
Using Grid Middleware to Query a Heterogeneous Distributed Version of the
SDSS Database

Helen X Xiang
Computer Science, University of Hertfordshire, UK

h.xiang@herts.ac.uk

Abstract

This paper explores the use of Grid technologies for
the manipulation of the Sloan Digital Sky Survey (SDSS)
database. The paper first provides background information
on the SDSS database, OGSA-DAI operations and OGSA-
DQP operators. We then analyse the execution of OGSA-
DQP for querying a heterogeneous distributed version of
the SDSS database. In particular, we examine the different
SOAP interactions between OGSA-DQP components and
look at simple queries plans. After modifying the OGSA-
DQP coordinator we successfully ran OGSA-DQP queries
against the distributed SDSS database.

1. Introduction

The Sloan Digital Sky Survey (SDSS) is a project that

has built a very detailed digital map of the visible stars and

galaxies in the night sky [14]. The data produced by the

survey is summarised in a multi-terabyte relational database

containing photometric objects and spectroscopic informa-

tion. The SDSS database is available to the scientists and

the public via the SkyServer (http://skyserver.sdss.org) or

various mirror sites (including one we set up in the Univer-

sity of Portsmouth).

In recent papers [8, 9, 10, 13] we described how we cre-

ated an experimental distributed version of the SDSS DR5

database, using Grid middleware. This is based on OGSA-

DQP (Open Grid Services Architecture—Distributed Query

Processing), developed by the University of Manchester and

the University of Newcastle upon Tyne [7]. OGSA-DQP

is in turn based on the OGSA-DAI middleware, developed

by the Edinburgh Parallel Computing Centre (EPCC) and

the UK National e-Science Centre (NeSC) [6]. We used

OGSA-DAI and OGSA-DQP to integrate the data across

different sites—forming a logical distributed database sys-

tem. Global distributed queries can be processed over this

logical database system [11].

This paper pays partial attention to the insight of the

execution of OGSA-DQP query. It examines the OGSA-

DAI operations and OGSA-DQP operators and describes

the different SOAP interactions between OGSA-DQP com-

ponents. We looked into the query plan for a simple query

and made modifications and improvements in order to run

OGSA-DQP queries against the SDSS database. Please re-

fer to [13] for the details of the OGSA-DQP workflow and

the interactions among its components. This paper follows

on from our earlier papers [8, 9, 10, 13].

2 The OGSA-DAI Operations and OGSA-
DQP Operators

The OGSA-DAI project [6] is one of the UK e-Science

projects that develop Grid middleware to support data ac-

cess and integration across separate resources in the Grid

environment. OGSA-DAI supports a number of DBMSs

including Microsoft SQL Server and Oracle, and is there-

fore an appropriate vehicle to integrate datasets that are dis-

tributed over multiple sites.

Table 1 shows some sample OGSA-DAI operations.

Apart from supporting the access to the underlying data

sources through the exposed Data Service Resource, a Data

Service supplies a number of functions for providing ser-

vice information.

A typical OGSA-DAI session might involve several

steps. The first might be to list all the available

Data Service Resources and acquire their IDs using the

ListResources operation (an empty list means there

is no data source exposed by the Data Service). With the

required Data Service Resource located, the perform doc-

ument is made up with a number of activities, then sub-

mitted to the target Data Service Resource for processing

using the Perform operation. These activity requests are

then processed by the target Data Service Resource to apply

the data-related actions on the associated data source. The

Data Service Resource retrieves the data result set (if any)

from the underlying data source. Results may be obtained

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.141

870

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

Operation Types Operation Names Input Outputs
Data Perform Perform document Response document

GetFully - session name

- output stream

dataset

GetBlocks - session name

- output stream

(number of data

blocks=1)

A data block (a large dataset)

GetNBlocks - session name

- output stream

(number of data

blocks=N)

N data blocks (N large datasets)

PutFully - session name

- input stream

- dataset

(None)

PutBlock - session name

- input stream

- data block (large

dataset)

