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Abstract

In this note we derive a geometric formulation� for equality constrained problems� of an
ideal penalty function� This di�erentiable penalty function requires no parameter esti�
mation or adjustment� has numerical conditioning similar to that of the target function
from which it is constructed� and also has the desirable property that the strict second
order constrained minima of the target function are precisely those strict second order
unconstrained minima of the penalty function which satisfy the constraints� Such penalty
functions can be used to establish termination properties for algorithms which avoid ill�
conditioned steps� Numerical values for the penalty function and its derivatives can be
e�ciently calculated using automatic di�erentiation techniques�
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�� Introduction and Notation� Consider the following problem�

Minimize y 	 f
u� subject to k
u� 	 � where dim
k� � dim
u�

It is well known that� under fairly mild conditions which are usually assumed in practice�
this equality constrained problem is locally equivalent to an unconstrained problem applied
to a penalty function� In this note� we give a geometric derivation of a parameter free
penalty function of a similar type to the parameterized functions considered by Fletcher

Refs� ������

We assume that f and k have continuous second derivatives in a neighbourhood of the
minimum point�

We write M to denote the manifold fu � k
u� 	 �g� and for a point u � M we write

P 
u�� Q
u�

to denote the orthogonal projections onto the normal and tangent spaces respectively of
M at u� Note that P �Q 	 I�

In what follows� we use tensor notation and sum over repeated indices� We write �j to
denote di�erentiation with respect to uj� and de�ne

gj 	 �jf Hij 	 �i�jf and Nij 	 �jki

We assume that the constraint normals are linearly independent at the minimum point
in M� If N has full rank at u� then the generalised inverse

�N 	 N �
NN ����

exists at u and satis�es N �N 	 I� �NN 	 P �

�� Strict Second Order Minima� Let � be a vector of the same dimension as k and
de�ne

L
u� �� 	 f
u� � �iki
u�

We call u� � M a strict second order minimum of f constrained to M i� at u�


i� giQij 	 �� and

ii� if � satis�es gj 	 �iNij then zizj
�i�jL� � � for all z �	 � such that ziPij 	 ��

The �rst condition says that g lies in the space spanned by the constraint normals� ie
that gj 	 �iNij for some choice of �� This must be the case at any constrained minimum
for f � Under our assumption of constraint independence at u�� the only such � is ��
u��
where we de�ne

��j 	 gi �Nij

The second condition says that we have a second order minimum for f along all curvi�
linear directions away from u� in M� Now ��L 	 H � A where Aij 	 ��r�i�jkr� and
certainly Q
H � A�Q must be positive semi�de�nite at any constrained minimum for f �
So since xPx 	 xPPx � � for all choices of x we have

xQ
H �A�Qx� xPx � � for some x �	 � i�





zQ
H �A�Qz � � for some z �	 � with zP 	 �


to see this just set z 	 xQ�� Consequently the second condition amounts to demanding
precisely that Q
H �A�Q� P is positive de�nite at u��

In particular� if f is unconstrained so thatM is the whole of u�space then u� is a strict
second order minimum of f i� at u� 
i� g 	 � and 
ii� H is positive de�nite�

We can regard ��
u� as an approximation to the Lagrange multipliers ��
u�� for the
constrained problem� Constrained minima for f correspond to stationary points of L� and
we need only consider points of the form 
u� ��
u���

Now we consider L
u� ��
u�� 	 f
u� � ��i 
u�ki
u�� We note that the term ��i ki can be
re�arranged as gini where

ni 	 �Nijkj

For any u de�ne the point m
u� by

mi
u� 	 ui � ni
u�

If the constraints k were linear� then m
u� would be the nearest point to u satisfying the
constraints� The quantity n�
u� is thus a �rst order estimate of the square of the Euclidean
distance from u to M� This motivates the following�

Theorem ���� Let M 	 fu � k
u� 	 �g where dim
k� � dim
u�� and suppose for
some open neighbourhood U that that f� k have continuous second derivatives� and that
the Jacobian of k has full rank on U � De�ne

�
u� 	 L
m
u�� ��
u�� �
�


n�
u� for u � U

Then a point u� � M � U is a strict second order constrained minimum for f i� u� is a
strict second order unconstrained minimum for ��

