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Abstract. In data visualization, characterizing local geometric proper-

ties of non-linear projection manifolds provides the user with valuable

additional information that can in
uence further steps in the data anal-

ysis. We take advantage of the smooth character of GTM projection

manifold and analytically calculate its local directional curvatures. Cur-

vature plots are useful for detecting regions where geometry is distorted,

for changing the amount of regularization in non-linear projection man-

ifolds, and for choosing regions of interest when constructing detailed

lower-level visualization plots.

1 Introduction

Most visualization algorithms project points from a high-dimensional data space

onto a two-dimensional projection space. Loosely speaking, algorithms like self-

organizing maps (SOM) [7] or the Generalized Topographic Mapping (GTM) [6],

a probabilistic reformulation of the SOM, identify the computer screen with a

two-dimensional \rubber sheet" that is injected into the high-dimensional data

space. The sheet is supposed to \cover" the cloud of data points by locally

stretching, contracting and curving. The visualization plot is obtained by �rst

projecting the data points onto the rubber sheet and then letting the rubber

sheet relax to its original form of the computer screen. We refer to the injected

(possibly curved and stretched) two-dimensional rubber sheet in the data space

as the projection manifold.

Besides the visualization plot itself, the user is often interested in addi-

tional information about the structure of the projection manifold in the high-

dimensional data space. For example, local magni�cation factors describe how

small regions on the computer screen are stretched or compressed when mapped

to the data space. Magni�cation factors can be used for detecting (on the visu-

alization plot) separate clusters in the data space (see [4]).

SOM discretizes the \rubber sheet" into a grid of \nodes" and represents the

projection manifold only by a grid of nodes mapped to the data space (code-book
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vectors). On the other hand, GTM forms a smooth two-dimensional projection

manifold. This allows us to use techniques of di�erential geometry to analytically

describe (local) geometric properties anywhere on the manifold. Local magni�ca-

tion factors of GTM models were analytically computed by Bishop, Svens�en and

Williams in [4] [5]. In SOM, the magni�cation factors can only be approximated

by distances between the code-book vectors.

Magni�cation factors represent the extent to which the areas are magni�ed

on projection to the data space. However, when injecting a two-dimensional

rubber sheet into a high dimensional data space, the projection manifold may

form complicated folds that cannot be detected by using magni�cation factors

alone. To provide the user with a tool for monitoring the amount of folding

and neighborhood preservation in the projection manifold, we need second-order

quantities, such as local curvatures. Neighborhood preservation and folding is-

sues in the context of SOM were studied e.g. in [2] [11]. Such studies present

largely heuristic techniques for computing higher-order geometric properties of

the SOM projection manifold based on a discrete grid of code-book vectors (rep-

resenting the manifold) in the data space. In contrast, as shown in this paper,

the smooth nature of the GTM projection manifold allows us to analytically

compute directional curvatures in any point on the manifold.

2 Generative Topographic Mapping

The Generative Topographic Mapping (GTM) belongs to a family of latent space

models that model a probability distribution in the (observable) data space by

means of latent, or hidden variables. For the purposes of data visualization, we

identify the visualization space (i.e. the \rubber sheet") with the latent space.

The latent space is usually a bounded subset of the two-dimensional Euclidean

space, such as the (two-dimensional) interval [�1; 1]� [�1; 1].

Consider an L-dimensional latent space H � <
L and represent points in H

as column vectors x = (x1; x2; :::; xL)
T . We allow H to be covered by an array

of K latent space centres xi 2 H, i = 1; 2; :::;K.

Let the data space D be the D-dimensional Euclidean space <D. We de�ne

a non-linear transformation f : H ! D from the latent space to the data space

using a radial basis function network (see e.g. [3]). To this end, we cover the

latent space with a set of M �xed non-linear basis functions �j : H ! <,

j = 1; 2; :::;M . As usual in the GTM literature, we choose to work with spherical

Gaussian functions of the same width �, although other choices are possible and

require only simple modi�cations1. Usually, the centres of the Gaussian basis

functions �j are positioned in the latent space on a regular grid. Given a point

x 2 H in the latent space, its image under the map f is2

f(x) =W �(x); (1)

1 GTM with other choices of basis functions can be easily constructed using NETLAB

available from http://www.ncrg.aston.ac.uk/netlab/
2 We assume that the data set has been normalized to zero mean. Equivalently, we

could include a constant basis function �0(x) = 1.
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whereW is aD�M matrix of weight parameters and �(x) = (�1(x); :::; �M (x))T .