(None)

Service ListResources (None) List of Data Service Resource(s) ID(s)

GetVersion (None) OGSA-DAI version

Property and
State

GetResourceProperty - Data Service Re-

source handle

Property value of the Data Service Re-

source

GetMultipleResourceProperties - Data Service Re-

source(s) handle(s)

Property value of the Data Service Re-

source(s)

QueryResouceProperties

(OGSA-DAI WSRF only)

- XPath query Property value of Data Service Re-

source(s) (XML)

Table 1. Some OGSA-DAI operations

with operations like GetNBlocks. As well as querying

the data source, OGSA-DAI also supports database updat-

ing, and bulk loading data from one table to another. The

configuration file for a Data Service Resource specifies the

set of activities that the resource supports.

The OGSA-DQP system is a service based distributed

query processor for planning, scheduling and executing dis-

tributed queries in parallel [4, 1, 2, 5]. OGSA-DQP eval-

uates against distributed data sources that are exposed by

OGSA-DAI data service resources. We used OGSA-DQP

3.2 Tech Preview in this research. A final version of OGSA-

DQP 3.2, was released during the latter stages of the re-

search and we expect most of our conclusions would carry

over to the new release.

OGSA-DQP supports MySQL and simple databases [3].

We extended its data type support to handle a complex sci-

entific database schema in SQL Server and Oracle [13].

OGSA-DQP introduces two different types of services:

coordinator and evaluator. The DQP coordinator interacts

with the client applications, and also parses and schedules

distributed query executions. The DQP evaluator executes

the actual query. (See [13] for more details.)

The different kinds of operator supported by the DQP

evaluator are listed in Table 2. Each partition in a query

plan is a tree of these operators. Each implementation class

consumes zero or more input streams of tuples, and out-

puts a stream of tuples. Based on the source code of the

OGSA-DQP 3.2 Tech Preview, we outline the behaviour of

the implementation classes.

TableScanOp executes a SQL query, reading rows of

a single table that match the specified predicate (if any). All
columns of every selected row are returned. Streams out

result row-set.

HashJoinOp is an implementation of join that works

by reading the full left input row-set into a hash table in the

evaluator, then streaming in the right input row-set, joining

individual rows by lookup in the hash table as they arrive,

and streaming out the result rows (if any).

UnionOp is an implementation of relation union. It

streams in the left input row-set, row by row, and streams

them out. It then does the same to the right input row-set.

ReduceOp is an implementation of project and aggre-

gate operations on a relation. It streams in the input row-

set, row by row. In the “project” case, it streams out the

specified columns of the row. In the “aggregate” case, it

internally accumulates a sum, minimum, maximum, count,

871

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

Operator Implementation class
TABLE SCAN TableScanOp
HASH JOIN HashJoinOp
HASH LOOPS HashLoopJoinOp
THETA JOIN ThetaJoinOp
CARTESIAN PRODUCT CartesianProductOp
ORDER BY OrderByOp
UNION UnionOp
APPLY ReduceOp
OPERATION CALL OperationCallOp or

UserDefinedFunctionOp
PRINT PrintOp
EXCHANGE ExchangeOp
UNNEST UnnestOp

Table 2. OGSA-DQP evaluator operators

standard deviation, or average, and outputs the results when

the input stream ends.

PrintOp prints out the input row-set. It streams it in

row by row, and accumulates it into buffer-sized fragments

of XML. These are fed to the coordinator QueryExecut-
ionProcessor by calls to its putData()method. This

putData() method will convert the XML fragment to a

WebRowSet, which is passed to the output of the DQP-
QueryStatementActivity.