Proof� We have

� 	 fm � ��rk
m
r �

�


nini

where we de�ne fm
u� 	 f
m
u��� kmr 
u� 	 kr
m
u��� Now

�pni 	 
�p �Nir�kr � �NirNrp

so
�pni 	 Pip for u

� � M

so �pmi 	 Iip � Pip 	 Qip on M� Now

�p� 	 gmi 
�pmi�� 
�p�
�

r�k
m
r � ��rN

m
ri 
�pmi� � ni
�pni�

and since on M we have k 	 �� n 	 �� �m 	 Q�NQ 	 � this gives

�p� 	 giQip for u
� � M
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Thus � has a stationary point at u� i� gQ 	 � at u�� Similarly

�p�q� 	 Hm
ij 
�pmi�
�qmj� � gmi 
�p�qmi�� 
�p�q�

�

r�k
m
r

�
�p�
�

r�N
m
ri 
�qmi�� 
�q�

�

r�N
m
ri 
�pmi�� ��r
�i�jk

m
r �
�pmi�
�qmj�

���rN
m
ri 
�p�qmi� � 
�pni�
�qni� � ni
�p�qni�

so since ��rNrj 	 gi �NirNrj 	 giPij we have

�p�q� 	 Qpi
Hij �Aij�Qjq � giQij
�p�qmj� � Ppq for u
� � M

where
Apq 	 gi �Nir�p�qkr

Thus if gQ 	 � at u� � M then the Hessian of � is positive de�nite i� Q
H�A�Q�P

is positive de�nite� QED�

Under the assumption that f and k are twice di�erentiable on U � we have shown that �
is once di�erentiable throughout U � and twice di�erentiable at u�� In proving this we have
implicitly used the fact that if a is continuous and b is di�erentiable with b
u�� 	 � then
the product ab is di�erentiable at u� with �
ab� 	 a
�b�� In fact� � is twice di�erentiable
throughout U provided f and k are three times di�erentiable on U �

�� Other Penalty Formalisms� Fletcher�s original penalty function is essentially

�� 	 f � gini �
	


nini

where 	 � kH �A� Ik� That this has similar properties to our � can be seen by noting
that

� 	 f � gini �
�


ninj
Hij �Aij � Iij�

to second order in kn
u�k and then making 
once and for all� the indicated choice for the
parameter 	� Note however that the penalty function � de�ned here is parameter free�
Essentially � is the value of the Lagrangian� not at u� but at the nearest point satisfying
the 
locally linearised� constraints� and we add a penalty term proportional to the square
of this displacement� Instead of forcing � 	 ��
u� we could leave the � as free variables
and add a further penalty term of the type 
g��N�� or some scaling thereof as in Ref� ��
In our de�nition of � we could alternatively have put ��
m
u�� in place of ��
u��

Penalty functions are frequently used to transform a constrained optimization problem
into an unconstrained problem 
see for example Refs� ������� Such penalty formalisms
often require a penalty parameter to be adjusted at each iteration� Frequently a naive
proof of termination for a penalty algorithm assumes in�nite precision arithmetic 
and
exact solution of subproblems�� and allows arbitrary settings for the penalty parameter�
In practice� such a form of the optimization algorithm runs the risk of ill�conditioned steps
which could prevent convergence� The strategies used in practice to avoid ill�conditioned
choices of penalty parameters and to satisfy inexact convergence criteria for subproblems
frequently ruin the original proof of termination�
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The analytical consideration of ideal penalty functions such as � can allow convergence
properties to be proved by showing that each iteration must lead to an appropriate decrease
in �� without having to take explicit account of penalty parameter adjustments 
see for
example Refs� �����

However it should also be noted that the techniques of automatic di�erentiation 
Refs�
����� have now reached the point where they allow the direct numerical calculation of func�
tions such as � and its derivatives� We conclude this note by indicating brie�y one strategy
for doing this� suitable for problems with large numbers of variables and constraints�

