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There have been a number of computational modelling studies that aim to
replicate the cerebellar Purkinje cell, though these typically use the morphology
of rodent cells. While many species, including rodents, display intricate den-
dritic branching, it is not a universal feature among Purkinje cells. This study
uses morphological reconstructions of 24 Purkinje cells from seven species to ex-
plore the changes that occur to the cell through evolution and examine whether
this has an effect on the processing capacity of the cell. This is achieved by
combining several modes of study in order to gain a comprehensive overview of
the variations between the cells in both morphology and behaviour.

Passive and active computational models of the cells were created, using the
same electrophysiological parameters and ion channels for all models, to char-
acterise the voltage attenuation and electrophysiological behaviour of the cells.
These results and several measures of branching and size were then used to look
for clusters in the data set using machine learning techniques. They were also
used to visualise the differences within each species group. Information the-
ory methods were also employed to compare the estimated information transfer
from input to output across each cell.

Along with a literature review into what is known about Purkinje cells and
the cerebellum across the phylogenetic tree, these results show that while there
are some obvious differences in morphology, the variation within species groups
in electrophysiological behaviour is often as high as between them. This suggests
that morphological changes may occur in order to conserve behaviour in the face
of other changes to the cerebellum.
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Chapter 1

Introduction

Purkinje cells are found in all cerebella, which in turn are found in all ver-
tebrates. Both the cerebellum and the Purkinje cells become more intricate
structures as the emergence of the animal becomes more phylogenetically re-
cent, but there are many elements of cerebellar organisation that are consistent
from fish through to mammals. These cells have been studied extensively over
many years, but much of this research has concerned rodent cerebella, and little
has been done to examine other taxa.

This study is intended as a first step in exploring a range of Purkinje cells
from different species. This exploration is executed as a comparison of the
available cells in three areas: the differences of the form, or morphology of
the cells; the electrophysiology of the cells, and the capacity of the cells for
information transfer. As a first step, the aim of this study is to find potential
functional relationships between morphology and cell behaviour that could be
looked at in a larger scale study in the future.

Quantifying the morphology of the neurons begins the exploration. This al-
lows for statistical analysis of the morphology and comparison across the models,
as well as the ability to look for correlation between the morphology and electro-
physiology. Computational models of neurons were created using morphology
files created from digital traces of Purkinje cells and electrophysiological pa-
rameters drawn from experimentation to simulate the output of the neurons.
These outputs become a quantification of cell behaviour, and can be analysed
and compared in the same way as the morphological metrics.

These two steps allow for some analysis of the effect of morphology on the
behaviour of Purkinje cells, and which morphological features may have the most
influence. The next step is to apply clustering techniques to explore whether
the features extracted in the previous steps have strong enough relationships to
classify the cells into discrete groups, particularly whether these groups can be
divided by species.

Lastly, the output of the cell models can also be analysed to explore the
effect of morphological and electrophysiological differences on the information
transfer capacity of cells. Using information theoretical techniques, this can also

6



CHAPTER 1. INTRODUCTION 7

be quantified and compared across the cells to look for significant differences
that could be investigated in more detail in a larger study.

Using the research methods described above, several contributions to the
field of computational neuroscience were made. The morphological analysis is
very preliminary but indicates that there are trends with phylogenetic rank,
particularly in the amount of branching in dendrites.

Modelling with passive parameters revealed that the main difference between
species when stimulating different points across the dendritic tree was the max-
imum amplitude recorded at soma. This correlates with the differences in size
between the species groups. Cell size does not correlate with phylogenetic rank,
but is statistically distinct for each species. The models with active parameters
corroborated with existing research to show that peak amplitude and time to
peak is independent from distance to soma in the Purkinje cell, extending these
results to the dendritic structures from different species groups used here.

The cluster analysis is also very preliminary, as the sample set is very small.
Few clusters were comprised of observations from a single species, but there were
species that tended to be clustered together. The species subsets that were found
are closely phylogenetically related, suggesting that phylogenetic correlations
may be found if the same analysis was performed on a larger dataset.

Finally, the transfer entropy results confirmed estimations that in most cases,
the Purkinje cell models require at least 50 synchronous parallel fibre inputs to
affect action at the soma. It also indicates that the distance of inputs was also
important to how much transfer entropy is calculated.

This dissertation begins with a summary of what is known about the cerebel-
lum in different vertebrate groups. Chapter 2 includes a general overview of the
organisation of the cerebellum and Purkinje cell electrophysiology, but a large
section is devoted to investigating what is already known about Purkinje cells
from different species and how this is expressed in morphology and behaviour.

As a large component of this study is the creation and use of computational
models, the next chapter provides some background on how this is achieved.
This gives a detailed explanation of compartmental modelling and on the Purk-
inje cell model created by De Schutter and Bower (1994a) that was the basis of
the models used in this study.

The following chapter introduces the Purkinje cells that were digitally traced
for use in computational modelling. The methods used to quantify and analyse
the morphology of the cells are given here as are the results. These metrics
become the morphological component of the clustering analysis that takes place
in chapter 6.

Chapter 5 explains the creation of the computational models and the experi-
mentation that the models are used for. The results of these experiments, listed
and discussed in this chapter, are also used in the clustering analysis. They
make up two feature vectors; one to describe the characteristics of models with
passive electrophysiology, and one for models with active electrophysiology.

The clustering analysis is an important aspect of this study, as it offers a
chance to look for patterns in the morphological and electrophysiological results
across the different cells. The methods of clustering and corresponding results
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are discussed here.
Finally, chapter 7 represents a first step into an information theoretical ana-

lysis of the Purkinje cell. Some background on the use of information theory
is given, as are the methods used to calculate a metric called transfer entropy,
which was used to characterise information transfer in each model. This chapter
ends with a discussion of the results and comparison between species groups.

These threads are brought together in the final chapter and discussed with
the outlook that this work should be a starting point for increased study outside
of rodent species.



Chapter 2

Purkinje Cells and the
Cerebellum

2.1 Introduction
The subject of this study is the cerebellar Purkinje cell, a key component of
cerebellar circuitry across all vertebrate species. The cerebellum has been stud-
ied extensively throughout the history of neuroscience, the layout of its circuitry
has come to be well understood with developments in preparing and imaging
brain tissue. Some elements of cerebellar circuitry were first described very
early in the field of neuroscience by the pioneering work of Santiago Ramon y
Cajal (Rámon y Cajal, 1911). The existence of some other elements, and the
numerousness of elements, have been more recent discoveries as the finesse of
neuronal experimentation techniques increased.

This chapter is a summary of the cerebellum, Purkinje cells, and the changes
that appear in these structures across evolution. While there has been a long
history of studies on Purkinje cells, the majority of studies have been performed
on species from a single family of animals. This has lead to a huge amount of
information on rodents and very little on any other family, which in turn means
there is little comparative work on Purkinje cells or the cerebellum as a whole.
This chapter is intended to summarise and compare what is known on the
cerebellum of different species.

Section 2.2 is a background on the cerebellum, an important area of the brain
that is densely packed with neurons and well-connected to many other brain
regions. The following section, 2.3, provides further details on the anatomy and
physiology of the Purkinje cell itself. This is followed by Section 2.4, a review of
the literature looking at different aspects of the cerebella of different species, in
order to make a catalogue of cerebellar features and, where possible, the earliest
times these features arose. Finally, these threads are joined and summarised in
Section 2.5.

9



CHAPTER 2. PURKINJE CELLS AND THE CEREBELLUM 10

Figure 2.1: Simplified diagram of the cerebellum taken from (Purves et al.,
2012). The cerebellar hemispheres (not labelled here) are comprised of the
tissue either side of the vermis. In this diagram each hemisphere would include
the cerebrocerebellum and a portion of the spinocerebellum.

2.2 Cerebellar Anatomy
The cerebellum has been found to be present in all vertebrates with varying
degrees of complexity (Bell, 2002). It is situated in a posterior area of the cranial
cavity, close to the brain stem and forming the roof of the fourth ventricle (Llinás
et al., 2004). Size can vary greatly, the tight foliation in mammalian cerebella
allows for very long structures to be packed into relatively small cavities. The
human cerebellum, once unfolded, is over 2m long (Sultan and Bower, 1998).

More advanced vertebrates will display larger, more foliated, cerebella with
increased neuronal density and variety. In contrast, the cerebella in amphibians
and some fish and reptiles are flat, ovoid structures. In mammals and birds, the
larger folds are used to classify ten lobules along the vermis. As other vertebrates
tend to have much less foliation, they are divided in other ways (Miyamura
and Nakayasu, 2001). The mammalian cerebellar cortex can be most simply
described as three distinct areas, the vermis, the hemispheres and the flocculus
(see Figure 2.1). The vermis is the central portion of the cerebellum, from which
the hemispheres protrude either side of the sagittal plane. The flocculus also
protrudes from each side, but is separate from the main hemispheres. For all
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Figure 2.2: As shown in Purves et al. (2012), a detailed diagram of the mam-
malian brain stem and cerebellum. A hemisphere is removed to show the cere-
bellar peduncles

vertebrates, excepting teleost fist, the cerebella contains deep cerebellar nuclei
(DCN), clusters of neurons within the white matter. The DCN receives afferent
connections from Purkinje cells, which are the only output from the cerebellar
cortex.

The cerebellum is well-connected to other areas of the brain and to the
brain stem. Inputs (afferent connections) and outputs (efferent connections)
connect to and from the cerebellum through three peduncles, large groupings
of fibres, that are found between the brain stem and the cerebellum (see Figure
2.2). These peduncles are a feature as early as elasmobranch sharks (Farrell,
2011) and teleost fish (Finger, 1978), despite the fish lacking any DCN, which
is the only source of efferent axons from the cerebellum in other species. The
connections differ by species but the cerebellum projects to areas such as the
thalamus and superior colliculus, the functions of which include sensory and
motor co-ordination. Afferent connections arise from regions including the pons
and the spinal cord (Purves et al., 2012).
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Figure 2.3: Cross-section of the cerebellum as depicted in (Palay and Chan-
Palay, 2012) detailing the layers that have been found within the cerebellar cor-
tex and the various cells that are found in each layer. At the left of the diagram,
each of the layers are specified: Deepest in the cerebellum is the white matter
(wm), followed by the granular layer (gr), the Purkinje layer (PC), molecular
layer (mol), and pial surface (pia). The granular layer contains the numerous
granule cells (g) as well as Golgi cells (GC). Somas of the Purkinje cell (PC)
are contained within the Purkinje layer, as are Lugaro cells (L). The molecular
layer contains the inhibitory stellate cells (S) and basket cells (B). The diagram
also shows, in red, the afferent climbing and mossy fibres (CF, MF), and the
deep cerebellar nuclei.
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Most cerebellar cortices share an organisational structure of three distinct
layers, each populated by a different cell type (as can be seen in Figure 2.3).
These are the granular layer, which is the deepest layer and largely populated
by granule cells; the Purkinje cell layer, where the somas of Purkinje cells are
found; and the molecular layer, which includes the parallel fibres and Purkinje
cell dendritic trees.

In its mammalian form, the cerebellar circuitry includes the inhibitory Purk-
inje cell receiving excitatory input from two different sources. A strong excit-
atory input is provided by the climbing fibre, which originates from the inferior
olive in the medulla oblongata. Each Purkinje cell receives input from only a
single climbing fibre, which makes thousands of connections on the soma and
smooth primary dendrites. The climbing fibre itself will branch before it reaches
the Purkinje cell layer, allowing each climbing fibre to make contact with several
Purkinje cells (Llinás et al., 2004).

The second excitatory input comes from parallel fibres, the axons of granule
cells, and the ascending segments of these axons. Granule cells synapse onto
Purkinje cells, the inhibitory interneurons (stellate and basket cells), and Golgi
cells, which in turn inhibit the granule cells. Both granule and Golgi cells receive
excitatory input from mossy fibres. Parallel fibers extend perpendicularly from
the planar Purkinje cell dendritic trees, and can pass through approximately
450 of these trees in mammals, while contacting at least 300 Purkinje spines
(Ito, 2006). Each mammalian Purkinje cell can receive 150,000-200,000 of these
inputs.

Also receiving parallel fibre input are the inhibitory interneurons, often
known in mammals as stellate and basket cells, although they can be consid-
ered a single cell type (Sultan and Bower, 1998; Ito, 2006). Stellate cells are
thought to be found in all but the most primitive cerebella, although they were
often thought to be absent in some vertebrates, such as amphibians, as the cells
can be small and far fewer in number in comparison to mammals (Bloedel and
Llinas, 1969; Hillman, 1969). Stellate cells are found in the molecular layer and
synapse on Purkinje cells, mostly in the dendritic tree although they can also
reach the soma. Basket cells are named for the basket-like structure they form
around Purkinje cell somas, creating a strong inhibition. This structure is only
found in mammal and bird cerebella (Voogd and Glickstein, 1998). The cells are
found lower in the cerebellum than stellate cells, allowing them to also receive
some excitation from climbing fibres and inhibition from the Purkinje cell axon.
A simplified breakdown of which cerebellar features appear in which class of
animal can be found in Table 2.1 in Section 2.4.

Traditionally the cerebellum has been thought of as being largely engaged
with fine motor control, although there is evidence that it is involved with
sensory processing (Bell et al., 2008). There is a general consensus that the
cerebellum has some involvement in movement, although debates remain on the
extent and nature of that involvement.

Theories of directly controlling movement are drawn from studies of people
and animals where the cerebellum of the subject is damaged or removed. This
does not lead to any losses in senses or movement, but a loss of control. Impair-
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ment in gait is a common effect of cerebellar lesions in humans, for example.
However, to say that this is the only function of the cerebellum ignores the
many afferent connections from disparate regions of the brain. Cerebellar cir-
cuitry receives a large amount of sensory information, including vision, sound,
touch, proprioception and even blood flow (Bower, 1994). To accommodate this,
alternate theories suggest that the cerebellum acts to refine movements based
on sensory information (Braitenberg and Preissl, 1994) or that it integrates the
information from other systems but then passes it on for other structures to
make decisions (Bloedel, 1992).

Other theories include the cerebellum as a bank of learned movements, or
otherwise involved in learning new movements – a theory that dates back to
Marr (1969) and Albus (1971) who suggested that the climbing fibre acts as
a teaching or error signal to Purkinje cells, effecting the strength of parallel
fibre inputs. Each of the theories mentioned have some degree of supporting
experimental evidence, but there is yet to be a definitive theory of cerebellar
function.

2.3 Purkinje Cells
Residing in the cerebellar cortex (as seen in Figure 2.3), the Purkinje cell is the
recipient of a large number of both excitatory and inhibitory inputs, and is a
key component of cerebellar circuitry. The morphology of Purkinje cells differs
across the taxa, but its unique position and organisation in the cerebellum is
constant.

With the cell’s large size and distinctive dendritic branching, the Purkinje
cell was one of the earliest distinguished cells, being described by Jan Purkyně
in 1837. This was before Camillo Golgi discovered a silver staining technique
which exclusively targets cells and their processes, making them much easier
to distinguish from surrounding tissue. This early discovery combined with the
unique features of the Purkinje cell - the large number of inputs, its centrality to
cerebellar circuitry, and its position as the only output of the cerebellar cortex
in almost all vertebrates - mean that it has been the subject of a vast number
of studies over the 180 years since it was first described.

2.3.1 Anatomy
The cerebellar cortex has three distinct layers of cells. Closest to the DCN is
the granule cell layer, densely packed with tiny granule cells. Above this is the
Purkinje layer, where the somas of Purkinje cells sit in a neat row, as though in
a queue. At the very top of the cortex is the molecular layer. The Purkinje cell
dendritic trees stretch up into this layer, where the long, straight parallel fibres
weave through the branches.
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Figure 2.4: Multiphoton image of a fluorescent-dyed Purkinje cell in slice (Denk
and Svoboda, 1997, fig. 3)

2.3.1.1 Morphology

One of the largest cells in the central nervous system, the Purkinje cell is promi-
nent in the cerebellum for its size, complexity, and its large number of inputs.
Purkinje somas are typically tear-shaped (e.g. Figure 2.4) rather than spherical.
When creating their guinea pig Purkinje models, Rapp et al. (1994) estimated
the average diameter of the somas to be approximately 25 µm, although size
varies between species. The size of the cell itself will also vary by species. The
three guinea pig cells modelled in this study - that use the same morphology as
the Rapp et al. (1994) models - average 280 µm maximum width and 258 µm
maximum height. A constant feature across species is the cell having a much
smaller depth than its width or height, so that it is almost flat. The average
depth of the three guinea pig cells is 38 µm.

Figure 2.4 also shows the complex dendritic branching that characterises the
Purkinje cell in many species. Mammalian species are famous for their structure,
which is also present in birds and some reptiles. The cells modelled in this study
show how branching can differ, particularly in fish and turtles (examples shown
in Figure 4.1).

This intricate morphology allows the Purkinje cell to sample inputs from
huge numbers of parallel fibres and inhibitory interneurons. Parallel fibres
synapse onto small protrusions called spines (visible in Figure 2.4, shown in
detail in Figure 2.5) that cover much of the surface of Purkinje cell dendrites.
The number of spines is unclear, and seems to vary across species (see Section
2.4 for more on this), but has been estimated at approximately 150,000 in rats
(Harvey and Napper, 1991).
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Figure 2.5: Single Purkinje cell branch showing dendritic spines (Palay and
Chan-Palay, 2012, fig. 26A)

2.3.1.2 Connections

The characteristic Purkinje morphology allows for a large number of parallel
fibres to make multiple connections on each dendritic tree. The Purkinje cell
dendritic tree is almost flat, extending up and out much like a fan. This allows
the Purkinje cells to sit closely together on a single plane, similarly to books
on a shelf. At the same time, the dense branching seen in most species is well
suited for creating synapses with the many parallel fibres that travel through
the layer.

The thinner branches of the Purkinje dendritic trees are studded with spines
that make contact with the parallel fibres. Originating in the granular layer,
the parallel fibres are the axons of granule cells. The granular layer is densely
populated with these small cells, one of the most numerous cell types in the
central nervous system (Purves et al., 2012). Each one provides the Purkinje cell
a small excitatory input, many parallel fibres firing synchronously are required to
affect firing. Barbour (1993) estimates that 50 parallel fibres firing at the same
time can excite a Purkinje cell in this way. Parallel fibres project upwards from
the granule layer, synapsing onto Purkinje cells as ascending segments, before
bifurcating in a “T” shape and synapsing on the Purkinje cell’s dendritic spines
as parallel fibres. The length that parallel fibres can extend appears to vary
between species, reaching on average 6 mm in cats (Brand et al., 1976), chickens
and rhesus monkeys (Mugnaini, 1983), but only 4.5 mm in rats (Pichitpornchai
et al., 1994).

Purkinje cells also get a large excitatory input from climbing fibres. Climbing
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fibres extend into the cerebellum from cells found in the inferior olive, a brain
stem nucleus. Each Purkinje cell will receive input from only a single climbing
fibre. In contrast to the numerous granule cells, there are fewer inferior olivary
cells than Purkinje cells. The axons of these will branch in to 10 climbing fibres
on average (Llinás et al., 2004). Each fibre covers a large portion of the soma and
main dendrite, “climbing” up the cell and making a large number of synapses.
Climbing fibre excitation produces a unique response known as a complex spike
(Eccles et al., 1966b) (see Section 2.3.2 for more).

Purkinje cells also receive inhibitory input to both dendrites and soma.
Sometimes described separately as stellate and basket cells, there is evidence
that these are classes of a single type of inhibitory interneuron (Sultan and
Bower, 1998). Stellate-type interneurons are located higher in the molecular
layer and make connections with Purkinje dendrites. They tend to be smaller
the higher in the cortex they are, and are far more numerous than Purkinje
cells. Basket-type interneurons sit closer to the Purkinje layer, and are more
morphologically complex than stellate cells. Their axons extend through the
Purkinje layer, where they branch off and create woven structures around the
somas, inspiring their name. Basket cells are also more numerous than Purk-
inje cells, and up to 50 have been known to synapse onto a single Purkinje cell
(Llinás et al., 2004).

The Purkinje cell itself is an inhibitory cell. In most species, their axons
leave the cerebellar cortex to provide inhibition to the cells in the DCN, making
it the only efferent cell in the cortex. Teleost fish lack DCN, so the Purkinje
cells there instead terminate on eurydendroid cells.

Cerebellar circuitry is more complicated than the Purkinje cell integrating
the array of inputs described here into a single output. Other neurons and
fibres exist in cerebellar circuitry without synapsing directly on to Purkinje cells,
such as Golgi cells and mossy fibres. There are also many loops of information
that occur within this circuitry. For example, the Purkinje cell axon extends
downwards past the granule layer to contact DCN neurons, but it can also
branch and extend upwards to make connections with Golgi and basket cells
(Llinás et al., 2004), as well as other Purkinje cells (Palay and Chan-Palay,
2012).

2.3.2 Physiology
As the only efferent cell of the cerebellar cortex, the Purkinje cell spiking beha-
viours have been carefully studied. Purkinje spiking patterns depend greatly on
the source of excitation, based on the ions that cause the change in membrane
potential. Additionally, Purkinje cells are also known to fire spontaneously in
vivo, without any apparent input (Bower and Woolston, 1983).

Parallel fibres synapse onto Purkinje cells on the magnitude of hundreds
of thousands. These small excitatory inputs are linked to “simple” spiking,
a train of action potentials common to all neurons, driven by the activation
of sodium channels (an example spike train can be seen in Figure 3.7). Simple
spiking in Purkinje cells typically occurs at frequencies of 30-100Hz (Armstrong
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Figure 2.6: Recordings from a rat Purkinje cell soma showing simple spikes
(labeled SS) and complex spikes (CS) and the suppression of simple spiking
caused by a complex spike (Bower and Woolston, 1983, fig. 1D)

and Rawson, 1979) at irregular intervals that approximately follow a Poisson
distribution (Bower and Woolston, 1983).

The excitatory input from climbing fibres is so strong that it decreases the
effect of parallel fibre input, silencing simple spikes (see Figure 2.6), and causes
the firing of a complex spike. The complex spike typically lasts approximately
20ms, containing several spikelets and reaching a peak amplitude of 40 mV
(Llinás et al., 2004), such as in Figure 2.7. Across multiple activations, the
unique shape and timing of a complex spike is relatively constant. Complex
spiking is much rarer than simple spiking, occurring at a frequency of approx-
imately 1-2.5 Hz (Armstrong and Rawson, 1979). Unlike the sodium driven
simple spikes, complex spikes occur when calcium channels are activated.

Faithful recreation of both spiking behaviours in computational models re-
quire the model to include not just a replication of the excitatory input, but
also of the background inhibitory input of stellate cells (De Schutter and Bower,
1994b). Many studies of Purkinje cells are executed in an in vitro environment,
usually electrode stimulation of neurons in thin slices of cerebellar material.
Current injection experiments of this type produce a bursting response in Purk-
inje cell that is never seen in vivo, show in Figure 2.8. This is likely due to the
lack of inhibition as De Schutter and Bower discovered a similar bursting effect
when simulating parallel fibre input without any stellate cell input.

2.4 Evolution of the Cerebellum
While the cerebellum has been the subject of a great many studies in the last
hundred years, there is little variation on the animal species that these studies
use. There is a large volume of data available on mammals, primates and rodents
are particularly well represented, while other taxa are far less explored. This
section is intended to summarise the available knowledge of the cerebellum and
Purkinje cells across the phylogenetic tree. Tables 2.1 and 2.2 are intended to
serve as overviews of which point in evolution certain cerebellar features (such
as basket-type interneurons, Table 2.1) or Purkinje cell ion channels (Table 2.2)
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Figure 2.7: A complex spike recorded from a guinea pig Purkinje cell (Llinás
and Sugimori, 1980a, fig. 1D)

are first confirmed to exist.

2.4.1 Cyclostomata
Fish of the group cyclostomata are vertebrates which lack a jaw, such as the
lamprey eel. Living species are thought to date back to the late Devonian pe-
riod, approximately 360-375 million years ago (Gess et al., 2006). In hagfish,
the region thought to be the cerebellum is not clearly differentiated from the
cerebellum-like acousticolateralis area, with some disagreement on whether a
cerebellum is actually present. Purkinje-like cells in the possible cerebellar re-
gion have been found to be large and not unlike those seen in mammals of early
developmental ages (Paulin, 1993).

2.4.2 Elasmobranchii
Elasmobranchii, a subclass of the class of cartilaginous fish also known as Chon-
drichthyes, includes sharks and rays. The subclass is thought to have originated
in the late Devonian period approximately 370 million years ago (Jacquemin
et al., 2016), although living species only date back to the early Jurassic period
195 million years ago (Kriwet et al., 2009).

Modern elasmobranch fish have been found to have cerebella that are larger
than those seen in teleost fish of the same size (Paulin, 1993). Interestingly,
a study of shark cerebella found that some sharks show cerebellar foliation
(Yopak et al., 2007), a trait that had previously been thought to have been re-
stricted to mammals, birds, and alligators (Larsell, 1932). The extent of foliation
varies greatly between orders of shark, the evolutionarily older squalomorph and
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(a) Current injection at 0.5 nA

(b) Current inject at 2.0 nA

Figure 2.8: Recordings from the soma of a computational model of a guinea
pig Purkinje cell when replicating current injection in vitro (De Schutter and
Bower, 1994a, fig. 3A,C).

Vertebrate Group/Species Cerebellar Foliation DCN BEC∗ Stellate Cells Basket Cells
Cyclostomata a a u u a

Elasmobranchii s p p p a
Teleostei a a p p a

Frog a s+ p p♦ a
Turtle a p p p u

Alligator p p p p u
Neornithes p p p p p
Guinea Pig p p p p p

Table 2.1: Which cerebellar features are found in groups of vertebrates. KEY: a-
confirmed absent, p-confirmed present, s-only confirmed present in some species,
u-unknown/unconfirmed/disputed. *BEC (Basic Excitatory Circuitry) com-
prises Purkinje cells, parallel fibres and climbing fibres. +Single deep cerebellar
nucleus, disputed in some species. ♦Far fewer stellate-type interneurons are
present than found in mammals.
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Figure 2.9: A subsection of the phylogenetic tree that shows the positions of
the species used in this study, with as much detail as is known (see Chapter 4
for more details), as well as other vertebrates that are discussed in Section 2.4.

Vertebrate Group/Species Fast Na Persistent Na P-Type Ca T-Type Ca DR∗ Ca-Dependent K Other
Cyclostomata u u u u u u

Elasmobranchii u u u u u u
Teleostei p u u u u u

Frog u u u u u u
Turtle u p p u u p Cl-+

Alligator u u u u u u
Neornithes p u p u u p
Guinea Pig p p p p p p

Table 2.2: Which types of ion channel have been found in the Purkinje cells
of different vertebrate groups. KEY: a-confirmed absent, p-confirmed present,
s-only confirmed present in some species, u-unknown/unconfirmed/disputed.
*Delayed Rectifier. +See (Hounsgaard and Midtgaard, 1989) for more informa-
tion
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squatinomorph sharks have flat cerebella. Galeomorphii, a more recent order,
show foliation in their cerebella, although the amount of foliation still varies
greatly between habitat and predatory strategy (Yopak et al., 2007).

Studies in the dogfish cerebellum have found that the Purkinje cells resem-
ble those found in other vertebrates in many ways. They show characteristic
dendritic flatness, are organised in the typical ‘shelved’ manner (Llinás and
Nicholson, 1971). The cells show less branching than mammals or amphibians,
with spine density estimated at 6-7 per 10 µm (Paul and Roberts, 1977). There
were also groups of spines found on the soma of Purkinje cells. These groupings
are known as ‘pincushions’ and are terminated on by climbing fibres. They have
previously been found on the cells of amphibians and teleost fish (Alvarez-Otero
et al., 1993). The cerebellar circuitry is present as described in the introduc-
tion, with the exception of basket-type inhibitory interneurons. The presence of
climbing fibres had been disputed, but they have since been found to be present.
They are considered more primitive than in some other vertebrates as they do
not extend into the molecular layer (Alvarez-Otero et al., 1993).

2.4.3 Teleostei
Teleostei is an infraclass of the class Actinopterygii (ray-finned fish) and com-
prises the vast majority of known, living species of fish. The earliest found
fossils date to the Triassic period, around 200-250 million years ago (Green-
wood et al., 1966), with many extant species first appearing in a period of mass
diversification during the Mesozoic era 250-66 million years ago (Near et al.,
2012).

In contrast to the mammalian and avian cerebella, which are divided into
ten lobules, the teleost cerebellum has been found to contain only three main
divisions: the valvula cerebelli, the corpus cerebelli, and the crista cerebellaris
(Miyamura and Nakayasu, 2001). Most vertebrates also have a Purkinje layer
between the granular and molecular layers that spans the cerebellum where the
somas of Purkinje cells are situated. In the teleost cerebellum, however, the
layers are less defined and Purkinje cells are found in ‘zones’ in the valvula and
corpus cerebelli. For the most part, the Purkinje cells in these zones are still
positioned by the ‘shelved’ organisation observed in other vertebrates, but there
is more evidence of irregularities closer to the corpus cerebelli (Miyamura and
Nakayasu, 2001). There are no Purkinje cells found in the corpus cerebellaris,
which is also thought to be evolutionarily the oldest region of the teleost cere-
bellum (Miyamura and Nakayasu, 2001). A major difference between teleosts
and higher vertebrates is the lack of deep cerebellar nuclei in the former. As
there are no deep cerebellar nuclei neurons, the Purkinje cell axons terminate
on eurydendroid cells, which mediate the cerebellar output. This is a dramatic
difference as the Purkinje cells act as an interneuron, rather than the position
they hold as sole efferent cell of the cerebellar cortex in other vertebrates. The
eurydendroid cells also extend their dendrites to receive input from parallel
fibres (Hashimoto and Hibi, 2012).
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2.4.3.1 Mormyridae

The mormyrids are a family of teleost fish, commonly known as elephantfish,
which have particularly large cerebella (Paulin, 1993). In comparison to another
teleost, the zebrafish, mormyrids also have a more complex cerebellar structure
(Hashimoto and Hibi, 2012). Han et al. (2007) described the central lobe of
the mormyrid cerebellum as having three layers: the granular, ganglionic (con-
taining the Purkinje cells) and the molecular, which also included stellate-type
inhibitory interneurons.

Purkinje cells of mormyrid fish have large dendrites that branch sparsely and
have spines on the secondary and tertiary branches. Their electrophysiological
responses are different to those recorded in other vertebrates, with very low
amplitude (typically less than 30 mV ) sodium spikes and the climbing fibre re-
sponse consisting of an all-or-nothing excitatory post-synaptic potential (EPSP)
rather than the mammalian complex spike (de Ruiter et al., 2006) (spiking in
the Purkinje cell is detailed in Section 2.3.2, action potentials in general can be
found in Section 3.2.2.2). Despite these differences in behaviour, the conduct-
ance of sodium channels in mormyrid fish Purkinje cells were found to be very
similar to those in the cells of rats. When the amplitude of the excitatory post-
synaptic conductance (EPSC) in the fish was scaled up, as it was very small,
it was found to be close in shape to those in the rats; rise times were also very
similar (de Ruiter et al., 2006). A figure from the paper showing similar sodium
currents following a simulated complex spike has been reprinted as Figure 2.10
for reference.

To further investigate the sodium channel densities and distributions in rat
and mormyrid Purkinje cells, de Ruiter et al. (2006) performed channel staining
in the both the soma and dendrites of the cells. They found that the two species
have similar results for three types of sodium channel. Staining for two types of
sodium channel, Nav1.2 and Nav1.6, strongly showed in the soma and dendrites
in both species. Both species also showed strong staining in the soma for channel
Nav1.1, but only weak traces in the dendrites. Table 2.3 shows the average value
of several features of sodium channels after correcting for input capacitance to
account for differences in soma size between the two species. Furthermore, the
study also found that input resistance for Purkinje cells in both species in slice
were very similar; 84.8 ± 18.5 MΩ in rats and 81.3 ± 13.1 MΩ in fish. Using a
dynamic clamp, sodium traces were recorded in response to a simulated complex
spike. Despite complex spiking not occurring naturally in the mormyrid fish,
the responses in both species were of a similar shape once differences in scale
were accounted for (de Ruiter et al., 2006).

2.4.4 Amphibia
The first amphibians have been dated as emerging in the late Devonian pe-
riod (over 360 million years ago) (Carroll, 1977; Vitt and Caldwell, 2013) as
descendants of lobe-finned fish with small primitive lungs. All living amphibian
species belong to the subclass lissamphibia. The time period that lissamphibia
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Figure 2.10: The top row shows the simulated complex spike applied to each cell
in vitro. The bottom traces show the sodium current recorded in the rat (left)
and fish (right) cells. The scale bars show the difference in amplitude between
the cells (de Ruiter et al., 2006, fig. 8).

Property Fish Rat
Current Peak (pA/pF ) 179 ± 59 189 ± 57

Decay Time (ms) 0.47 ± 0.05 0.31 ± 0.049
Rise Time (ms) 0.39 ± 0.008 0.38 ± 0.052

Table 2.3: Comparison of fast inactivating sodium channel properties in fish
and rat Purkinje cells in (de Ruiter et al., 2006) given as species averages and
standard error.
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diversified to include extant species is contested, but assumed to be within the
last 300 million years (Marjanović and Laurin, 2007).

As in cyclostomata, the amphibian cerebellum is very simple and primi-
tive. Comparisons in size to both land-based and aquatic vertebrates show the
amphibian cerebellum to be particularly small (Paulin, 1993). It has been sug-
gested that the amphibian cerebellum lacks the inhibitory interneurons found
in higher vertebrates (Llinás et al., 1969), but this has been disproved for frogs
(Bloedel and Llinas, 1969).

2.4.4.1 Frogs

Frogs are widely-distributed and numerous, exhibiting a high amount of species
variation. The earliest confirmed frog fossils date back to the early Triassic pe-
riod. They also have a more advanced cerebellum than many other amphibians,
having been described as having a higher resemblance to the reptile cerebellum
than those of other amphibians (Hillman, 1969).

Purkinje cells are again found with the typical organisation, with flat den-
dritic trees perpendicular to parallel fibres, between the granular and molecular
layers. The cells also have spiny pincushions around the soma, as previously
described in elasmobranchii (Alvarez-Otero et al., 1993) and teleost fish, where
climbing fibres terminate (Hillman, 1969). It has been estimated that the climb-
ing fibre makes approximately 300 synapses on the soma and primary dendrites
(Bloedel and Llinas, 1969), in comparison to the nearly 30,000 estimated for
mammalian cells (Ito, 2006). The Purkinje cells response to climbing fibre ac-
tivation resembles the response as recorded in cats, pigeons, and alligators in
similar studies (Bloedel and Llinas, 1969).

Early studies suggested that the frog cerebellum lacked any inhibitory in-
terneurons. Stellate-type interneurons have since been found, although they
were described as small and are present in much smaller numbers than in mam-
mals. Studies of bullfrog Purkinje cells using local stimulation suggest that
these cells receive very little inhibition (Bloedel and Llinas, 1969).

The Purkinje cells have far fewer spines in the secondary and tertiary branches
than has been estimated in mammals, approximately 3-4,000 spines per cell.
Purkinje cell dendritic trees are also far less densely-branched than mammalian
cells; Hillman (1969) described the primary dendrite as particularly long and
suggested that the less complex dendritic trees would be less adept at sampling
a large range of parallel fibres than their mammalian counterparts. However, a
later study (Llinás, 1971a) based on work by Hillman estimates the number of
granule cells as approximately 1.6×106, which is an order of magnitude smaller
than the lowest estimates in mammals. The methods used to find this number
are not included, but if accurate would suggest that the level of branching in
frog Purkinje cells is adequate for the number of inputs.
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2.4.5 Reptilia
It is known that the ancestors of both reptile and bird species first appeared
during the Carboniferous period, around 320 million years ago (Vitt and Cald-
well, 2013). However, continued dispute on the definition of reptile makes it
difficult to know when the first ancestors of modern species began to appear.
Debates also occur on the proper classification of the families of turtles and
crocodilians (a group including crocodiles and alligators). Turtles, appearing
in the late Jurassic around 155 million years ago (Joyce, 2007), are unlike any
other reptile, and have historically been classified with extinct reptiles rather
than living groups (Vitt and Caldwell, 2013). Crocodilians date back to the
Triassic period (250 million years ago) and are phylogenetically closer to birds
than other reptiles (Benton and Clark, 1988).