ExchangeOp is a communication operation. In an

evaluator that is a producer in the exchange, the input row

set is streamed in and sent in blocks to one or more evalu-

ators that are consumers in the exchange. In an evaluator

that is a consumer in the exchange, the result of the ex-

change operator is a union of the row-sets sent by one or

more producers in the exchange. In a producer, the des-

tination for an individual block is determined by the class

called Arbitrator, and controlled by the arbitrator pol-

icy associated with the exchange operation. Data is sent

to another evaluator service through the sendData SOAP

operation exposed by the service. Data is sent to the root

evaluator through the putBlock SOAP operation method

on the coordinator data service resource. In either case

(and in the case where the destination is the same evalua-

tor as the source) the message is tagged with the destination

ExchangeOp. The incoming data is queued before being

streamed out from that ExchangeOp.

The other operations: HashLoopJoinOp, Theta-
JoinOp, CartesianProductOp, OrderByOp,

OperationCallOp and UserDefinedFunctionOp
are less relevant to our current work—please refer to [11]

for the behaviours of their implementation classes.

In the following sections, we run a few queries using

some of the OGSA-DQP operators.

3 A Reduced SDSS Distributed over a Local
Area Network

To set the scene for running the OGSA-DQP queries,

this section briefly describes how we distributed a reduced

SDSS database called MyBestDR5 among three hosts in

different university buildings. Two of the hosts are running

Oracle 10g, while the other host is running Microsoft SQL

Server.

In the original MyBestDR5 database, objID
ranged from 587, 726, 014, 001, 184, 891 to

588, 848, 901, 530, 387, 496. We used objID to split

its PhotoObjAll schema into three parts:

• host 1:

ObjId ≤ 587, 726, 015, 614, 000, 000

• host 2:

ObjId > 587, 726, 032, 254, 888, 888

• host 3:

587, 726, 015, 614, 000, 000 < ObjId

≤ 587, 726, 032, 254, 888, 888

Tables 3 illustrates the numbers of records of tables in the

MyBestDR5 PhotoObjAll schema using the objID
partition.

We deployed the migrated SDSS Oracle schema on the

two Oracle databases (on hosts 1 and 2). Using the Win-

dows BCP utility, we extracted two set of relevant data files

from the orignal MyBestDR5 database in SQL Server, with

objID partitioning conditions. Using the SQL*Loader, we

injected the appropriate data files to databases on hosts 1

and 2.

We then removed these records from the copy of

MyBestDR5 database on the orignal SQL Server database

using the objID partitioning conditions—the cut down

version of MyBestDR5 database formed the third partition

(on host 3).

We now have a distributed SDSS MyBestDR5 database

and we want to expose it using the OGSA-DAI middleware

and configure it with the OGSA-DQP toolkit before running

the distributed queries.

We installed an OGSA-DAI WSRF 2.2 instance on three

hosts and deployed an OGSA-DAI data service on each host

in an Apache Tomcat Web server using port 8080.

We then configured the OGSA-DAI data service re-

sources to expose the SDSS databases on the three hosts

via those OGSA-DAI data services.

At this point the SDSS MyBestDR5 database is dis-

tributed among three hosts—two Oracle and one SQL

872

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

Table name Number of rows
MyBest-

DR5

host 1 host 2 host 3

PhotoObjAll 200,276 68,118 66,856 65,302

BestTarget2-

Sector

9,255 3,108 3,065 3,082

First 163 48 50 65

Masked-

Object

2,095 587 1,138 370

Match(obj-

ID1)

22,276 5,482 8,807 7,987

MatchHead 11,126 5,457 10 5,659

Neighbors 1,057,304 355,214 356,819 345,271

ObjMask 193,996 65,972 64,749 63,275

PhotoAux-

All

200,276 68,118 66,856 65,302

Photo-

Profile

6,981,758 2,362,382 2,335,263 2,284,113

PhotoTag 200,276 68,118 66,856 65,302

Photoz 200,276 68,118 66,856 65,302

Photoz2 58,225 19,709 19,622 18,894

ProperMo-

tions

25,072 8,259 8,560 8,253

Rosat 323 81 104 138

USNO 21,422 7,472 7,243 6,707

Zone 162,657 55,183 54,316 53,158

Table 3. Number of photometric object
records in the MyBestDR5 PhotoObjAll
schema (partitioned by objID column)

Server—with the distributed SDSS data resources exposed

via the OGSA-DAI middleware.

To query the distributed SDSS MyBestDR5 database,

we installed the OGSA-DQP 3.2 (Tech Preview) toolkit on

the distributed sites. On each host, we deployed an OGSA-

DQP evaluator service on a Tomcat instance that is separate

from the Tomcat used by the OGSA-DAI data service de-

ployed earlier on. An OGSA-DQP coordinator can be in-

stalled on one of the three distributed SDSS hosts on the

OGSA-DAI Data Services deployed earlier on. It can also

be installed on a separate host. The client application can

then interact with the OGSA-DQP coordinator service to

create an OGSA-DQP coordinator instance for executing

queries.

Figure 1 summarizes the architecture of the distributed

SDSS MyBestDR5 database system developed in this sec-

tion. Our experience running queries against this distributed

database will be described in the following sections.

OGSA-DQP

OGSA-DAI Data Service 0

OGSA-DQP Coordinator

OGSA-DQP root Evaluator

Client Application

Data Service

buck (Oracle)

OGSA-DAI Data Service 1

http://gizmo.dsg.port.ac.uk:8080/wsrf/

services/ogsadaiBUCK/DataServiceBUCK

Gizmo

Data Service

icg (Oracle)

OGSA-DAI Data Service 2

http://gizmo2.dsg.port.ac.uk:8080/wsrf/

services/ogsadaiIcg/DataServiceIcg

Gizmo2

Data Service Resource

5one_

MyBesDR5one

(SQL Server)

OGSA-DAI Data Service 3

http://sdss.org.uk:8080/wsrf/services/

ogsadaiAce/DataServiceAce

Ace

http://gizmo.dsg.port.ac.uk:8081/dqp-

evaluator/services/QueryEvaluationService

OGSA-DQP Evaluator 1

http://gizmo2.dsg.port.ac.uk:8081/dqp-

evaluator/services/QueryEvaluationService

OGSA-DQP Evaluator 2

http://sdss.org.uk:9080/dqp-evaluator/

services/QueryEvaluationService

OGSA-DQP Evaluator 3

Figure 1. Distributing the SDSS MyBestDR5
database among three hosts

4. Execution of an OGSA-DQP Query

Having successfully generated the OGSA-DQP SDSS

coordinator instance in [13], we tried to run some OGSA-

DQP queries against the SDSS MyBestDR5 database.

We first look at this simple SQL Query on MyBestDR5
database:

SELECT match, id, ObjID
FROM First
WHERE objID=587726016148734065

(1)

This query returns 1 row in less than one second.

A comparable OGSA-DQP query against the SQL

Server partition of our distributed database is:

SELECT match, id, ObjID
FROM MyBestDR5one_First
WHERE objID=587726016148734065

(2)

For the Oracle database on the first host a similar query is:

SELECT MATCH, ID, OBJID
FROM buck_FIRST
WHERE OBJID=587726014001315907

(3)

In OGSA-DQP syntax, prefixes like MyBestDR5one and

buck identify the partitions against which the queries will

execute. The ObjID values select tuples in those partitions.

The WHERE clauses select different rows. This reflects

the different subsets of rows held on the two hosts. We

are essentially running the above two local queries through

OGSA-DQP, against one underlying database (SQL Server

database or Oracle database).

The OGSA-DQP query against the SQL Server ran suc-

cessfully but query 3 against the Oracle database did not.

873

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

(root)

1. PRINT

0. EXCHANGE

Buck Coordinator

(root)

2. EXCHANGE

1. APPLY

PROJECT:
FIRST.MATCH,

FIRST.ID
FIRST.OBJID

0. TABLE_SCAN:

FIRST

Buck Evaluator

Figure 2. Query plan for query 3 running on
host 1

The eventual resolution of this problem involves modifying

OGSA-DQP coordinator and OGSA-DAI classes to deal

more appropriately with Oracle data type number. For fur-

ther technical details see [13]. Of more interest for purpose

of current paper are lessons that we learned while tracing

these problems since they providing insight into the execu-

tion of OGSA-DQP queries.

From examination of the OGSA-DQP source code we

discovered that the types embedded in the WebRowSet were

controlled by inputs to a PRINT operator in the evaluator.

But we needed additional information about the query exe-

cution to determine those inputs.

To get more information about states of execution during

the query, we captured all the SOAP messages exchanged

using the Axis monitoring program, tcpmon. This infor-

mation gives an insight into workings of OGSA-DQP, so we

illustrate the captured pattern of messages in the following

figures: 3, 4. This pattern can be understood by reference

to the query plan, which we later captured from the OGSA-

DQP coordinator log, by enabling DEBUG level logging.

The query plan is an XML document. Figure 2 is a graphi-

cal representation of query plan structure.

The query plan shown in Figure 2 contains two parti-

tions. The partition labelled Buck Coordinator is executed

by the root evaluator which is actually part of the DQP

coordinator (see Figure 1). The partition labelled Buck
Evaluator is executed in the real DQP evaluator service.

Each numbered node in a partition represents an operator in

the query plan. The TABLE SCAN operator reads selected

rows from the database via the data service resource. The

APPLY operator projects the requested columns from those

rows—this operation is internal to the DQP evaluator. The

EXCHANGE operator communicates between evaluators in

general. In this case, it just sends the data to the root eval-

Client Coordinator Evaluator Data resource

<perform/> (open session)

<perform/> (DQP query)

<request/> (send partition)

<perform/> (open session)

<statusMessage/>

<dataElement/> (open exchange)

<performResponse/>

<performResponse/>

<statusMessage/>

<performResponse/>

<perform/> (SQL query)

<performResponse/>

<getNBlocks/>

<getResponse/> (result data)

<getNBlocks/>

<getResponse/> (end of stream)

<perform/> (close session)

<performResponse/>

<terminate/>

<terminateResponse/>

<putBlock/> (result data)

<putResponse/>

<dataElement/>(close exchange)

<statusMessage/>

<getNBlocks/>

<getResponse/> (result data)

<getNBlocks/>

<getResponse/> (end of stream)

<perform/> (close session)

<performResponse/>

Figure 3. SOAP messages exchanged in
query 3

uator inside the coordinator. Finally, the PRINT operator

converts the data to the WebRowSet format and sends the

results to the client.

The message exchanges are illustrated as UML se-

quence diagrams in Figures 3and 4. Figure 3 shows SOAP

messages exchanged, and Figure 4 gives a more abstract

“reverse-engineered” view, in terms of WSDL-level opera-

tions .

The UML sequence diagrams shown in these figures de-

scribe the interactions among client, coordinator, evaluator

and data resource. The initial exchanges between client

and coordinator establish a session and send the OGSA-

DQP query, using OGSA-DAI operations. The coordina-

tor compiles the query and sends a partition to the evalua-

tor (in general, the coordinator would send multiple parti-

tions to multiple evaluators). The coordinator will “open”

the EXCHANGE operation in its evaluator to request a re-

sult back. The evaluator executes the TABLE SCAN opera-

874

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

Client Coordinator Evaluator Data resource

perform (open session)

perform (DQP query)

evaluate (send partition)

perform (open session)

terminate

perform (close session)

getNBlocks (get end of stream)

getNBlocks (get results)

perform (SQL query)

sendData (open exchange)

putBlock (exchange data)

sendData (close exchange)

getNBlocks (get results)

getNBlocks (get end of stream)

perform (close session)

Figure 4. WSDL-level operations in query 3

tor which uses OGSA-DAI operations ([11]) to get the data

from the data resource.

The EXCHANGE operators return the result data to the

coordinator using the OGSA-DAI putBlock operation.

The coordinator “closes” the EXCHANGE operation on the

evaluator. Meanwhile, the client will have requested re-

sult using the OGSA-DAI getNBlocks operation. The

client will receive the result in WebRowSet format from

the PRINT operation.