GTM creates a generative probabilistic model in the data space by placing

a radially-symmetric Gaussian with zero mean and inverse variance � around

images, under f , of the latent space centres xi 2 H, i = 1; 2; :::;K:

P (tj xi;W; �) =

�
�

2�

�D=2
exp

�
�

�

2
kf(xi)� tk

2

�
: (2)

De�ning a uniform prior over xi, the density model in the data space provided

by the GTM is

P (tjW; �) = 1=K

KX
i=1

P (tj xi;W; �): (3)

Given a data set � = ft1; t2; :::; tNg of independently generated points in the

data space, the adjustable parameters W and � of the model can be �tted to

the data by maximum likelihood using the expectation-maximization algorithm

[6].

For the purpose of data visualization, we use Bayes' theorem to invert the

transformation f from the latent space H to the data space D. The posterior

distribution onH, given a data point tn 2 D, is a sum of delta functions centered

at centres xi, with coeÆcients equal to the posterior probability Rin that the

i-th Gaussian (corresponding to the latent space centre xi, eq. (2)) generated tn
[6]. The latent space representation of the point tn, i.e. the projection of tn, is

taken to be the mean
PK

i�1 Rin xi of the posterior distribution on H.

The f{image of the latent space H,


 = f(H) = ff(x) 2 <Dj x 2 Hg; (4)

forms a smooth L-dimensional manifold in the data space. We refer to the man-

ifold 
 as the projection manifold of the GTM.

3 Local Directional Curvatures

The idea of directional curvature is explained in �gure 1.

Consider a point x0 2 H. Let x(b), b 2 <, be a straight line passing through

x0 along a unit directional vector h = (h1; h2; :::; hL)
T :

x(b) = x0 + bh; b 2 <: (5)

As the parameter b varies, the image of the line x(b) generates on 
 the curve

�(b) = f(x(b)): (6)

The tangent to this curve at f(x0) = �(0) is

_�(0) =

�
d �(b)

d b

�
b=0

=

"
LX
r=1

@f(x)

@xr

d xr(b)

d b

#
x=x0;b=0

=

LX
r=1

�
(1)
r hr = �

(1)
h; (7)
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Fig. 1. An explanation of local directional derivative of the visualization manifold. A

straight line x(b) passing through the point x0 in the latent space H is mapped via

f to the curve �(b) = f(x(b)) in the data space D. Curvature of � at f(x0) = �(0)

is related to the directional curvature of the projection manifold f(H) with respect to

the direction h. The tangent vector _�(0) to � at �(0) lies in Tx0
(dashed rectangle),

the tangent plane of the manifold f(H) at �(0).

where

�
(1)
r =W

�
@�1(x0)

@xr

;

@�2(x0)

@xr

; :::;

@�M (x0)

@xr

�T
(8)

is a (column) vector of partial derivatives of the GTM map f (at x0 2 H) with

respect to the r-th latent space variable xr , and �
(1) is the D � L matrix

�
(1) = [�

(1)
1 ;�

(1)
2 ; :::;�

(1)

L ]: (9)

The tangent vector _�(0) to the lifted line �(b) is a linear combination of the

columns of �(1), and so the range of the matrix �(1) is the tangent plane Tx0

of the projection manifold 
 at f(x0) = �(0).

The second directional derivative [9] of �(b) at �(0) is

��(0) =

"
LX
s=1

@

@xs

(
LX
r=1

@f(x)

@xr

hr

)
d xs(b)

d b

#
x=x0;b=0

=

"
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@
2
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hrhs

#
x=x0

=
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s=1

�
(2)
r;s hr hs; (10)

where �
(2)
r;s is a column vector of second-order partial derivatives of f (at x0 2 H)

with respect to the r-th and s-th latent space variables,

�
(2)
r;s =W

�
@
2
�1(x0)

@xr@xs

;

@
2
�2(x0)

@xr@xs

; :::;

@
2
�M (x0)

@xr@xs

�T
: (11)
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We decompose ��(0) into two orthogonal components, one lying in the tangent

space Tx0
, the other lying in its orthogonal complement T?

x0
,

��(0) = ��k(0) + ��?(0); ��k(0) 2 Tx0
; ��?(0) 2 T?

x0
: (12)

The component ��k(0) describes changes in the �rst-order derivatives due to

\varying speed of parameterization", while the direction of the �rst-order deriva-

tives remains unchanged. Changes in the �rst-order derivatives that are respon-

sible for curving of the projection manifold 
 are described by the component

��?(0).