The reptile cerebellum shows a series of advancements over amphibians;
there is an increase in the number of granule cells (becoming closer to the num-
bers typically found in mammals) and the Purkinje cells are both larger and
more numerous. Additionally, the reptile cerebellum appears to have the ear-
liest examples of basket-type interneurons providing inhibition to Purkinje cell
somas. Basket-type interneurons were identified in the turtle (Larsell, 1932) and
chameleon (Rámon y Cajal, 1911), but not in the alligator (Llinás et al., 1968),
although Llinás et al. did describe the alligator as having stellate cells which
terminate on the Purkinje soma without forming a basket. The basket-type
interneurons in turtles are not positioned closely to the Purkinje cells and have
very long axons in comparison to those in mammals, which terminate on up to
2-3 Purkinje cells (Larsell, 1932).

2.4.5.1 Turtle

Like in most reptiles, the turtle cerebellum is a flat ovoid with no signs of
folding (Larsell, 1932), but still has three clear layers of cells (Hounsgaard and
Midtgaard, 1988). Chan and Nicholson (1986) describe turtle Purkinje cells
as having dendritic trees similar to those seen in elasmobranch fish, with a
maximum soma diameter of roughly 30 µm.

While stellate-type interneurons are present, it has been proposed that they
may have a diminished inhibitory effect on Purkinje cells in comparison to results
from alligator and mammalian cells (Chan and Nicholson, 1986). Later studies of
in vitro turtle stellate-type interneuron and Purkinje cells found that in certain
conditions, input to the dendritic tree from a single inhibitory interneuron could
cause a reduction in the Purkinje cell firing. However, as the effect of a single
cell could be easily nullified by an increase in depolarisation in the Purkinje
cell, it is suggested that inhibiting the Purkinje cell from dendritic inputs would
require several stellate-type cells firing simultaneously (Midtgaard, 1992). A
single stellate-type input has a varied effect on a climbing fibre response, related
to the timing of each input. Inhibitory input just after the start of the climbing
fibre response could severely shorten the duration of the response. With the
correct timing, single inhibitory inputs were capable of reducing the calcium
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influx required for complex spiking (Midtgaard, 1992).
Turtle Purkinje cells produce firing patterns that are much like those which

have been used to exemplify Purkinje cells in other vertebrates, as shown by
Hounsgaard and Midtgaard (1988). When measuring the voltage response in
the soma of Purkinje cells to current injection in vitro (Hounsgaard and Midt-
gaard, 1988, fig. 1), the recorded firing patterns were very similar to those seen
in mammals (Llinás and Sugimori, 1980a, fig. 4) under the same conditions.
The same study also shows that these firing patterns are the result of the tur-
tle Purkinje cells having the same voltage-activated ion channels as have been
found in other vertebrates. Fast action potentials indicate sodium channels,
while slower spikes are due to calcium channels. Potassium channels have also
been confirmed. A typical behaviour in mammalian Purkinje cells is hyper-
polarisation of the cell following the activation of a large calcium conductance.
Behaviourally, this is seen as an inhibition of spiking following climbing fibre
induced complex spiking, which has also been observed in the turtle Purkinje
cells (Hounsgaard and Midtgaard, 1989).

2.4.5.2 Alligator

The alligator cerebellum is an interesting area of study as it possesses many fea-
tures that are more similar to the cerebella of birds and mammals. For example,
cerebellar folding is found in the alligator (Larsell, 1932), where most reptiles
have flat ovoid cerebella. Foliation is characteristic in birds and mammals and
is very rare in other vertebrates, but there are exceptions found even in elasmo-
branch fish. Alligator cerebella also show distinct segmentations (Larsell, 1932)
and while the molecular and granular layers are thin, similar to those of the
turtle, they also show the first evidence of a true single layer of Purkinje cells
(Llinás et al., 1968).

In terms of cerebellar circuitry, the expected Purkinje cells, parallel and
climbing fibres, and stellate-type interneurons are all present. Llinás et al.
(1968) described some of the inhibitory interneurons as terminating on Purkinje
somas; acting as proto basket-type interneurons, although they did not create a
‘basket’ around the soma. The Purkinje cells in alligator embryos were described
by Larsell (1932) as being well-developed, with dendritic processes comparable
to those of mammals.

Recordings of action potentials from the soma of alligator Purkinje cells were
similar to those observed in both cats and frogs (Llinás et al., 1968).

2.4.6 Aves
There is some debate over the distinction between birds and their ancestors,
the theropod dinosaurs, making it difficult to determine when the first birds
would have emerged, but as mentioned in the previous section, early reptile-bird
ancestors appeared around 320 million years ago (Vitt and Caldwell, 2013), and
the archosauria group that includes ancestors of birds and crocodillians first
emerged around 250 million years ago (Benton and Clark, 1988).
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The bird cerebellum is a thin sheet of folded grey matter, as in mammals, but
it is narrow and shows most variation between species through its length. Bird
cerebella have been found to contain both dendrite-terminating and basket-type
inhibitory interneurons. Comparative studies (Sultan, 2005) of bird cerebella
found that enlargements in the cerebellum as the brain became larger were
region-specific rather than uniform, which is likely to also be true of other ver-
tebrates. It is possible that the particular region enlargements are behaviour-
driven, for example the cerebellum of owls have enlargements in the vestibular
and specific somatosensory regions associated with the tail area, suggesting
these changes could aid night-time flight. Birds that are known for flight dex-
terity, such as falcons and swifts, do not have particularly long cerebella. This
is indicative that flight skill is not correlated with cerebellar size (Sultan, 2005).

Foliation is a feature of all avian cerebella, but there are differences in the de-
gree of foliation across species. A comparative study of 91 bird species (Iwaniuk
et al., 2006a) found that cerebellar foliation is most correlated with the body,
overall brain, and cerebellum size of the species. Of these, the overall brain
volume has the largest correlation with cerebellar foliation. This is particularly
true in corvid and parrot species, which have large brains but small, highly
foliated cerebella. Foliation allows for an increase in the number of neurons,
particularly Purkinje cells, without increasing the size of the cerebellum. The
increase in cells could mean an increase in cerebellar processing; a higher level
of foliation also correlates with tool use in birds. In terms of phylogenetics, the
study found that some orders of birds consistently show higher foliation than
others. Seabirds, parrots and penguins have the highest cerebellar foliation,
with the lowest levels are found in pigeons, nightjars and waterfowl (Iwaniuk
et al., 2006a).

A study of the Purkinje cells of pigeons confirmed the presence of voltage-
gated ion channels and found their electrophysiological behaviour to be compa-
rable to that seen in alligators (Llinás and Hess, 1976). The same work finds that
some dendritic spikes in pigeon Purkinje cells are produced by a slow calcium
current.

2.4.7 Mammalia
As with birds and reptiles, the appearance of the first mammals is a matter of
debate, depending on how mammals are defined. By the traditional definition,
put forward in the late 19th century, the earliest fossils that could be classed
as mammals are from the late Triassic era, 225 million years ago (Lyell, 1871).
Whether this group of animals, known as haramiyidans, are considered mam-
mals is disputed. A more recent classification by Rowe (1988) suggests that
mammals should be defined by the extant species. This would place the most
recent common ancestor at 163-186 million years ago based on when the three
extant mammal groups split (Messer et al., 1998).

On average, the mammalian cerebellum makes up 13.5% of the total brain
volume (Clark et al., 2001), although there is variation between orders. When
both are plotted as logarithms, the proportion of body weight to brain weight is
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usually estimated at 0.66 (Jerison, 1973), i.e. log(wbrain) = 0.66 log(wbody). In
a study of 14 mammalian and 1 avian cerebella, the proportionality between the
logarithm of cerebellar weight and the logarithm of body weight was calculated
as 0.72 (Sultan and Braitenberg, 1993). Their study also showed that mam-
malian cerebella all generally conform to an arrow-like shape, whereas birds
and reptiles are more rectangular. In small mammals, cerebellar width is found
to increase greatly with surface area. In larger mammals, excepting humans,
this increase is still present but much more subtle (Sultan and Braitenberg,
1993). Comparative studies have also found that cell size and dendritic com-
plexity appear to increase proportionately with cerebellum size in mammals
(Maseko et al., 2012). However, there is also an inverse relationship between
size and neuronal density (Jacobs et al., 2014).

Monotremes (egg-laying mammals) have been described as having “large
and unusual” (Paulin, 1993) cerebella, which is possibly linked to their having
electroreceptors in their beaks. The comparison of vertebrate cerebella by Paulin
(1993) also found that cetaceans have larger cerebella in comparison to land
mammals. However, in the Sultan and Braitenberg (1993) comparative study
it was found that of their samples, the cow has the longest anterior to posterior
extension. In pinnipeds, such as seals, the dorsal and ventral paraflocculus and
paramedian lobe are particularly enlarged (Paulin, 1993).

The Purkinje cells of mammals tend to have more complex branching than in
other animal groups. One exception is the humpback whale, whose Purkinje cells
have straight, vertical dendritic processes, not dissimilar to those seen in fish.
This type of branching was not observed in manatees, another aquatic mammal,
or giraffes, which belong to the order cetartiodactyla along with whales (Jacobs
et al., 2014, fig. 4). The spine density on Purkinje cells has been estimated in
several studies using different species and methods. A relatively early study in
1957 by Fox and Barnard estimated that Purkinje cells in the macaque average
at 1.5 spines per µm. Spine density in mice, cats, and humans was measured
at 4.4 spines per µm. In frogs it drops to 1.1 spines per µm (Shelton, 1985).
However, a 1988 study (Napper and Harvey) using different counting methods
found that the number of spines per µm on rat Purkinje spiny branchlets was
between 17.2-17.6, depending on the method used. Using these estimates, the
total number of spines per cell could be between 154,000 and 175,000 in rats.

As parallel fibres synapse on the Purkinje cell spiny branchlets, an increase
in the number of spines on the cell, and in the spread of the dendritic tree, could
be an adaption to the population of granule cells also increasing. The small,
densely-packed neurons are the most numerous cells in the brain, constituting
over half of the total number of cells in the mammalian central nervous system
(Heck and Sultan, 2002). A study of the cat cerebellum by Palkovits et al. (1971)
calculated the total number of granule cells to be in the range of 2.2× 109 and
Harvey and Napper (1988) estimated the total to be 9.2× 107 in rat cerebella.
Most recently, Andersen et al. (1992) calculated the number of granule cells in
the human cerebellum to be approximately 1011.
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2.4.7.1 Bats

There are two major groups of bats, the microchiropterans (microbats) and the
megachiropterans (megabats). Microbats are mostly insectivores and rely on
echo-location, while megabats largely eat fruit and rely on their vision; it has
been suggested that their brains resemble the brains of certain types of primates
(Paulin, 1993).

A study of the microbat cerebellum showed that they share the typical mam-
malian cerebellar architecture, including the Purkinje cell zones which are visible
from antigen immunoreactivity. Immunoreactivity is the body showing some re-
sponse to the introduction of some antigen - a foreign substance. It also has
some more unique features thought to be related to bats being capable of flight
and using echolocation (Kim et al., 2009). The main difference between the
microbat cerebellum and those of other mammals is the large proportion of
Purkinje cells in lobule I that are immunopositive to the antigen zebrin II. This
type of expression is more typical of avian rather than mammalian cerebella
(Kim et al., 2009), suggesting this is an example of convergent evolution and
possibly an adaption to the cerebellum to optimise for flight. The study by
Kim et al. (2009) goes on to describe enlarged sections of the VI/VII lobules,
which are thought to be responsive to auditory stimuli, suggesting it may have
developed for echolocation.

2.4.7.2 Guinea Pigs

Studies of the guinea pig Purkinje cell found that the spiny dendrites make up
81-85% of the total dendritic length, although an actual count of spines has
not been made. The cells were also found to have over 400 terminal points to
their dendritic trees (Rapp et al., 1994). In an electrophysiological study, six
active channels have been confirmed in guinea pig Purkinje cells. These are
inactivating and non-inactivating sodium channels that are found at or near the
soma, spike generating calcium channels found in dendrites, and voltage- and
calcium-dependent potassium currents also found in the dendrites (Llinás and
Sugimori, 1980a). Table 2.2 lists these channels against what channels have
been confirmed in the Purkinje cells of other species groups.

Following on from these studies, computer models of hybrid guinea pig/rat
Purkinje cells1 by De Schutter and Bower (1994a; 1994b) (explored in more de-
tail in Section 3.3) that replicated the firing patterns of cells in vitro were able
to find out more about the electrophysiological behaviour of the cells. Modelling
only the excitatory inputs to the Purkinje cell was not sufficient for the model
to accurately replicate behaviour, as the calcium produced spikes were non-
complex. This reflects the results in teleost fish, which lack inhibitory inputs
and produce an all-or-nothing response rather than a complex spike to calcium
currents.

1The cell morphology was traced from guinea pig cells, but much of the voltage clamp data
used to model behaviour was taken from studies using rats.
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Further to this, the De Schutter and Bower modelling studies (1994a; 1994b)
also found that complex spiking from climbing fibre activation was dependent
on both calcium and calcium-activated potassium channels. The shape of the
complex spike could be altered by changing the maximum conductance of climb-
ing fibre synapses. These studies were also able to cast doubt on a long-standing
belief originally put forward by Llinás and Nicholson (1971) in a study of alliga-
tor Purkinje cells. This was the description of dendritic ‘hot-spots’, thought to
be caused by regions in Purkinje dendrites where calcium channel densities were
higher than other areas. The models used by De Schutter and Bower have uni-
form calcium channel distribution across the dendritic tree, but they were still
able to produce the ‘mosaic’-like patterns of calcium concentration that have
been given as evidence of variable channel densities. They go on to suggest
that differences in calcium concentration are a consequence of the morphology
of spiny dendrites.

2.4.7.3 Elephants

Elephants have been found to have the largest cerebella relative to their size
in mammals (Maseko et al., 2012). They demonstrate the typical mammalian
cerebellar circuitry, although all cerebellar neurons in the elephant tend to have
much higher volumes than has been seen in other mammals. The total den-
dritic length of neurons also tended to be higher than other mammals, but to a
far lesser degree (Jacobs et al., 2014). This cellular enlargement is particularly
evident in the Lugaro cell, a cerebellar interneuron, more so than any other
cell types. The extreme size of Lugaro cells appears to be a change unique to
elephants (Maseko et al., 2012). Purkinje cells in elephants are very densely-
branched and heavily spined. As with the other cerebellar neurons, they are
also very large in size, with somatic volume averaging at 8507.75 µm (Maseko
et al., 2012), which is roughly twice the volume of the soma of any of the cells
in our own studies.

2.4.7.4 Primates

Primates are known to have large cerebella. In humans, the cerebellum is wider
than would be expected given trends in mammalian cerebella (Sultan and Brait-
enberg, 1993). A study of the cerebella of haplorhine primates, a suborder of
primates spanning apes, monkeys, and tarsiers, found a positive correlation
between cerebellar weight and life-span. A second, lesser, positive correlation
between cerebellar weight and female reproductive age was also found. This
was also true for the whole brain, but a stronger correlation was found with the
cerebellum (Voogd and Glickstein, 1998).

The number of inhibitory interneurons in the human molecular layer of the
cerebellum is estimated at 1.5× 109, a marked increase in comparison to other
vertebrates. The cells were also found to be more morphologically complex than
those in the cerebella of other vertebrates (Sultan, 1999).
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2.4.8 Comparing Cerebella
2.4.8.1 Circuitry

Evolutionarily, the first inhibitory inputs to the Purkinje cells are the stellate-
type interneurons. As shown in Table 2.1, these cells that provide inhibition to
the Purkinje cell dendritic tree have been described in all cerebella but that of
the cyclostomes. Neurons that match the description of basket-type interneur-
ons and terminate on the Purkinje cell soma in reptiles have been reported as
far back as 1911 in Rámon y Cajal’s description of the chameleon cerebellum,
as well as more recently in alligators (Llinás et al., 1968). It has been sug-
gested that the introduction of basket-type inhibitory neurons synapsing on to
the Purkinje cell soma was related to these species having large cerebella and
therefore a larger number of interneurons among reptiles (Sultan and Bower,
1998; Sultan, 1999).

Rámon y Cajal was also the first proponent of basket and stellate cells be-
ing morphological variations of the same cell type, and that the morphological
differences were linked to the depth of the neuron in the cerebellar cortex. The
morphology of the stellate-type interneurons in turtles also appeared to vary
based on the depth of the cell. Chan and Nicholson (1986) were able to classify
these interneurons into three groups based on cells that were less than 200 µm,
200-400 µm, or more than 400 µm from the cerebellar surface. This idea was
further explored by performing principal component analysis on the morpholog-
ical descriptions and positions of rat cerebellar inhibitory interneurons (Sultan
and Bower, 1998). The population of 26 cells was not definitively separated
as ‘stellate’ and ‘basket’ cells, but showed a smoother transition based on the
depth of the cell.

Cerebellar structure and organisation also appears to be fairly constant
across vertebrates. Changes to the cerebellum to account for specialisations
in particular species are often expressed as an enlargement in a specific region
rather than a change in organisation. Immunoreactivity to zebrin II in Purkinje
cells also shows a conserved alternation between positive and negative expres-
sion, which demonstrates groupings or ‘zones’ of Purkinje cells in all tested
vertebrates, although the meaning of this is unclear.

The planar dendritic trees and positioning of Purkinje cells is a feature of
all cerebella. Higher vertebrates have increased dendritic complexity which al-
lows them to efficiently sample the input of large numbers of parallel fibres. In
mammals, the number of dendritic spines where the parallel fibres synapse has
been estimated at 1.5 spines per µm in macaques (Fox and Barnard, 1957), 4.4
spines per µm in cats, mice, and humans (Shelton, 1985), and 17.4 spines per
µm in rats (Napper and Harvey, 1988), while in frogs the estimation is only 1.1
spines per µm (Shelton, 1985). It is likely that this lower estimate is more sim-
ilar to other vertebrates with sparsely-branched Purkinje cells, such as teleost
and elasmobranch fish. However, the spine estimates may change if calculated
again using more modern methodologies, much like the differences seen in the
mammalian estimates. There are very few studies which attempt to provide a



CHAPTER 2. PURKINJE CELLS AND THE CEREBELLUM 33

count of granule cells in the cerebellum due to their incredible numerousness.
The estimate for the frog cerebellum, 1.6 × 106, is much lower than that given
for rats (9.2×107), cats (2.2×109), and humans (1011). Assuming the numbers
are accurate, it is possible that the more complex dendritic trees and large num-
ber of spines of mammalian Purkinje cells are a specific adaption to increasing
populations of granule cells through evolution.

A computer model of a hybrid guinea pig/rat Purkinje cell indicated that a
lack of inhibitory input would prevent a cell from being able to produce complex
spikes. The mormyrid fish has been shown not to produce a complex spike
from climbing fibre input. While teleost cerebella include input to Purkinje cell
dendrites from inhibitory interneurons, it is possible that this input is too small
for complex spiking to occur.

2.4.8.2 Ion Channels and Electrophysiology

There are very few studies that attempt to characterise ion channels in Purkinje
cells in non-mammalian species. With the notable exception of de Ruiter et al.’s
(2006) work in mormyrid fish, most studies of Purkinje cell active channels have
taken place on rodent cells. Table 2.2 shows the types of ion channels found in
guinea pig Purkinje cell dendrites in a study by Llinás and Sugimori (1980b) and
whether they have been found in other species. This is telling of how little this
area has been explored experimentally. de Ruiter et al. (2006) demonstrated
the similarity in rise and decay time constants, as well as the shape of the
conductance of sodium channels between fish and rats. This is suggestive that
there has been some conservation in channel conductance, despite differences in
electrophysiological behaviour.

Conversely, there is also a lot of evidence for similarities in the electrophys-
iological behaviour of Purkinje cells across species, at least in vitro. Both the
fish and rat cells responded to a simulated complex spike in a similar way, with
the main difference being scale of response. Recordings of voltage change in re-
sponse to current injection at soma and the firing patterns of turtle Purkinje cells
are also very similar to recordings made in mammals, suggesting that similar
channel dynamics are also present in this species (Hounsgaard and Midtgaard,
1988, 1989). In various studies by Llinás (Llinás et al., 1968; Llinás and Hess,
1976; Llinás et al., 1969), there are similarities noted in the electrophysiological
behaviour in Purkinje cells of alligators, pigeons, and frogs. Furthermore, the
computational model of a Purkinje cell by De Schutter and Bower (1994a,b)
was able to accurately replicate the firing patterns and electrophysiological be-
haviours of in vitro cells. This model used the morphology of a guinea pig
cell and simulated ten voltage-dependent ion channels, distributed in varying
densities between the dendrites and soma. The same parameters were used for
cell models that used the traced morphology of two other guinea pig Purkinje
cells and the results proved to be robust, with only minor variations where dif-
ferences in size changed channel density. The model results were also fairly
robust to changes in channel density, although they were far more sensitive to
alterations of the high-threshold calcium channel or either of the calcium de-
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pendent potassium channels. These results seem to validate computer models
of Purkinje cells that use experimental data from different species, or use a sin-
gle set of electrophysiological properties across different morphological traces,
including the use of identical ion channel densities. However, when simulating
spines, there should be differences in spine density that are proportional to the
dendritic complexity of the cell.

2.5 Conclusion
In all vertebrates, the basic cerebellar circuitry consists of Purkinje cells with
excitatory input from granule cell axons bifurcating as parallel fibres and a
climbing fibre input originating from the inferior olive. Axons of Purkinje cells
then terminate on either DCN neurons or eurydendroid cells where the verte-
brate lacks DCN. Across evolution, the cells making up cerebellar circuitry have
grown in both number and type, with a particular increase in the numbers of
granule cells and the introduction of the inhibitory interneurons.

Overall, these findings point towards substantial conservation of structure
and circuitry in the cerebellum over evolution. The differences between fish and
mammal cerebella largely amount to an increase in cell numbers and a related
increase in neuronal complexity. This is particularly true if inhibitory interneur-
ons in the cerebellum are considered to be variations of the same cell type, rather
than separate cells. Assuming that granule cell population estimates are accu-
rate, it is likely that the increased dendritic complexity of mammalian and avian
Purkinje cells in comparison to fish and amphibians is an adaption of the cell to
allow it to receive input from the increased number of parallel fibres. Descrip-
tions of the frog cerebellum suggest that the number of inhibitory interneurons
increased along with the number of excitatory granule cells. While cerebellar
organisation is constant; all vertebrates have granular, Purkinje, and molecular
layers, cerebellar size and foliation also see an increase over time. It seems pos-
sible that while the cerebellum performs the same function in all vertebrates,
this function becomes more sophisticated through evolution.



Chapter 3

Passive and Active Models of
Electrical Activity in Neurons

3.1 Introduction
This chapter provides some background to the computational modelling of neu-
rons and how it is able to simulate the behaviour of these complex systems.

The work in this chapter lays the necessary foundation for understanding
the experimentation performed in Chapters 5 and 7. It summarises the knowl-
edge first put forward over 50 years ago by researchers such as Rall in passive
modelling, and Hodgkin and Huxley in understanding the electrical activity
within neurons, as well as more modern work in computational modelling by
De Schutter and Bower.

Throughout this chapter and the rest of the work, the terms “passive” and
“active” are used as shorthand for simulations that use only constant electrophys-
iological parameters, and those that use both constant and voltage-dependent
parameters.

Section 3.2 describes the mathematics and reasoning for building computa-
tional models of neurons that are biologically realistic in terms of both morphol-
ogy and behaviour. This begins with representing complex dendritic structures
as a series of cylinders in Section 3.2.1, and introducing the electrical param-
eters necessary for modelling the movement of current through the cylinders.
Section 3.2.2 builds on modelling with passive parameters to also include ac-
tive parameters for modelling ion channels. Finally, Section 3.3 is a summary
of the Purkinje cell model created by De Schutter and Bower (1994a,b,c), an
important community model that has informed many Purkinje models since its
publication, including those used in this study.

35
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3.2 Compartmental Modelling
Computational models of neurons can be created in many ways depending on the
desired level of biological realism. A very abstract model will exclude chemical
gradients and ion channels, possibly even simplifying electrophysiological beha-
viour to a binary decision much like a Boolean gate. This kind of model will also
lack morphological detail, often existing only as a cell body or point neuron. A
very simplified neuron is useful in network models where computational power
may be a limiting factor, but is unsuitable for the analysis described in this
work.

Each of the models used in this study has a biologically accurate neuronal
morphology and use electrical parameters (described in Section 3.2.1) based on
in vitro or in vivo studies of electrophysiological behaviour. These include re-
sistance and capacitance parameters based on studies of rat Purkinje cells. The
models can be used with just this information as models of the passive electro-
physiology, as the work in Section 5.2.1 shows. They can also be expanded upon
and given descriptions of voltage-dependent ion channels (see Section 3.2.2 for an
explanation of active ion channels) to model the active properties demonstrated
in many neurons, Purkinje cells included. This allows for a more biologically
realistic model.

In this study, all the models have a detailed cell morphology, each of which
has been traced from real Purkinje cells from different species. The complex
dendritic form is broken down into a series of cylindrical compartments, which
makes both the equations for calculating voltage attenuation and the description
of the morphology a much simpler task. Some of the experimentation in this
study called for models of passive electrophysiology only (Section 5.2.1), while
others required active channels to be included in the models (Sections 5.2.2 and
7.3.3). This section provides an explanation of the mechanics behind each type
of model and the differences between them.

3.2.1 Passive Parameters
Passive cable theory describes the movement of current along a cylinder, with-
out any of the non-linearities caused by active ion channels. When modelling
neurons, each cylinder, or compartment, is representative of a finite section of a
dendrite. The length of compartments is very important for accurate modelling.
While these lengths may be determined by a need for morphological accuracy,
e.g. splitting a compartment into two to replicate a bend in the dendrite, more
often the length of a compartment is limited so it may be considered isopotential.
This means that the membrane potential, or voltage, is considered the same at
any point of the compartment surface; this simplifies the mathematics greatly.
The membrane potential is the difference in the electrical potential inside the
membrane and the electrical potential of the extracellular environment.

Splitting a dendritic tree from a single structure into a series of cylinders, first
introduced by Rall (1964) has several benefits. Firstly, it allows the equations
for finding voltage to be simplified into a series of discrete differential equations
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Figure 3.1: A diagram of a patch of passive membrane (or single compartment)
represented as an RC circuit.

rather than a far more complex - and computationally intensive - continuous
differential equation. It also allows for morphological features such as the ta-
pering of dendritic diameters to be properly modelled. Additionally, splitting a
neuron into different compartments also allows for electrical constants, such as
the passive parameters described in this section, to be set as different values in
somatic and dendritic compartments (Segev and Burke, 1998).

3.2.1.1 RC Circuits

A passive compartmental neuron model is designed like a series of basic resistor-
capacitor (RC) circuits (Rall, 1959), due to the similarities between the beha-
viour of an RC circuit and a passive neuronal membrane when injected with a
step current. An RC circuit contains a resistor and capacitor in a simple paral-
lel circuit, as shown in Figure 3.1. When modelling neurons, the dendrites are
imagined as cables, with the resistance and capacitance being properties of that
cable. The resistance of a cable describes the difficulty of reaching a given level
of current through the cable, or more accurately, how much voltage is required
to maintain a level of current. A cable with a high resistance will require a larger
voltage to maintain current than a cable with a lower resistance. Conductance
is the inverse of resistance, describing the ease of movement of current, or the
level of current given the current voltage.

In cable theory, resistance is described by the membrane resistance and axial
resistivity. Axial resistivity describes the flow of current within the cable as de-
scribed previously. The walls of dendritic cables are permeable to ions, meaning
that it is also possible to lose current through the dendritic membrane. Mem-
brane resistance describes how difficult it is for current to flow in this way. Den-
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dritic membrane is much more insulated than the core, making this membrane
resistance often much higher than axial resistivity (Segev, 1998). As described
below, resistance and conductance are dependent not only on the material the
cable is made from, but also the dimensions of the cable. Axial resistivity will
increase with the length of cable, and decrease if the cable becomes wider. The
membrane also has a capacitance, which is how much electrical charge can be
stored in the membrane, with a higher capacitance indicating that more charge
can be held.

Calculating the voltage at any point in the cable requires several features
of the cable and the input to be characterised: the resistance of the membrane
(rm) and resistivity of the cable (ra) in ohms, the capacitance of the membrane
(cm) in farads, and the input current (I) in amperes. Additionally, the passive
electrical parameters (rm, ra, cm) are dependent on the the length and diameter
of the cable. Specific parameters for the membrane resistance and capacitance
represent the values for a square centimetre (or metre in some notations), which
can then be scaled to dendritic compartments. The axial resistivity scales with
length as well as area. Scaling is performed with the following equations:

rm =
Rm

πdl
(3.1)

ra =
4lRa

πd2
(3.2)

cm = πdlCm (3.3)

where d is the compartment diameter, and l the length. The specific resis-
tances and capacitance are constant values that represent the physical properties
of the medium.

Axial resistivity, ra, is the resistance to current flow within the cable and de-
creases as the cable diameter increases, therefore decreasing voltage attenuation.
Membrane resistance also decreases with increases in diameter, but this means
that it is easier for current to leak through the membrane. Voltage can also
drop by current charging the membrane capacitance. This also increases with
compartment diameter as it indicates an increase in storage capacity. Current
that is not lost crossing or charging the membrane is measured as a function of
time (t) since injection and distance (x) from input site.

These parameters can then be used to find the length and time constants that
describe the change in voltage and the speed of that change within and between
compartments. Within a closed RC circuit, a circuit without axial current flow,
the total current is equal to the capacitive current and the resistive current.
This total current is zero when no external current is applied. This is known as
Kirchhoff’s Circuit Law. When current is injected into the circuit, the voltage
of the circuit for any given time can be found be solving equation 3.4, where t
is time and Iinj is the injected current.

cm
dV

dt
+

V

rm
= Iinj (3.4)
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The general solution for Equation 3.4 is given in Equation 3.5, which assumes
the resting potential of the membrane is zero. It shows that when a positive
current is injected continuously, the voltage will increase exponentially towards
V = IR.

V (t) = IR(1− e−t/τm) (3.5)

3.2.1.2 The Membrane Time Constant and The Length Constant

Equation 3.5 introduces the membrane time constant τm(Rall, 1969a). When
injecting a steady current over time, at the point at which t = τm, the voltage
V (t) will have reached 63.2% (1− 1/e) of its value after infinite time has passed.
The time constant is dependent on the passive properties of the membrane (see
equation 3.6) and is an important descriptor of the behaviour of the membrane,
as it governs how quickly it responds to the onset of current, and how quickly
the voltage attenuates once the current injection ends. The time constant will
usually be found in the range of 10-100 ms (Dayan and Abbott, 2001).

τm = rmcm (3.6)

The length constant λ is an important parameter for voltage attenuation
across distance. Given an infinite length of cable, the voltage at distance λ
from point x on the cable has always attenuated to 36.8% (1/e) of the voltage
measured at x, which is an exponential decrease. The length constant is defined
as:

λ =

√
rm
ra

(3.7)

The length of compartments is often derived from the branching structure
of the dendrite, but long sections can be split based on their electrotonic length.
The electrotonic length of a cable is the length divided by the length constant,
which quantifies the distance from a current injection site to the point where the
voltage has attenuated to 36.8% (1/e) of its original magnitude. Splitting com-
partments to a fraction of the length constant (often to less than 0.1) improves
the accuracy of calculations. The process of resizing dendritic compartments
based on their electrotonic length is known as re-meshing the cell. Figure 3.2
shows two diagrams of two of the cells from this study with each compartment
drawn using its electrotonic length rather than its physical dimensions. Images
of the compartmental models can be found in Section 4.2. To make this image,
the electrotonic length of each compartment was recorded using neuroConstruct
1.6 (Gleeson et al., 2007). This length vector was then used to replace the orig-
inal length vector for compartments in the Trees Toolbox (Cuntz et al., 2010)
construct for dendritic trees. The Trees Toolbox tree plotting function was then
used to make the dendrogram.

With both the length and time constants, the full cable equation to find
voltage V at point x and time t is (Segev, 1998):
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Figure 3.2: Dendrograms are a visual representation of the electrical compact-
ness of neural dendritic trees. The length of each compartment is scaled based
on its electrotonic length. A is the dendrogram for the fish Purkinje cell used in
this study, while B shows the same for one of the rat cells. Scale bar shows λ
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Figure 3.3: The resting potential is displayed as a battery on the circuit diagram
for the compartment, as there is a difference between the intracellular resting
potential and the extracellular potential, and this requires movement of charged
ions to maintain.

λ2
∂2V

∂x2
− τm

∂V

∂t
− V = 0 (3.8)

3.2.1.3 The Resting Potential

In the preceding sections, the resting potential of the compartment is assumed
to by 0 mV . This is mathematically simpler, but is biologically unrealistic.
A cell’s resting potential is the value of the membrane potential that the cell
returns to when not receiving any injected current. Many neurons have a resting
potential of approximately −65 mV (Sterratt et al., 2011). This means that the
intracellular potential is 65 mV lower than the potential of the extracellular
environment. To maintain this difference in potential, the compartment must
have a source of voltage, depicted in Figure 3.3 as a battery.

Voltage in neurons is created by the movement of charged ions through the
membrane. Neuronal membrane is largely made of lipids, which is impossible
for the ions to move through, but also has channels that can selectively allow
ions through. Were these ion channels not selective, the ions would diffuse such
that their concentrations in the intra- and extracellular media became uniform.
These selective channels disrupt this diffusion enough to allow for differences
in concentrations of ions within and outside the cell. An ion channel can be
passively or actively permeable to ions, and is selectively permeable to specific
types of ion. Active ion channels, discussed in the Section 3.2.2, are open to the
movement of ions only in response to changes in the environment. Passive ion
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channels do not vary how permeable they are to ions.
The movement of positively charged ions out of the cell causes the cell to

become negatively charged. Many neurons have a larger concentration of potas-
sium ions, which are positively charged, within the cell than there are extracel-
lularly (Sterratt et al., 2011). This difference between the concentrations means
that, given a permeable channel, the potassium ions will diffuse following their
concentration gradient (meaning that the particles move from where there is a
high concentration to where the concentration is lower). With this movement
of ions and creation of a negative charge, there is then an electrical pull for
positively charged ions to move into the cell. This pull can be strong enough to
force the ions to move against their concentration gradient. Given time, these
two forces will create a net flux (flux referring to the number of ions moving
across the cell membrane) to become zero, and for the potential for this ion to
become stable. This is known as the equilibrium or reversal potential for the
ion type.

Finding the reversal potential for a single ion can be achieved by solving the
Nernst (1888) Equation, given that the concentrations for the ion inside and
outside the membrane is known. For example, Equation 3.9 shows the Nernst
equation for sodium. The first term includes R, the universal gas constant, and
F , the Faraday constant. T is the temperature in Kelvin, as thermal energy
is an aid in ion movement across a membrane, and zNa is the charge of the
ion, which is +1 in the case of sodium. The second term is the ratio of sodium
concentrations inside and outside of the cell.

ENA =
RT

zNaF
ln

[Naout]

[Nain]
(3.9)

In the absence of active ion channels, the resting membrane potential is equal
to the reversal potential of a passive channel called the leak conductance, which
is mainly permeable to potassium. A leak conductance models the loss of current
through the dendritic membrane, the inverse of the membrane resistance. When
active channels are present, the resting membrane potential becomes a function
of the reversal potentials of any active channels that are open at rest and the
leak conductance.

3.2.1.4 Joining Compartments

The previous segments of this section have described the electrical diagrams of
a single patch of passive membrane, and therefore a single compartment. The
first step towards replicating real neuronal morphology is to join compartments
to simulate a length of dendrite. Current moving within a compartment, as
opposed to through the membrane, will flow from the point of injection along the
cable in both directions. The intracellular medium is not a perfect conductor,
having a resistance (see Equation 3.2) that increases with the length of the
compartment and decreases with the compartment cross section area.