There are 15 SOAP request/response interactions be-

tween components for this minimal OGSA-DQP query.

In the end the insight needed to fix our problem comes

from the query plan itself. We modified the OGSA-DQP

coordinator and changed the date type mapping (see [13]).

The OGSA-DQP query submitted to Oracle returns the cor-

rect value after the corrections. The OGSA-DQP query 2

(for example) took 4 seconds (time for running a similar

query against SDSS MyBestDR5 without using OGSA-

DQP was less than 1 second.)

5. Conclusions

This paper presented an insight into the execution of

OGSA-DQP queries through a few OGSA-DQP queries.

We looked at the OGSA-DQP query plan for simple queries,

and the different SOAP interactions between OGSA-DQP

components. Finally, we successfully run OGSA-DQP

queries against the distributed SDSS database after modifi-

cation to the OGSA-DQP coordinator source code. We will

discuss running more complicated queries through OGSA-

DQP in a follow-up paper [12].

References

[1] M. A. et al. An experience report on designing and build-

ing OGSA-DQP: A service based distributed query proces-

sor for the Grid.
[2] M. A. et al. OGSA-DQP: A service for distributed query-

ing on the Grid. In E. B. et al., editor, EDBT, volume

2992 of Lecture Notes in Computer Science, pages 858–861.

Springer, 2004.
[3] M. A. et al. Using OGSA-DQP to support scientific applica-

tions for the Grid. In P. Herrero, M. S. Prez, and V. Robles,

editors, SAG, volume 3458 of Lecture Notes in Computer
Science, pages 13–24. Springer, 2004.

[4] M. A. et al. Experience on performance evaluation with

OGSA-DQP. In Fourth UK e-Science All Hands Meeting,

2005.
[5] A. Mukherjee and P. Watson. Adding dynamism to OGSA-

DQP: Incorporating the DynaSOAr framework in distributed

query processing. Technical Report 979, Newcastle Univer-

sity, School of Computing Science, Aug 2006.
[6] The OGSA-DAI project home page. http://www.ogsdai.org.
[7] The OGSA-DQP project.

http://www.ogsadai.org/about/ogsa-dqp.
[8] H. Xiang, M. Baker, and R. Nichol. Experiences mirroring

and distributing the Sloan Digital Sky Survey. In Fifth Inter-
national Conference on Grid and Cooperative Computing
Workshops (GCC 2006), Changsha, China, pages 518–521.

IEEE Computer Society, October 2006.
[9] H. X. Xiang. Experiences acquiring and distributing a large

scientific database. In Second International Conference on
Future Generation Communication and Networking Sym-
posia, volume 2, pages 14–19, Washington, DC, USA, De-

cember 2008. IEEE Computer Society.
[10] H. X. Xiang. A grid-based distributed database solution

for large astronomy datasets. In International Conference
on Computer Science and Software Engineering, volume 3,

pages 66–69, Washington, DC, USA, December 2008. IEEE

Computer Society.
[11] H. X. Xiang. A Grid-based Distributed Database Solution

for Large Astronomy Datasets. PhD thesis, Portsmouth, UK,

February 2008.
[12] H. X. Xiang. Experiences running ogsa-dqp queries against

a heterogeneous distributed scientific database. In The Fif-
teenth International Conference on Parallel and Distributed
Systems, Shenzhen, China, December 2009. IEEE Computer

Society.
[13] H. X. Xiang. Supporting complex scientific database

schemas in a grid middleware. In International Conference
on Advanced Information Networking and Applications, vol-

ume 0, pages 937–944, Bradford, UK, May 2009. IEEE

Computer Society.
[14] D. G. York et al. The Sloan Digital Sky Survey: Techni-

cal summary. Astronomical Journal, 120:1579–1587, 2000.

http://www.sdss.org.

875

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 08:35:43 UTC from IEEE Xplore. Restrictions apply.