Orthogonal projection onto Tx0
is a linear operator described by the projec-

tion matrix � = �
(1)

�
�
(1)
�+

, where
�
�
(1)
�+

is the Moore-Penrose generalized

inverse of �(1) (see e.g. [8]). So, ��?(0) = (I ��) ��(0), where I is the D � D

identity matrix.

The directional curvature at �(0) associated with the latent space direction

h is the (Euclidean) norm of the vector ��?(0). It measures the degree to which

the visualization manifold 
 (locally) \curves" in the data space D [1]. It is the

embedding curvature of 
 � D at f(x0), evaluated with respect to the latent

space direction h.

4 Experiments

In the experiments reported here, the GTM latent space H was the square H =

[�1; 1] � [�1; 1], the latent space centres xi 2 H were positioned on a regular

15�15 square grid and there were 16 basis functions �j centered on a regular 4�4

square grid. The basis functions were spherical Gaussian functions of the same

width � = 0:44. Magni�cation factors and directional curvatures were evaluated

at each latent space centre xi.

In the �rst experiment we randomly generated 2000 points in <3 lying on

the two-dimensional manifold shown in �gure 2a. As expected, after training,

the GTM projection manifold shown in �gure 2b closely followed the two-

dimensional distribution of the data points. Latent space layouts of local mag-

ni�cation factors and directional curvatures are shown in �gures 2c and 2d,

respectively. The magni�cation factor at a centre xi, which is the Jacobian of

the GTM map f at xi [4], is represented by the degree of shading of the corre-

sponding patch. In the curvature plot, we show for each latent space centre xi,

the direction h yielding the maximal norm of ��?(0). The length of the direction

line and the degree of shading of the corresponding patch are proportional to

the maximal norm of ��?(0).

The curvature and expansion patterns in the projection manifold (�gure 2b)

are clearly re
ected in the magni�cation factor and curvature plots (�gures 2c,d).

The form of the projection manifold can be approximately guessed on the basis

of its local �rst- and second-order characterizations.

In the second experiment, we trained GTM on an oil 
ow data set3. This

12-dimensional data set arises from a physics-based simulation of a non-invasive
3
http://www.ncrg.aston.ac.uk/GTM/3PhaseData.html
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Fig. 2. Toy data experiment.

monitoring system, used to determine the quantity of oil in a multi-phase pipeline

containing a mixture of oil, water and gas. The data set consists of 1000 points

obtained synthetically by simulating the physical process in the pipe. Points in

the data set are classi�ed into three di�erent multi-phase 
ow con�gurations,

namely homogeneous, annular and laminar.

The top level curvature plot in �gure 3b reveals that the two-dimensional

projection manifold folded three times in order to \capture" the distribution

of points in the 12-dimensional space. Interestingly, the three multi-phase 
ow

con�gurations seem to be roughly separated by the folds (compare the top level

visualization plot in �gure 3a with the corresponding curvature plot). We con-

�rmed this hypothesis by constructing three local lower level visualization plots

initiated in the regions between the folds. The lower level plots correspond to a

mixture of GTMs (see [10]) and are shown in �gure 3a. The lower level plots are

numbered left-to-right and were initiated in points shown as circles in the top

level plot (the number inside each circle indicates the index of the corresponding

lower level plot). Curvature plots of the lower level GTMs reveal that, compared

to the top level GTM, the lower level projection manifolds are almost 
at. We
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do not show the magni�cation factor plots here, but there are no signi�cant

expansive/contractive tendencies in the lower level projection manifolds. In this

example the use of curvature information is crucial to successful modeling.

5 Conclusion

Compared to linear projection methods such as PCA, non-linear visualization

techniques are more capable of revealing the nature of data distribution in a high-

dimensional space. Characterization of local geometric properties of the non-

linear projection manifolds provides user with a valuable additional information

that can in
uence further steps in the data analysis.

In this paper, we extended the work of Bishop, Svens�en and Williams [4] [5]

on magni�cation factors in GTM describing local expansion tendencies of the

projection manifold. We analytically calculate and graphically represent local

directional curvatures of the GTM manifold. Curvature plots are useful for de-

tecting regions where geometry is distorted, for changing the amount of regular-

ization in non-linear projection manifolds and, as illustrated in our experiment,

for choosing regions of interest when constructing detailed lower-level visualiza-

tion plots.
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Fig. 3. Oil data experiment.