In Figure 3.4, there are three joined compartments labelled x, y, and z.
Kirchhoff’s law, as described in Section 3.2.1.1 applies across compartments as
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Figure 3.4: Electrical diagram of several compartments in series. The extracel-
lular environment is assumed to be 0 mV , this is depicted in the diagram as
going to ground

well as within single compartments. Total current is still the sum of capacitive
and resistive currents, with the inclusion of current flowing through the axial
resistance. This change to Equation 3.4 is reflected in Equation 3.10. Note
also the inclusion of the resting potential - as it is no longer assumed to be
0, membrane voltage must be taken as the difference between the current and
resting potentials.

cm
dVy
dt

+
Vy − Erest

rm
+
Vx − Vy
ra

+
Vz − Vy
ra

= Iinj (3.10)

This is accurate for a length of dendrite, but changes again when the dendrite
branches or ends. Cable theory gives three types of dendrite endings: sealed,
leaky, and the killed or dead end. These are known as boundary conditions. In
his work on cable theory, Rall (1969b) solved the cable equation for each type of
end, but the sealed end is the best approximation of a dendritic tip. This is be-
cause dendrites taper towards the tips, their diameter becomes smaller towards
the end. This means a decrease in the surface area of the membrane, which in-
creases the axial resistivity until no current flows at all (Rall and Agmon-Snir,
1998).

3.2.2 Adding Active Channels
In the previous section, the building blocks for a passive neuronal model were
described and joined into a section of neurite in Figure 3.4. While it is a useful
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starting point, this model is still incomplete for simulating realistic neurons as it
lacks the active ion channels that have been found in many dendrites, and more
crucially, any realistic sources of input. To simulate a biological neuron and
its electrophysiological responses fully, the model will need to include synaptic
channels to receive input, and active ion channels that adjust their permeability
to different ions depending on the membrane voltage or on ionic concentrations
within the cell.

With synaptic inputs come changes to membrane potential. In a cell re-
ceiving input, these are called post-synaptic potentials (PSPs). These can be
depolarising excitatory potentials (EPSPs), or hyperpolarising inhibitory po-
tentials (IPSPs). Synaptic potentials spread from the point of input, typically
in the dendrites of neurons. If an EPSP, or a sum of EPSPs, creates a strong
enough change in the membrane potential in the soma or axon, the neuron
may produce an action potential. This is a brief increase in potential above 0
mV before falling below the resting potential. Action potentials, or spikes, are
incredibly important to neuronal communication.

3.2.2.1 Synaptic Channels

In the voltage equations throughout Section 3.2.1, the source of current is as-
sumed to be a step or continuous current injection, replicating stimulation from
an electrode. For a cell in vivo, input is received from other cells synapsing
onto the dendritic processes. The area of the pre-synaptic neuron that contacts
the post-synaptic neuron contains synaptic vesicles that carry neurotransmitters
that travel into the post-synaptic neuron when stimulated by an action potential
(Dayan and Abbott, 2001). The neurotransmitters then bind to ionotropic re-
ceptors in the post-synaptic neuron, which triggers the opening of ionic channels.
Neurons also contain metabotropic receptors; when neurotransmitters bind to
these receptors they instead trigger a cascade of signalling processes within the
cell.

Unlike the passive membrane parameters described in the previous section,
that are independent constants, active synaptic and ionic channels will have
dependencies on membrane voltage or ion concentrations that change their con-
ductance. This change in conductance is denoted in electrical diagrams as a vari-
able resistor (see Figure 3.5). Some types of neurotransmitter-mediated synaptic
channel can be accurately modelled using only time dependencies (Segev and
Burke, 1998).

The time-dependent synaptic channel shown in Figure 3.5 adds a new path
for current through the membrane in comparison to the passive case in Figure
3.3. As such, the voltage equation, following Kirchhoff’s law of current, must
also gain a new term. It is also important to note that although they are
represented as resistors in electrical diagrams, synaptic and ionic channels are
defined by their conductance (inverse of resistance) rather than their resistance.
This will also be reflected in the notation for voltage equations in this section,
such as Equation 3.11, as is the change from injected current Iinj to simply the
membrane current Im.
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Figure 3.5: Electrical diagram of a single compartment containing passive pa-
rameters and a variable resistor representing a time-dependent synaptic channel

cm
dV

dt
+
V − Erest

rm
+ gsyn(V − Esyn) = Im (3.11)

The updated voltage equation (Equation 3.11) now has three terms reflecting
the three paths for current through the membrane that are shown in Figure
3.5, satisfying Kirchhoff’s law of current. While the synaptic conductance is
voltage-independent in this instance, it is not a constant. The change to a
time-dependent conductance can be approximated in several ways, with two of
the most accurate and widely-used being alpha functions (Rall, 1967) and dual
exponential functions.

An alpha function uses a single exponential and time constant that governs
both the rise and decay of the conductance following an input spike stimulating
the release and binding of neurotransmitters. The function assumes an exponen-
tial decay time and a proportional rise time to reach peak conductance (Roth
and van Rossum, 2009).

gsyn(t) = ḡsyn
t− ti
τ

e1−
t−ti

τ (3.12)

In Equation 3.12, the conductance at time t, following the arrival of input at
time ti, is dependent on the time passed since the input and on the maximum
possible conductance ḡsyn. Having rise and decay times correlated in this way
can give good approximations to some synapse types but this is unrealistic and
not suitable for all models. When the modelled synapse requires rise and decay
times to be independent, it is necessary to use a dual exponential function. The
models used in this study use independent rise and decay times for the modelling
of synaptic channels. As is indicated in the name, a dual exponential function



CHAPTER 3. MODELS OF ELECTRICAL ACTIVITY IN NEURONS 46

models both the rise and decay phases of the conductance with a separate
exponential, as shown in Equation 3.13, where τ1is the rise time and τ2 is the
decay time of the conductance.

gsyn(t) = ḡsyn
τ1τ2
τ1 − τ2

(e1−
t−ti
τ1 − e1−

t−ti
τ2 ) (3.13)

Typically the rise time constant is much shorter than that of the decay time,
due to many neurotransmitters binding to the synaptic channels much more
quickly than they unbind (Roth and van Rossum, 2009).

While some synaptic channels can be accurately modelled with only a de-
pendence on time, the same cannot be said of all synaptic channels, nor of
many ion channels, the permeability of which are dependent on the intracellu-
lar and membrane conditions. The addition of these types of channels is the
difference between the “passive” models that have been described so far and “ac-
tive” models. NMDA-type (N-methyl-D-aspartate) receptive synaptic channels
are dependent on both the concentration of magnesium ions and the membrane
voltage due to magnesium blocking the channel when the membrane potential is
at rest or lower (Mel, 1993). In this case, the function for channel conductance
appears as in Equation 3.14; in which τ1 and τ2 are the rise and decay times
as before, η is the magnesium dependency (0.33/mM), [Mg2+] is the concen-
tration of magnesium ions (1mM), and γ is the voltage dependency (0.06/mV )
(Mel, 1993).

gNMDA = ḡNMDA
e−t/τ1 − e−t/τ2

1 + η[Mg2+]eγVm
(3.14)

3.2.2.2 The Action Potential

A commonality of all neurons is the ability to produce an action potential,
also known as a spike. This is the neuron’s method of communication - an
all-or-none non-linear phenomena, a fleeting increase in voltage once a threshold
of depolarisation is met, followed by a refractory period where the membrane
potential dips below its resting state (see Figure 3.6). The term all-or-none
refers to the fact that the membrane potential must meet some threshold before
a spike will fire, but the amplitude and shape of the spike will always be the
same regardless of how high above the threshold the depolarisation becomes
before the spike fires (Hodgkin et al., 1952). All-or-none describes a binary
condition, there is either a spike fired or there is no spike, it is not possible to
have partial spikes.

The amplitude of an action potential is typically 100 mV above the resting
potential, as seen in Figure 3.6, and lasts for approximately 1 ms (Dayan and
Abbott, 2001). This sudden rise in voltage can be linked to the opening of
sodium and sometimes calcium channels as the membrane potential increases.
Sodium and calcium ions both carry a positive charge (calcium ions carry two
positive charges), meaning a sudden influx of these ions into the neuron will
rapidly increase the membrane potential.
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Figure 3.6: An action potential recorded from the squid giant axon (Hodgkin
and Huxley, 1939, fig. 2)

Following the spike is the refractory period. This lull in the membrane po-
tential is caused by the opening of potassium channels that has been triggered
either by voltage or by the increase in concentration of calcium ions. The open-
ing of these channels causes the positively charged potassium ions to leave the
neuron due to the low concentration of potassium in the extracellular medium.
The refractory period is notable not just because the membrane potential drops
below the resting value, but also because the cell remains incapable of depolar-
ising to the point of producing another spike for several milliseconds.

Action potentials are incredibly important to the function of the brain.
Changes in neuron membrane potential that do not reach the threshold re-
quired for spiking have only a very local effect (Purves et al., 2012). How local
sub-threshold fluctuations can be are explored in the modelling experiments in
Chapter 5. An action potential can travel across a single neuron but can also
travel the length of axons to affect other neurons; spiking is the language of
the brain, and the only way to carry information through the brain and central
nervous system.

3.2.2.3 Active Ion Channels

Adding ion channels to a model is important for verisimilitude, but any active
channels will add non-linearities that greatly increase the unpredictability and
complexity of the model. Ion channels are pores in the membrane that are
predominantly permeable to one type of ion, allowing it to move through the cell
membrane. Much like the NMDA-type synaptic channels discussed in Section
3.2.2.1, ion channels are typically dependent on the intracellular environment;
whether or not they allow ions to pass through the membrane will change based
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on factors like the membrane potential and the concentration of other ions. The
movement of charged ions creates current. The total current created by ion
channels is simply the sum of each individual channel current:

Iion =
∑
c

Ic =
∑
c

Gc(Vm − Ec) (3.15)

Some ion channels become permeable to ions when the membrane potential
increases or decreases to a given threshold, making them voltage-dependent.
These channels are often modelled using schemes first devised by Hodgkin and
Huxley in 1952. These schemes are remarkable as Hodgkin and Huxley were able
to create them before the structure and biology of ion channels was known. The
original schemes were designed to simulate the sodium and potassium chan-
nels found in the squid giant axon. The series of papers that explain the
Hodgkin-Huxley (HH) model are rooted in earlier work, including a 1949 paper
by Hodgkin and Katz that investigated the possibility of membrane potential
effecting intracellular concentrations of sodium and potassium. These two ion
channels became the basis of the HH model.

The making of the HH model - a series of kinetic schemes and equations de-
scribing action potentials - was possible due to both new technology in the form
of voltage and space clamping (Marmont, 1949; Cole, 1968), and the fortuitous
physiology of the squid giant axon. Voltage and space clamping uses pairs of
dual electrodes to “clamp” the membrane potential to a desired voltage, and to
keep that voltage uniform across a section of membrane. These new techniques
were vital to explore whether or not voltage-dependent mechanisms exist in the
squid giant axon.

Using the squid giant axon was essential for the success of Hodgkin and
Huxley’s studies of ion channels for two reasons. Firstly, the sheer size of the
axon - up to 1 mm in diameter - was unique in allowing for the insertion of
electrodes for the space and voltage clamping, particularly given that the elec-
trodes used at the time were larger than the ones used today. Additionally, the
squid giant axon has a much simpler electrophysiology than many other axons
as the sodium and potassium channels are effectively the only channels that are
voltage-dependent. This simplicity stems from the simple function of the giant
axon. It is understood to be involved with the movement of the squid’s mantle,
used to propel the squid through water, resulting in a regular firing pattern
that doesn’t require a complex system of ion channels to achieve (Bower and
Beeman, 1998).

To find the effect of a single ion channel, Hodgkin and Huxley used what
is known as the ion substitution method, where ions are removed from the ex-
tracellular environment (Sterratt et al., 2011). In this case, sodium ions were
removed from the extracellular medium to reduce the sodium current to neg-
ligible levels. Voltage clamp results from cells in this medium could then be
compared to results from those in a standard seawater medium to find the ef-
fect of sodium channels. This would not have been so simple if the squid axon
had a larger number of ion channels effecting the overall ion conductance (Nelson
and Rinzel, 1998).
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With this new information on the voltage-dependencies of sodium and potas-
sium channels in the squid axon, the next step was to create a mathematical
model that could emulate this behaviour. First, each channel is given a number
of gates that could be in an “open” or a “closed” state to ions. Each gate of
a channel needs to be in it’s “open” state for the channel itself to be consid-
ered open to the movement of ions. The transition of gates between the open
and closed states are described using a first-order kinetic scheme (see Equation
3.16), meaning that the two states have rates of transitioning and there is a
set probability that a gate will be in a given state at time t. By convention,
the transition rate constant to open a gate is written as αi(V ) and to close as
βi(V ), with each being voltage-dependent. The probability that the gate is in
either state is simply pi to be open and 1− pi to be closed, though these can be
extrapolated in larger systems to represent the fraction of gates open or closed
rather than a probability (Nelson and Rinzel, 1998).

dpi
dt

= αi(V )(1− pi)− βi(V )pi (3.16)

An open channel, one that has all its gates in the open state, adds a small
constant amount to the total conductance for channels of that type. This means
that the total conductance for that channel is proportional to the probability
that gates are currently in their open state (Equation 3.17), given that this
probability is proportional to the number of open gates in a large number of
channels.

Gchan = ḡchan
∏
i

pi (3.17)

Equation 3.18 shows the simplest case for finding the total conductance of a
channel type, using potassium as an example. Potassium is modelled using four
gates that all use the same kinetic scheme, the probability of the gates being
in the open state are denoted here as n rather than pn, using the Hodgkin and
Huxley naming convention.

GK = ḡKn
4 (3.18)

Not all ion channels can be modelled with a single gate type in this way.
The sodium channel from the HH model is one such example, using three m
gates and an h gate (Equation 3.19). Sodium channels cannot be modelled in
the same way as those for potassium as sodium channels will inactivate where
giant squid axon potassium channels do not. Activation refers to the rise in
conductance with the depolarisation of the membrane potential; if the conduc-
tance reaches a maximum point and decays back to its resting state while the
membrane potential remains depolarised, that channel has inactivated (Sterratt
et al., 2011).

GNa = ḡNam
3h (3.19)
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Channels that are dependent on ion concentration, such as the two calcium-
dependent potassium channels used in this study and the De Schutter-Bower
model (discussed in Section 3.3), still have a number of gates that each have
a probability to be in the open or closed states. Equation 3.16 holds true for
both activating and inactivating voltage-dependent channels, and also for the
calcium dependent channels. The difference in dependencies can be see in the
equations for the gating functions. In the HH model, the voltage-dependent
gating functions for potassium are given as in Equation 3.20:

αi(V ) = 0.01
V + 55

1− e(−V+55)/10
, β(V ) = 0.125e(−(V+65)/80) (3.20)

In De Schutter and Bower’s paper, the equations for the activation of the
calcium-dependent channels was given as shown in Equations 3.21, 3.22 where
z represents the probability of the calcium-dependent gates being open, or pz.

dz

dt
=
z∞ − z

τz
(3.21)

z∞ =
1

1 + A
[Ca2+]

(3.22)

τz in Equation 3.21 is the time constant of the channel and A in Equation
3.22 the dissociation constant; molecules have the ability to bind together, a
dissociation constant for a molecule is the ratio between the concentration of
unbound molecules and the concentration of bound molecule products once
their concentrations have reached equilibrium (Sterratt et al., 2011). z∞ is the
limiting value, this can also be found for the voltage-dependent equations by
dividing through Equation 3.16 by αi(V )+βi(V ), as seen in Equations 3.23, 3.24
(Dayan and Abbott, 2001) (where i refers to the pi for some generic channel).

τi(V )
di

dt
= i∞(V )− i (3.23)

τi(V ) =
1

αi(V ) + βi(V )
(3.24)

This means that the limiting factor for the generic voltage-dependent channel
i is defined as Equation 3.25.

i∞(V ) =
αi(V )

αi(V ) + βi(V )
(3.25)

The HH model is described here as it is still used in modelling today, includ-
ing in the GENESIS simulations undertaken in this study.
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3.3 De Schutter-Bower Purkinje Model
The De Schutter-Bower computer model of a hybrid guinea pig/rat Purkinje cell
is one of the most studied and shared models in the field. Much like the models
used in this study, it began as a passive model (Rapp et al., 1994) and was later
updated to include ion channels (De Schutter and Bower, 1994a,b,c). These
channels were tuned until the firing frequencies and patterns elicited from the
model under different inputs matched those seen in in vitro experimentation.
Since then the active model has been used by many laboratories for testing
the performance and computational function of the Purkinje cell using different
techniques; from channel blocking (Miyasho et al., 2001) to pattern recognition
(De Schutter and Steuber, 2009).

The earliest model of a Purkinje cell reconstructed from real anatomical data
was created by Shelton in 1985. This was a passive model built to replicate the
morphology of a rat Purkinje cell, although the electrophysiological data used
to tune the passive parameters of the model was from guinea pig cells. Three
later models, each reproducing the morphology of a guinea pig Purkinje cell,
were designed by Rapp et al. in 1992. These were also passive models, with
the passive parameters derived using experimental data obtained specifically
for this purpose. Originally written for a program called SPICE (Vladimirescu
and Pederson, 1981), the descriptions of the morphology of these cells were
translated to the GENESIS platform (Bower et al., 2003) before being used by
De Schutter and Bower.

Purkinje cells are known to have thousands of spiny protrusions across their
dendritic trees. For the De Schutter-Bower model, De Schutter and Bower esti-
mated that a guinea pig Purkinje cell would have approximately 150,000 spines
based on the work by Harvey and Napper (1991). Due to what is cited as a lack
of data on the position and shape of spines for rat or guinea pig cells, De Schutter
and Bower only explicitly modelled spines when simulating input from granule
cells, and modelled them implicitly when simulating current injections. To im-
plicitly model spines they mimicked the presence of spines by expanding the
membrane surface of dendritic compartments that were designated part of a
spiny branchlet. The dendrites were separated into categories based on their
diameter; connected to the soma is the main dendrite, which includes the com-
partments with the largest diameters. The first compartments branching from
the main dendrite are known as the “smooth” or “thick” dendrites, once the
diameter thins to beneath a threshold these become the “spiny” dendrites. The
increase to membrane surface of spiny compartments was based on the estima-
tions of spine surface area in rat Purkinje cells by Harris and Stevens (1988),
where each spine was assumed to have a membrane surface of 1.33 µm2. When
modelled explicitly, spines were made up of two compartments, a spherical head
and cylindrical neck. Each spine head had a diameter of 0.54 µm and each neck
a diameter of 0.2 µm and length of 0.66µm. Due to computational limitations,
De Schutter and Bower were unable to explicitly model 150,000 spines. They
chose to model approximately 1% of the estimated number of spines, and com-
pensated for the reduction in spines, and by extension reduction in synapses, by
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still including some increase to membrane surface area and increasing the firing
rate at each synapse.

Taking new experimental data to increase the accuracy of models was an
important precedent set by Rapp et al. (1994). Unfortunately, the De Schut-
ter-Bower studies found that the passive parameters used by Rapp et al. (1994)
did not allow the model to replicate Purkinje firing patterns once the active ion
channels were added to the cell. It was particularly important to significantly
raise the membrane resistance (Rm) in the soma to avoid dampening the effect
of incoming current. This change meant that the soma of the active model has
an Rm of 10 kΩcm2 compared to 0.44 kΩcm2 in the original passive model; the
active dendrites have a lowered Rm, 30 kΩcm2 from the passive 110 kΩcm2.
More modern Purkinje cells models use a single Rm value for both soma and
dendrites, as is the case for the Roth and Häusser models (2001), the passive
parameters of which were also used in the current work. Membrane capacitance
(Cm) and axial resistivity (Ra) were unchanged from the passive model at 1.64
µF/cm2 and 250 Ωcm2 respectively.

The model included a leak current, with a reversal potential of -80 mV , in
addition to the voltage-activated channels described below. When the model
lacked background inputs, the model was considered to be modelling in vitro
behaviour and had a steady resting potential of -68 mV . The inclusion of
background excitatory and inhibitory inputs allowed for the modelling of in
vivo behaviour. In this state, the model would fire sporadically, and was able to
replicate Purkinje cell behaviour more accurately. When this background input
was provided, the membrane potential did not return to -68 mV , even if the
input was later stopped. Instead, the model would return to a semi-stable state
of -50 to -55 mV . This followed other evidence at the time that background
input had an effect on the passive electrical properties in pyramidal (Bernander
et al., 1991) and Purkinje cells (Rapp et al., 1992).

Ten ion channels were then added to the model based on in vitro, volt-
age clamp and single channel studies of Purkinje cells. While the majority of
these studies use rat cells for their experimentation, Hounsgaard and Midtgaard
(1988) and Llinás and Sugimori (1980a,b) use in vitro recordings from turtle and
guinea pig cells respectively. Channels added included two sodium, two calcium
and several potassium channels. These are listed in full along with their re-
versal potentials in Table 3.1. Each of the voltage-gated channels have their
conductance modelled using the Hodgkin-Huxley-type equations (1952), while
the calcium-gated channels have an additional term for calcium activation.

De Schutter and Bower did not distribute the ion channels equally over the
neuron model. Using trial and error, and based on what was known about their
distribution across the cell, the distributions and densities of the active channels
were varied until the model was able to accurately replicate the firing patterns
and frequencies of both Purkinje cells in vitro using current injections, and the
firing patterns characteristic of Purkinje cells in vivo.

Sodium channels were added to the soma compartment, fast potassium chan-
nels were added to both the soma and main dendrite. The entire dendrite has
calcium and calcium-activated potassium channels distributed throughout. Af-
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Channel Name Reversal Potential (mV )
Fast Sodium 45

Persistent Sodium 45
P-Calcium 135
T-Calcium 135

Anomalous Rectifier -30
Delayed Rectifier -85

Persistent Potassium -85
A -85

BK Calcium-activated Potassium -85
K2 Calcium-activated Potassium -85

Table 3.1: The 10 active channels added to the De Schutter and Bower model,
and used in the cell models in the current studies, with their reversal potentials

ter testing different channel densities, De Schutter and Bower found that the
smooth and spiny dendrites did not require different densities for accurate repli-
cation. The full channels used and their reversal potentials (see Sections 3.2.1
and 3.2.2 for an explanation of reversal potentials in passive and active models
respectively) can be seen in Table 3.1. The channels were chosen by De Schutter
and Bower following studies on channels in Purkinje cells by Hounsgaard and
Midtgaard (1988) and Llinás and Sugimori (1980a,b, 1992). Equations for the
channel kinetics for the anomalous rectifier were based on Spain et al. (1987),
and those for the delayed rectifier and slow persistent potassium current on
(Yamada et al., 1989).

Channel conductance was determined by the product of the voltage-dependent
gates (both activating and inactivating), and the calcium-dependent gates where
applicable. This is shown in Equation 3.26 where m represents the activating
voltage-dependent gates, h the inactivating voltage-dependent gates, and z the
activating calcium-dependent gates (De Schutter and Bower, 1994a).

G(V, [Ca2+], t) = ḡm(V, t)ph(V, t)qz([Ca2+], t)r (3.26)

De Schutter and Bower derived their equations for the voltage-dependent
channels based on the original work of Hodgkin and Huxley, with the channel
kinetics parameters (e.g. peak conductance) gathered from experimental data
where possible. These equations, and those for the calcium-dependent channels,
are described in detail in Section 3.2.2.3.

The inclusion and tuning of each of these channels was critical to allow the
model to successfully recreate the distinctive firing patterns of the Purkinje cell.
It was especially important that the model was able to capture the two different
modes of firing, the steady simple spiking linked to sodium channels, and the
infrequent complex spikes that occur due to calcium channels. An explanation
of the differences between these firing patterns and traces of these patterns as
seen in different species can be found in Section 2.3.2.
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Figure 3.7: Simple spiking observed in the De Schutter-Bower Purkinje cell
model following asynchronous excitatory firing from granule cells and 1 Hz
inhibitory firing from stellate cells (De Schutter and Bower, 1994b, fig. 7)

The fast sodium channel is particularly important for spiking in Purkinje
cells, as it governs depolarisation in the soma. It is especially associated with
simple spiking, which refers to a series of spikes with a regular amplitude and
interval. A replication of this firing pattern from the De Schutter-Bower model
can be seen in Figure 3.7, which was recorded from the soma compartment
following the asynchronous firing of modelled granule cell synapses and stellate
synapses firing at 1 Hz.

Voltage plateau responses at soma are thought to be caused by the channel
known as the persistent sodium channel. In the De Schutter-Bower model the
two sodium channels have similar slopes, but different thresholds of activation,
based on a variety of steady-state clamping data. The two calcium channels,
T- and P-type, both have several published studies on their activation and
inactivation. T-type calcium channels are inactivating with a low threshold
of activation, while P-type is a high-threshold channel that inactivates slowly.



CHAPTER 3. MODELS OF ELECTRICAL ACTIVITY IN NEURONS 55

Figure 3.8: A complex spike recreated by the De Schutter-Bower Purkinje
model (De Schutter and Bower, 1994b, fig. 1A). The arrow indicates when the
climbing fibre input was activated.

Calcium channels, particularly the P-type channels, are involved with complex
spiking - a unique firing pattern than occurs when a climbing fibre fires on to
a Purkinje cell. Complex spikes have an unusual shape (see Figure 3.8 for the
De Schutter-Bower model recreation) and a longer refractory period due to the
activation of BK potassium channels.

In addition, the model also has four potassium channels. Two of these, the
persistent and “A” types, are voltage-gated, while the “BK” and “K2” channels
are calcium-gated. The two voltage-gated potassium channels were modelled
from limited electrophysiological data, as was the K2 channel. There were
several experiments available to draw on for the BK channel parameters, though
they suffered from contradictions. Also included in the model are an anomalous
rectifier and a delayed rectifier. These help the flow of potassium ions into the
cell, helping to return it to the resting potential. The calcium-gated potassium
channels also serve this purpose, repolarising the cell following calcium generated
spiking. The properties of active ion channels are explored in more detail in
Section 3.2.2.

One major area which lacked experimental data was the distribution of
the channels across the cell. This meant that the distribution of channels in
the model was largely based on speculation by Llinás and Sugimori (1980a,b).
However, a parameter search was undertaken in order to test how sensitive the
model was to changes in channel density and distribution. The P-type calcium
and calcium-gated potassium channels were most sensitive to changes, while
the voltage-gated potassium channels could withstand larger changes without
affecting the behaviour of the model.

This model has endured as a community model as it is a strong and accurate
recreation of a mammalian Purkinje cell. It was made possible due to the
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reconstruction of true dendrite morphology, a large amount of experimental
data into ion channels, and the passive modelling work that preceded it.

3.4 Conclusion
Neuronal modelling can be achieved on a scale of abstraction versus realism,
from a binary logic gate to a series of complex equations that aim to replicate
the minutiae of biochemistry and biophysics. In this chapter, the knowledge
required for reaching the level of modelling used in this study is described, as
well as a landmark Purkinje cell model that was the foundation for this work.

Compartmental models are widely used across the fields of neuroscience and
computer science as they simplify mathematics for faster computations, while
maintaining accuracy, and allow for the replication of cell morphology. The sim-
plest compartmental models specify only passive electrophysiological parameters
to describe current flow. These parameters are constant, they do not change
with the environment or with time, and are proportionate to the size of com-
partments. Passive models are often only a foundation to more complicated
models, as many neurons have ion channels through their membranes that are
selectively permeable based on the intracellular environment.

These active channels are important for accurately replicating changes to
membrane potential within a single cell, and even more so for creating realistic
“spiking” mechanisms. The action potential - or spike - is vital for the effec-
tiveness of the central nervous system. A method for modelling the underlying
systems of the action potential put forward by Hodgkin and Huxley in 1952
earned the authors a Nobel Prize, and is still used in simulations today.

This chapter closes with an example of these modelling principles in use, the
1994a model of a guinea pig Purkinje cell created by De Schutter and Bower.
This model was the first to include active channels and to be shared between
different research groups as a “community” model, allowing it to be used in
many different contexts.



Chapter 4

Morphology of Purkinje Cells
from Various Species

4.1 Introduction
This chapter details the morphological data that was provided for this study,
what is known of its history, and the methods used to quantify morphology and
statistically differentiate each cell. This includes a discussion of the limitations
of the data, in terms of both quantity and towards the representation of the full
phylogenetic tree.

The quantification of morphology is principally performed through the cre-
ation of a feature vector for use in clustering experiments. However, this is also
the first step in the exploration of Purkinje cells across species that this study
aims to achieve, and is intended to create metrics for the morphology of these
cells that may be able to give more context to electrophysiological results as well
as being interesting in their own right. Purkinje cells are famed for the com-
plexities of their dendritic branching, but this is clearly something that differs
between species (see Figure 4.1) rather than a constant feature. Quantifying el-
ements of morphology is essential for being able to meaningfully compare these
elements in different cells.

The origin of the data and discussions of its limitations are important points
for this study, particularly for the use of clustering techniques in Chapter 6, and
are discussed here with the aim of defining the scope of these results.

Firstly, in Section 4.2, what is known of the origin of the morphological data
used in this study is described, followed by an explanation of any changes to
this data made for the study, such as the re-meshing of cells. Sections 4.3 and
4.4 detail the different techniques used to quantify the morphological data and
some statistical tests performed, and the results of each. The final section is an
evaluation of this data and how generalisable the results of this study can be
considered given their limitations.
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4.2 The Morphological Data
The morphological data used in this study, with the exception of the guinea
pig data (the history of which are detailed in Section 3.3), are all Microlucida
traces of Purkinje cells performed by the former Bower group at the University of
Texas Health Science Center. Tracing is the process of copying the morphology
of stained cells under a microscope and onto a computer. The cell morphology
files were received either in a standardised format called “SWC”, or formatted
for use with the GENESIS simulator.

Both types of files describe the form of neurons as a series of geometric
shapes with a diameter and three co-ordinates in space that typically describe
the location of one end of a cylinder. The GENESIS files differentiate the soma
compartment as a sphere, and can also describe the position of shapes with two
sets of co-ordinates (usually start and end points of cylinders). A single set
of co-ordinates will describe an end point, with the co-ordinates of the parent
shape assumed to be the starting point.

Each shape becomes a compartment once the cell is modelled. For this rea-
son, the length of cylinders must be amended according to the specific membrane
capacitance, membrane resistance and axial resistivity (see Section 3.2.1.1). Ide-
ally these values would have been derived from experimentation on the cells in
vitro, but the use of these parameters found in similar cells is a reasonable
alternative.

Amending the number of compartments based on these parameters is known
as re-meshing. In this study, the programme CVAPP (Cannon et al., 1998) was
used to re-mesh the cells using parameters derived by Roth and Häusser (2001)
from rat Purkinje cells (the values used are discussed in Section 5.2.1). The
aim of re-meshing is to reduce the electrotonic length of each compartment to
no more than 10% of the length constant, λ (the length constant is explored
in Section 3.2.1.2). This is necessary for the accuracy of voltage and current
estimations in compartmental modelling.

Figure 4.1 shows a sample of the cells modelled in this study, displaying
the variety of sizes (the scale bar in each panel is 50 µm long) and dendritic
complexities exhibited across the cells, as visualised using the neuroConstruct
software (Gleeson et al., 2007). The remainder of cells are given in Appendix
A.

Unfortunately, when the cells were received, there was no longer any record
of the origin of the cells. This means that the number of donor animals per
species, the ages of the animals, and the position in the cerebellum that the
cells were harvested from is all unknown. As much detail as is known about the
specific families of animals that the cells were sourced from is given in Figure
2.9.



CHAPTER 4. MORPHOLOGY OF CELLS 59

(a) Fish (b) Alligator 1

(c) Turtle 3 (d) Finch 3

(e) Bat 5 (f) Guinea pig 1 (g) Rat 4

Figure 4.1: A selection of cells used in this study, spanning the different species.
In each panel, the scale bar shows 50 µm.
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4.3 Methods
Exploring the Purkinje cell morphology was a two-step process. First, elements
of the morphology needed to be quantified. Metrics that quantified the size of
the cells could be derived from the morphology files with very little processing,
such as the average radius of dendritic compartments or the total volume of the
cell. Some of the branching metrics required a little more processing of the tree
structures of the dendrites, the methods used are described in more detail in
this section.

These metrics were principally recorded for use in the clustering work de-
scribed in Chapter 6, but were also used to quantify the variance in morphology
both within and between species groups. This second step of exploration used
statistical analysis to concretely define the differences and similarities between
the dendritic structures of the cells.

4.3.1 Quantifying the Morphology
The simplest metrics to find were the physical measurements of the cell; the
average radius of dendritic compartments, total dendritic length (both in µm),
total dendritic surface area (µm2), and total dendritic volume (µm3) were all
gathered using tools in the model generation software neuroConstruct (Gleeson
et al., 2007). neuroConstruct also lists the electrotonic length (dimensionless)
of each compartment, so is also the source of the average electrotonic length
of dendritic compartments. The number of dendritic compartments and the
radius of the soma were both known from the morphology files. The number
of dendritic spines was also known from the morphology files, as they were
generated in GENESIS. Based on the De Schutter and Bower (1994a) model,
it was estimated that approximately 94% of the dendritic compartments should
have spinal compartments added, leaving just the thickest 6% without spines.
GENESIS will add one spine to each compartment with a radius below a given
threshold. Trial and error was used to find the threshold in each model that
produced ~94% coverage.

Most of the metrics listed here could be gathered using pre-existing tools, but
two were written as Matlab (The MathWorks, 2013) functions specifically for
this work. The first was a function to find the Horton-Strahler number (Horton,
1945; Strahler, 1952) of each dendritic tree. The Horton-Strahler number was
originally designed to analyse river networks, but has since been applied to many
different hierarchical structures, including L-systems and respiratory systems.
To begin the algorithm, each leaf node is given an H-S number of one. The
number of a parent node is based on its children; if the children have the same
H-S number i, the parent is assigned i+ 1. When the children are unequal, the
parent takes on the highest H-S number of its children. This continues through
the tree until it reaches the root node, the H-S number of which becomes the
number assigned to the entire tree.

The second Matlab script calculated a related measure to the H-S number,
the average or maximum bifurcation ratio of a tree. It is found by dividing the
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H-S number at compartment c by that of its parent c+ 1. Averaging this ratio
across the whole tree gives an indication of how evenly the tree bifurcates across
its branches.

Three other branching measures, maximum branch order, maximum and
average path length and average tree asymmetry, were all taken using the Trees
Toolbox (Cuntz et al., 2010), a collection of functions written for analysing and
plotting dendritic trees in Matlab. The number of branching and terminal points
were also gathered from Trees Toolbox. Path length is a simple measure which
counts the number of compartments between the root and each terminal point.
As dendritic compartments are split into compartments based on either branch
points or electrotonic length, which is derived from the membrane resistance
and axial resistivity and the diameter of the compartment, this measure can
be considered as encompassing the average compartment diameter as well as
branching.

Branching order is a similar measure to the Horton-Strahler number calcu-
lated from root to tips, rather than the reverse, and is simpler to calculate.
With the root node given a branching order of zero, a compartment will inherit
the branching order of its parent if there was no branch point, otherwise it will
increment by one. The maximum branching order of the tree is therefore the
path from root to tip with the most branch points.

The final branching measure used is tree asymmetry, a measure that can
only be taken at the branch points of the tree. It is a ratio based on the count
of terminal points in each sub-tree from that branch point; that is, if the sum of
terminal points on one sub-tree is x and the sum from the other sub-tree is y,
the tree asymmetry is calculated as: x

(x+y) , but only if x < y. In all other cases
the asymmetry is listed as NaN. The average tree asymmetry is calculated from
all non-NaN numbers.

4.3.2 Statistical Analysis of Morphological Features
Once the morphological metrics described in the previous section were gathered
for each cell, the mean was taken for each metric across the species groups.
These were then plotted as bar charts with 95% confidence intervals (shown in
Section 4.4) to determine which metrics, if any, displayed possible correlations
with phylogenetic rank that would warrant further investigation.

