Higher-spin conserved currents in supersymmetric sigma models on symmetric spaces

Young, Charles A. S. and Evans, Jonathan (2005) Higher-spin conserved currents in supersymmetric sigma models on symmetric spaces. pp. 327-360. ISSN 0550-3213
Copy

Local higher-spin conserved currents are constructed in the supersymmetric sigma models with target manifolds symmetric spaces $G/H$. One class of currents is based on generators of the de Rham cohomology ring of $G/H$; a second class of currents are higher-spin generalizations of the (super)energy-momentum tensor. A comprehensive analysis of the invariant tensors required to construct these currents is given from two complimentary points of view, and sets of primitive currents are identified from which all others can be constructed as differential polynomials. The Poisson bracket algebra of the top component charges of the primitive currents is calculated. It is shown that one can choose the primitive currents so that the bosonic charges all Poisson-commute, while the fermionic charges obey an algebra which is a form of higher-spin generalization of supersymmetry. Brief comments are made on some implications for the quantized theories

picture_as_pdf

picture_as_pdf
777316.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads