum overlap an initial state
must have with a fundamental memory for the
network to converge (in the sense described above)
on that fundamental memory, and m1 is the largest
overlap of the initial state with the rest of the
fundamental memories.  The angled braces denote a

double average over sets of training patterns and
initial states. Details of the algorithm used can be
found in [7].

5 RESULTS

5.1 Energy of Attractors

As described above the energy of the attractors in
the networks was estimated by taking 10,000
randomly chosen initial states and allowing the
network to relax to an attractor, whose energy is then
calculated.  The absolute values of the energies are
dependent on the size of the network weights, so that
it is not sensible to compare energies across different
types of network.  Rather we are interested in the
relative values of the attractor states corresponding
to trained patterns and all other spurious attractors.

We take Φ =
E trained attractor

Espurious attractor

.  As the energies are

negative a value of Φ above 1 shows the trained
attractors to have lower energy than the spurious
ones.

Table 1 shows the results for networks trained
with uncorrelated random patterns.  The results are
averages of 10 different runs.

For both of the high capacity rules the energy of
the fundamental memories is lower than that of the
spurious attractors.  As the loading increases the
difference in energies is decreased, with both SLL
and PI showing very similar values.  It is therefore
possible that under noisy conditions the higher
energy spurious attractors maybe destabilised, whist
the desired attractors remain.  This possibility is
investigated next.

Patterns Hopfield SLL PI

10 1.01 1.32 1.33

20 0.85 1.24 1.24

30 - 1.19 1.19

40 - 1.14 1.15

Table 1: Φ values for one hundred unit networks
trained with uncorrelated random patterns.  The
trained networks are started in 10,000 random initial
states and allowed to relax to an attractor under
deterministic dynamics.  The results are averages of
10 different training sets, at each loading.  Results
are not reported for the Hopfield learning rule at
loadings higher than 20 as the trained pattern
attractors appear very rarely.

5.2 Effect of Noise

In this experiment trained networks are tested
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Figure 1: A selection of100 unit networks trained with 10, 20, and 30 patterns, the P.I. and SLL weight matrix
are used.  The standard Hopfield net with a loading of 10 patterns is also shown for reference.  1000 random
initial states are allowed to relax over 10,000 unit updates.  The number of fundamental memories reached is
shown as well as the number of correct fundamental memories. Results are averages over 10 different runs.  The
upper line is the number of fundamental memories reached, the lower is the number of correct memories
reached.
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Figure 2: The R values for the pseudo inverse weight matrix at varying loadings and temperatures.  Results are
averages over 50 runs for each data point.



under a variety of temperature settings for the
dynamics.  Again the networks are started in a
number (1000) of random states and allowed to
evolve, in this case for a large, fixed number of unit
updates.  All results are for 10,000 individual unit
updates, or equivalently, for these 100 unit networks,
100 epochs.  At the end of this process the final state
is compared with all training patterns; if the overlap
with any training pattern is more than 0.9 then the
network is designated as having evolved to one of
the fundamental memories.  When the final
fundamental memory is the one that was originally
closest to the initial state then the network is said to
have reached the correct attractor.

Figure 1 shows the results at a variety of loadings
and temperatures for both SLL and PI learning; the
results for the standard rule are also shown at a
loading of 10 patterns.  The results for both SLL and
PI are similar: the addition of noise produces a
dramatic increase on the number of fundamental
memories found.  This can be seen very clearly in
the SLL 0.2 loading results.  With deterministic
dynamics 0.17 of the initial states reaches a
fundamental memory.  When the temperature is 0.3,
0.99 reach a fundamental memory – spurious
attractors have been almost completely eliminated.

The affect on the number of correct fundamental
memories found is not as dramatic, although a small
increase is present in all cases.

As loading increases the best temperature for
destabilising spurious attractors decreases,
suggesting that the phase diagram, for this network,
in the temperature-loading plane is similar to the one
derived for the standard learning rule [8].

5.3 Basins of Attraction

In these experiments the mean normalised radii of
the basins of attraction, associated with fundamental
memories is estimated.

Figure 2 shows how R varies with loading and
temperature, for the pseudo inverse weight matrix.
The SLL results are very similar.  It can be seen that
R is not raised by an increasing temperature.  In fact
above a fairly low noise level there is a rapid fall in
the value of R.

6 CONCLUSIONS

The first set of results showed that, for both types
of high capacity weight matrix, the energy of the
fundamental memories was lower than that of the
spurious attractors.  This is potentially helpful and
suggests that introducing noise to the dynamics
could be beneficial. The second set of results
confirmed this conclusion.  The addition of noise, at

relatively low loadings, completely eliminated the
unwanted attractors and at higher loadings caused a
significant reduction in their relative frequency.
However the results showed that whilst random
initial states were more likely to evolve into one of
the learned patterns the probability that this learned
pattern was the one closest to the initial state was not
increased.  This is a consequence of the noisy
dynamics: in comparison with the deterministic case
the dynamic process is less determined by the initial
conditions.  The final set of results confirms this
view.  There is no noise level which produces an
enlargement in the basins of attraction, in fact as the
amount of noise in the system increases the attractor
basins decrease in size.

Despite this the addition of noise is of great
benefit.  Deterministic associative memory models
are handicapped by the number of spurious attractors
and their proclivity to find these attractors from
many starting states, so that reducing their
frequency, by the addition of noise, makes the
models much more attractive both as computational
artefacts and as neurophysiological models.
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