Kendall rank correlation coefficients (Kendall, 1938), or τ , were calculated
for features that appeared to have a strong correlation with phylogenetic rank.
The Kendall rank test is a non-parametric test for ordinal data. Non-parametric
tests are desirable for small sample sets, such as the data used in this study,
as it makes no assumptions on the distribution the sample set is from. This is
beneficial for smaller datasets as it is less likely a small sample can accurately
represent the distribution it was taken from. Another benefit to non-parametric
testing over parametric analysis of variance (ANOVA) tests is that the reliability
of results does not depend on the dataset having a low variance. Rank testing
allows for observed values to be compared against ordered groups - in this case
phylogenetic order.
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The Kendall rank test compares the ranks of two vectors of the same size
(X and Y ) by pairing elements of the vectors and checking whether they are
“concordant” or “discordant”. When the observations comprising a pair (xi,yi)
are both larger or both smaller than a second pair (xj , yj), then the observations
are concordant. Conversely, if xi < xj and yi > yj then xi and yi are discordant.
A pair is neither concordant nor discordant if either observation is equal to the
compared value.

When the number of concordant and discordant pairs are found, Kendall’s
rank coefficient can then be calculated as in Equation 4.1, where ncon is the
number of concordant pairs, ndis the number of discordant pairs, and z is the
number of elements in vectors X and Y .

τ =
ncon − ndis
z(z − 1)/2

(4.1)

This version of Kendall’s τ is also called τA, and makes no adjustments for the
tied values that are not considered concordant or discordant. The implementa-
tion of Kendall’s τ used in this study, a built-in Matlab (The MathWorks, 2013)
function, does adjust for tied values and is often referred to as τB (Kendall,
1945). This is given in Equation 4.2, where z0 is the total number of pairs
(z(z − 1)/2), z1 is the number of tied values in vector X, and z2 the number of
tied values in vector Y (see Equation 4.3).

τB =
ncon − ndis√

(z0 − z1)(z0 − z2)
(4.2)

zu =
∑
i

ti(ti − 1)/2 (4.3)

Kendall’s τ is ranged between -1 and 1. τ = 1 would mean that the rankings
of vector X are identical to that of Y , -1 means that the rankings are exactly
opposite in the two vectors, and 0 would indicate no relationship.

The Kruskal-Wallis test (Kruskal and Wallis, 1952) is also a non-parametric
statistical measure for ordinal data. Where Kendall’s rank coefficient test ex-
amines the hypothesis that there is a relationship between rank and data, the
Kruskal-Wallis test examines the hypothesis that the groups in the same have
statistically significant differences in medians. The first step in a Kruskal-Wallis
test is to rank the data by size across all observations, the smallest observation
given rank 1 and equal values are all given the average rank of the number of
equal values. The ranks of the observations are then summed for each group.
With these gathered, the Kruskal-Wallis test is performed as in Equation 4.4,
where N is the total number of observations, C the number of groups, ni the
number of observations in group i, and Ri the summed ranks for group i.

H =
12

N(N + 1)

C∑
i=1

R2
i

nj
− 3(N + 1) (4.4)
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When there are ties in the observations, H is adjusted by Equation 4.5,
which increases the value by 0-1 depending on the number of ties. T = t3 − t,
with t as the number of observations in a given tie, then summed over all tie
groups.

Ht =
H(

1−
∑

T
N3−N

) (4.5)

Higher values of H point towards the medians of groups being statistically
different. Given a large enough dataset, H has a χ2distribution, however the
size of the dataset in this study does not meet this requirement, so the p-values
might overestimate the probability of the null hypothesis (that the medians of
each group are equal) being true.

4.4 Results
The previous section detailed how the morphological metrics were found for
each cell and how these metrics were analysed based on species groups. Full
listings of the morphological metrics are given in Appendix B. Metrics were
averaged over species and tested by Kendall’s τ and Kruskal-Wallis H to look
for metrics that seem to change with or against phylogenetic rank or that could
differentiate species groups. Metrics were also plotted as bar charts (examples
shown in the next section) to aid visualisation of the statistical results.

The Kendall’s rank coefficient test revealed very few of the morphological
metrics have a strong relationship with phylogenetic rank. The most significant
results are given in Table 4.1, full results can be found in Appendix C. Only
two of the metrics, the number of terminal points (Figure 4.3) and the Horton-
Strahler number (Figure 4.2), were statistically significant to p < 0.05. The
p-values used were two-tailed, so a low p-value suggests that the null hypothesis
- that there is no correlation between the metric and phylogenetic rank - has a
very low probability and can be rejected.

Branching metrics are found to have a stronger relationship with phylogen-
etic rank than measures of cell size. All five of the size metrics, including average
radius of dendritic compartments and total dendritic length, have τ scores close
to zero and high p-values.

Table 4.2 shows the morphological metrics that scored a significant result
with the Kruskal-Wallis test when no outlying results were removed, suggesting
that at least one of the species groups is statistically different from the others
in that respect.

The significant Kruskal-Wallis metrics are less branching-centric than the
Kendall’s rank correlation results. The number of terminal points averaged
over species has p-values < 0.05 for both statistical measures. This suggests a
positive relationship with phylogenetic rank, but also that at least one species
group is statistically different to the others. Figure 4.3 plots the average species
values with 95% confidence intervals. The variance in the turtle group does
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Metric τ p (2-tailed)
nDendC 0.619 0.069
nDendSp 0.619 0.069

nBrP 0.619 0.069
nTrmP 0.714 0.030

H-S 0.781 0.017
avgDendCmpEL -0.619 0.069

Table 4.1: Significant Kendall’s τ results when averaging morphological features
over full species groups. KEY: nDendC: Number of dendritic compartments;
nDendSP: Number of dendritic spines; nBrP: Number of branch points; nTrmP:
Number of terminal points; H-S: Horton-Strahler numbers; avgDendCmpEL:
Average dendritic compartment electrotonic length

Figure 4.2: The Horton-Strahler number for each model averaged over species
with 95% confidence intervals
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Metric H p

nBrP 15.362 0.018
nTrmP 16.231 0.013
maxBO 13.666 0.034
totLen 14.417 0.025

totSurfA 16.701 0.010
totVol 12.612 0.050

avgDendCmpRad 15.446 0.017
avgDendCmpEL 10.804 0.003

Table 4.2: Morphological features with statistically significant H values, taken
over the full dataset. KEY nBrP: Number of branch points; nTrmP: Number
of terminal points; maxBO: Maximum branch order; totLen: Total dendritic
length; totSurfA: Total dendritic surface area; totVol: Total dendritic volume;
avgDendCmpRad: Average dendritic compartment radius; avgDendCmpEL:
Average dendritic compartment electrotonic length

not overlap with any other species, potentially pointing it out as the indepen-
dent group. The turtle group also has non-overlapping intervals in Figure 4.6,
showing the average electrotonic length of dendritic compartments, and in all
the other statistically significant branching metrics. In two of the size-based
metrics, total dendritic surface area (Figure 4.4) and total volume, the guinea
pig group has no overlap in confidence intervals. The second two size-based
metrics, such as the average radius of dendritic compartments shown in Figure
4.5, had no species that was clearly visually differentiated.

4.5 Discussion
Unfortunately there are many limitations with the dataset of Purkinje cell mod-
els used in this study. Firstly, very little was recorded about the animals that
the cells were harvested from, greatly limiting what is known about them. The
age and number of donor animals are both unknown, as is the original cerebellar
location of the cells. This makes it impossible to say if variance within species
groups can be explained by any of these factors. Purkinje cells change and grow
rapidly in young animals (Altman, 1972), so the age of the donor animals could
account for much of the morphological variance.

Another important feature that is unknown about the cells is the specific
taxonomy; the term “species” is used to name the groups throughout this study,
but the specific species of animal donors was unknown excepting the guinea pig
(Cavia porcellus) and rat (Rattus norvegicus) (see Figure 2.9 for the extent of
what is known for each species). Identifying the species used would be informa-
tive for this study, but a larger problem is that the range of species used does
not reflect the breadth of extant taxa. For example, the fish cell used in this
study was harvested from a weakly electric fish, examples of which from both
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Figure 4.3: The number of terminal points (end of dendrites) in each model
averaged over species with 95% confidence intervals

Figure 4.4: The total surface area (µ2) of dendritic compartments in each model
averaged over species with 95% confidence intervals
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Figure 4.5: The average radium of dendritic compartments in each model aver-
aged over species with 95% confidence intervals

Figure 4.6: The average electrotonic length of dendritic compartments in each
model averaged over species with 95% confidence intervals



CHAPTER 4. MORPHOLOGY OF CELLS 68

the mormyridae and gymnotiformes have enlarged cerebella in comparison to
other fish due to their electrical sense (Paulin, 1993). A better species range
would include non-electric and elasmobranch examples at the very least. Fur-
thermore, the reptile species with representatives in this study are both unlike
the majority of reptiles; alligators are considered to be evolutionarily closer to
birds than other reptiles (Benton and Clark, 1988), while the place of turtles
within the class Reptilia has long been debated (DeBraga and Rieppel, 1997)
due to their differences to other species.

Exacerbating the problem of poor representation is the small sample size
of both individual species and the dataset overall. The small size makes it
difficult to assume that the samples represent their species, and therefore make
it difficult to extend the results of this study to the wider population. This
low number of samples minimises the generalisability of comparisons, statistical
analysis, and of clustering, for which even samples numbering in the hundreds
would be considered low.

These problems highlight the need for a greater variety of animals used in
neurological study. A majority of studies use rodent cells and models, which are
not generalisable to all vertebrates, as even the small sample used in this study
shows.



Chapter 5

Modelled Electrophysiology of
Purkinje Cells from Various
Species

5.1 Introduction
In this chapter, the theoretical concepts explained in Chapter 3 and the mor-
phological data described in Section 4.2 are put into practice to create com-
partmental models representing the Purkinje cells of different species. There
were three different comparisons made across the set of experiments; the effect
of passive or active electrophysiology on the model’s behaviour, the effect of
implicitly or explicitly modelling dendritic spines, and the differences in voltage
traces when impulses are moving toward or away from the soma. This work
aims to explore a second aspect of the Purkinje cells - the mechanisms by which
they are able to function.

These experiments were designed to characterise the behaviour of the cells
and to look for any differences that may be explained by either the cell mor-
phology or by the species. The results were intended to be interesting as an
exploration of these models, but also to be used as features for clustering. The
experiments needed to measure a number of behaviours so that the feature vec-
tors could reasonably be considered as a characterisation of the electrophysiology
of each cell. This chapter serves to describe these experiments, their outcomes,
and the meaning of these outcomes and whether the results meet the needs of
the clustering work.

Section 5.2 details the models used in these experiments, how the exper-
iments were constructed, and what was measured in each case. The section
following this then reports the results of the experimentation. Each of these
sections is split into subsections covering the experiments using models with
passive electrophysiology, and those that use active electrophysiology. Finally,
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the last section is a discussion of these results and what they may mean for the
development of behaviour through evolution.

5.2 Methods
All modelling was performed using the GENESIS platform (Bower et al., 2003),
specialised neuronal modelling software. GENESIS reads morphology files and
solves the passive electrical equations and those for Hodgkin-Huxley models of
ion channels. Cell morphology must be translated to a series of cylindrical and
spherical objects to be readable by GENESIS. This allows for the electrical
equations to be completed for a series of small compartments each with a con-
stant diameter, simplifying the problem greatly. The compartmental modelling
technique is described in more detail in Section 3.2. Cerebellar Purkinje cells
are known to have a large number of their dendritic branches to be studded
with spines, small growths that act as contact points for the axons of other
cells. The GENESIS simulator allows these spines to be modelled explicitly as
small cylindrical compartments (the spine ‘neck’) connected to a spherical com-
partment (the ‘head’), or implicitly by expanding the surface area of dendritic
membrane to account for the missing spines. Explicitly modelled spines are
attached to dendritic compartments based on compartment diameter. In this
case, spines were added one for each compartment with a maximum diameter
that was adjusted for each species such that ~94% compartments included a
spine. This study includes experiments that use both types of approximation,
using the same methods as described in Section 3.3.

The same passive and active electrophysiological parameters were used for
all of the cell models, despite the cells originating from different species. This
decision was made for several reasons. Deriving unique electrical parameters for
computational models requires data from in vivo or in vitro experimentation.
Unfortunately, there has been little exploration in this area with the exception
of rat cells, so these data do not exist for the species used in this study. Ad-
ditionally, where experimentation has taken place on Purkinje cells from other
species, spiking patterns have been shown to be similar in shape and frequency
(de Ruiter et al., 2006), this is given more discussion in Section 2.4.8.2. This
suggests that the electrical parameters of the cells must also be similar. Studies
where morphological and electrical parameters are based on data from differ-
ent species are common in the history of Purkinje modelling (Shelton, 1985;
De Schutter and Bower, 1994a,b) where experimental data were often incom-
plete, as are studies in which the same parameters are used in several cells with
successful results (Rapp et al., 1994). Using the same parameters for all mod-
els also allows for any differences in behaviour between the cells due to their
morphology to be clearly differentiated.

All experiments used a simulation time step of 0.02 ms, but were recorded
at a time step 0.1 ms.
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5.2.1 Passive Modelling
5.2.1.1 Model Parameters

Passive modelling, detailed in Section 3.2.1, has been a integral method of inves-
tigating Purkinje cells since the earliest models (Shelton, 1985) as it forms the
groundwork for more biologically detailed models. Modelling active ion channels
also introduces non-linearities to the electrophysiology that can make it harder
to discern the effects of morphology, or if there are any such effects.

In these experiments, the passive electrical parameters were set uniformly
across the cells, using the following values from Roth and Häusser (2001):
Specific membrane resistance Rm, 122 kΩcm2, specific capacitance Cm, 0.77
µFcm−2, and specific axial resistivity Ra, 115 Ωcm. These values are the av-
erages of parameters derived by Roth and Häusser for four different adult rat
Purkinje cells. These passive parameters were kept the same across the different
cells used, and were also constant between the soma and dendrites of individual
cells.

The passive models also include a leak current, a non-voltage-dependent
channel first used in the Hodgkin and Huxley (1952) models of the giant squid
axon to model passive properties in the conductance equations. Using the same
values originally used in De Schutter and Bower (1994a,b) Purkinje models, the
reversal potential of the leak conductance Eleak and the resting potential Erest

was set to -68 mV (further explained in Section 3.2.1.3).
In order to model the reception of input spikes, the cell must have an input

site with a synaptic channel. Unlike the voltage-gated ion channels used in ac-
tive models, these synaptic channels respond with a change in conductance that
is modelled as an explicit function of time (these functions are explained in Sec-
tion 3.2.2.1). In all the experiments described here, each run attached a single
bi-exponential AMPA receptor synaptic channel to the model to act as input
site for a simulated spike from another cell. In spined models the channel would
be included in the spine head, where parallel fibres typically make synaptic con-
tacts with Purkinje cells. When the models did not explicitly include spines,
the channel would be attached directly to the dendritic compartment. Synap-
tic conductance parameters were also set using values from Roth and Häusser
(2001): maximum conductance gmax, 1−6 mS, reversal potential Ek, 0 mV , rise
time τ0, 0.2 ms, and decay time τ1, 3 ms.

As part of the exploration of the Purkinje cell models, both the passive and
active model experimentation was run using models with implicitly and explic-
itly modelled dendritic spines. Both the implicit and the explicit spines were
modelled in the same way as those used in the De Schutter-Bower model (see
Section 3.3). In the De Schutter and Bower guinea pig morphology, the diame-
ter threshold for adding a spine to a compartment or expanding the membrane
surface to simulate a spine was set at 3.17 µm. This threshold was varied in the
other cells so that the proportion of spiny compartments was approximately the
same.

The cells in this study were all re-meshed using the software CVAPP (Can-
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non et al., 1998) (using the passive parameters described in Section 5.2.1) prior
to being used in any modelling experiments. Re-meshing is the process of finding
the optimal compartmentalisation of a cell morphology based on the branching
and passive electrophysiological parameters.

5.2.1.2 Experiments with Passive Models

Once the passive models of the cells were created, GENESIS scripts were written
with the intention of characterising the passive electrophysiological behaviour of
these cells, and specifically the differences in behaviour that may be attributable
to differences in morphology. The results of this experimentation can be found
in Section 5.3.

The first experiment performed used the spineless (implicitly modelled spines)
models to gauge the voltage attenuation across each cell. In each run of the ex-
periment, a synaptic channel was placed on one of the dendritic compartments
and stimulated with a single simulated spike. The voltage in the cell soma was
recorded for 1.5 seconds. The input was initiated after half a second to give the
cell time to settle to rest if necessary; this first half second was not included
in the data analysis. These results were used to gather statistics that could
be used to characterise the behaviour of each model, including the maximum
amplitude recorded at soma and the time taken to reach that maximum.

Following this, the experiment was repeated using the spined (explicitly
modelled spines) models, with the synaptic channel added for each run to a
spine head rather than a dendritic compartment. Although the spineless models
have the membrane surface area increased to compensate for the missing spines,
running the experiment on both types of model allowed us to investigate whether
or not the explicitly modelled spines have an effect on attenuation.

As neurons tend to be more electrically compact when travelling from soma
to dendrites than the reverse, the voltage attenuation was also measured when
travelling from soma to dendrites. To test the voltage attenuation in this di-
rection, the synaptic channel was placed on the soma and it was activated with
the same single spike. Voltage was recorded at each dendritic compartment for
the same time span as the previous passive model experiments.

Statistics taken from the results of these tests were used to make a feature
vector in order to attempt to summarise the passive electrophysiological beha-
viour of each of the cells. The feature vector was then used to look for clusters
in the data and visualise the differences between and within species (explored
in Chapter 6).

5.2.2 Active Modelling
5.2.2.1 Model Parameters

The active models used in this work use the same reconstructions of cell mor-
phology and passive parameters as previously discussed, with the exception of
the resting potential Erest, and reversal potential of the leak current Eleak. This
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starting resting potential is raised slightly from the value used in the passive
model to -55 mV , due to the addition of active channels in the De Schutter and
Bower model leading to a new semi-stable resting potential at approximately
that value. The reversal potential of the leak conductance is decreased to -80
mV to provide a hyperpolarising current to slightly counteract the depolarising
ion channels to help stabilise the model at rest.

Ten voltage-dependent ion channels were added to the models, using the
same channel types and parameters (such as those for the reversal potential and
maximum conductance) as those used by De Schutter and Bower (1994a,b). A
more detailed look at the ion channels added to the model can be found in
Section 3.3.

5.2.2.2 Experiments with Active Models

The active models were used in two sets of experimentation, the first was a
direct comparison to the investigation of the passive models, and the second
was to provide spiking data for information theoretical analysis. The methods
used in the information theoretical analysis are described in Section 7.3.3, and
the results of this analysis in Section 7.4.

To be comparable to the results of the passive modelling experiments, the
active models simulated dendrites with voltage and ion-dependent ion channels
as described in Section 3.3, but the soma was kept passive. The passive exper-
imentation was designed to explore voltage attenuation and how this changes
with dendritic morphology, and measured this by looking at the magnitude and
delay of voltage responses. Passively modelling the soma compartment stopped
the model from producing spikes. Spikes are described as all-or-nothing events,
if the membrane potential depolarises to a given threshold, a spike is produced.
As shown in Figure 3.7, there is little variation in the amplitude of spikes. Volt-
age attenuation could still be examined in a spiking model - to explore whether
or not a spike is produced - but this approach would not allow the results of
passive and active experimentation to be directly compared.

As with the passive models, two experiments in this set measured the voltage
at soma while a single spike input is given to either a single dendritic compart-
ment or spine – with different experiments for implicitly and explicitly modelled
spines. In the third experiment the set-up was reversed and voltage was mea-
sured at each dendritic compartment following a single spike input to the soma.
In all three cases a single synaptic channel was added to the model for the input
site.

5.3 Results
Both the passive and active modelling experiments were intended to character-
ise the electrophysiological behaviour of the cells in three ways: the maximum
voltage recorded in a target somatic/dendritic compartment following stimula-
tion, the time taken to reach this maximum, and how much attenuation the
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voltage suffers between the input and target sites. These three goals were true
for all versions of the Purkinje cell models.

The maximum voltage and time to reach the maximum were simply taken
from the recorded voltage traces. Voltage attenuation was measured in both the
dendrite to soma direction and vice versa. Voltage attenuation is defined here
as the proportion of the input voltage retained in the recording site compared
to the input site, by dividing the peak amplitude at the input site by that of the
recorded site (see Equation 5.1, where V̄ represents the mean maximum voltage
amplitude recorded) (Koch, 2004). To get a single value per cell, the mean peak
amplitude was found. Rather than averaging across the entire dendritic tree,
a subset of compartments was used. These compartments were taken from the
endpoints of branches, specifically any dendritic compartment without a child,
also called a terminal compartment. For example, when finding attenuation
from dendritic inputs to the soma, the mean peak amplitude at terminal com-
partments was divided by the mean peak amplitude recorded at the soma when
receiving input from a terminal compartment.

Vatt = V̄in/V̄rec (5.1)

5.3.1 Passive Modelling
5.3.1.1 Stimulating Dendritic Compartments and Measuring Somatic

Voltage

The first experimental condition monitored the voltage at the soma compart-
ment while a simulated spike was delivered to a single dendritic compartment.
The voltage amplitude is reported here as the change in voltage from the resting
potential of the models, which was -68 mV in each case.

The plots in Figure 5.1 show the results for three of the cell models, where
each data point is the peak voltage amplitude measured at the soma plotted
against the distance to the soma of the compartment that received input. Trend
lines were computed using polynomial regression, the coefficients of which can
be found in Table 5.1 for both Figures 5.1 and 5.2. The regression coefficients for
all of the models are given in Appendix D (Table D.1), and additional voltage
and time plots showing examples from other species can be found in Appendix E
(Figures E.1, E.2). The coefficients given for these plots are the slope, intercept
and R2. The slope and intercept describe the trend line as they are terms in
the regression equation used to generate it. The polynomial for this trend line,
as calculated by Matlab (The MathWorks, 2013) is given in Equation 5.2: the
intercept is represented by bn+1 and the slope by terms b1 to bn, with x as the
independent variable (distance to soma) and y as the dependent variable (peak
amplitude or time to reach peak amplitude). The coefficient of determination,
or R2, is a measure of good fit, giving a value to how well the trend line fits the
data. R2 is a number between 0 and 1, with a higher value indicating a better fit
An adjusted R2 was used that gives a penalty for each additional degree added
to the polynomial, as without the adjustment R2 will increase with each term
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.006, 0.009, 0.014, -0.006, -0.034] 0.024 0.892 [-0.047, 0.050, 0.039, 1.812] 7.453 0.964
Alligator 2 [-0.019, 0.037, -0.021] 0.013 0.913 [0.162, 2.224] 7.332 0.967

Guinea pig 2 [-0.000, 0.002, -0.008] 0.015 0.913 [-0.100, -0.212, 0.391, 3.938] 9.995 0.910

Table 5.1: Slope and intercept terms for the regression equations for the plots
shown in Figures 5.1 and 5.2, and the coefficient of determination (adjusted R2)
for each trend line.

added regardless of the significance of the term.

y = b1x
n + b2x

n−1 + ...+ bnx+ bn+1 (5.2)

Many of the peak amplitude over distance graphs (examples in Figure 5.1,
further examples in Appendix E) all show a decreasing slope in peak amplitude
as the input source moves further from the soma. This can also be seen in Table
5.1 (full listing in Appendix D). The negative sign of the covariance indicates
the decrease in voltage with the increase in distance.

The main difference demonstrated in these graphs is the scale of the peak
amplitude. The species average maximum amplitudes for this set of experiments
are recorded in Figure 5.3, both with the full species results and with some
outlying results removed. These graphs show a general downward trend in
maximum amplitude as the species become more phylogenetically recent.

In many of the graphs showing the time taken to reach peak amplitude
against distance from the soma, the increase in time appears linear, and in all
cases the covariance between the time and distance was positive (Table 5.3).
For some of the graphs this is also backed up by slopes created by a first degree
polynomial equation with a high fit. An example of this is the alligator exam-
ple in Figure 5.2. In other graphs, there seem to be some dendritic branches
that delayed peak amplitude more than others, such as the example Finch in
the appendix E.2. This particular example displays some of the more complex
dendritic branching in all the models (Finch 4 A.4), suggesting that branching
could be a factor in any delays to peak amplitude. This was explored further,
by plotting the average and maximum time taken to reach peak amplitude at
soma against the number of branching points in the model (Figure 5.4, regres-
sion coefficients and coefficient of correlation in Table 5.4). Unfortunately it
was found that the trend line failed to fit the data well and the coefficient of
correlation R did not point strongly to a linear relationship, particularly for the
maximum time.

The average voltage attenuated in each species, calculated as in 5.1 and
then averaged over species, is shown in Figure 5.5. Higher numbers indicate
a higher attenuation. When averaging over all the models, there seems to be
little relationship between voltage attenuation and phylogenetics. However, once
some outlying results were removed from the average, voltage attenuation is
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(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.1: Peak amplitude recorded at soma following stimulation at each
dendritic compartment in passive models. See Table 5.1 for regression equation
terms.
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(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.2: Time taken to reach the peak amplitude at soma following dendritic
stimulation in passive models - same example cells as previous figure. Data for
trend lines can be found in Table 5.1.
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Cell Variance Covariance
Fish 6.035e-09 -0.005

Alligator 1 1.115e-07 -0.006
Alligator 2 1.134e-08 -0.003
Alligator 3 3.922e-09 -0.006
Alligator 4 8.838e-08 -0.008
Turtle 1 1.725e-09 -0.002
Turtle 2 2.829e-09 -0.002
Turtle 3 3.490e-09 -0.003
Finch 1 1.113e-08 -0.003
Finch 2 1.288e-08 -0.004
Finch 3 3.429e-09 -0.002
Finch 4 1.625e-08 -0.003
Bat 1 5.102e-09 -0.003
Bat 2 2.147e-09 -0.002
Bat 3 1.036e-08 -0.002
Bat 4 1.702e-08 -0.003
Bat 5 2.310e-09 -0.002

Guinea pig 1 6.316e-11 -0.000
Guinea pig 2 8.636e-11 -0.001
Guinea pig 3 3.082e-10 -0.001

Rat 1 2.003e-10 -0.001
Rat 2 9.529e-10 -0.001
Rat 3 2.555e-10 -0.001
Rat 4 5.800e-09 -0.002

Table 5.2: Variance of peak amplitude and covariance between peak amplitude
and distance from soma in all passive unspined models.
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(a) Maximum amplitudes averaged over all cell model results for each species

(b) Maximum amplitudes averaged over species with some outliers (Alligator 1 and 4) removed.

Figure 5.3: Maximum voltage amplitude recorded at soma following stimulation
in dendritic compartments in passive models averaged over species groups with
95% confidence intervals.
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Cell Variance Covariance
Fish 3.850 230.818

Alligator 1 6.316 82.852
Alligator 2 5.039 96.203
Alligator 3 19.192 615.842
Alligator 4 18.505 192.181
Turtle 1 15.309 191.533
Turtle 2 5.658 156.186
Turtle 3 2.421 113.762
Finch 1 8.632 103.783
Finch 2 8.984 118.404
Finch 3 10.483 145.323
Finch 4 67.057 268.873
Bat 1 5.403 113.318
Bat 2 13.454 202.839
Bat 3 2.258 36.916
Bat 4 4.216 59.360
Bat 5 24.811 135.995

Guinea pig 1 25.680 290.840
Guinea pig 2 13.813 195.588
Guinea pig 3 72.410 441.936

Rat 1 13.951 189.497
Rat 2 11.677 124.484
Rat 3 16.058 137.365
Rat 4 100.918 309.628

Table 5.3: Variance of time to reach peak amplitude and covariance between the
time to reach peak amplitude and distance from soma in all passive unspined
models.

Slope Intercept R2 R
Average Time Taken (ms) [1.639] 10.000 0.338 0.582

Maximum Time Taken (ms) [1.053 -0.108 1.183] 19.186 0.275 0.552

Table 5.4: Regression coefficients for the maximum and average time graphs in
Figure 5.4
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(a) Average time taken to reach peak amplitude in soma

(b) Maximum time taken to reach peak amplitude in soma

Figure 5.4: Average and maximum time to reach peak amplitude in soma fol-
lowing stimulation at compartments in passive models against the number of
branch points in the model
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Cell Model Peak Amplitude in Terminal Compartments (mV )
Fish 3.425

Alligator 1 25.056
Alligator 2 14.277
Alligator 3 12.310
Alligator 4 27.113
Turtle 1 5.983
Turtle 2 4.752
Turtle 3 5.473
Finch 1 12.398
Finch 2 9.176
Finch 3 10.851
Finch 4 19.994
Bat 1 16.139
Bat 2 10.110
Bat 3 12.995
Bat 4 14.934
Bat 5 6.964

Guinea pig 1 1.920
Guinea pig 2 2.732
Guinea pig 3 1.403

Rat 1 1.598
Rat 2 1.598
Rat 3 2.253
Rat 4 18.631

Table 5.5: Maximum amplitude at terminal dendritic compartment input sites
in passive models

generally lower in the more phylogenetically recent species.
Models that have higher peak amplitudes at soma also have higher voltage

attenuation, which seems to be contradictory at first glance. Voltage attenuation
is the proportion of voltage at the recording site to that of the input site - not
the peak of the voltage that is input to the model. This means that it will vary
with the input resistance of each model. The peak amplitude recorded at input
sites for each model is given in Table 5.5.

5.3.1.2 Stimulating Soma and Measuring Voltage at Dendritic Com-
partments

As with the previous section, peak amplitude drops steeply with distance before
levelling out (examples in Figure 5.6, same cells as Figure 5.1, and further
examples in E.3), with many of the slopes fitting well (R2 > 0.75, see 5.6 for
examples and D.2 for full results) to 3rd degree polynomials. These results also
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(a) Voltage attenuation averaged over all cell model results for each species

(b) Voltage attenuation averaged over species with some outliers (Turtle 1, Finch 4, Bat 1, Rat
4) removed.

Figure 5.5: Voltage attenuation from terminal compartments to soma in passive
models without spines averaged over species with 95% confidence intervals.
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(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.6: Peak amplitude recorded at dendritic compartments following stim-
ulation at the soma in passive models. See Table 5.6 for regression equation
terms.
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(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.7: Time taken to reach the peak amplitude at dendritic compartments
following stimulation at soma in passive models. Data for trend lines can be
found in Table 5.6.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.013, 0.025, -0.010] 0.013 0.779 [0.044, -0.143, 1.638] 7.250 0.954
Alligator 2 [-0.018, 0.040, -0.028] 0.015 0.919 [-0.124, -0.258, 1.769] 7.028 0.899

Guinea pig 2 [0.002, -0.008] 0.015 0.908 [0.091, 3.256] 9.400 0.898

Table 5.6: Slope and intercept terms for the regression equations for the plots
shown in Figures 5.6 and 5.7, and the coefficient of determination (adjusted R2)
for each trend line.

show a variance in the maximum peak amplitude in each model, similarly to the
dendrite to soma direction. The highest peak also decreases with phylogenetic
rank, with the exception of the alligator cells, shown in Figure 5.8.

The variance in both peak amplitude and the time taken to reach the peak
also both show similarities to those seen in the previous experimentation (Table
5.7). Variance in the peak amplitude shows the same magnitude in both sets of
experiments. For the variance in time, many of the species groups had a outlier
that could skew results. Some of these outliers, such as Finch 4 and Rat 4, have
measurable morphological differences to the other cells in their species group (see
Section 4.4). Others, like Guinea pig 3, are outliers for less clear reasons. Figure
5.7 shows the time taken to reach peak amplitude against distance from soma
for the same example cells as Figure 5.2, with further examples in Appendix
E. As in the previous experiments, the time taken often has a nearly linear
correlation with distance, as evidenced by the covariance values in Table 5.7.
An exception from the positive variance is given in Finch 4 in the appendix.

Despite not having a large difference in the maximum peak amplitude or
in the variance of peak amplitudes, the cell Turtle 1 is an outlier in its species
group for voltage attenuation in both the dendrite to soma and soma to dendrite
directions (see Figure 5.9). The high voltage attenuation in turtle cells in the
soma to dendrite direction also disrupts the previous pattern of attenuation
decreasing with phylogenetic rank. The peak amplitude at soma (Table 5.8),
the input site for this experimentation, also points Turtle 1 as an outlier of its
species group.

5.3.1.3 Stimulating Dendritic Spines and Measuring Somatic Volt-
age

While the scatter graphs (Figures 5.10 and 5.11, same example cells as before,
regression coefficients given in Table 5.9) initially seem similar to the previous
graphs, adding spine components decreased peak amplitudes and increased the
time taken to reach peak amplitudes.

Comparing the species average maximum peak amplitudes recorded when
stimulating at spine compartments (Figure 5.12) and at dendritic compartments
(Figure 5.3) shows a reduction in peak amplitude by approximately half in many
of the species groups.
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(a) Maximum amplitudes averaged over all cell model results for each species

(b) Maximum amplitudes averaged over species with some outliers (Alligator 2 and 3, Bat 4)
removed.

Figure 5.8: Maximum voltage amplitude recorded at dendritic compartments
following stimulation at the soma averaged over species with 95% confidence
intervals.
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Cell Variance Covariance
Fish 6.012e-09 -0.005

Allig. 1 1.303e-07 -0.007
Allig. 2 1.226e-08 -0.004
Allig. 3 4.145e-09 -0.002
Allig. 4 1.048e-07 -0.003
Turtle 1 1.752e-09 -0.002
Turtle 2 2.830e-09 -0.002
Turtle 3 3.514e-09 -0.003
Finch 1 1.179e-08 -0.003
Finch 2 1.338e-08 -0.004
Finch 3 3.648e-09 -0.002
Finch 4 1.428e-08 -0.003
Bat 1 5.644e-09 -0.003
Bat 2 2.256e-09 -0.002
Bat 3 1.096e-08 -0.002
Bat 4 1.869e-08 -0.003
Bat 5 2.406e-09 -0.002

G. pig 1 6.429e-11 -0.000
G. pig 2 8.765e-11 -0.005
G. pig 3 3.123e-10 -0.001
Rat 1 2.036e-10 -0.002
Rat 2 9.679e-10 -0.001
Rat 3 2.604e-10 -0.001
Rat 4 6.284e-09 -0.001

(a) Variance of peak amplitude and covari-
ance between peak amplitude and distance
from soma

Cell Variance Covariance
Fish 3.210 209.424

Allig. 1 6.253 8.523
Allig. 2 2.685 67.009
Allig. 3 19.159 -406.468
Allig. 4 12.503 -90.999
Turtle 1 6.902 101.666
Turtle 2 3.590 113.776
Turtle 3 1.708 94.090
Finch 1 5.439 30.056
Finch 2 8.330 21.795
Finch 3 5.856 65.867
Finch 4 16.429 -95.094
Bat 1 6.439 -3.101
Bat 2 9.119 40.381
Bat 3 1.673 31.716
Bat 4 3.947 8.954
Bat 5 15.679 1.398

G. pig 1 21.300 262.395
G. pig 2 11.852 180.395
G. pig 3 54.955 388.318
Rat 1 11.369 170.529
Rat 2 10.231 116.372
Rat 3 13.632 126.326
Rat 4 20.543 -126.961

(b) Variance of time to reach peak amplitude
and covariance between the time to reach
peak amplitude and distance from soma

Table 5.7: Variance and covariance values for peak amplitude and time to reach
peak amplitude when stimulating at the soma and recording in dendritic com-
partments.
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(a) Voltage attenuation averaged over all cell model results for each species

(b) Voltage attenuation averaged over species with some outliers (Alligator 2, Turtle 1) re-
moved.

Figure 5.9: Voltage attenuation from soma to terminal compartments in passive
models without spines averaged over species with 95% confidence intervals.
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Cell Model Peak Amplitude in Soma (mV )
Fish 1.102

Alligator 1 3.291
Alligator 2 0.917
Alligator 3 0.353
Alligator 4 2.890
Turtle 1 0.324
Turtle 2 0.830
Turtle 3 0.654
Finch 1 0.392
Finch 2 0.559
Finch 3 0.318
Finch 4 0.855
Bat 1 0.641
Bat 2 0.219
Bat 3 0.460
Bat 4 1.038
Bat 5 0.251

Guinea pig 1 0.101
Guinea pig 2 0.074
Guinea pig 3 0.134

Rat 1 0.148
Rat 2 0.187
Rat 3 0.178
Rat 4 0.452

Table 5.8: Maximum amplitude at the soma compartment input site in passive
models

Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.013, 0.021, -0.000] 0.007 0.692 [2.584] 9.731 0.887
Alligator 2 [-0.010, 0.017, -0.006] 0.004 0.801 [2.868] 12.807 0.511

Guinea pig 2 [0.002, -0.007] 0.009 0.921 [3.765] 10.820 0.893

Table 5.9: Slope and intercept terms for the regression equations for the plots
shown in Figures 5.10 and 5.11, and the coefficient of determination (adjusted
R2) for each trend line.
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(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.10: Peak amplitude recorded at soma following stimulation at each
dendritic spine compartment in passive models. See Table 5.9 for regression
equation terms.



CHAPTER 5. MODELLED ELECTROPHYSIOLOGY 92

(a) Fish

(b) Alligator 2

(c) Guinea pig 2

Figure 5.11: Time taken to reach the peak amplitude at soma following stimu-
lation at dendritic spines in passive models. Data for trend lines can be found
in Table 5.9.
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(a) Maximum amplitudes averaged over all cell model results for each species

(b) Maximum amplitudes averaged over species with some outliers (Alligator 1) removed.

Figure 5.12: Maximum voltage amplitude recorded at soma following stimula-
tion in dendritic spine compartments averaged over species with 95% confidence
intervals.



CHAPTER 5. MODELLED ELECTROPHYSIOLOGY 94

The increase in time taken to reach peak amplitude in the spined models in
comparison to the unspined models was found in all species average groups. This
is shown in Figure 5.13, which compares the mean time taken in species groups
in each set of experiments. The time taken has a positive linear relationship
in almost all cells (see covariance, Table 5.10b), as seen in the other exper-
imentation with passive models. However, an increase in variance in almost
all cell results in comparison to the unspined models lead to lower correlation
coefficients (Table 5.11) between distance and time in the spined models.

As shown in Figure 5.14, voltage attenuation also increased dramatically in
comparison to the unspined models, but as before there does not seem to be
any relationship between attenuation and species group.

5.3.2 Active Modelling
The addition of active channels to the models made a significant difference to
the results of this experimentation. The relationships between distance from
soma and peak amplitude, as well as distance from soma and the time taken to
reach the peak amplitude are flat, suggesting there is no effect of input location
on peak amplitude or time. This supports results from experimentation with
their original guinea pig model by De Schutter and Bower (1994d). Figures 5.15
and 5.16 contain examples of all three experimental conditions from a guinea
pig cell, plotting amplitude and time respectively.

These graphs show that in the dendrite→soma direction, there is little vari-
ability in voltage recording, or times to reach peak amplitude with respect to
distance. Table 5.12, showing the regression coefficients of the graphs, show
how in most cases there was no linear correlation at all. When stimulating the
soma, the relationship with distance remained present, but was much reduced
compared to the passive models. In Figures 5.15 and 5.16, there is a slight
positive correlation for both peak amplitude and time taken. Most cells (see
Appendix E for more figures) display a negative correlation with the increase in
distance.

Adding active channels also greatly increases the amplitude of peak voltages
recorded at output sites, although this is less extreme when spines are explicitly
modelled. The higher peak amplitudes and low variation across distances also
means that voltage attenuation was much lower in active models (see Figures
5.17, 5.18, and 5.19).

5.4 Discussion
The results of the six experimental conditions were designed to create an overview
of the electrophysiological behaviour of each cell that could be used to represent
the cell in cluster analysis. This was achieved by focusing on three elements
in each condition: the peak amplitude at recording sites, the time taken to
reach the peak amplitude, and how much voltage attenuated between the two
points. With each of the models using the same parameters for the passive
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Cell Variance Covariance
Fish 1.990e-09 -0.003

Allig. 1 1.690e-08 -0.002
Allig. 2 2.185e-09 -0.001
Allig. 3 1.036e-09 -0.001
Allig. 4 6.420e-09 -0.002
Turtle 1 5.329e-10 -0.001
Turtle 2 4.340e-10 -0.001
Turtle 3 7.798e-10 -0.001
Finch 1 3.556e-09 -0.001
Finch 2 4.295e-09 -0.002
Finch 3 1.229e-09 -0.001
Finch 4 2.402e-09 -0.001
Bat 1 1.639e-09 -0.001
Bat 2 8.925e-10 -0.001
Bat 3 3.193e-09 -0.001
Bat 4 3.487e-09 -0.001
Bat 5 6.088e-10 -0.001

G. pig 1 3.746e-11 -0.000
G. pig 2 5.451e-11 -0.000
G. pig 3 1.443e-10 -0.000
Rat 1 1.049e-10 -0.000
Rat 2 5.489e-10 -0.001
Rat 3 1.290e-10 -0.000
Rat 4 1.046e-09 -0.001

(a) Variance of peak amplitude and covari-
ance between peak amplitude and distance
from soma

Cell Variance Covariance
Fish 7.525 302.657

Allig. 1 122.371 -141.605
Allig. 2 22.423 70.465
Allig. 3 96.153 -261.801
Allig. 4 133.304 -294.569
Turtle 1 23.786 177.070
Turtle 2 13.566 234.289
Turtle 3 9.704 199.267
Finch 1 102.305 92.387
Finch 2 64.680 15.557
Finch 3 62.104 96.632
Finch 4 167.453 -284.878
Bat 1 58.601 -54.690
Bat 2 71.030 -79.080
Bat 3 29.571 116.319
Bat 4 40.997 29.491
Bat 5 83.464 -126.462

G. pig 1 14.375 210.762
G. pig 2 15.870 205.273
G. pig 3 24.904 255.637
Rat 1 19.767 213.908
Rat 2 19.233 152.537
Rat 3 25.989 175.456
Rat 4 180.031 -317.428

(b) Variance of time to reach peak amplitude
and covariance between the time to reach
peak amplitude and distance from soma

Table 5.10: Variance and covariance values for peak amplitude and time to reach
peak amplitude when stimulating at dendritic spines and recording at the soma.
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(a) Mean time to reach peak amplitude in spineless passive models, some outliers (Guinea pig
3) removed.

(b) Mean time to reach peak amplitude in spineless passive models, some outliers (Rat 4)
removed.

Figure 5.13: Mean time to reach peak amplitude at soma averaged over species
with 95% confidence intervals in passive models with and without spines, outliers
removed in both cases.
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Correlation Coefficient
Cell Unspined Models Spined Models
Fish 0.979 0.942

Allig. 1 0.973 -0.381
Allig. 2 0.979 0.358
Allig. 3 0.805 -0.431
Allig. 4 0.980 -0.571
Turtle 1 0.667 0.515
Turtle 2 0.862 0.886
Turtle 3 0.969 0.922
Finch 1 0.985 0.277
Finch 2 0.965 0.051
Finch 3 0.962 0.279
Finch 4 0.762 -0.531
Bat 1 0.985 -0.146
Bat 2 0.930 -0.163
Bat 3 0.886 0.847
Bat 4 0.918 0.153
Bat 5 0.475 -0.263

G. pig 1 0.927 0.883
G. pig 2 0.952 0.945
G. pig 3 0.869 0.868
Rat 1 0.943 0.897
Rat 2 0.950 0.935
Rat 3 0.892 0.908
Rat 4 0.705 -0.597

Table 5.11: Correlation coefficient between time take to reach peak amplitude
and distance from soma in unspined and spined passive models

Peak Amplitude Time to Reach Peak Amplitude
Experimental Condition Slope Intercept R2 Slope Intercept R2

Dendrites → Soma [-0.007] 62.275 0.000 [0.006] 9.059 0.001
Soma → Dendrites [2.076] 71.008 0.499 [0.174] 9.447 0.337

Spines → Soma [0.002] 31.739 0.000 [-0.002] 14.624 0.000

Table 5.12: Slope and intercept terms for the regression equations for the plots
shown in Figures 5.15 and 5.16, and the coefficient of determination (adjusted
R2) for each trend line.
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(a) Voltage attenuation averaged over all cell model results for each species

(b) Voltage attenuation averaged over species with some outliers (Turtle 3, Finch 4, Bat 1, Rat
4) removed.

Figure 5.14: Voltage attenuation from spines placed at terminal dendritic com-
partments and measured at the soma averaged over species with 95% confidence
intervals.
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(a) Peak amplitude recorded at soma following stimulation in dendritic compartments

(b) Peak amplitude recorded in dendritic compartments following stimulation at soma

(c) Peak amplitude at soma following stimulation in dendritic spines

Figure 5.15: Peak amplitude recorded following a single spike input, with vary-
ing input and recording sites in an active model of cell Guinea pig 2. See Table
5.12 for regression equation terms.
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(a) Time take to reach peak amplitude at soma following stimulation in dendritic compartments

(b) Time taken to reach peak amplitude in dendritic compartments following stimulation at
soma

(c) Time taken to reach peak amplitude at soma following stimulation in dendritic spines

Figure 5.16: Time taken to reach peak amplitude following a single spike input,
with varying input and recording sites in an active model of cell Guinea pig 2.
Data for trend lines can be found in Table 5.12.
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(a) Voltage attenuation averaged over all cell model results for each species

(b) Voltage attenuation averaged over species with some outliers (Alligator 2, Alligator 3, Rat
4) removed.

Figure 5.17: Voltage attenuation from terminal dendritic compartments with
active ion channels to the soma averaged over species with 95% confidence in-
tervals.
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(a) Voltage attenuation averaged over all cell model results for each species

(b) Voltage attenuation averaged over species with some outliers (Alligator 2, Alligator 3)
removed.

Figure 5.18: Voltage attenuation from the soma to terminal compartments with
active ion channels averaged over species with 95% confidence intervals.
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(a) Voltage attenuation averaged over all cell model results for each species

Figure 5.19: Voltage attenuation from terminal dendritic compartments with
spines and with active ion channels to the soma averaged over species with 95%
confidence intervals.
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electrophysiology and active ion channels, it was hoped that differences in the
model results would be found to correlate with morphological features. This in
investigated further in the next chapter.

Measuring the time taken to reach peak amplitude at recording sites revealed
a strong linear correlation with time in passive models. In the active case, the
two variables became independent in many cells. This was evidenced by the
coefficients of determination derived from plotting these variables with trend
lines. However, the time graphs for active models shows signs of quantisation,
suggesting the time step for recording output was too large to fully represent
the changes over time.

The peak amplitude at a recording site tended to vary more between the cell
models than between experimental conditions when passive models were tested.
One exception was the decrease seen across all models when the spines were mod-
elled explicitly. The similarities between spineless models in the dendrite→soma
and soma→dendrite directions can be explained by the transfer impedance
(Koch, 2004).

Transfer impedance is a symmetrical function for finding the change in mem-
brane potential at location j following a change in current at location i. If an
identical current change is initiated at location j, than the voltage at i should be
identical as had been previously measured at location j. Differences in voltage
can still occur without violating this rule. Each compartment has an input resis-
tance, defined as the membrane resistance divided by area (rm/a). Larger areas
decrease resistance, making it easier for current to flow through the membrane.
However, this also increases the amount of current necessary for a change in
membrane potential to occur. The soma compartment has the largest area in
a Purkinje cell model, and therefore the lowest input resistance, and so would
require higher current to effect change.

Voltage attenuation in passive models was found to be smaller in the soma →
dendrite direction, which is a common property of passive neuron models (Rinzel
and Rall, 1974). This is again a product of the differences in input resistance,
less current is able to flow through the dendrites away from the soma due to
the decrease in radius that increases the resistance; however less current is then
needed to effect change in membrane potential. This changes in the active
models, where the soma→dendrite voltage attenuation was the highest when
averaged over species groups. This could be a factor of changes to the membrane
resistance (and by extension, the electrotonic length of compartments) when the
membrane includes active channels (Rapp et al., 1992).



Chapter 6

Differences Between Cell
Models

6.1 Introduction
In this chapter the results of the exploration of cell morphology in Chapter
4 and of the models of electrophysiological behaviour in Chapter 5 are drawn
together to compare and contrast the cells and to look for patterns or groupings
within the set. To do this, the data gathered in the previous chapters are
organised into feature vectors. A feature vector is comprised of a fixed number
of features, which in turn are fixed-length vectors, where each vector is a different
measurement from the data. In this work, the features gathered from the data
are grouped thematically into different feature vectors. In this format, the
data can be used with clustering algorithms, like growing neural gas (GNG)
and agglomerative hierarchical clustering (AHC), and statistical tests, such as
principal component analysis (PCA).

These methods are useful for defining the variance across the dataset, but
also for finding similarities between elements. Using these techniques here is
important as groupings in the data may indicate evolutionary changes - partic-
ularly if groupings occur along phylogenetic lines. A lack of groupings would
be equally as telling, as it could suggest either so little variance that the data
is essentially homogeneous, or such high variance that the cells can only be
considered as individuals.

The first section, Section 6.2, details the feature vectors used for this work,
the techniques used to gather the measurements, and how they were built.
Following this, each of the comparative methods used are introduced in Section
6.3. This includes PCA, GNG and AHC, but also a distance metric intended
to find variance within species groups, and an image-based clustering method
intended to bypass the problems of parametric feature vectors. The results of
these methods are given in Section 6.4 and the chapter finishes with a discussion
of the results and methodology used in Section 6.5.

105
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6.2 Feature Vectors
A feature vector is a common input to clustering and classification algorithms.
The intent is to describe the elements of your data set with a number of features
n, such that the observations in the data set can be accurately modelled in an
n-dimensional space. Clustering and classification algorithms will then typically
try and sort or group the observations based on distance or neighbouring data
points. Higher dimensional feature vectors can be desirable for better clustering,
which is why many algorithms use a kernel function to inflate the number of
dimensions for the data set. However, with a very small sample size, such as
that used in this study, this can be counter-productive. Having a much larger
number of features than the sample size can lead to an increase in noise-related
problems as not all the features will be informative to classification. For this
reason multiple feature vectors were used, based around either morphological or
electrophysiological aspects of the cells.

6.2.1 Morphological Features
Each of the cells was characterised using several size and branching-based met-
rics. Some of these were measured using the Trees Toolbox (Cuntz et al., 2010)
for Matlab (The MathWorks, 2013), some scripts were also written specifically
for this study. Five of the morphological features were based on the size of the
cells. Most of these metrics were gathered from neuroConstruct (Gleeson et al.,
2007), with the exception of soma radius which is available in the morphology
files. These methods are discussed in Section 4.3.1, and the full feature vector
is listed in Appendix B.

As the Purkinje cell is noted for its complex branching patterns, it was
important that branching metrics were well represented in the clustering stage.
Eleven features were chosen that either described branching density, or were
dependent on the level of branching in the tree. In the latter category were
features like the number of dendritic compartments, which is determined both
by cell morphology and electrotonic length. Also included are the number of
branching and terminal points. In cases where branch points only bifurcate, the
number of terminal points is equal to branching points + 1. These were included
as there were cases in both the rat and turtle cells of dendrites splitting into
more than two child branches.

The rest of the branching measurements took some method of calculation to
be found, as described in Section 4.3.1. The Horton-Strahler number and max-
imum bifurcation ratio for each tree were taken using purpose-written Matlab
scripts; the remaining measures (maximum branch order, maximum and aver-
age path length, and average tree asymmetry) required the use of the Matlab
toolbox Trees Toolbox written by Cuntz et al. (2010).
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6.2.2 Electrophysiological Features
Features for the two electrophysiological vectors were key statistics taken from
the passive and active modelling experiments. The active modelling experiments
used a passive rather than an active soma so that the same measures could be
extracted from each set of results, allowing the analysis to be directly comparable
between the two. Using a passive soma stopped the models with active dendrites
from producing spikes. As many of the statistics used in the feature vectors
concerned maximum amplitudes, it was important that spiking did not occur.
In total, fourteen features were selected from the experimental results.

Four different voltage attenuation values were taken from the passive and
active models, comprising different directions and different proportions of the
dendritic tree. The method for finding voltage attenuation is given in Section
5.3.

Also recorded for the feature vectors were the peak amplitudes reached in
the single compartment/spine stimulation experiments, averaged over all results
from each cell. Three of these recordings were taken at the soma compartment
of the model.

As with the voltage attenuation results, the results from the spineless models
are divided into those averaged over the entire dendritic tree, and those averaged
over only the dendritic compartments without children. Some terminal points
have a relatively short path length to the soma, resulting in lower attenuation
than is seen in the tree as a whole. In addition, compartments and spines that
had no change, or caused no change at soma when stimulated from these points,
were excluded from calculations to avoid problems in the code. In the active
case no compartments or spines were removed. For the passive results, almost
no compartments were removed in the dendrite to soma direction. Most cells
had a small number of removals when testing the opposite direction, however.
The largest amount of removals were from the spine stimulation results.

The last of the electrophysiological features are the time-based measure-
ments. These features list the average time taken to reach the peak amplitude
following stimulation. As before, these include time taken to reach the peak
amplitude at soma following stimulation in dendritic compartments or spines,
and vice versa.

6.3 Methods
Before clustering, the feature vectors described in the previous section were
converted to Z-scores for normalisation.

The aim of a clustering algorithm is to find the natural groupings in a data
set, which are often high-dimensional and have a large number of observations,
making it difficult or impossible to find by hand. The effectiveness of clustering
algorithms can depend greatly on the size of the data set and selection of features
used.
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6.3.1 Principal Component Analysis
Principal component analysis (PCA) is a widely used statistical analysis and
dimension reduction tool. When applied to a feature vector, it extracts the
principal components - additive combinations of the features that capture the
variance of the dataset. The first principal component is the combination of
features that can explain the highest amount of variance, the second principal
component is the combination that explains the most of the remaining variance,
and so on.

This is achieved by linearly transforming the data, moving the co-ordinates
while maintaining the the relationships between the elements of a vector, such
as by rotating the entire vector. The first factor loading vector is designed to
transform the data such that maximises the variance along the first axis. The
second factor loading must do the same for the second axis and must also be
orthogonal to the first. There are several methods for performing PCA. This
study uses a Matlab implementation (The MathWorks, 2013) of the eigenvalue
decomposition method. The covariance matrix of the data is created and the
eigenvectors are calculated to become the principal components (Shlens, 2014).

In this study, PCA was used to find the features that have the highest
variance - by finding which features contributed most to the first x principal
components that explain >85% of the variance, and to compare the results of
growing neural gas and agglomerative hierarchical clustering.

6.3.2 Growing Neural Gas
The growing neural gas (GNG) algorithm developed by Fritzke (1995) was used
for clustering the various feature vectors drawn from the electrophysiological and
morphological characteristics of the cells. Growing neural gas is an unsupervised
neural network based on competitive Hebbian learning rules.

Unlike the earlier neural gas algorithm (Martinez and Schulten, 1991), GNG
begins with only two nodes connected by a single edge, and can add new nodes
each time step until it reaches a pre-determined maximum. A new time step
begins by finding the two nodes closest to the data, n1 and n2. The age of all the
edges connecting to n1 is incremented, and the error (absolute distance between
the node and the closest data-point from the input) is taken. Node n1 and all
its connections are then moved towards the input by a fraction of the error.
As an interpretation of Hebbian learning rules, if n1 and n2 are not already
connected by an edge, one is created. If there is already an edge, its age is reset
to zero. Any edges above an age limit are then removed, as are any nodes with
no edges. A new node nz can be inserted if the maximum number of nodes has
not yet been reached. This node is placed halfway between the existing node
nx that has accrued the highest error and the node ny with the highest error
from the neighbourhood nodes connecting to nx. The edge between nx and ny
is removed and replaced with edges connecting nx and ny to nz. Finally, the
error variable of all nodes is decreased by a given constant. This will continue
until some stopping criterion, such as a maximum number of steps, has been
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met.
An advantage of this approach over a regular neural gas algorithm is that

it allows the network to find the optimal number of nodes to cluster the input
space up to a given maximum. The implementation used in this study is a
Java version developed by Fritzke and Loos (2012). The clustering results were
then fed into a Matlab (The MathWorks, 2013) script which used PCA as a
dimension reduction tool to visualise the cells. The cells were then plotted in
PCA-space, either colour-coded by species (showing the clustered GNG nodes)
or colour-coded by cluster and labelled.

6.3.3 Agglomerative Hierarchical Clustering
Another clustering technique used on these feature vectors was agglomerative
hierarchical clustering, using Ward’s method as the similarity measure. Ag-
glomerative clustering first assumes each observation in a feature vector is a
cluster that contains one element. It then begins to pair clusters by the simi-
larity measure, until all clusters are grouped together, creating a graph with a
binary tree structure.

Ward’s method for measuring the suitability of merging one cluster with
another is a minimum variance algorithm, it attempts to minimise the increase
in variability with each merge. Ward defines the variability as the sum of the
square of the Euclidean distance between each element of the cluster and the
cluster centre, known as the inner squared distance.

d(A,B) =

√
2nAnB

(nA + nB)
‖z̄A − z̄B‖2 (6.1)

Equation 6.1 shows Ward’s method as calculated in Matlab (The Math-
Works, 2013), as this was the version used in this study. A and B are clusters
that comprise nA and nB elements respectively, and z̄A and z̄B are the centres
of each cluster.

6.3.4 Image-Based Clustering
One possible issue with the feature vectors used in this study is that a num-
ber of the morphological features rely on the compartmentalisation of the cells.
Dendritic compartments are not a natural feature of cells. The creation of com-
partments relies on electrophysiological parameters, which were unfortunately
not derived from the cells used in this study. One attempt at an alternative
method of clustering was to use images of the dendritic structure of the cells
rather than feature vectors.

To achieve this, images of the cells first had to be obtained. The cell mor-
phology files were loaded into CVAPP (Cannon et al., 1998), a programme with
many beneficial features for building compartmental models of cells, includ-
ing a simple two-dimensional visualisation of cells from morphology files.Unlike
other cell types which extend their dendrites in all directions, the Purkinje cell



CHAPTER 6. DIFFERENCES BETWEEN CELL MODELS 110

largely branches within a single plane, making them almost uniquely suited to
two-dimensional representation. CVAPP’s visualisation tools were chosen over
other alternatives as the cells are drawn in a single colour without shading or
texture, which helps to maintain a uniformity of the presentation of the cells.
Additionally, CVAPP includes axes and graph lines which greatly simplified the
process of ensuring the cells were all plotted on a single scale, allowing for cell
size to be as much a feature as the branching. Once the images were retrieved
from CVAPP, the graph lines were removed from the images and each was
cropped to the same dimensions. In addition to the Purkinje cells, the same
procedure was followed for images of Deep Cerebellar Nuclei (DCN) neurons
(Sultan et al., 2003), so that these cells could be used to verify how well the
method worked. An example of the images used can be seen in Figure 6.1.

The images then went through a preprocessing stage so that they would be
in the right format for use with the Java GNG algorithm. Firstly, the images
were loaded into Matlab, where they were converted to matrices with the same
dimensions as the image, with cell of the matrix representing a pixel. Each image
used only two colours, allowing them to be represented as a binary matrix; 1
indicating a pixel that was part of the cell and 0 being part of the background.

Each matrix was then mean-centred and had a Fast Fourier Transform (FFT)
applied. Applying a Fourier transform to an image is a way to find repeating
elements called spatial frequencies. The FFT creates a brightness image of the
same size as the input (see Figure 6.2) that describes the number of spatial
frequencies that were present in the input, as well as the magnitude of each
frequency. The centre pixel of a brightness image is the mean brightness of the
input. Each spatial frequency found in the image is represented as two non-black
pixels equidistant from the mean; higher frequencies are found further from the
mean while lower frequencies are closer. The magnitude of the peak of the
frequency is translated to the brightness of the pixel. Orientation of frequencies
is also described in the brightness image positioning of the two pixels.

After this, the new FFT image matrices were reformatted as row vectors and
added to a single matrix, each row representing one cell image. The final matrix
was the put through PCA to reduce the number of features before clustering.

6.4 Results
The clustering results are reported in this section, starting with the findings from
the principal component analysis. The PCA results are used as an intermediary
to compare the clusters from the agglomerative hierarchical clustering (AHC)
and growing neural gas (GNG). This is achieved by using AHC with the relevant
principal components for each feature vector and then overlaying the groups on
the GNG results.
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(a) Bat 1

(b) Rat DCN neuron

Figure 6.1: Standardised images used in GNG clustering in place of feature
vectors
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(a) Bat 1

(b) Rat DCN neuron

Figure 6.2: Brightness images created from applying FFT to the cell images in
Figure 6.1
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6.4.1 PCA
Before beginning PCA, correlation matrices were made for each of the feature
vectors. This is a matrix where the Pearson correlation coefficient r is taken
between each of the features. Like Kendall’s τ (described in Section 4.3.1), r is
valued between -1 and 1, with 0 indicating no linear relationship, and 1 and -1
indicating complete positive and negative linear correlations respectively. Table
6.1 shows the results for the morphological feature vector, the corresponding
tables for the electrophysiological vectors are given in Appendix F.

In the morphological feature vector, there are three distinct groups with
strong linear correlations. The first of these groups contains the number of
dendritic compartments, dendritic spines, and branching and terminal points.
These metrics can also be seen to have the strongest correlation to the first
principal component, demonstrated in Figure 6.3 and Appendix G. The key for
abbreviations for morphological features can be found under Table 6.1. This
group includes two pairs of features that were known to be related prior to
creating the matrix - the number of spines is directly derived from the number
of compartments, and for many of the cells the number of terminal points is equal
to the number of branch points + 1. The second correlated group, maximum
and average path lengths were also already known to be related.

The final correlated group is made up of all of the size metrics except soma
radius. As with the other groups, it was clear before correlation that the total
dendritic surface area and volume are related to dendritic length and radius.
These features have the highest correlation to the second principal component,
along with the maximum branch order.

Appendix H shows the first four principal component averaged over species
groups, displaying both the in-group variance and the difference between the
fish and turtle cells and the other samples. The first four principal components
explain 86.15% of the total variance of the feature vector. Plotting the second
and fourth components did not reveal any clear patterns, but the third compo-
nent, which is strongly correlated with the maximum and average path lengths,
approximately decreased with phylogenetic rank (see Figure 6.4).

The correlation matrix for the passive electrophysiological features revealed
two strongly correlated groups. The first contains six metrics, which are also
the six metrics that most strongly correlate to the first principal component (see
Figure 6.5 and Appendix G). A key to abbreviations for the electrophysiologi-
cal features can be found in Appendix F. These include the voltage attenuation
from dendritic compartments to the soma and the peak amplitude at the soma
following dendritic stimulation, which has a strongly negative linear correlation.
Also included in this group is the average peak amplitude at soma following stim-
ulation at terminal compartments, a subset of all dendritic compartments, and
the average peak amplitude at soma following stimulation in dendritic spines.
The average peak amplitude in dendritic and terminal compartments following
stimulation at the soma is also in this group. The second correlated group are
all time metrics, many of which are also correlated with the second principal
component, although the overlap between these groups is not as high as for the



CHAPTER 6. DIFFERENCES BETWEEN CELL MODELS 114

N
Sp

B
P

T
P

M
ax

B
O

T
ot

L
en

T
ot

SA
T
ot

V
ol

So
m

R
ad

A
vD

C
R

ad
M

ax
P
L

A
vP

L
A
vT

A
H

-S
M

ax
B

R
A
vD

C
E
L

N
D

C
0.

99
0.

92
0.

90
0.

55
0.

45
0.

13
0.

10
-0

.1
6

-0
.1

3
0.

51
0.

53
-0

.4
2

0.
55

-0
.1

4
-0

.4
4

N
Sp

-
0.

92
0.

90
0.

53
0.

47
0.

15
0.

12
-0

.1
5

-0
.1

1
0.

50
0.

53
-0

.4
1

0.
57

-0
.1

3
-0

.4
5

B
P

-
0.

99
0.

57
0.

39
0.

25
0.

20
-0

.1
7

0.
02

0.
40

0.
44

-0
.3

8
0.

65
-0

.1
9

-0
.7

2

T
P

-
0.

53
0.

40
0.

28
0.

23
-0

.1
6

0.
07

0.
33

0.
37

-0
.3

3
0.

64
-0

.2
1

-0
.7

4

M
ax

B
O

-
-0

.2
4

-0
.3

8
-0

.2
5

-0
.1

7
-0

.5
6

0.
74

0.
67

-0
.6

8
0.

32
-0

.3
3

-0
.3

0

T
ot

L
en

-
0.

86
0.

79
0.

42
0.

66
0.

19
0.

31
0.

12
0.

29
0.

18
-0

.3
6

T
ot

SA
-

0.
93

0.
46

0.
90

-0
.0

2
0.

13
0.

28
0.

26
0.

12
-0

.5
4

T
ot

V
ol

-
0.

72
0.

80
0.

10
0.

26
0.

15
0.

17
0.

05
-0

.5
1

So
m

R
ad

-
0.

40
0.

08
0.

17
0.

12
-0

.2
8

-0
.0

0
-0

.0
9

A
vD

C
R

ad
-

-0
.2

7
-0

.1
4

0.
40

-0
.0

2
0.

15
-0

.4
2

M
ax

P
L

-
0.

95
-0

.6
5

0.
23

-0
.1

3
-0

.1
0

A
vP

L
-

-0
.5

4
0.

28
-0

.1
7

-0
.2

1

A
vT

A
-

-0
.0

8
0.

12
0.

05

H
-S

-
-0

.0
3

-0
.6

2

M
ax

B
R

-
0.

21

T
ab

le
6.

1:
C

or
re

la
ti

on
m

at
ri

x
fo

r
th

e
m

or
ph

ol
og

ic
al

fe
at

ur
es

.
K

E
Y

:N
D

C
:N

um
be

r
of

de
nd

ri
ti

c
co

m
pa

rt
m

en
ts

;N
Sp

:
N

um
be

r
of

de
nd

ri
ti

c
sp

in
es

;B
P

:N
um

be
r

of
br

an
ch

po
in

ts
;T

P
:N

um
be

r
of

te
rm

in
al

po
in

ts
;M

ax
B

O
:M

ax
im

um
br

an
ch

or
de

r;
T
ot

Le
n:

T
ot

al
de

nd
ri

ti
c

le
ng

th
;T

ot
SA

:T
ot

al
de

nd
ri

ti
c

su
rf

ac
e

ar
ea

;T
ot

V
ol

:
T
ot

al
de

nd
ri

ti
c

vo
lu

m
e;

So
m

R
ad

:
So

m
a

ra
di

us
;A

vD
C

R
ad

:
A
ve

ra
ge

ra
di

us
of

de
nd

ri
ti

c
co

m
pa

rt
m

en
ts

;
M

ax
P

L:
M

ax
im

um
pa

th
le

ng
th

;
A
vP

L:
A
ve

ra
ge

pa
th

le
ng

th
;

A
vT

A
:
A
ve

ra
ge

tr
ee

as
ym

m
et

ry
;

H
-S

:
H

or
to

n-
St

ra
hl

er
nu

m
be

r;
M

ax
B

R
:

M
ax

im
um

bi
fu

rc
at

io
n

ra
ti

o;
A
vD

C
E

L:
A
ve

ra
ge

el
ec

tr
ot

on
ic

le
ng

th
of

de
nd

ri
ti

c
co

m
pa

rt
m

en
ts

.



CHAPTER 6. DIFFERENCES BETWEEN CELL MODELS 115

Figure 6.3: The first three principal components plotted with factor loadings
for the morphological feature vector

first principal component. Unlike the morphological feature vector, plotting the
species average principal components did not reveal potential correlations, these
are given in Appendix H. 87.32% of the variance is explained by the first three
principal components.

Similar patterns emerge between the correlation matrix for the active elec-
trophysiological features and the first two principal components for the set, see
Figure 6.6. One difference was the correlation of the average time to reach peak
amplitude following stimulation in dendritic spines to the first principal com-
ponent and to a group that otherwise comprises the average peak amplitude
recorded in dendritic and terminal compartments and in the soma following
dendritic/terminal compartment stimulation and the voltage attenuation from
terminal compartments to the soma. The second correlated group is made up
of the remaining time-based metrics, which are also the four most correlated
metrics to the second principal component. The first three principal compo-
nents are able to explain 88.26% of the feature vector’s variance. The full PCA
scores for all three feature vectors are listed in Appendix G. Like the passive
electrophysiological feature vector, no patterns were found when plotting species
average principal components. The third principal component, which is most
correlated with the voltage attenuation when stimulating at soma and recording
at dendrites, did show the fish cell as a major outlier (see Appendix H).

Once the principal components were found for each of the feature vectors,
correlation coefficients were taken between the principal components that ex-
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(a) The third morphological principal component averaged over species groups with 95% con-
fidence interval

(b) The third morphological principal component averaged over species groups with trend line.
(Slope = 0.99, Intercept = 0.23, R2=0.77)

Figure 6.4: The third PC for the morphological feature vector shown with con-
fidence intervals and trend line
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Figure 6.5: The first three principal components plotted with factor loadings
for the passive electrophysiological feature vector

Figure 6.6: The first three principal components plotted with factor loadings
for the active electrophysiological feature vector
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plained >85% of the variance from each set and recorded in Table 6.2. Between
the morphological and passive electrophysiological feature vectors, a strong neg-
ative correlation can be seen between the second morphological PC and first
electrophysiological PC. This suggests that the size of cells, specifically the av-
erage radius of compartments and total dendritic surface area and volume, is
negatively correlated with the average peak amplitude recorded at soma follow-
ing stimulation in dendritic compartments and spines. Additionally, there is a
mild positive correlation between the first morphological PC (most correlated
to branching and terminal points) and the second electrophysiological PC (av-
erage time to reach peak amplitude at soma following stimulation in dendritic
compartments or spines), as had been investigated in Section 5.3.1.

Between the morphological principal components and active electrophysio-
logical principal components, only one pair displays a strong linear correlation.
The size-correlated second morphological PC has a positive correlation with the
first electrophysiological PC. As mentioned above, this PC is most correlated
with voltage metrics, but also the time take to reach peak amplitude at soma
when stimulating spines. That the first morphological PC is not strongly cor-
related with any active electrophysiological components suggests that increased
dendritic complexity does not have a great effect on Purkinje cell function in
vivo.

Finally correlations between the passive and active electrophysiological fea-
ture vectors were taken to gain some insight into the changes to behaviour
created by the active ion channels. The strongest correlation is a negative cor-
relation between the first PC of each set. This can also be seen in the first PCs
plotted over species averages for each set in Appendix G, where many of the
species averages are inverted between the two graphs. This could be due to the
influence of voltage attenuation on each of these components, which was much
higher in the passive models.

6.4.2 Clustering Results
In this section, the results of the growing neural gas and agglomerative hierar-
chical clustering are given together, due to the large amount of overlap between
them. A normalised Hopkins statistic written for Matlab (Fricke, 2012; Zhang
et al., 2006) was used to evaluate the clustering tendency of the feature vectors.
This statistic compares the distances between the input data with a uniform
dataset generated from the original data. In this normalised statistic, a result
close to 0.5 indicates that the input data is close to a uniform distribution,
while a result nearer to 1.0 would suggest that there are natural clusters in the
data. The statistic was averaged over 10,000 runs for each feature vector. The
Hopkins statistic is used to question whether clusters found by machine learning
techniques truly exist within the data or if they are an artifact of the algorithm.
Figure 6.7 shows the GNG clusters plotted in 3-dimensional PCA space. In each
graph, the cells are identified by name. Symbols given to data points indicate
the GNG cluster they belong to, and the colour of data points indicates species
(listed in image caption).
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(a) Morphological features (b) Passive electrophysiological features

(c) Active electrophysiological features

Figure 6.7: Cells plotted in PCA space. Symbols represent clusters designated
by GNG, colour indicates species: Green - fish, red - alligator, purple - turtle,
blue - finch, black - bat, pink - guinea pig, orange - rat
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Morph. PC1 Morph. PC2 Morph. PC3 Morph. PC4
P.E. PC1 -0.329 -0.749 -0.123 0.042
P.E. PC2 0.544 -0.291 -0.041 -0.361
P.E. PC3 -0.104 0.213 0.230 0.084
(a) Correlation between relevant morphological and passive electrophysiological PCs

Morph. PC1 Morph. PC2 Morph. PC3 Morph. PC4
A.E. PC1 -0.192 0.833 0.096 0.083
A.E. PC2 -0.282 -0.334 0.300 -0.050
A.E. PC3 0.330 0.204 -0.373 -0.009
(b) Correlation between relevant morphological and active electrophysiological PCs

P.E. PC1 P.E. PC2 P.E. PC3
A.E. PC1 -0.764 0.052 -0.281
A.E. PC2 -0.365 -0.108 0.164
A.E. PC3 0.071 -0.547 -0.293

(c) Correlation between relevant passive and active electrophysiological PCs

Table 6.2: Correlation coefficients between the relevant principal components of
each of the feature vectors

Alligator Finch Bat
Alligator - 0.741 0.398

Finch - - 0.356
Bat - - -

Table 6.3: Pearson’s r between the alligator, finch and bat species averages for
the morphological feature vector

The GNG results for the morphological feature vector includes only two clus-
ters made up of a single species, one with two rat cells and one with two guinea
pig cells. All three turtle cells are also in a single cluster, but are joined with
the fish cell. These four cells are visually similar, and have the lowest number
of branch points when averaged over species. The alligator, finch and bat cells
are clustered together several times. The results given in Section 4.4 also show
a lot of overlap between these species groups when morphological features were
average over species and plotted. However, the correlation coefficient between
species averages for these groups, shown in Table 6.3 only indicates a strong
correlation between the alligator and finch cells. The Hopkins statistic for the
dataset is 0.57, indicating that natural clusters do not exist in the data.

Clustering the passive electrophysiological feature vector reveals several single-
species clusters, including single-species clusters of alligators and finches, unlike
the morphological feature vector results. The Hopkins statistic for the feature
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Fish Alligator Turtle Finch Bat Guinea pig Rat
Fish - -0.418 -0.026 -0.398 -0.461 0.3953 0.093

Alligator - - -0.712 0.273 0.252 -0.565 -0.437
Turtle - - - -0.085 -0.038 0.242 0.235
Finch - - - - 0.747 -0.864 -0.829
Bat - - - - - -0.855 -0.767

Guinea pig - - - - - - 0.939
Rat - - - - - - -

Table 6.4: Pearson’s r between the species averages across the active electro-
physiological feature vector

vector is 0.67, suggesting that the data is unlikely to have natural clusters. Both
the PCA and GNG clusters have marked Guinea pig 3 as an outlier. Guinea
pig 3 has a high score on PC2, the component which correlates highly with time
metrics. The feature vector (Appendix B) confirms that the time metrics for
this cell are particularly high.

The active electrophysiological feature vector scored a Hopkins statistic of
0.66, again making it unlikely that the data has natural clusters. It is worth
noting that this set displays the least cross-species clusters of the three feature
vectors. This points to a possible species homogeneity in the behaviour of the
active models. The correlation coefficient for species averages (see Table 6.4)
suggests that many of the species behave comparably, with the rat and guinea
pig cells in particular behaving almost identically.

Agglomerative hierarchical clustering was applied to the relevant principal
components for each feature vector and plotted as in Figure 6.8 with the symbols
from the GNG clusters for comparison. These results were then added to the
PCA-GNG graphs (Figure 6.9) so that the results from all three analyses could
be compared.

In the results for the morphological feature vector, 9/12 of the GNG clusters
are also grouped by AHC. This is the highest agreement between the clustering
techniques of any of the feature vectors: the active electrophysiological feature
vector has 7 of the 16 GNG clusters reflected in the AHC groupings, and the
passive features only 5 of 15 GNG clusters.

Laying the AHC groupings over the PCA-GNG graphs makes the similarities
between the clustering results clearer. The results for all three sets suggest that
the GNG cluster granularity was too fine, and that setting the algorithm to
favour larger cluster sizes would have improved the agreement between the two
techniques.

6.4.3 Image-Based Clustering
The image-based clustering, plotted in Figure 6.10, was unfortunately unsuc-
cessful at clearly classifying cell groups. In the test set, many of the Purkinje
neurons are separated from the DCN neurons, though there are overlaps. It
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(a) Morphological features (b) Passive electrophysiological features

(c) Active electrophysiological features

Figure 6.8: Agglomerative hierarchical clustering of the relevant principal com-
ponents of each feature vector. Symbols represent clusters designated by GNG.
Branches coloured for identification
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(a) Morphological features (b) Passive electrophysiological features

(c) Active electrophysiological features

Figure 6.9: Cells plotted in PCA space with both AHC and GNG results. Col-
oured circles represent AHC clusters, colours indicate branches. Symbols rep-
resent clusters designated by GNG, colour indicates species: Green - fish, red -
alligator, purple - turtle, blue - finch, black - bat, pink - guinea pig, orange - rat
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is likely that there are so few clusters that contain both Purkinje and DCN
neurons because the majority of clusters found by GNG contain only a single
element.

The results for the Purkinje-only set is also made up of mostly single-element
clusters. This is even true for cells that the PCA is able to differentiate, such
as Guinea pig 2 and 3.

6.5 Discussion
Clustering is an excellent technique for exploring data for patterns, as was the
goal here. Unfortunately, with a dataset as small as the one used in this study,
it is difficult to find meaningful results or realistically generalise to a wider
population. These problems have previously been discussed in Section 4.5, but
are worth repeating here. The small dataset could also be the reason the Hopkins
statistic pointed to a lack of natural clusters in all of the feature vectors.

In addition, many of the metrics are rooted in the compartmental models
rather than natural features of the cells. Metrics like the number of compart-
ments are dependent on both morphology and electrophysiology, due to com-
partment length being determined either by branch points or by electrotonic
length. It is possible that the variance in the number of compartments could be
better reflected by other measures - e.g. number of branching points and total
electrotonic length of the dendrite.

Another way of avoiding problems with the chosen metrics was an attempt at
non-parametric clustering by using images of the cells. In this case the clustering
was unsuccessful, but the wide-spread use of clustering methods for identifying
objects in images in other fields suggest that this was a failure of execution
rather than technique.

Despite these issues, there were still interesting patterns found in the data.
One result from clustering was the recurring overlap of certain species; guinea
pig and rat cells often clustered together (Figure 6.7) and displayed strong
linear correlation in the active electrophysiological feature vector (Table 6.4),
perhaps unsurprisingly as they are both members of the rodent family. Closeness
in phylogeny could also explain the relationship between alligator and finch
cells. The average morphological metrics for these species are strongly correlated
(Table 6.3), and crocodilians are considered to be very close to birds in the
phylogenetic tree (Benton and Clark, 1988). Finches and bats did not prove
to be strongly correlated but were still often clustered together. There is some
evidence that birds and bats share cerebellar adaptions for flight (Kim et al.,
2009), suggesting any similarity in Purkinje cells is due to convergent evolution.

Another interesting finding was that the relevant principal components for
the active electrophysiological feature vector, while not sharing a relationship
with the branching-correlated morphological PCs, were strongly correlated with
the size-correlated morphological PCs (Table 6.2).

Branching features had no correlation with electrophysiological features for
active models, but size metrics did. The size metrics of each model have influence
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(a) GNG clusters for joint Purkinje cell and DCN neuron image vector

(b) GNG clusters for Purkinje cell only image vector

Figure 6.10: Results of the image-based GNG clustering plotted in PCA space.
Colours indicate the cluster designated by GNG.



CHAPTER 6. DIFFERENCES BETWEEN CELL MODELS 126

on the passive electrophysiological parameters, such as membrane resistance.
These parameters do not become less integral to the model with the introduction
of active ion channels. Any effect that branching measures have on the behaviour
on passive models, however, do appear to be overcome in the active models.



Chapter 7

Information Transfer in the
Purkinje Cell

7.1 Introduction
In previous chapters, the cells were compared based on their physical attributes,
shape and size, and on their electrophysiology, the tools by which neurons com-
municate. The final step in this initial exploration of the cells is to attempt to
quantify the function of the cells. In this study, this is done by using an infor-
mation theoretical technique to estimate the information content of spike trains.
This gives a final area of comparison, whether information content changes sig-
nificantly between species groups, to round out this exploration of the cells.

The chapter begins with a background on the history of information theory
and basic information theoretical techniques. Background is also given on the
use of these techniques in the field of neuroscience. This section also includes a
discussion on one of the more difficult aspects of information theory - estimating
the probability distribution of the data - by detailing some of the methods
attempted in this study before ultimately not being used.

Section 7.3 explains the method of probability distribution estimation that
was used, the Kraskov-Stögbauer-Grassberger method, as well as the inform-
ation theoretic technique the estimation was used for, transfer entropy. The
experiments used to create the data for the transfer entropy analysis is also
described here. The final two sections report the results of this analysis and
discuss what these results may explain about the information transfer through
the cell models.

7.2 Background
Information theory is a family of probabilistic measures and the study of the
quantification of information. Information theory began as a way to analyse

127
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and optimise communication systems, but has since been used in a wide variety
of fields, including neuroscience.

This section is intended to act as background on the basic measures of in-
formation theory and it’s use in neuroscience. Additionally, a brief overview of
the problems of estimating probability distributions for using information the-
oretical measures is given, as well as some of the methods that were attempted
for this study before being discarded.

7.2.1 Shannon Information Theory
Claude Shannon has been an integral force on the fields of computer science and
communications. As the first significant work on the limits of noisy communi-
cation channels, his paper “A Mathematical Theory of Communication” 1948
was the first to set upper bounds on both the transmission and compression of
data.

Information theory was originally devised as a method of quantifying infor-
mation in order to optimise data compression. While this has obvious applica-
tions to signal processing and many aspects of computer science, the concepts
first laid out in this paper have since been expanded and generalised as the field
of information theory and employed in a vast array of disciplines. Shannon bor-
rowed the concept of entropy from physics to describe the amount of uncertainty
in a transmitted message. A message with low uncertainty can be compressed
shorter than a message with high uncertainty. For example, ‘00000000’ and
‘00101110’ are the same length when uncompressed, but the low uncertainty, or
entropy, of the first message means that it can be compressed much more than
the second message without losing any information.

The basis of information theory assumes that all communication channels
are inevitably noisy and have an upper bound on their capacity. To send a
message through these channels with minimal error, it is therefore important
it is compressed so that its transmission does not exceed the channel capacity.
Often measured in bits, the entropy of a given message describes the minimum
length the message could be compressed to without losing any information. This
suggests that messages with a higher entropy contain more information.

Shannon (1948) defined entropy as in Equation 7.1. The base of the loga-
rithm used determines the units for entropy, the use of the natural logarithm
here denotes the units as nats.

H(X) = −
∑
x

(p (x) ln p (x)) (7.1)

Entropy is based on the probability that random variable X takes the value
of x given some probability mass function p(x). It could also be thought of as
a measure of uncertainty: the less predictable the next value in the data, the
higher the entropy becomes. This means that the reverse is also true, a highly
predictable or repetitive message would have a very low entropy as it can be
compressed much further without the information being lost.
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When analysing neural codes, one may look at the entropy of a spike train
to understand the rate of information being transmitted, or to look for changes
in information transmission when changing aspects of the neuron or its input.
However, the analysis of input-output relationships is better served by measur-
ing either the conditional entropy or the mutual information of the input and
output messages. These two measures are defined in Equations 7.2 and 7.3 as
described in Cover and Thomas (1991).

Conditional entropy places an addition bound on the entropy of a message
by assuming it has knowledge of a second message.

H (X|Y ) = −
∑
x,y

p (x, y) ln
p (x, y)

p (y)
(7.2)

The conditional entropy H(X|Y ) of two messages will always be lower than
or equal to H(X); there is less uncertainty of X given that Y is known, unless
X and Y are completely independent. Mutual information is also a measure of
dependence, as it describes the overlap in information between X and Y .

MI (X;Y ) =
∑
x,y

p (x, y) ln
p (x, y)

p (x) p (y)
(7.3)

The entropy of X is the upper bound on both conditional entropy and mu-
tual information. In the case of conditional entropy, the upper bound represents
the complete independence of the two messages. When measuring mutual infor-
mation, the upper bound instead means that the two messages are completely
dependent as they share the same information exactly.

7.2.2 Information Theoretic Methods Applied to Neuros-
cience

Information theory has been applied to neuroscience as early as four years after
Shannon wrote his paper defining the field when MacKay and McCulloch (1952)
attempted to estimate the entropy of spike trains. The aim of their paper was
to determine an upper limit of information transmission in neurons. It was
suggested that the entropy of a spike train is dependent on its duration, with
entropy decreasing as duration increases. Spike train entropy is also dependent
on the size of the time bins that spikes are counted in; larger time bins will
lower the entropy. This decrease in entropy occurs as the probability of a spike
occurring (or being present in a bin) increases.

When using time coding, rather than rate coding, entropy is estimated as in
Equation 7.4 (Rieke et al., 1999).

H

T
≈ r̄ log2

( e

r̄∆τ

)
(7.4)

T is the duration of the spike train, r̄ the mean firing rate and ∆τ the size of
the bin. The probability that a spike will occur in the bin is equal to r̄∆τ , it is
assumed that the bin is suitably small so that this probability is very low. This
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equation can also be thought of as finding the information per spike in bits. For
rate coding, assuming a larger T than used in Equation 7.4, the entropy for a
given spike count (sc) is approximated as:

H (sc) ≈ −
∑
n

p (n) log2 p (n) (7.5)

In this case p (n) is the probability of observing n spikes over the time du-
ration T (Rieke et al., 1999). This is also known as the naive estimate as it
ignores much of data available in a spike train (Strong et al., 1998). As ∆τ be-
comes smaller, the differences between rate and time coding can become harder
to distinguish. For rate coding this means that the maximum possible entropy
for a spike count, which is much higher than what would be achieved by a real
neuron, can be calculated as in Equation 7.6 (Rieke et al., 1999), where n̄ is the
mean spike count.

H (sc) ≤ log2 (1 + n̄) + n̄ log2

(
1 +

1

n̄

)
(7.6)

Calculating entropy is a useful measure of how much information is contained
in a message, higher entropy means that there is more uncertainty in the value of
symbols in the message, which suggests the message contains a higher amount
of information. Entropy gives a good estimate of the information contained
in a single message, but neurons are single elements in large systems – their
connectivity is one of their most important features.

One way of looking at two related messages is to measure how much of the
information contained in a message is new given that a different message has
already been seen. As described in the previous section, the conditional entropy
of a message x describes how much uncertainty remains in x given that the
value of message y is known. If the conditional entropy H(x|y) is the same as
H(x) then x and y are independent, whereas a conditional entropy of zero would
mean that the message x contains no information that is not already contained
in y.

Mutual information has been one of the most widely used information-
theoretical tools in neuroscience as it seems to be a natural tool for comparing
input and output spike trains. The mutual information of two messages is in-
formation common to both messages, it can be defined in many ways using the
marginal, joint and conditional entropies of x and y. While it can be calculated
as in Section 7.2.1, the most intuitive definition is as follows:

MI (x; y) = H (x)−H (x|y) (7.7)

This means that while the union of the marginal entropies is equal to the
joint entropy, the mutual information is equal to the intersect of these entropies;
this relationship is shown in Figure 7.1.

The mechanics of mutual information, entropy and conditional entropy are
explored in the previous section. Although there are other uses of information
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Figure 7.1: The relationship between the marginal and conditional entropies
and mutual information of two messages x and y.

theory in neuroscience, many techniques are extensions or modifications of these
measures, including transfer entropy.

7.2.3 Probability Distribution Estimation Methods
Information theoretical tools can be used to great effect in neuroscience, but
they also come with challenges to overcome. In order to find the entropy of
an information source, the probability distribution of how the source generates
symbols must be known or estimated. With two different information sources,
the mutual information can only be found if the conditional or joint probability
distributions are also known or estimated in addition to the singular distribu-
tions. To simplify estimations, a simulated input can be randomised based on a
known probability distribution; often Poisson or gamma distributions are used
to simulate natural spike trains. However, the joint probability of the input
and output cannot be derived from the marginal distributions of the input and
output unless complete independence is assumed. The following is a summary
of probability distribution estimation methods that were investigated for use
in this study, but replaced with the Kraskov-Stögbauer-Grassberger (Kraskov
et al., 2004) method described in Section 7.3.1.

The simplest method of estimating a probability distribution first requires
that the neuron voltage trace is transformed into a spike train of discrete states
by “binning”. The trace is split into bins of a fixed width, most often at a
resolution that allows only a single spike per bin so that the trace may be
represented as a binary string, where a bin containing a 1 corresponds to a
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Figure 7.2: Example of a suffix tree from (Willems et al., 1995, fig. 1)

spike at a given time and a 0 is used where there was no spike.
With this discrete spike train the probability of a spike can be estimated as

the number of events divided by the number of bins; this is sometimes referred
to as a plug-in estimator. The accuracy of this method can be improved by
having many output trains of the same length generated by the same input to
derive an average number of spikes. Given a large enough sample, this can be
an effective method, but its application is limited. The use of binned methods
is still highly prevalent, often in conjunction with a bias-correction method like
jack-knifing.

When estimating probability distributions a good model will make a min-
imal amount of assumptions on the nature of both the data and the source.
The aim of a weighted context tree (Willems et al., 1995) is to avoid making
any assumptions at all by creating a context tree that encompasses any possible
source model. Not originally designed for use in neuroscience, it was subse-
quently used by (London et al., 2002a) to estimate the distribution of binned
spike trains to find the synaptic information efficacy (SIE), which is defined as
the mutual information between the input to a specific synapse and the output
of a neuron.

As described by Willems et al. (1995), the weighted context tree is an ex-
tension to the concept of suffix trees. This is a binary tree where edges are
labelled either “0” or “1”, as in Figure 7.2. The path to any node is denoted a
“suffix”, and each suffix has a probability. In a suffix tree, the source model is
known and all suffixes represented on the tree are known to be generated by the
model. A suffix tree model is used to find the conditional probability of a binary
information source generating a string (indexed with the most recent symbol at
x0 and earlier symbols with negative numbers) given that a fixed-length suffix
string is known.

In a context tree, contexts are possible suffixes and are mapped to the tree in
the same way. A context tree is always complete up to the pre-determined depth
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parameter D, which represents the length of suffixes. Each context probability
is weighted in order to approximate an average over all possible suffix trees.

Probability distributions are estimated by counting the numbers of 1s and
separately the number of 0s that follow the context string. Each count and
subsequent probability is mapped to a tree so that each node holds the counts
given a different context, with the context of the root node being an empty
string, and each set of child nodes increasing the context length until D is
reached.

At each node, a prior distribution is determined based on the symbol counts.
This is a recursive calculation, shown in Equation 7.8, where x is a binary string,
a is a binary symbol concatenated to the right side of x, and n is the length of
x. Nx(a) is the number of occurrences of binary symbol a in string x (London
et al., 2002b).

Pe (x ◦ a) =
Nx (a) +

1
2

n+ 1
· Pe (x) (7.8)

For leaf nodes, this prior is given as the final estimated probability of a
symbol given the context. This prior is better known as the Krichevsky-Trofimov
(KT) estimator (Krichevsky and Trofimov, 1981). At any nodes with children
the final estimate is derived from the prior of the node, and the final probabilities
of its children. This is defined as:

Pw ,
1

2
Pe (x) +

1

2
P 0
w (x) · P 1

w (x) (7.9)

where P 0
w (x) is the final probability of the child node with the extra context

symbol “0”, P 1
w (x) is the final probability of the child node with the additional

context symbol “1”, and P e(x) the prior probability for the given node as calcu-
lated from Equation 7.8 (London et al., 2002b). Computationally, these values
are worked out in sequence, beginning with the leaf nodes. The probabilities
then propagate up the tree such that the value Pλ

w (x), the probability at the
root node, is the estimated probability for the entire string.

Binning the neural data simplifies it from continuous to discrete time steps.
Binning is often thought of as a necessary simplification but any kind of dis-
cretisation or compression will lead to information loss. The resolution of time
bins can also have a large effect on how much information is estimated to be
contained in a segment of neural data. These drawbacks are often thought of as
necessary in order to use information theoretical analysis, which is not optimised
for continuous data.

A growing family of probability distribution estimators use dimension pro-
jection as an alternative, where spike trains are mapped into a feature space for
analysis. This approach is particularly useful when handling high-dimensional
data. Akin to the use of covariance matrices to find the features of the input
most likely to cause spiking in the output, projecting the input and output
as vectors in the same space can reveal the boundaries between inputs which
do and do not trigger spiking in the output. By projecting the data to some
feature space, the data can be represented in a more decompressed manner,
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and comparisons can be made using distance-based measures. The Kraskov-
Stögbauer-Grassberger method, described in the following section, is one such
projection method.

7.3 Methods
Information theory has been applied to neuroscientific data for decades and
using many different methods. For this study, only a single measure was applied
to the data: transfer entropy. Transfer entropy is a measure of the predictability
of a system given that the inputs to and outputs from are known. This chapter
describes how this measure was used in three steps. The first sections details the
robust method of probability distribution estimation used for the calculation of
transfer entropy. This is followed by an explanation of what transfer entropy
measures and how it works. The section ends with how the data was generated
for analysis with transfer entropy.

7.3.1 The Kraskov-Stögbauer-Grassberger Method
For the probability estimation required for transfer entropy, the Kraskov-Stögbauer-
Grassberger (KSG) (Kraskov et al., 2004) method was used. KSG has the bene-
fit of not making assumptions of the model or assuming linearity. It is able to do
this by building on box-kernel probability density estimation using a technique
based on a method developed by Kozachenko and Leonenko (1987).

The box kernel estimates probability by finding the number of points in a
dataset that are within an d-dimensional “box” of set width, r, when projected
into an d-dimensional data-space. Data points are given a value of 1 if they are
within r, and 0 if not. This is then summed over the number of data points
and divided by nrd; where n is the number of points, r the kernel width, and d
the dimensionality of the data. The difference between this technique and the
plug-in estimator described in Section 7.2.3 is the position of the box. In the
previous plug-in estimator, which similarly counts points in bins, the results is
dependent on both the width of bins (generally with spike trains this width is
set so that there can never be more than one spike per bin) and the locations of
bins in the data-space. While the results of box kernel estimation is still highly
dependent on box width, the issue of placement is solved by having boxes centred
on each data point.

The main drawback to the box kernel method of estimating probability dis-
tributions is the need to set a width value; this is usually remedied by trying a
range of widths and assuming the probability distribution with the maximum
entropy is the most accurate result. However, the KSG method enhances the
box kernel by effectively using a dynamic width value, based on the Kozachenko-
Leonenko method (1987) of adapting box kernel estimation for use with entropy
estimation through the use of nearest neighbours. This is achieved by having
a choosing some k, and then determining the kernel width by the distance of
the kth nearest neighbour. Setting a width value can have a huge effect on the
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result of standard box-kernel estimation, but KSG results with k ≥4 have been
found to be less sensitive to this problem (Kraskov et al., 2004).

For this probability distribution estimation to work with mutual information
it needs to be expanded to estimate joint probability distributions. For the KSG
method, this was achieved by first finding the k nearest neighbours in the joint
data space of X and Y , and then setting a kernel width for each space, rx and
ry based on the distance to the kthneighbour. KSG proposed two methods for
setting the widths, the algorithm used in this study uses the maximum distance
of either x or y to the kth neighbour for both widths. The count of data points
within rx and ry for each element of X and Y takes place in the separate X and
Y spaces, and is averaged over the total samples. This can also be expressed as
in Equation 7.10 (Kraskov et al., 2004).

I(X;Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N) (7.10)

Where ψ represents the digamma function, nx and ny are the number of
points within rx and ry respectively, and N is the total number of samples.

Calculating transfer entropy requires three, rather than two, data sources
to have their probability distribution functions estimated, as it is a type of
conditional mutual information (see Section 7.3.2). In this study, this expansion
is implemented as suggested by Gómez-Herrero et al. (2015); widths for the three
marginal spaces rx, ry and rz are found using the same method as before in
the full X, Y , Z data space. Widths for two joint spaces, rxz and ryz are also
set from the maximum distance. Counts then take place in the Z, XZ, and
Y Z spaces as before in order to find the conditional mutual information using
Equation 7.11 (Gómez-Herrero et al., 2015).

I(X;Y |Z) = ψ(k) + 〈ψ(nz + 1)− ψ(nxz + 1)− ψ(nyz + 1)〉 (7.11)

By using this method, as implemented in JIDT (Lizier, 2014), this study
is able to compute continuous transfer entropy without the use of binning or
unnecessary model assumptions.

7.3.2 Transfer Entropy
Finding the mutual information between the input to a cell and the resulting
output seems like a natural way of applying information theoretical tools to
neuroscience, but there are many limitations to this method. A key limitation
is the lack of directionality; mutual information is a symmetrical measure, so
there is no sense of how much of the shared information has been specifically
transferred from input to output.

Transfer entropy is an asymmetric predictive measure. When applied to
spike trains, transfer entropy can quantify the reduction in uncertainty in pre-
dicting the value of the next time bin in the output, given that the history of the
input and output are known. This has been summarised as “what information
does the past of I provide about the future of O, that the past of O did not
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already provide?” (Wibral et al., 2013). While this does not necessarily imply
causation, a higher value of transfer entropy suggests that the combined input
and output histories can improve prediction of future states.

TI→O =
∑

p
(
on+1, o

(k)
n , i(l)n

)
ln
p
(
on+1|o(k)n , i

(l)
n

)
p
(
on+1|o(k)n

) (7.12)

Equation 7.12 describes the transfer entropy from input to output as form-
alised by Schreiber (2000), which uses the joint and conditional probabilities
of the future output (on+1) and the history of the output (o(k)n ) and the in-
put (i(l)n ), where n is the current time and k and l are the length of the
time windows of the histories, such that o

(k)
n = (on, on−1, . . . , on−k+1) and

i
(l)
n = (in, in−1, . . . , in−l+1). Schreiber originally suggested using equal length

windows, k = l, or setting the output history k to 1. A later study into time
delays in transfer entropy by Wibral et al. (2013) broached the subject from the
perspective of Wiener’s Principle of causality suggested that the output history
k should be limited to 1 as this would eliminate the problem of information
storage skewing results, and would also allow transfer entropy to represent a
causal relationship. Furthermore, they go on to explain that while k = 1, the
transfer entropy is maximised when the input history l is equal to the delay that
occurs between the transmission of information at i and its arrival at o. This
means that the true delay can be found by scanning the space of possible delay
values until the maximum transfer entropy is found.

An advantage of transfer entropy is the possibility to change the length of
the time window of history that is used in calculations. A time delay can also
be added to mutual information calculations, but this does not change the sym-
metry of mutual information. Transfer entropy was intended from conception
to avoid making assumptions on the model used and to take into account dir-
ectionality and delay.

While it is a measure of uncertainty reduction, transfer entropy can also be
described as conditional mutual information. As such, the calculation can be
written as:

TI→O =MI
(
O+; I−|O−) , (7.13)

where I represents the input, O the output, and + and − the future and
past respectively (Wibral et al., 2013).

Transfer entropy was calculated for this study using JIDT (Lizier, 2014), a
collection of information theoretic tools for Matlab. Two lists of spikes times
were used as input to the transfer entropy algorithm, one from a spine receiving
a pre-generated input train, and one from the Purkinje cell soma. The methods
of gathering these trains is explained in the next section. The probability dis-
tribution of the output spike train was estimated using the KSG method, which
is detailed in Section 7.3.1.
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JIDT allows the user to define the history lengths and delays on the input
and output sources, as well as the time window between each source. Following
the recommendations made by Schreiber (2000) the history length of each source
was limited to 1 time step. The time window between the history of the input
and output sources was shifted backwards over a number of runs in order to
find the optimal point of information transfer. The amount of time the window
was allowed to run backwards was 50 ms, based on the maximum time to reach
peak amplitudes found during earlier experiments using spined models with
active channels.

7.3.3 Measuring Information Transfer
For this investigation spiking was imperative, so the active models detailed in
Section 5.2.2 were adapted so that the soma compartment was also given active
ion channels that would facilitate spiking.

Excepting the active soma, the main change to this set of experimentation
from the methods used in Section 5.2.2 was the type of input used. The simula-
tion and output time steps were kept the same as the previous experimentation.
Information theory requires large volumes of data to improve the accuracy of
the analysis, so each simulation had to last much longer than in previous exper-
iments; in this case there was a ten-fold increase in simulation run time, from
two to twenty seconds. The need for increased data also meant that the input
could not remain as a single spike.

Five spike trains, each with a twenty second duration, were generated from a
gamma distribution with the shape and scale parameters both set to 0.5. These
were created from a purposefully written Matlab script, which also performed a
slight pruning of spikes to replicate a refractory period of 3 ms after each spike.
The final spike trains all had a rate of approximately 10 Hz. Each spike train
was presented to a model once, so that the final results could be averaged over
multiple runs. These spike trains, referred to as input trains for the rest of the
study, were used as the comparison to the output of the cells for the transfer
entropy.

In addition to the monitored input trains, each cell was also given back-
ground excitatory and inhibitory input. These were randomly generated in
GENESIS, but with a fixed seed so the pattern was constant for each simula-
tion. The inhibitory input for all cells was set at 1 Hz, which is commonly used
in Purkinje modelling (De Schutter and Bower, 1994b). The frequency of the
excitatory input had to be varied due to the wide range of input resistances
across the models. In some initial experimentation, setting the excitatory input
to a uniform 25 Hz resulted in spiking frequencies of 15-130 Hz. To avoid a
large amount of variation in the output of the cell models before the application
of the input trains, the background excitatory rates were varied by trial and
error until all the cells had a baseline firing rate of 45-55 Hz when not giving
the cells any monitored input. For each run the model was presented with three
types of input: the monitored, pre-generated excitatory input train, a randomly
generated excitatory input with variable frequency, and a randomly generated
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inhibitory input with a 1 Hz frequency.
In total, 90 simulations were run for each cell model. The pre-generated

input trains were given to the cell in one of four locations and in one of four
quantities. The number of input sites was set to either 1, 20, 50 or 100, and
these sites were located either proximal, medial or distal to the soma, or were
randomly distributed across the tree. This was repeated five times for each of
the input trains.

It has been estimated that 50 synchronously firing parallel fibres are required
to effect spiking in the Purkinje cell (Barbour, 1993). Smaller input groups were
chosen to see if this was effected by location of input sites. Input location was
varied to check for a possible morphological effect and also to see whether the
randomly distributed group is more effective than localised groups.

Finding transfer entropy requires two sources of data, the past of an input
and the past of an output, in order to measure the uncertainty in the future
of the output. The algorithm used to calculate the transfer entropy, from the
Java Information Dynamics Toolkit (JIDT) (Lizier, 2014), uses the Kraskov-
Stögbauer-Grassberger method (Kraskov et al., 2004, see Section 7.3.1 for more
on this method) to estimate the probability distributions of the input and out-
put sources. The input and output data were presented as time series data as
conductance from a spine receiving input and the voltage at soma respectively.
Each was trimmed to remove the first 0.5 seconds of the recordings. The spine
stimulated when only one parallel fibre input was simulated was chosen as the
recording spine in each experimental condition for consistency.

The length of each input/output pair was analysed for transfer entropy.
History of both the input and output was limited to 1 time step (as explained
in Section 7.3.2). The delay between input and output windows was tested from
1 to 500 time bins, or 50 ms. This was executed for each input location and
number of synchronous inputs, and then repeated for the five different input
trains to find an average maximum transfer entropy.

7.4 Results
Transfer entropy measures how well the future values from the output of a
system can be predicted given that the history of the output and the input to
this system is known. This is computed as conditional mutual information and
is intended to represent the information transfer from the input to the output.
Transfer entropy was applied to the input to the input of the 24 cell models,
conductance at spines receiving input, and the output, the voltage trace from
each soma. In this section the results of this analysis is reported as the maximum
transfer entropy within a given time window, and the delay between input and
output to reach this maximum.

Figure 7.3 shows the maximum transfer entropy in the fish Purkinje model
when stimulating different numbers of spines synchronously, and in different
positions in the dendritic tree. Each spine group size and position combination
was run five times for each model using different randomly generated input spike
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trains to give the error bars. The average delay to reach the maximum transfer
entropy is plotted in Figure 7.4, which was made in the same way. Regression
coefficients for the trend lines are given in Appendix I, as are maximum transfer
entropy and corresponding delay values for examples from other species.

A universal observation across all of the cell models was the increase of
transfer entropy with the number of spines stimulated synchronously. In many of
the cells, this increase can be well fitted linearly withR2> 0.9, as shown in Figure
7.3. For most species, stimulating groups that were proximal to the soma or
randomly distributed across the dendritic produced the largest transfer entropy
results. However, as shown in Figure 7.6, the maximum transfer entropy was
smallest in the proximal groups for the fish and turtle models in some conditions.
For most of the other species, the distal groups produced the smallest maximum
transfer entropy, remaining low even in the 100 spine input condition (Appendix
I). This is despite the previous experimentation with active models suggesting
that distance has very little effect on the amplitude of voltage reaching the soma
(see Section 5.3.2).

The delay between input and output history was typically very small, less
than 1 ms, when the maximum transfer entropy was in the higher. This can be
seen in Figure 7.4, where the stimulation of 50 or more spines in any location
produces a small delay with little variability across the different input trains.

Figure 7.5 shows the transfer entropy over delay window for each of the 16
input combinations in the fish cell, averaged over five input trains. Finding
transfer entropy requires iteration over the input and output time series for
each delay length (here the delay was capped at 50 ms, and used 0.1 ms time
steps) starting at each time step in the output series (given that there is a long
enough history at that time step, and that it is not the last step in the series)
and then averaged over all local values at each step. These averages are shown
in this figure, averaged again over the five input trains, spanning the full 50
ms delay window. The higher maximum entropy values seen in the 50 and 100
spine groups peak sooner in the delay window, and have a sharper peak and
drop than the values for the smaller spine groups.

To test for a relationship between maximum transfer entropy and the asso-
ciated delay, the coefficient of correlation was found for each cell, using all input
conditions averaged over the five input trains. The results for the example cells
are given in Table 7.1. These results suggest some negative linear correlation
between the two variables, though only the results of the fish model analysis
displays a particularly strong relationship.

The transfer entropy results were also averaged over species groups in order
to look for phylogenetic trends. Species average maximum transfer entropy
and average associated delay for different input positions when synchronously
stimulating groups of 50 spines are plotted in Figure 7.6, with 95% confidence
bars. The length of these bars is evidence of high variance within species groups.
No obvious increase or decrease of maximum transfer entropy with phylogenetic
rank was found, a Kendall’s τ analysis also suggests no linear correlation (Table
7.2).
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(a) Distal (b) Medial

(c) Proximal (d) Random

Figure 7.3: Transfer entropy (nats) in the fish Purkinje cell model after stim-
ulating spine groups in different areas of the dendritic tree, averaged over five
input trains

Cell Model R

Fish -0.774
Alligator 2 -0.576
Turtle 3 -0.618
Finch 4 -0.591
Bat 5 -0.649

Guinea pig 2 -0.618
Rat 1 -0.672

Table 7.1: Correlation coefficient for maximum transfer entropy and correspond-
ing delay
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(a) Distal (b) Medial

(c) Proximal (d) Random

Figure 7.4: Delay (ms) between input and output to find the maximum transfer
entropy in the fish Purkinje cell model after stimulating spine groups in different
areas of the dendritic tree, averaged over five input trains

Input Position τ p

Distal -0.143 0.773
Medial -0.143 0.773

Proximal 0.143 0.773
Random -0.333 0.381
(a) Maximum transfer entropy

Input Position τ p

Distal 0.562 0.238
Medial 0.143 0.773

Proximal 0.619 0.069
Random 0.514 0.164

(b) Delay

Table 7.2: Kendall’s τ for species average maximum transfer entropy and de-
lay at different input positions when stimulating groups of 50 spines against
phylogenetic rank
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(a) distal (b) medial

(c) proximal (d) random

Figure 7.5: Transfer entropy over the 50 ms delay window containing maximum
transfer entropy in the fish Purkinje cell after stimulating spine groups in dif-
ferent areas of the dendritic tree, averaged over five input trains. Number of
spines stimulated indicated by line colour: Blue = 1 spine, green = 20 spines,
cyan = 50 spines, black = 100 spines. Red lines are the standard error for each
group.



CHAPTER 7. INFORMATION TRANSFER 143

(a) Average maximum transfer entropy

(b) Average delay

Figure 7.6: The average maximum transfer entropy (nats) for each species group
when synchronously stimulating groups of 50 spines and the average delay to
the maximum transfer entropy (ms) with 95% confidence intervals
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7.5 Discussion
The use of information theoretical techniques in the analysis of spike trains
spans almost the entire history of information theory. Transfer entropy, despite
being a much more recent development, has also seen much use in the field. This
is due to two advantages that transfer entropy has over traditional information
theoretical measures, Firstly, the inclusion of the history of data sources, as
well as an adjustable delay between input and output makes it well suited for
time series data. Additionally, as an asymmetrical measure, the results imply a
direction, or flow of information that is lacking in mutual information.

As mentioned in Section 2.3.1, it is thought that 50 synchronous parallel fibre
inputs are required for the Purkinje cell to spike (Barbour, 1993). Measuring the
maximum transfer entropy when inputting the pre-generated spike train at only
a single spine allows for an approximate measure of how much of the possible
information transfer is just chance interactions with the background activation.
With a few exceptions, including the fish cell, maximum transfer entropy for
a single input was below 0.02 nats. Based on this, 0.025 nats could be used
as a conservative baseline transfer entropy, with values below this threshold
considered noise.

Whether the synchronous stimulation of 20 spines was enough to cross this
threshold was dependent on the cell model. For some, such as Rat 1 (see Ap-
pendix I) 20 synchronous inputs had an effect on transfer entropy only when
they were proximal to the soma. In other models, this could also be achieved
when spines receiving synchronous input were distributed across the dendritic
tree. This could be misleading, however, as only one random distribution was
tested for each model. In a larger study, there would be permutations of the
random spines chosen to reduce possible bias.

The delay times for the 1 and 20 spine groups displayed more variance and
across the results tended to be longer when the maximum transfer entropy failed
to reach the noise threshold of 0.025 nats. As Figure 7.5 shows an early peak
and definitive drop of transfer entropy in the larger spine groups, and Table 7.1
suggests some correlation for higher transfer entropy values with shorter delay
times, a longer delay could also be an indicator of noise. Higher transfer entropy
values often had delay times of less than 1 ms, suggesting very quick information
transfer in the Purkinje cell, if accurate. This is noticeably quicker than the time
to reach peak amplitude at soma in active models following stimulation at spines
reported in Section 5.3.2, though it is possible this is partly an artifact of the
passive soma.

Section 5.3.2 also reported that there was little variation in the active re-
sults based on the distance between compartments receiving inputs and the
recording compartment. Sensitivity to distance from soma was found in all of
the cell models when measuring transfer entropy. The models used in the two
experiments had two differences; whether the soma compartment was modelled
passively or actively, and the presence of background excitatory and inhibitory
input. One possible explanation for this key difference in results is the intro-
duction of noise through the background inputs, which would potentially effect



CHAPTER 7. INFORMATION TRANSFER 145

distal inputs more than those close to the soma. Further experimentation with-
out background input is recommended to test this hypothesis, as it could mean
that input location is not as location-independent as currently believed.

As with the other experimentation within this study, this is intended as
an initial exploration of the data and source of questions rather than answers.
While there was no correlation between maximum transfer entropy and phylo-
genetic rank found, a similar approach with a larger dataset could examine
whether this is indicative of a conservation of function in the Purkinje cell. The
extent to which transfer entropy depends on distance from the soma would also
be an area of potential interest. These results do, however, lend some additional
evidence to the requirement of a minimum approximately 50 spines receiving
synchronous activation to effect the Purkinje soma.



Chapter 8

Conclusion

The cerebellum is a structure that is present in all vertebrates, but grows larger
and more morphologically complex through evolution. Its neural circuitry and
the neurons themselves also follow the pattern of growth, in size and number,
and increased dendritic complexity. Despite this, the strict organisation of cells
– particularly the unique arrangement of Purkinje cells – is a constant feature
of the cerebellum, from primates back to the simplest cerebella found in fish.

Unfortunately, the majority of research into the cerebellum and Purkinje
cells takes place using samples from a small number of vertebrate species, with
phylogenetic orders like Rodentia vastly over-represented. The aim of this work
was to take the first steps in exploring a greater range of species. Three areas
were chosen for this exploration: morphology, electrophysiology, and informa-
tion theory.

Purkinje cells have been famous for their dendritic morphology since the first
sketches by Ramon y Cajal demonstrated their immense complexity. However
this is not common to all species, the fish and turtle cells used in this study
have far simpler dendritic structures. The Kendall’s τ analysis in Chapter 4
lends statistical evidence to the increase of branching with phylogenetic rank,
the Kruskal-Wallis results also finding that the number of branching points
is statistically dissimilar between species groups. Research into cell numbers
in the cerebellum suggests that there is an increase in numbers of both the
excitatory granule cells, whose parallel fibres synapse onto Purkinje cells in
huge numbers, and the inhibitory interneurons. A possible hypothesis for the
increase in branching that cold be investigated further is that it is a necessary
adaption for the increase in inputs.

Passive modelling was undertaken on the cells despite knowing that Purkinje
cells have a number of active ion channels as it was felt that any morphological
effect would be easier to distinguish without the added complication of ion
channels amplifying voltage. In passive models, both maximum amplitude and
time to reach peak amplitude are highly dependent on distance. Referring back
to Section 3.2.1.1, this is not surprising as current is a function of both time
and distance. Input resistance has an important effect on the cell, as a higher
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input resistance results in a larger change in voltage in response to current
changes. This is reflected in both the amplitude of peak voltages recorded, and
in the attenuation of voltage in these results. It is possible that the specific
morphological changes are able to compensate for any related change in voltage
attenuation. For example, the attenuation in the turtle cells would be related to
the length of dendrites, while in the alligator cells it would be most connected to
the small diameter of its dendrites and resulting high resistance. The correlation
between the principal component associated with size metrics and the principal
component most associated with peak amplitude at soma in both the passive
and active modelling results could lend some support to this hypothesis.

Finding similarities in the results from the active models is much more diffi-
cult than those for the passive models due to the often non-linear result. How-
ever, much of the active results mirror what was seen in those from the passive
modelling. One major difference between the two is the linear correlation with
distance is almost completely absent for both voltage amplitude and time. Many
in vitro studies of Purkinje cells show that different species generate similar spik-
ing patterns and firing frequencies in response to the same stimulation. It is
possible that had the active model experimentation been expanded to include
spiking, these results would also have been replicated here.

A downfall to the clustering results is the small number of cells available
for the study makes drawing conclusions difficult. Testing for cluster tendency
with the Hopkins statistic indicated that there are no strong clusters present in
the data. Unfortunately,with such a small dataset it is unclear whether this is
due to clusters not existing within the data or their not being enough examples
for clustering to occur. Some patterns emerged despite this limitation, sug-
gesting further investigation could be warranted. The three groups emerged of
species that were more likely to be clustered together all had some phylogenetic
similarity. The fish and turtle cells, which both come from species with flat,
rather than foliated cerebella, were often clustered due to their low branching
and similar size. The three guinea pig cells and three of the rat cells (one rat
cell was a strong outlier in both morphology and electrophysiological results)
were also often clustered together in some combination. These two species are
the closest phylogenetically of any of the other samples used in this study as
they are both rodents. Finally, the alligator, finch, and bat cells were also often
clustered, though Pearson’s R for the morphological features of these species
suggests that only the alligator and finch have any strong correlation. This
grouping may be explained by the closeness of alligators and birds phylogenet-
ically, as well as the possibility that the Purkinje cells of birds and bats have
converged on the same adaptions for the challenges of flight.

As the background of the specimens that the cells were taken from is un-
known, it is not possible to say whether any of these results are related to the
cells of these species or outside factors. One such area where this is an issue is
cell size. Size based metrics were found to have statistically significant differ-
ences between species groups, but this could be effected by many things, with
the age of donor animals being a large factor. Any further investigation into
these hypotheses should aim to have not only a larger dataset, but a better



CHAPTER 8. CONCLUSION 148

record of the origin of specimens to prepare for any potential bias.
Two factors were emphasised through the transfer entropy results. Firstly,

for many of the cells, 50-100 synchronous inputs are a minimum for meaningful
transferral of information to soma, which is largely consistent with earlier esti-
mations. The results suggest that large synchronous inputs have influence on
the output of the cell for a very brief time on a very fast time scale. More sur-
prisingly, based on the active modelling results, was that the distance of inputs
highly effected the predicted information transfer. Under the conditions tested
here, inputs received at spines that were further from the soma are less likely
to transfer information even when large groups are activated.

This study was intended to find questions about the Purkinje cells of dif-
ferent species that would benefit from a larger-scale study. As a cell famed for
its dendritic morphology, the study was an exploration of how influential this
structure is on behaviour. Firstly, the results of morphological analysis suggest
that branching does indeed increase with phylogenetic rank. The actual size
of the cell is somewhat determined by species but not by rank. Though the
passive modelling results displayed slight correlation with branching, cell size
was a factor in both passive and active modelling results. Information transfer
was effected by distance from the soma, but the cell models with the some of the
highest dendritic lengths - fish and turtle cells - were also the cells with some
of the highest transfer entropy from distal inputs. These results put forward
the argument that there is a lot more work to do in this area. Further cluster
analysis could potentially find patterns that do not exist in a sample as small
as the one used here. Morphology is correlated with phylogenetic rank - but to
what extent is that true in a wider sample? Active modelling results are fairly
homogeneous, but whether that is true in vivo or an artifact of using the same
parameters across cells could be explored. Information theoretical analysis did
not suggest phylogenetic increase or decrease in information transfer, but would
more accurate modelling of the number of inputs each Purkinje cell is estimated
to receive in different species affect this result?

Future Work To extend this work the first recommendation would be that
many of the analyses attempted here would be greatly improved with a larger
sample of cells; the exploratory nature of this work produces a number of hy-
pothesis that could produce interesting results if investigated more fully. The
most pressing recommendation is to increase the range of species typically used
in studies. This could be used to more fully test if the increase in branching
with phylogenetic rank is truly a trend in nature, or just of the samples used
here. This would be further improved if the age of donor species is known and
kept constant for each cell.

The genesis of the cerebellum is older than many other sections of the brain,
and its lack of specialisation allows it to be present in all vertebrates with little
change to its structure, or presumably its function. This makes it an interesting
target for evolutionary studies when there is biological data to support the work.
However, increasing the variety of species tested would be useful across the field
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of neuroscience. An understanding of what changes in a cell, as well as what is
conserved, is critical for seeing which elements are important to the function of
that cell.

To further test models of Purkinje cells, increasing the number of cell models
with electrophysiological parameters derived from the same animal as the cell
morphology that are not rodent cells would be greatly beneficial. There is
evidence that ion channel distribution and spiking behaviour has similarities in
vastly distinct species, but further testing in this area could provide insight into
the function of Purkinje cells and how much it has changed through evolution.

A larger sample set would also make potential clustering results far more
robust and therefore much more interesting. This would be true whether the
homogeneity between cell features, as suggested by the low Hopkins statistic
of the feature vectors, proves true for a larger sample, but would also be true
if natural clusters can be found. This recommendation for larger datasets also
extends to the image-based investigation attempted within this study. Although
the clustering here proved untenable, its successes in other fields reassures that
it could be a useful tool given the right images and pre-processing techniques.

Furthermore, clustering is a strong technique for pattern finding in data and
these methods of quantifying cell morphology could be applied to many different
groups of cells. This could include populations of cells from the same species
at different ages, or populations of healthy cells and those in different stages of
neurodegeneration.
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Appendix A

Images of Purkinje Cells

Each of the cells used in modelling experiments. Each is labelled with a number
for identification in tables (such as Table D.1 in Appendix D). Scale bar is 50
µm. Visualised using neuroConstruct (Gleeson et al., 2007). Guinea pig cells
(Figure A.6) originally used in (Rapp et al., 1994).
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Figure A.1: Fish Purkinje cell
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(a) Alligator 1 (b) Alligator 2

(c) Alligator 3 (d) Alligator 4

Figure A.2: Alligator Purkinje cells
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(a) Turtle 1

(b) Turtle 2

(c) Turtle 3

Figure A.3: Turtle Purkinje Cells
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(a) Finch 1 (b) Finch 2

(c) Finch 3 (d) Finch 4

Figure A.4: Finch Purkinje Cells
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(a) Bat 1 (b) Bat 2

(c) Bat 3 (d) Bat 4

(e) Bat 5

Figure A.5: Bat Purkinje Cells
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(a) Guinea pig 1

(b) Guinea pig 2

(c) Guinea pig 3

Figure A.6: Guinea pig Purkinje Cells
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(a) Rat 1 (b) Rat 2

(c) Rat 3 (d) Rat 4

Figure A.7: Rat Purkinje Cells



Appendix B

Full Feature Vectors

The following tables give the full feature vectors containing values from the 24
cells. The methods used to create these vectors are given in Section 4.3.1 for
the morphological features and Section 5.2 for electrophysiological features,
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Cell nDendC nDendSp nBrP nTrmP
Fish 330 303 37 38

Alligator 1 800 733 221 222
Alligator 2 788 729 225 226
Alligator 3 759 697 260 261
Alligator 4 866 7761 306 307
Turtle 1 640 588 73 76
Turtle 2 574 529 63 69
Turtle 3 574 527 63 67
Finch 1 506 478 180 181
Finch 2 758 690 286 287
Finch 3 570 525 208 209
Finch 4 1217 1133 435 436
Bat 1 896 847 225 226
Bat 2 674 618 227 228
Bat 3 371 340 107 109
Bat 4 698 648 248 249
Bat 5 907 817 337 338

Guinea pig 1 1145 1084 472 473
Guinea pig 2 991 941 419 420
Guinea pig 3 915 860 417 418

Rat 1 1118 1030 473 564
Rat 2 620 571 269 302
Rat 3 643 587 281 324
Rat 4 1928 1778 718 719

Table B.1: First part of the 16-dimensional morphological feature vector. KEY:
nDendC: Number of dendritic compartments; nDendSp: Number of dendritic
spines; nBrP: Number of branch points; nTrmP: Number of terminal points
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Cell MaxBO TotLen (µm) TotSA (µm2) TotVol (µm3)
Fish 13 5169.06 25622.31 15332.65

Alligator 1 29 4733.05 7458.50 9093.12
Alligator 2 43 4529.43 9501.75 21003.34
Alligator 3 33 2733.95 1930.79 1336.55
Alligator 4 48 2849.62 1822.94 1388.08
Turtle 1 12 7049.19 21045.48 13037.41
Turtle 2 12 6756.34 21987.58 7948.88
Turtle 3 10 7077.61 21299.06 12206.71
Finch 1 26 3245.20 6828.42 5663.08
Finch 2 35 4120.88 8241.23 6547.82
Finch 3 29 2825.45 3825.76 1648.45
Finch 4 40 4663.05 3886.27 1922.97
Bat 1 28 4946.85 6083.81 6979.35
Bat 2 31 4387.92 9764.55 5160.13
Bat 3 17 2439.22 4852.84 5498.57
Bat 4 28 3573.09 4453.93 3465.70
Bat 5 50 5092.66 11018.25 8659.91

Guinea pig 1 29 10839.87 60630.05 35475.89
Guinea pig 2 24 8357.72 40998.33 26063.77
Guinea pig 3 25 8128.17 50722.78 28521.30

Rat 1 23 8143.32 40298.73 22022.63
Rat 2 20 4271.51 21246.42 11455.40
Rat 3 20 4093.74 20040.52 12708.19
Rat 4 43 6948.88 5323.70 1501.83

Table B.2: Second part of the 16-dimensional morphological feature vector.
KEY: MaxBO: Maximum branch order; TotLen: Total dendritic length; TotSA:
Total dendritic surface area; TotVol: Total dendritic volume
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Cell SomRad (µm) AvgDCRad (µm) MaxPL AvgPL
Fish 11.19 1.39 35 18.40

Alligator 1 12.59 0.32 36 19.45
Alligator 2 16.85 0.37 62 30.92
Alligator 3 6.71 0.15 39 22.50
Alligator 4 6.79 0.12 60 27.00
Turtle 1 12.47 0.81 39 17.98
Turtle 2 8.20 0.95 36 17.39
Turtle 3 12.00 0.82 32 18.26
Finch 1 10.42 0.48 32 17.11
Finch 2 10.63 0.43 37 17.35
Finch 3 6.63 0.34 35 18.48
Finch 4 7.38 0.20 51 24.55
Bat 1 11.57 0.26 39 20.94
Bat 2 8.99 0.53 41 17.87
Bat 3 10.50 0.39 20 10.76
Bat 4 8.99 0.27 35 14.67
Bat 5 11.88 0.53 55 28.50

Guinea pig 1 13.38 1.40 49 28.43
Guinea pig 2 12.69 1.21 38 21.60
Guinea pig 3 11.80 1.59 52 27.63

Rat 1 11.38 1.27 27 14.12
Rat 2 9.69 1.27 21 12.86
Rat 3 10.60 1.20 22 11.46
Rat 4 6.29 0.20 52 26.18

Table B.3: Third part of the 16-dimensional morphological feature vector. KEY:
SomRad: Soma radius; AvgDCRad: Average dendritic compartment radium;
MaxPL: Maximum path length; AvgPL: Average path length
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Cell AvgTA H-S MaxBifRat AvgDendCompEL
Fish 0.34 4 8.64 0.085

Alligator 1 0.35 5 6.15 0.067
Alligator 2 0.30 5 3.17 0.063
Alligator 3 0.35 6 5.80 0.061
Alligator 4 0.33 6 2.87 0.060
Turtle 1 0.35 5 7.60 0.080
Turtle 2 0.35 5 7.50 0.077
Turtle 3 0.37 5 9.80 0.086
Finch 1 0.35 5 3.30 0.061
Finch 2 0.32 5 4.91 0.056
Finch 3 0.32 6 2.92 0.058
Finch 4 0.32 6 7.17 0.057
Bat 1 0.36 6 3.71 0.069
Bat 2 0.33 6 18.33 0.062
Bat 3 0.35 5 7.14 0.071
Bat 4 0.35 6 4.63 0.063
Bat 5 0.34 5 2.69 0.050

Guinea pig 1 0.34 7 4.50 0.029
Guinea pig 2 0.35 6 12.67 0.034
Guinea pig 3 0.35 6 5.40 0.030

Rat 1 0.35 6 3.80 0.041
Rat 2 0.36 6 5.00 0.039
Rat 3 0.36 5 3.20 0.040
Rat 4 0.31 6 5.00 0.056

Table B.4: Fourth part of the 16-dimensional morphological feature vector.
KEY: AvgTA: Average tree asymmetry; H-S: Horton-Strahler number; MaxB-
ifRat: Maximum bifurcation ratio; AvgDendCompEL: Average dendritic com-
partment electrotonic length
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Voltage Attenuation
Cell TrmComp →Soma Soma →TrmComp DendComp→Soma Soma→DendComp
Fish 132.25 41.63 1.00 0.99

Alligator 1 287.30 16.18 0.99 0.99
Alligator 2 202.69 5.48 0.99 1.00
Alligator 3 169.91 18.03 0.98 0.99
Alligator 4 241.23 18.61 0.98 0.99
Turtle 1 224.53 11.73 1.00 1.00
Turtle 2 211.50 35.66 1.00 1.00
Turtle 3 392.75 44.43 1.00 1.00
Finch 1 136.46 7.97 0.99 1.00
Finch 2 196.82 5.33 0.99 1.00
Finch 3 126.27 3.77 0.99 1.00
Finch 4 314.02 11.98 0.99 1.00
Bat 1 357.75 12.23 0.99 1.00
Bat 2 214.28 4.36 1.00 1.00
Bat 3 147.70 4.65 0.98 1.00
Bat 4 225.23 13.22 0.99 0.99
Bat 5 178.78 6.14 1.00 1.00

Guinea pig 1 143.69 7.39 1.00 1.00
Guinea pig 2 161.47 4.28 1.00 1.00
Guinea pig 3 88.35 8.35 1.00 1.00

Rat 1 100.79 9.16 1.00 1.00
Rat 2 56.19 6.49 1.00 1.00
Rat 3 92.53 7.17 1.00 1.00
Rat 4 237.69 5.36 0.99 1.00

Table B.5: First part of the 14-dimensional passive electrophysiological feature
vector
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Average Peak Depolarisation (mV )
At Soma At Dendritic Compartments

Cell All Compartments Terminal Compartments All Compartments Terminal Compartments
Fish 0.04 0.03 0.04 0.03

Alligator 1 0.06 0.05 0.06 0.06
Alligator 2 0.03 0.06 0.05 0.06
Alligator 3 0.11 0.15 0.14 0.18
Alligator 4 0.12 0.11 0.19 0.16
Turtle 1 0.02 0.03 0.03 0.03
Turtle 2 0.03 0.02 0.03 0.02
Turtle 3 0.04 0.01 0.04 0.02
Finch 1 0.06 0.07 0.06 0.07
Finch 2 0.05 0.06 0.05 0.06
Finch 3 0.06 0.10 0.07 0.10
Finch 4 0.05 0.06 0.07 0.07
Bat 1 0.04 0.05 0.04 0.05
Bat 2 0.04 0.05 0.05 0.05
Bat 3 0.10 0.09 0.11 0.10
Bat 4 0.08 0.07 0.10 0.08
Bat 5 0.03 0.04 0.03 0.04

Guinea pig 1 0.01 0.01 0.01 0.01
Guinea pig 2 0.02 0.02 0.02 0.02
Guinea pig 3 0.02 0.02 0.02 0.02

Rat 1 0.02 0.02 0.02 0.02
Rat 2 0.03 0.03 0.03 0.03
Rat 3 0.03 0.02 0.03 0.03
Rat 4 0.04 0.08 0.06 0.08

Table B.6: Second part of the 14-dimensional passive electrophysiological feature
vector. Peak amplitudes when averaged either over all dendritic compartments
or only terminal dendritic compartments.
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Average Time Taken to Reach Peak Amplitude (ms)
At Soma At Dendritic Compartments

Cell All Compartments Terminal Compartments All Compartments Terminal Compartments
Fish 7.38 8.22 7.09 8.58

Alligator 1 7.49 7.01 6.79 7.20
Alligator 2 12.42 8.92 9.17 9.29
Alligator 3 8.55 6.84 6.82 7.06
Alligator 4 10.04 7.50 6.99 7.51
Turtle 1 8.76 8.22 7.76 8.60
Turtle 2 8.84 9.02 8.10 9.60
Turtle 3 7.07 8.11 6.68 8.62
Finch 1 9.72 8.90 8.26 9.46
Finch 2 9.37 8.17 8.09 8.46
Finch 3 10.45 8.94 8.74 9.29
Finch 4 11.72 9.71 9.01 10.08
Bat 1 9.11 8.07 7.60 8.28
Bat 2 9.24 7.93 7.59 8.28
Bat 3 6.08 6.49 5.81 6.58
Bat 4 6.63 6.43 5.86 6.52
Bat 5 12.75 11.33 11.26 11.83

Guinea pig 1 12.50 12.47 11.59 13.41
Guinea pig 2 10.07 10.25 9.48 10.83
Guinea pig 3 19.82 20.01 17.95 22.15

Rat 1 9.45 9.58 10.07 10.18
Rat 2 10.47 10.69 10.97 11.19
Rat 3 9.37 9.50 9.88 9.99
Rat 4 12.69 9.14 6.99 9.42

Table B.7: Third part of the 14-dimensional passive electrophysiological feature
vector. Time taken to reach peak amplitudes when averaged either over all
dendritic compartments or only terminal dendritic compartments.
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Cell Average Peak Depolarisation At Soma
(Stimulation At Spines) (mV )

Average Time To Reach Peak
Depolarisation At Soma (Stimulation At

Spines) (ms)
Fish 0.03 9.73

Alligator 1 0.02 12.81
Alligator 2 0.02 17.91
Alligator 3 0.05 20.02
Alligator 4 0.05 19.62
Turtle 1 0.02 12.29
Turtle 2 0.02 11.01
Turtle 3 0.02 12.94
Finch 1 0.03 17.02
Finch 2 0.03 16.65
Finch 3 0.03 21.83
Finch 4 0.02 23.92
Bat 1 0.02 15.80
Bat 2 0.03 15.42
Bat 3 0.05 12.66
Bat 4 0.04 13.82
Bat 5 0.02 19.29

Guinea pig 1 0.01 11.31
Guinea pig 2 0.01 10.82
Guinea pig 3 0.01 14.78

Rat 1 0.01 11.18
Rat 2 0.02 12.88
Rat 3 0.02 11.33
Rat 4 0.02 24.00

Table B.8: Fourth part of the 14-dimensional passive electrophysiological feature
vector. Peak amplitudes when averaged either over all dendritic compartments
or only terminal dendritic compartments.
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Voltage Attenuation
Cell TrmComp →Soma Soma →TrmComp DendComp→Soma Soma→DendComp
Fish 1.21 0.79 1.13 -3.032

Alligator 1 0.42 2.57 1.27 0.992
Alligator 2 0.32 3.13 1.57 0.981
Alligator 3 0.05 17.92 1.24 0.987
Alligator 4 0.04 16.69 1.34 0.985
Turtle 1 0.98 1.01 2.59 2.595
Turtle 2 1.12 0.89 2.03 2.030
Turtle 3 1.04 0.95 1.83 1.833
Finch 1 0.36 2.83 1.44 0.899
Finch 2 0.53 1.89 1.30 0.980
Finch 3 0.31 3.17 1.47 0.924
Finch 4 0.14 7.42 1.29 0.992
Bat 1 0.26 4.31 1.28 0.995
Bat 2 0.54 1.84 8.89 0.902
Bat 3 0.57 1.68 1.18 1.039
Bat 4 0.30 3.22 1.23 0.987
Bat 5 0.51 0.19 1.30 0.948

Guinea pig 1 1.17 0.85 1.32 1.323
Guinea pig 2 1.14 0.88 1.21 1.214
Guinea pig 3 1.25 0.80 1.02 1.016

Rat 1 1.23 0.81 1.84 1.841
Rat 2 1.20 0.83 1.49 1.487
Rat 3 1.12 0.89 1.28 1.281
Rat 4 0.24 4.06 1.42 1.424

Table B.9: First part of the 14-dimensional active electrophysiological feature
vector
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Average Peak Depolarisation (mV )
At Soma At Dendritic Compartments

Cell All Compartments Terminal Compartments All Compartments Terminal Compartments
Fish 74.14 76.77 88.14 76.77

Alligator 1 15.30 2.31 14.40 1.32
Alligator 2 23.19 10.24 17.13 4.46
Alligator 3 13.14 0.14 13.33 0.29
Alligator 4 13.44 0.14 13.43 0.33
Turtle 1 60.25 47.12 56.38 46.91
Turtle 2 60.74 47.56 66.84 53.73
Turtle 3 55.88 42.89 57.22 45.25
Finch 1 30.19 17.18 21.93 8.93
Finch 2 22.84 9.91 19.41 6.51
Finch 3 24.67 11.76 20.94 8.93
Finch 4 14.22 1.22 13.47 0.46
Bat 1 13.97 0.97 13.53 0.53
Bat 2 64.84 51.83 42.00 29.10
Bat 3 16.93 3.93 16.29 3.19
Bat 4 14.51 1.53 13.95 0.87
Bat 5 27.20 14.16 21.73 8.79

Guinea pig 1 78.94 65.94 90.39 77.37
Guinea pig 2 75.27 62.29 84.00 71.09
Guinea pig 3 79.50 66.52 96.16 83.32

Rat 1 74.02 61.05 88.21 75.22
Rat 2 74.63 61.62 87.11 74.17
Rat 3 75.30 62.28 82.79 69.79
Rat 4 16.06 3.05 13.89 1.10

Table B.10: Second part of the 14-dimensional active electrophysiological feature
vector. Peak amplitudes when averaged either over all dendritic compartments
or only terminal dendritic compartments.
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Average Time Taken to Reach Peak Amplitude (ms)
At Soma At Dendritic Compartments

Cell All Compartments Terminal Compartments All Compartments Terminal Compartments
Fish 8.23 8.23 8.78 16.85

Alligator 1 9.01 9.07 7.32 7.26
Alligator 2 16.06 16.07 9.07 9.79
Alligator 3 1.47 1.48 1.14 1.15
Alligator 4 2.32 2.34 1.30 1.27
Turtle 1 11.88 11.91 14.33 14.38
Turtle 2 11.17 11.31 13.16 13.49
Turtle 3 11.90 11.89 14.35 14.64
Finch 1 16.75 16.81 16.08 16.43
Finch 2 15.15 15.21 13.98 14.07
Finch 3 14.07 14.19 9.56 9.66
Finch 4 5.58 5.60 2.16 2.14
Bat 1 6.10 6.14 3.71 3.83
Bat 2 13.13 13.14 14.04 14.01
Bat 3 11.49 11.51 10.79 10.30
Bat 4 6.65 6.70 5.14 5.04
Bat 5 16.12 16.11 15.53 15.62

Guinea pig 1 8.34 8.34 8.68 8.71
Guinea pig 2 9.06 9.06 9.45 9.47
Guinea pig 3 6.92 6.92 7.83 7.83

Rat 1 8.81 8.81 9.08 9.10
Rat 2 8.91 8.91 9.18 9.19
Rat 3 9.48 9.49 9.59 9.61
Rat 4 8.07 8.05 2.86 3.38

Table B.11: Third part of the 14-dimensional active electrophysiological feature
vector. Time taken to reach peak amplitudes when averaged either over all
dendritic compartments or only terminal dendritic compartments.
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Cell Average Peak Depolarisation At Soma
(Stimulation At Spines) (mV )

Average Time To Reach Peak
Depolarisation At Soma (Stimulation At

Spines) (ms)
Fish 22.19 35.14

Alligator 1 13.70 11.39
Alligator 2 14.09 20.35
Alligator 3 13.12 4.79
Alligator 4 13.29 5.56
Turtle 1 15.48 27.31
Turtle 2 15.42 30.90
Turtle 3 16.32 26.29
Finch 1 14.49 23.44
Finch 2 13.98 18.90
Finch 3 13.86 20.85
Finch 4 13.32 11.67
Bat 1 13.30 11.47
Bat 2 14.46 24.67
Bat 3 13.79 15.24
Bat 4 13.58 10.01
Bat 5 13.98 22.52

Guinea pig 1 14.56 32.49
Guinea pig 2 14.62 31.85
Guinea pig 3 15.10 35.25

Rat 1 14.54 29.53
Rat 2 14.46 31.01
Rat 3 14.07 32.54
Rat 4 13.56 15.95

Table B.12: Fourth part of the 14-dimensional active electrophysiological feature
vector



Appendix C

Kendall’s Rank Coefficient
and Kruskal-Wallis Test Full
Results

Kendall’s rank and Kruskal-Wallis test results for all the morphological features,
including results for species groups with outliers removed.
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Metric τ p (2-tailed)
nDendC 0.619 0.069
nDendSp 0.619 0.069

nBrP 0.619 0.069
nTrmP 0.714 0.030
maxBO -0.048 1.000
totLen 0.333 0.381

totSurfA 0.238 0.562
totVol 0.048 1.000

somRad -0.238 0.562
avgDendCmpRad 0.238 0.562

maxPL -0.048 1.000
avgPL -0.048 1.000
avgTA 0.143 0.773
H-S 0.781 0.017

maxBifRatio -0.333 0.381
avgDendCmpEL -0.619 0.069

(a) Kendall’s τ for full species groups

Metric τ p (2-tailed)
nDendC 0.524 0.136
nDendSp 0.524 0.136

nBrP 0.619 0.069
nTrmP 0.619 0.069
maxBO -0.098 0.884
totLen 0.238 0.562

totSurfA 0.143 0.773
totVol 0.143 0.773

somRad 0.143 0.773
avgDendCmpRad 0.238 0.562

maxPL -0.048 1.000
avgPL -0.238 0.562
avgTA - -
H-S - -

maxBifRatio -0.429 0.239
avgDendCmpEL -0.619 0.069

(b) Kendall’s τ for species groups minus outlying results. avgTA and H-S had no outliers.

Table C.1: Kendall’s τ and p-values for all morphological features
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Metric H p (2-tailed)
nDendC 9.939 0.127
nDendSp 9.589 0.143

nBrP 15.362 0.018
nTrmP 16.231 0.013
maxBO 13.666 0.034
totLen 14.417 0.025

totSurfA 16.701 0.010
totVol 12.612 0.050

somRad 7.315 0.293
avgDendCmpRad 15.446 0.017

maxPL 6.811 0.339
avgPL 9.654 0.140
avgTA 6.857 0.334
H-S 10.409 0.109

maxBifRatio 7.946 0.242
avgDendCmpEL 10.804 0.003

(a) H for full species groups

Metric H p (2-tailed)
nDendC 12.876 0.045
nDendSp 12.600 0.050

nBrP 15.336 0.018
nTrmP 16.376 0.012
maxBO 14.716 0.023
totLen 12.979 0.043

totSurfA 16.983 0.009
totVol 14.910 0.021

somRad 10.153 0.118
avgDendCmpRad 18.579 0.005

maxPL 9.624 0.141
avgPL 14.937 0.021
avgTA - -
H-S - -

maxBifRatio 9.654 0.140
avgDendCmpEL 19.124 0.004

(b) H for species groups minus outlying results. avgTA and H-S had no outliers.

Table C.2: Morphological features with statistically significant H values



Appendix D

Regression Coefficients

Regression coefficients for all the cell models, corresponding to Tables 5.1, 5.6,
5.9, and 5.12 in Section 5.3.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.006, 0.009, 0.014, -0.006, -0.034] 0.024 0.892 [-0.047, 0.050, 0.039, 1.812] 7.453 0.964
Alligator 1 [-0.025, 0.045, 0.010, -0.025, -0.015] 0.010 0.931 [0.054, 0.257, -0.033, 2.019] 8.573 0.952
Alligator 2 [-0.019, 0.037, -0.021] 0.013 0.913 [0.162, 2.224] 7.332 0.967
Alligator 3 [0.003, -0.009, -0.002, 0.024, 0.004, -0.038] 0.019 0.554 [-0.423, 0.241,1.474,3.140] 11.923 0.663
Alligator 4 [0.042, -0.112, 0.031, 0.035] 0.009 0.842 [-0.168, -0.178, 0.947, 4.621] 9.834 0.974
Turtle 1 [-0.007, 0.017, -0.015] 0.014 0.809 [0.146, 0.231, -0.483, -0.616, 2.677] 8.866 0.464
Turtle 2 [-0.008, 0.019, -0.010] 0.007 0.788 [-0.121, 2.034] 8.975 0.742
Turtle 3 [-0.008, 0.019, -0.017] 0.013 0.934 [1.489] 7.080 0.937
Finch 1 [0.006, -0.005, -0.036, 0.064, -0.032] 0.006 0.892 [0.081, 2.901] 10.376 0.970
Finch 2 [-0.008, 0.041, -0.048] 0.011 0.842 [-0.023, 0.204, 3.016] 9.521 0.940
Finch 3 [-0.004, 0.023, -0.039] 0.022 0.855 [0.221, 0.336, 2.672] 9.051 0.942
Finch 4 [0.006, -0.030, 0.042, -0.012] -0.002 0.926 [0.177, 0.617, 0.063, -1.108, 2.956] 11.836 0.893
Bat 1 [-0.002, 0.005, -0.007, 0.014, -0.020] 0.010 0.884 [-0.014, -0.072, 0.058, 0.424, 2.246] 8.834 0.977
Bat 2 [-0.003, 0.022, -0.045] 0.021 0.844 [-0.220, 0.235, 3.987] 9.221 0.873
Bat 3 [-0.003, -0.001, 0.041, -0.083] 0.069 0.793 [-0.072, -0.50, 1.500] 6.152 0.788
Bat 4 [-0.016, 0.037, -0.042] 0.038 0.805 [0.157, 0.455, 1.594] 6.220 0.905
Bat 5 [-0.007, 0.023, -0.020] 0.005 0.926 [0.134, 4.104] 13.265 0.962

Guinea pig 1 [-0.001, 0.003, -0.005] 0.011 0.910 [-0.159, 0.183, 5.004] 12.343 0.861
Guinea pig 2 [-0.000, 0.002, -0.008] 0.015 0.913 [-0.100, -0.212, 0.391, 3.938] 9.995 0.910
Guinea pig 3 [0.000, -0.003, 0.002, -0.002] 0.013 0.481 [-0.135, -0.052, 0.734, 0.182, 6.667] 19.731 0.755

Rat 1 [-0.002, -0.002, 0.017, -0.013, 0.003, -0.012] 0.006 0.787 [0.737, 2.095, 0.677, -1.745, 2.817] 12.814 0.793
Rat 2 [0.000, -0.002, 0.004, -0.007] 0.011 0.931 [0.044, 0.246, 3.394] 9.211 0.894
Rat 3 [0.011, -0.018] 0.018 0.820 [-0.044, -0.282, -0.129, 3.727] 10.569 0.909
Rat 4 [0.001, -0.001, 0.002, -0.011] 0.021 0.823 [-0.174, -0.257, 0.618, 4.182] 9.290 9.813

Table D.1: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in dendritic compartments and recording at
soma in passive models without spines.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.013, 0.025, -0.010] 0.013 0.779 [0.044, -0.143, 1.638] 7.250 0.954
Alligator 1 [-0.161, 0.117, 0.140] -0.051 0.900 [-0.517, 1.108] 7.344 0.742
Alligator 2 [-0.018, 0.040, -0.028] 0.015 0.919 [-0.124, -0.258, 1.769] 7.028 0.899
Alligator 3 [-0.100, 0.024, -0.018] 0.013 0.481 [1.100] 0.191 0.262
Alligator 4 [-0.094, 0.203, -0.017] -0.049 0.843 [1.449] 7.002 0.767
Turtle 1 [-0.007, 0.017, -0.016] 0.015 0.808 [1.604] 7.771 0.410
Turtle 2 [-0.008, 0.019, -0.010] 0.008 0.787 [-0.291, 1.485] 8.407 0.647
Turtle 3 [-0.007, 0.020, -0.018] 0.013 0.935 [-0.089, 1.209] 6.782 0.915
Finch 1 [-0.005, 0.467, -0.066] 0.016 0.871 [-0.627, 1.226] 9.375 0.735
Finch 2 [-0.008, 0.042, -0.051] 0.013 0.837 [1.699] 8.267 0.754
Finch 3 [-0.004, 0.023, -0.042] 0.024 0.861 [-0.475, 1.823] 8.477 0.780
Finch 4 [-0.026, 0.071, -0.025] -0.011 0.912 [1.255] 9.019 0.604
Bat 1 [-0.017, 0.030, -0.014] 0.006 0.893 [-0.429, 0.944] 8.040 0.644
Bat 2 [0.001, -0.003, -0.001, 0.030, -0.050] 0.020 0.845 [1.583] 7.595 0.526
Bat 3 [0.028, -0.089] 0.082 0.790 [1.134] 5.818 0.779
Bat 4 [-0.016, 0.039, -0.050] 0.044 0.812 [1.175] 5.864 0.842
Bat 5 [-0.007, 0.023, -0.021] 0.005 0.920 [-0.674, 1.966] 11.943 0.762

Guinea pig 1 [-0.001, 0.003, -0.005] 0.011 0.904 [4.229] 11.602 0.843
Guinea pig 2 [0.002, -0.008] 0.015 0.908 [0.091, 3.256] 9.400 0.898
Guinea pig 3 [0.000, -0.003, 0.002, -0.002] 0.013 0.478 [6.483] 17.963 0.768

Rat 1 [-0.002, 0.006, -0.007] 0.011 0.926 [3.162] 8.867 0.883
Rat 2 [0.011, -0.018] 0.018 0.082 [3.021] 9.984 0.900
Rat 3 [0.004, -0.013] 0.021 0.802 [3.277] 8.948 0.792
Rat 4 [-0.020, 0.037, -0.007] -0.002 0.774 [1.134] 8.916 0.406

Table D.2: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in the soma and recording at dendritic com-
partments in passive models without spines.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.013, 0.021, -0.000] 0.007 0.692 [2.584] 9.731 0.887
Alligator 1 [-0.070, 0.032, 0.080] -0.022 0.776 [3.212] 20.019 0.205
Alligator 2 [-0.010, 0.017, -0.006] 0.004 0.801 [2.868] 12.807 0.511
Alligator 3 [-0.009, 0.019, -0.004] -0.003 0.922 [5.457] 17.913 0.758
Alligator 4 [-0.027, 0.050, 0.009] -0.017 0.730 [4.880] 19.617 0.349
Turtle 1 [-0.004, 0.010, -0.010] 0.009 0.715 [3.275] 12.287 0.516
Turtle 2 [-0.003, 0.010, -0.010] 0.006 0.818 [3.264] 12.943 0.785
Turtle 3 [-0.004, 0.011, -0.010] 0.007 0.890 [2.873] 11.009 0.851
Finch 1 [-0.012, 0.027, -0.011] -0.001 0.848 [7.177] 21.830 0.769
Finch 2 [-0.010, 0.023, -0.010] 0.001 0.749 [5.143] 17.023 0.785
Finch 3 [-0.005, 0.015, -0.014] 0.007 0.784 [5.408] 16.648 0.671
Finch 4 [-0.013, 0.032, -0.002] -0.009 0.802 [5.041] 23.924 0.389
Bat 1 [-0.011, 0.015, -0.001] 0.000 0.816 [3.686] 15.798 0.542
Bat 2 [-0.004, 0.019, -0.024] 0.008 0.775 [5.890] 15.415 0.688
Bat 3 [-0.004, 0.021, -0.039] 0.030 0.686 [4.603] 12.656 0.717
Bat 4 [-0.010, 0.017, -0.009] 0.012 0.732 [3.657] 13.823 0.503
Bat 5 [-0.006, 0.013, -0.006] 0.000 0.852 [4.770] 19.286 0.697

Guinea pig 1 [-0.001, 0.002, -0.004] 0.006 0.865 [3.346] 11.312 0.779
Guinea pig 2 [0.002, -0.007] 0.009 0.921 [3.765] 10.820 0.893
Guinea pig 3 [-0.003, 0.004, -0.001] 0.005 0.528 [4.333] 14.777 0.754

Rat 1 [0.004, -0.009] 0.007 0.865 [3.989] 11.180 0.805
Rat 2 [0.009, -0.014] 0.013 0.813 [4.109] 12.881 0.874
Rat 3 [0.004, -0.010] 0.015 0.083 [4.629] 11.333 0.825
Rat 4 [0.007, -0.008, -0.008, 0.004] 0.003 0.710 [6.057] 23.995 0.528

Table D.3: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in dendritic spine compartments and recording
at soma in passive models.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-0.055] 60.666 0.003 [0.024] 8.231 0.008
Alligator 1 [1.203×1−6] 0.135 6.227×1−8 [-0.001] 1.469 2.950×1−5

Alligator 2 [-0.005] 2.303 2.880×1−4 [-0.025] 9.013 4.510×1−4

Alligator 3 [-0.025] 10.189 2.051×1−4 [-0.012] 16.056 2.093×1−4

Alligator 4 [0.001] 0.443 0.002 [0.006] 2.320 0.001
Turtle 1 [-0.056] 47.251 0.003 [0.035] 11.875 0.004
Turtle 2 [-0.018] 47.742 0.001 [0.005] 11.169 0.001
Turtle 3 [0.006] 42.882 8.260×1−5 [-0.001] 11.904 7.346×1−6

Finch 1 [0.121] 11.676 0.001 [0.072] 14.065 0.002
Finch 2 [0.053] 17.170 7.663×1−5 [0.016] 16.748 1.794×1−4

Finch 3 [-0.066] 9.835 0.002 [-0.008] 15.151 9.766×1−5

Finch 4 [5.897] 1.220 3.533×1−5 [0.008] 5.583 1.727×1−4

Bat 1 [-0.001] 0.970 2.496×1−4 [9.942×1−5] 6.097 2.029×1−8

Bat 2 [0.115] 51.836 0.001 [-0.001] 13.131 8.240×1−7

Bat 3 [-0.028] 3.934 0.001 [-0.053] 11.491 4.980×1−4

Bat 4 [-0.006] 1.515 0.002 [-0.036] 6.651 0.002
Bat 5 [0.074] 14.205 0.001 [-0.019] 16.115 0.001

Guinea pig 1 [0.003] 65.941 9.642×1−5 [-6.133] 8.340 2.064×1−5

Guinea pig 2 [-0.007] 62.275 3.045×1−4 [0.006] 9.059 0.001
Guinea pig 3 [0.012] 66.496 0.001 [7.408] 6.915 2.435×1−5

Rat 1 [0.014] 61.016 2.750×1−4 [-9.262] 8.809 5.181×1−5

Rat 2 [0.024] 61.633 0.002 [-0.005] 8.911 4.766×1−4

Rat 3 [-0.015] 62.295 0.001 [0.005] 9.485 2.967×1−4

Rat 4 [-0.003] 3.059 1.606×1−4 [-0.001] 8.058 5.059×1−9

Table D.4: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in dendritic compartments and recording at
soma in active models without spines.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [-2.117, 4.728] 77.291 0.551 [-0.137, 0.236] 8.923 0.114
Alligator 1 [-0.341, 0.335, 0.281] -0.125 0.895 [1.056, -0.346, -3.578] 2.850 0.823
Alligator 2 [0.083, 0.100, -1.077] 1.317 0.664 [0.100, -0.886, -2.211] 8.405 0.452
Alligator 3 [-4.480] 4.118 0.690 [-5.584] 9.433 0.683
Alligator 4 [-0.242, 0.595, -0.179] -0.107 0.864 [0.153, -0.792, -1.138] 4.570 0.577
Turtle 1 [-0.539, -1.615, -3.315] 45.042 0.093 [0.224, 0.081, 0.890] 14.230 0.275
Turtle 2 [-1.374, 0.393] 55.222 0.035 [1.153] 13.168 0.400
Turtle 3 [-1.549] 44.221 0.012 [1.231] 14.359 0.298
Finch 1 [1.199, 3.447, -10.852] 4.735 0.733 [0.182, -2.249, -4.390] 12.903 0.517
Finch 2 [0.902, 2.167, -8.795] 7.042 0.676 [-0.538, -1.575, 0.236] 17.464 0.197
Finch 3 [0.747, -0.149, -5.442] 6.559 0.762 [0.568, -0.801, -2.705] 14.828 0.162
Finch 4 [-0.107, 0.448, -0.465] 0.067 0.795 [0.298, -0.633, -2.143] 4.612 0.431
Bat 1 [0.028, 0.206, -0.575] 0.327 0.775 [0.515, -0.653, -3.325] 4.783 0.766
Bat 2 [2.450, 0.235, -25.929] 26.385 0.694 [-0.244, -0.560, 1.911] 14.837 0.190
Bat 3 [0.112, -0.071, -1.645] 3.342 0.364 [0.129, -0.410, -1.077] 11.567 0.058
Bat 4 [0.045, -0.639] 0.901 0.538 [-0.141, -0.853, -1.039] 6.654 0.308
Bat 5 [0.953, 0.360, -7.518] 8.298 0.692 [0.243, -1.099, -1.997] 16.614 0.312

Guinea pig 1 [-0.630, -782„ 3.173] 78.191 0.836 [0.042, -0.792, -0.130] 8.753 0.184
Guinea pig 2 [2.076] 71.008 0.499 [0.174] 9.447 0.165
Guinea pig 3 [0264, -1.394, 1.203] 84.590 0.514 [0.076, 0.007, 0.001] 7.831 0.186

Rat 1 [0.165, -0.444, 3.143] 75.649 0.614 [0.036, -0.151, -0.170] 9.223 0.275
Rat 2 [-1.374, 0.393] 75.364 0.574 [-0.019, -0.077, 0.114] 9.245 0.400
Rat 3 [-0.666, 2.015] 70.618 0.649 [0.139] 9.591 0.298
Rat 4 [-0.283, 0.759, -0.419] 0.212 0.531 [0.117, -0.093, -2.056] 6.574 0.267

Table D.5: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in the soma and recording at dendritic com-
partments in active models without spines.
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Peak Amplitude Time to Reach Peak Amplitude
Species Slope Intercept R2 Slope Intercept R2

Fish [0.085] 19.512 0.004 [0.229] 35.142 0.004
Alligator 1 [-0.078, 0.032, 0.096] 13.055 0.742 [-0.644] 4.772 0.263
Alligator 2 [-0.007, 0.025, -0.026] 13.676 0.329 [-0.005] 11.396 6.022×1−6

Alligator 3 [0.026,-0.037] 14.066 0.052 [0.037] 20.39 8.000×1−5

Alligator 4 [-0.031. 0.054, 0.018] 13.239 0.628 [-0.156, 0.0389, -0.139] 5.201 0.427
Turtle 1 [0.010] 15.488 0.001 [-0.050] 27.231 8.112×1−5

Turtle 2 [-0.007] 15.425 1.958×1−4 [0.471] 30.949 0.005
Turtle 3 [-0.023] 16.311 0.002 [0.237] 26.234 0.002
Finch 1 [-0.045] 13.860 0.063 [0.214] 21.148 0.002
Finch 2 [-0.073] 14.492 0.040 [0.036] 23.316 2.494×1−5

Finch 3 [-0.031] 31.979 0.038 [-0.334, 0.075] 19.252 0.006
Finch 4 [-0.014, 0.036, -0.006] 13.292 0.605 [0.063, 0.041, -0.398] 11.607 0.025
Bat 1 [-0.036] 13.299 0.340 [-0.177] 11.438 0.010
Bat 2 [-0.033] 14.451 0.010 [0.135] 24.499 3.367
Bat 3 [-0.048] 13.790 0.144 [0.209] 15.244 0.004
Bat 4 [-0.010, 0.019, -0.017] 13.553 0.464 [0.098,-0.121,-0.278] 10.158 0.021
Bat 5 [0.010, -0.023] 13.974 0.024 [-0.005] 22.483 1.413×1−6

Guinea pig 1 [0.004] 14.559 0.001 [0.352] 32.487 0.006
Guinea pig 2 [-0.002] 14.624] 6.956×1−5 [0.002] 31.739 8.901×1−8

Guinea pig 3 [0.010, -0.022, 0.007] 15.123 0.009 [0.535] 33.339 0.001
Rat 1 [-0.005] 14.541 0.001 [-0.043] 15.952 0.001
Rat 2 [0.001] 14.461 2.807×1−5 [0.060] 29.519 1.227×1−4

Rat 3 [0.001] 14.073 2.653×1−5 [-0.492, -0.350, 1.223] 31.016 0.002
Rat 4 [0.017, -0.017] 13.539 0.181 [-0.357] 33.339 00.1

Table D.6: Regression coefficients for plotting peak amplitude and time to reach
peak amplitude when stimulating in dendritic spine compartments and recording
at soma in active models.



Appendix E

Peak Amplitude and Time
Plots

Additional plots to those shown in Section 5.3, giving examples from the other
species used in the study.
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.1: Peak amplitude recorded at soma following stimulation at each den-
dritic compartment in passive models without spines. Corresponding regression
coefficients are listed in Table D.1 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.2: Time to reach peak amplitude recorded at soma following stimu-
lation at each dendritic compartment in passive models without spines. Cor-
responding regression coefficients are listed in Table D.1 as: Turtle 3, Finch 4,
Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.3: Peak amplitude recorded at dendritic compartments following stim-
ulation at the soma in passive models without spines. Corresponding regression
coefficients are listed in Table D.2 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.4: Time to reach peak amplitude recorded at dendritic compartments
following stimulation at the soma in passive models without spines. Correspond-
ing regression coefficients are listed in Table D.2 as: Turtle 3, Finch 4, Bat 5,
Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.5: Peak amplitude recorded at soma following stimulation at each
dendritic spine compartment in passive models. Corresponding regression coef-
ficients are listed in Table D.3 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.6: Time to reach peak amplitude recorded at soma following stimu-
lation at each dendritic spine compartment in passive models. Corresponding
regression coefficients are listed in Table D.3 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.7: Peak amplitude recorded at soma following stimulation at each den-
dritic compartment in active models without spines. Corresponding regression
coefficients are listed in Table D.4 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.8: Time to reach peak amplitude recorded at soma following stimu-
lation at each dendritic compartment in active models without spines. Corre-
sponding regression coefficients are listed in Table D.4 as: Turtle 3, Finch 4,
Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.9: Peak amplitude recorded at dendritic compartments following stim-
ulation at the soma in active models without spines. Corresponding regression
coefficients are listed in Table D.5 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.10: Time to reach peak amplitude recorded at dendritic compartments
following stimulation at the soma in active models without spines. Correspond-
ing regression coefficients are listed in Table D.5 as: Turtle 3, Finch 4, Bat 5,
Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.11: Peak amplitude recorded at soma following stimulation at each
dendritic spine compartment in active models. Corresponding regression coeffi-
cients are listed in Table D.6 as: Turtle 3, Finch 4, Bat 5, Rat 2
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(a) Turtle 3 (b) Finch 4

(c) Bat 5 (d) Rat 2

Figure E.12: Time to reach peak amplitude recorded at soma following stim-
ulation at each dendritic spine compartment in active models. Corresponding
regression coefficients are listed in Table D.6 as: Turtle 3, Finch 4, Bat 5, Rat 2



Appendix F

Correlation Matrices

Full correlation matrices for the passive and active electrophysiological feature
vectors. The morphological correlation matrix is given in Section 6.4.
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Appendix G

Principal Component
Analysis Factor Loadings

Factor loadings from principal component analysis on the three feature vectors
listed in Appendix B. The results of this analysis are given in Section 6.4, and
discussed in Section 6.5.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
NC 0.363 -0.063 -0.106 0.178 -0.348 0.044 0.077 0.010
NSp 0.364 -0.051 -0.107 0.182 -0.342 0.049 0.091 -0.016
BP 0.374 -0.012 -0.205 -0.026 -0.098 -0.168 0.042 0.121
TP 0.365 0.010 -0.239 -0.060 -0.130 -0.196 0.039 0.106

MaxBO 0.257 -0.303 0.154 -0.184 0.199 -0.122 0.176 0.277
TotLen 0.197 0.356 0.089 0.277 -0.241 0.210 -0.080 -0.130
TotSA 0.127 0.442 0.038 0.014 0.091 0.058 -0.222 -0.027
TotVol 0.130 0.418 0.216 -0.104 0.076 -0.068 0.067 -0.162

SomRad -0.008 0.273 0.440 -0.198 -0.168 -0.183 0..658 -0.158
AvDCRad 0.011 0.445 -0.022 -0.056 0.040 -0.152 -0.416 0.243
MaxPL 0.254 -0.151 0.449 0.106 0.174 0.212 -0.150 0.176
AvPL 0.275 -0.077 0.444 0.046 0.159 0.298 -0.099 0.222
AvTA -0.191 0.249 -0.271 -0.057 -0.046 0.569 0.382 0.577
H-S 0.264 0.022 -0.294 0.058 0.522 0.390 0.190 -0.521

MaxBR -0.082 0.101 -0.017 0.785 0.346 -0.362 0.257 0.215
AvDCElecLen -0.268 -0.177 0.213 0.362 -0.378 0.254 -0.069 -0.196

Var % 39.422 27.338 12.237 7.155 4.573 3.618 2.880 1.783
Cum. Var % 39.422 66.760 78.997 86.152 90.725 94.344 97.224 99.007

(a) First eight PCA factor loadings

PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16
NC -0.095 0.018 0.178 -0.041 0.372 -0.029 0.154 0.698
NSp -0.159 -0.046 0.189 -0.043 0.277 -0.218 0.133 -0.697
BP -0.134 0.035 -0.232 0.130 -0.489 -0.516 -0.396 0.110
TP -0.041 0.274 -0.240 0.078 -0.245 0.703 0.188 -0.096

MaxBO 0.543 0.223 -0.211 -0.376 0.268 -0.125 -0.053 -0.043
TotLen 0.585 -0.302 0.087 -0.112 -0.182 0.197 -0.314 -0.016
TotSA 0.189 -0.005 -0.392 0.141 -0.006 -0.316 0.644 0.024
TotVol -0.240 0.078 -0.376 0.173 0.513 0.109 -0.446 -0.032

SomRad -0.031 0.121 0.221 -0.074 -0.256 -0.061 0.180 0.030
AvDCRad -0.120 0.443 0.401 -0.398 -0.024 -0.057 -0.089 -0.006
MaxPL 0..092 0.299 0.302 0.615 -0.051 0.016 -0.030 -0.019
AvPL -0.432 -0.345 -0.158 -0.405 -0.179 0.120 0.069 0.026
AvTA -0.010 0.084 -0.052 0.079 0.038 0.005 -0.047 -0.010
H-S -0.041 0.242 0.121 -0.162 -0.075 -0.019 -0.004 0.015

MaxBR -0.045 -0.020 -0.025 -0.006 0.019 0.017 0.019 0.001
AvDCElecLen -0.044 0.538 -0.363 -0.177 -0.101 -0.061 -0.044 -0.008

Var % 0.337 0.245 0.212 0.149 0.027 0.016 0.006 0.002
Cum. Var % 99.344 99.589 99.810 99.494 99.977 99.992 99.999 100.000

(b) Second eight PCA factor loadings

Table G.1: Factor loadings from the principal component analysis of the mor-
phological feature vector.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7
AFT2S 0.117 -0.225 0.133 0.739 0.539 0.069 -0.213
AFS2T 0.057 -0.340 0.650 0.092 -0.493 0.364 0.128
AFD2S -0.328 -0.165 -0.124 0.092 -0.244 -0.115 -0.107
AFS2D -0.276 0.072 -0.487 0.059 0.032 0.702 0.206
AvPSom 0.328 0.143 0.097 -0.158 0.210 0.273 -0.036

AvPSomT 0.302 0.274 -0.089 0.040 -0.234 -0.003 -0.334
AvPDen 0.321 0.177 0.138 -0.059 0.233 -0.057 0.679
AvPTer 0.309 0.267 -0.013 0.023 -0.134 -0.150 -0.150
AvTSom -0.213 0.426 0.157 0.204 -0.017 -0.098 0.319

AvTSomT -0.275 0.304 0.295 -0.018 0.118 0.157 -0.099
AvTDen -0.279 0.311 0.207 -0.101 0.104 -0.126 -0.245
AvTTer -0.276 0.295 0.305 -0.027 0.120 0.187 -0.150

AvPSomSp 0.331 0.109 0.011 -0.195 0.038 0.412 -0.298
AvTSomSp 0.133 0.365 -0.154 0.559 -0.441 0.041 0.072

Var % 57.255 21.151 8.911 8.194 2.154 0.959 0.497
Cum. Var % 57.255 78.406 87.317 95.510 97.665 98.623 99.120

(a) First seven PCA factor loadings

PC8 PC9 PC10 PC11 PC12 PC13 PC14
AFT2S -0.108 0.081 0.081 0.054 0.050 0.028 0.020
AFS2T -0.124 0.183 0.067 -0.017 -0.065 -0.005 0.010
AFD2S 0.073 0.129 -0.005 0.709 0.478 0.057 0.018
AFS2D -0.236 0.282 0.042 -0.072 0.000 -0.024 0.005
AvPSom 0.254 0.209 -0.457 0.512 -0.348 -0.127 -0.046

AvPSomT -0.410 0.080 -0.116 0.050 -0.043 0.643 0.228
AvPDen 0.054 0.201 0.094 0.032 0.444 0.266 0.059
AvPTer -0.434 0.285 -0.023 -0.037 0.284 -0.623 -0.172
AvTSom -0.332 -0.304 0.287 0.389 -0.390 -0.078 -0.039

AvTSomT 0.021 -0.165 -0.262 -0.100 0.256 -0.202 0.695
AvTDen 0.251 0.644 0.414 -0.072 -0.155 0.088 0.013
AvTTer -0.037 -0.170 -0.281 -0.108 0.278 0.219 -0.652

AvPSomSp 0.183 -0.357 0.590 0.152 0.213 -0.054 -0.009
AvTSomSp 0.529 -0.036 -0.078 -0.142 0.016 -0.041 -0.043

Var % 0.394 0.186 0.152 0.075 0.066 0.005 0.002
Cum. Var % 99.514 99.701 99.852 99.928 99.993 99.998 100.00

(b) Second seven PCA factor loadings

Table G.2: Factor loadings from the principal component analysis of the passive
electrophysiological feature vector.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7
AFT2S 0.340 -0.158 0.106 -0.140 0.034 -0.254 -0.158
AFS2T -0.284 -0.190 -0.055 0.218 0.750 0.448 0.093
AFD2S 0.069 0.145 0.136 0.926 -0.200 -0.090 0.048
AFS2D -0.035 0.091 0.758 -0.098 0.284 -0.343 0.433
AvPSom 0.336 -0.185 0.131 0.129 0.029 0.172 -0.022

AvPSomT 0.338 -0.194 0.046 0.132 0.024 0.150 0.006
AvPDen 0.318 -0.258 0.103 -0.035 0.023 0.143 -0.066
AvPTer 0.320 -0.256 0.099 -0.033 0.035 0.125 -0.027
AvTSom 0.152 0.480 -0.008 -0.095 -0.057 0.321 0.231

AvTSomT 0.151 0.481 -0.008 -0.096 -0.055 0.318 0.231
AvTDen 0.248 0.371 0.052 0.022 0.374 -0.158 -0.453
AvTTer 0.276 0.309 -0.193 0.038 0.344 -0.178 -0.222

AvPSomSp 0.235 -0.093 -0.558 0.060 0.200 -0.420 0.586
AvTSomSp 0.359 -0.046 0.041 -0.070 -0.082 0.290 0.257

Var % 52.734 24.511 11.013 7.058 2.390 1.460 0.608
Cum. Var % 52.734 77.244 88.257 95.315 97.704 99.164 99.772

(a) First seven PCA factor loadings

PC8 PC9 PC10 PC11 PC12 PC13 PC14
AFT2S -0.584 0.531 -0.298 -0.163 0.010 0.009 -0.018
AFS2T -0.152 0.184 -0.044 -0.033 0.007 0.000 0.000
AFD2S -0.089 0.166 0.076 0.072 0.014 -0.008 -0.006
AFS2D 0.071 -0.090 -0.020 0.076 -0.011 0.000 0.023
AvPSom 0.065 -0.365 -0.208 -0.387 -0.338 -0.015 -0.586

AvPSomT 0.039 -0.379 -0.407 -0.105 0.269 0.076 0.637
AvPDen -0.147 -0.045 0.451 0.344 -0.600 0.032 0.295
AvPTer -0.130 -0.123 0.383 0.282 0.660 -0.086 -0.321
AvTSom -0.277 -0.061 -0.007 -0.049 -0.034 -0.698 0.076

AvTSomT -0.270 -0.041 0.040 0.008 0.034 0.705 -0.067
AvTDen 0.193 0.017 0.404 -0.447 0.079 0.014 0.148
AvTTer 0.162 -0.062 -0.383 0.615 -0.081 -0.026 -0.167

AvPSomSp -0.038 -0.079 0.175 -0.149 -0.024 0.003 0.012
AvTSomSp 0.604 0.582 -0.045 -0.022 0.023 -0.008 0.007

Var % 0.145 0.058 0.013 0.010 0.001 0.000 0.000
Cum. Var % 99.918 99.976 99.989 99.999 100.00 100.000 100.000

(b) Second seven PCA factor loadings

Table G.3: Factor loadings from the principal component analysis of the active
electrophysiological feature vector.



Appendix H

Principal Components
Averaged Over Species

Significant principal components for the three feature vectors averaged over
species groups.
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(a) First principal component (b) Second principal component

(c) Fourth principal component

Figure H.1: The first, second, and fourth morphological principal components
averaged over species groups with 95% confidence interval
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(a) First principal component (b) Second principal component

(c) Third principal component

Figure H.2: The first to third passive electrophysiological principal components
averaged over species groups with 95% confidence interval
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(a) First principal component (b) Second principal component

(c) Third principal component

Figure H.3: The first to third active electrophysiological principal components
averaged over species groups with 95% confidence interval



Appendix I

Maximum Transfer Entropy,
Delays, and Regression
Coefficients

Maximum transfer entropy and corresponding delays from example models from
each species, as well as regression coefficients for trend lines, including those for
the fish cell given in Figure 7.3 and 7.4.
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Cell Number inputs Average maximum TE (nats) Slope Intercept R2

Fish

1 0.026

[0.033] 0.057 0.99720 0.039
50 0.066

100 0.100

Alligator 1

1 0.013

[-0.014, 0.043] 0.065 0.97120 0.033
50 0.075

100 0.096

Turtle 3

1 0.016

[0.009, 0.028] 0.034 0.99620 0.020
50 0.040

100 0.087

Finch 4

1 0.015

[0.004, 0.003] 0.014 0.97220 0.014
50 0.014

100 0.026

Bat 5

1 0.010

[0.000, -0.004, 0.000, 0.005] 0.011 1.00020 0.010
50 0.012

100 0.011

Guinea pig 2

1 0.006

[0.042] 0.040 0.98520 0.012
50 0.046

100 0.098

Rat 1

1 0.014

[0.014] 0.027 0.99420 0.018
50 0.030

100 0.044

Table I.1: Average maximum transfer entropy (nats) when measuring input from
distal spine groups
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Cell Number inputs Average delay (ms) Slope Intercept R2

Fish

1 23.88

[10.203, -13.112] 0.008 0.85520 6.42
50 0.16

100 0.18

Alligator 1

1 31.10

[14.870, -16.380] -3.062 0.44520 0.78
50 0.14

100 0.34

Turtle 3

1 24.14

[13.402, -20.639, 0.000, 5.816] -0.630 1.00020 0.36
50 0.26

100 0.40

Finch 4

1 21.50

[-8.812, -6.252] 23.999 0.99520 25.46
50 22.32

100 0.28

Bat 5

1 27.28

[-12.635, -0.859] 37.661 0.97720 33.38
50 37.92

100 14.16

Guinea pig 2

1 17.36

[7.645, -9.200] -0.649 0.62020 2.36
50 0.48

100 0.14

Rat 1

1 15.90

[3.827, -8.154] 4.880 0.97320 11.14
50 3.06

100 0.90

Table I.2: Average delay (ms) to reach maximum transfer entropy when mea-
suring from distal spine groups
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Cell Number inputs Average maximum TE (nats) Slope Intercept R2

Fish

1 0.025

[0.040] 0.065 0.99720 0.042
50 0.075

100 0.117

Alligator 1

1 0.014

[-0.007, 0.020] 0.037 0.95020 0.022
50 0.042

100 0.052

Turtle 3

1 0.016

[0.016, 0.019] 0.021 0.98920 0.017
50 0.023

100 0.075

Finch 4

1 0.015

[0.005] 0.020 0.94920 0.017
50 0.023

100 0.026

Bat 5

1 0.009

[0.012, 0.015] 0.013 0.98620 0.011
50 0.015

100 0.055

Guinea pig 2

1 0.006

[0.062] 0.064 0.98120 0.023
50 0.086

100 0.143

Rat 1

1 0.014

[0.031] 0.043 0.99320 0.025
50 0.052

100 0.082

Table I.3: Average maximum transfer entropy (nats) when measuring input from
medial spine groups
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Cell Number inputs Average delay (ms) Slope Intercept R2

Fish

1 19.06

[7.816, -10.601] 0.698 0.94620 6.84
50 0.14

100 0.20

Alligator 1

1 17.62

[9.820, -15.381, 0.000, 4.624] -0.412 1.00020 0.16
50 0.30

100 0.22

Turtle 3

1 25.26

[-11.229] 15.41 0.99220 22.68
50 13.36

100 0.34

Finch 4

1 27.16

[14.680, -22.149, 0.000, 5.507] -0.392 1.00020 1.08
50 0.44

100 0.66

Bat 5

1 28.08

[9.700, -15.722] 4.100 0.99720 15.68
50 1.36

100 0.38

Guinea pig 2

1 22.92

[12.759, -19.725, 0.000, 5.575] -0.693 1.00020 0.24
50 0.16

100 0.16

Rat 1

1 24.06

[10.887, -12.819] -1.300 0.61020 2.86
50 0.34

100 0.20

Table I.4: Average delay (ms) to reach maximum transfer entropy when mea-
suring from medial spine groups
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Cell Number inputs Average maximum TE (nats) Slope Intercept R2

Fish

1 0.025

[0.010, 0.035] 0.050 1.00020 0.035
50 0.056

100 0.114

Alligator 1

1 0.014

[0-0.042, 0.055] 0.114 0.80220 0.090
50 0.112

100 0.115

Turtle 3

1 0.016

[0.051] 0.058 0.98220 0.022
50 0.069

100 0.125

Finch 4

1 0.014

[0.006, 0.006] 0.015 0.95820 0.015
50 0.015

100 0.034

Bat 5

1 0.011

[0.054] 0.069 0.97720 0.052
50 0.072

100 0.142

Guinea pig 2

1 0.006

[-0.016, 0.077] 0.091 0.97720 0.038
50 0.109

100 0.164

Rat 1

1 0.014

[-0.015,0.036] 0.060 0.96220 0.032
50 0.069

100 0.082

Table I.5: Average maximum transfer entropy (nats) when measuring input from
proximal spine groups
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Cell Number inputs Average delay (ms) Slope Intercept R2

Fish

1 22.56

[8.380, -12.971] 2.555 0.99220 12.48
50 0.14

100 0.18

Alligator 1

1 6.32

[3.441, -5.346, 0.000, 1.5540] -0.036 1.00020 0.20
50 0.20

100 0.18

Turtle 3

1 16.50

[8.811, -13.704, 0.000, 3.861] 0.130 1.00020 0.78
50 0.72

100 0.54

Finch 4

1 25.58

[-13.358] 18.870 0.82120 34.56
50 15.08

100 0.26

Bat 5

1 23.62

[13.188, -20.464, 0.000, 5.898] -0.724 1.00020 0.18
50 0.18

100 0.16

Guinea pig 2

1 16.26

[9.061, -14.053, 0.000, 4.051] -0.461 1.00020 0.16
50 0.16

100 0.16

Rat 1

1 25.10

[14.029, -21.795, 0.000, 6.309] -0.787 1.00020 0.16
50 0.18

100 0.14

Table I.6: Average delay (ms) to reach maximum transfer entropy when mea-
suring from proximal spine groups
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Cell Number inputs Average maximum TE (nats) Slope Intercept R2

Fish

1 0.026

[0.001, 0.043] 0.067 1.00020 0.044
50 0.075

100 0.126

Alligator 1

1 0.014

[-0.019, 0.061] 0.090 0.99820 0.051
50 0.101

100 0.138

Turtle 3

1 0.016

[0.006, 0.031] 0.038 0.98220 0.020
50 0.045

100 0.089

Finch 4

1 0.014

[-0.004, 0.029] 0.045 0.99720 0.027
50 0.051

100 0.077

Bat 5

1 0.009

[0.013, 0.057] 0.056 0.098220 0.036
50 0.061

100 0.156

Guinea pig 2

1 0.006

[0.055] 0.061 0.98920 0.029
50 0.079

100 0.130

Rat 1

1 0.014

[0.031] 0.043 0.97620 0.021
50 0.054

100 0.082

Table I.7: Average maximum transfer entropy (nats) when measuring input from
randomly distributed spine groups
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Cell Number inputs Average delay (ms) Slope Intercept R2

Fish

1 21.26

[9.253, -11.582] -0.330 0.79920 4.84
50 0.16

100 0.18

Alligator 1

1 13.54

[7.487, -11.470, 0.000, 3.201] -0.289 1.00020 0.28
50 0.20

100 0.36

Turtle 3

1 25.40

[11.145, -13.496] -0.628 0.69220 4.42
50 0.62

100 0.48

Finch 4

1 15.82

[8.751, -13.695, 0.000, 4.054] -0.303 1.00020 0.24
50 0.32

100 0.20

Bat 5

1 30.62

[17.060, -26.354, 0.000, 7.431] -0.957 1.00020 0.30
50 0.18

100 0.20

Guinea pig 2

1 23.90

[13.348, -20.686, 0.000, 5.935] -0.749 1.00020 0.18
50 0.16

100 0.16

Rat 1

1 31.56

[13.914, -16.674] -1.311 0.58720 3.80
50 0.96

100 0.18

Table I.8: Average delay (ms) to reach maximum transfer entropy when mea-
suring from randomly distributed spine groups