�� Automatic Di�erentiation� It is well known 
see for example Ref� ��� that
the reverse accumulation method of automatic di�erentiation can be used to extract all
components of the gradient vector g of any scalar valued function f for about � times
the �oating point computational cost of a single evaluation of f � where the constant � is
independent both of the form of f and of the number of parameters 
independent variables��
Similarly 
op cit� if b is any constant vector then reverse accumulation can evaluate the
entire vector Hb 
ie an arbitrary linear combination of rows of the Hessian H of f� for
about � times the computational cost of a single evaluation of f � This makes reverse
accumulation ideal for the case of unconstrained optimization where a truncated Newton
method is applied to f � 
The less e�cient method of forward accumulation is applied to
good e�ect in this context in Ref� ���

We can thus evaluate n as follows� Solve the equation k 	 NN �x� for x� using automatic
di�erentiation to evaluate NN �� Then n 	 N �x�� Similarly �� is the solution of gN � 	
��NN � where g is calculated by reverse accumulation� Note that both �� and x� are of
the same dimension as k� rather than of u�

Once the vectors n and �� have been obtained� it is a simple matter to compute the
value of the ideal penalty function �� Consequently direct numerical use of an ideal penalty
function such as � as a validiation step to ensure convergence in solving optimization
problems is now computationally feasible� But we can do more�

We show in Ref� �� how reverse accumulation can be used to di�erentiate automatically
functions such as � which are formed by combining values such as N and g which were
themselves obtained by reverse accumulation 
see also Refs� ��� ���� The computation of
� can be made available in a form which is itself susceptible to automatic di�erentiation�
and the extraction of gradients� directional or full Hessians and so forth� These can in
turn be used by optimization software to �nd a local minimum point u� of �� which will
correspond to the solution of the original constrained problem� Finally we can apply
automatic di�erentiation to the components of u� so as to perform an automatic error
analysis or determine the sensitivities of the solution�

It is worth noting that we may use an iterative method of solving the linear equations
for n and ��� This is particularly attractive if there is a large number of constraints�
For example� Pearlmutter 
Ref� �� � in the context of neural networks suggests applying
a conjugate gradient algorithm 
such as Ref� ��� to the quadratic problem� �nd �� to
minimize 
�NN � � gN ���� Similarly �nding x� to minimize 
NN �x � k�� gives n 	 N �x��
We show in Ref� �� that reverse accumulation can be used to obtain vectors of the form
NN �x� and 
�N�g�N � for �xed vectors � and x at a constant multiple of the computational
cost of evaluating k� even when the components of k share intermediate variable values
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in the computation� Techniques are also known which allow gradients to be extracted for
functions which include in their construction the iterative solution of �xed point equations
such as those for �� and x� 
Refs� ��� ��� ���

Since most optimization codes can also be regarded as iterative contractive di�eren�
tiable mappings� at least in a neighbourhood of the �xed point u�� these iterative �xed
point techniques can also be applied to the �nal optimization step to extract sensitivities of
u�� A further advantage of using reverse accumulation with this iterative �xed point formu�
lation is that the sensitivities which reverse accumulation provides allow automatic error
estimates to be made for the e�ect of truncating subproblem solution on the calculated
function value 
see Ref� ����

Thus an iterative formulation allows us to solve the equations for � and x with just
su�cient accuracy to ensure that the calculated value of �
u� is correct to the required
accuracy 
speci�ed in advance� at each iteration step of the optimization algorithm�

�� Conclusion� In this note we have given a geometric formulation of a di�erentiable
penalty function similar to those considered by Fletcher� but requiring no parameter esti�
mation or adjustment� The strict second order constrained minima of the target function
are precisely those strict second order unconstrained minima of the penalty function which
satisfy the constraints�

Our penalty function also has the desirable property that near such an minimum point
the penalty function has the same curvature as the Lagrangian of the target function in
directions tangent to the constraint manifold� and unit positive curvature in directions
normal to the constraint manifold� Near a minimum point� our penalty function thus has
numerical conditioning similar to that of the target function and constraints from which
it is constructed�

The penalty function can be used to establish theoretical termination properties for
algorithms� Alternatively numerical values for the penalty function can be e�ciently cal�
culated using automatic di�erentiation techniques and used to validate a particular run
of an algorithm� However it should also be possible to apply truncated Newton methods
directly to the penalty function in order to �nd the optimal point for the target function�

In this note we have formulated an approach only for equality constrained problems�
Inequality constrained problems are considered in Refs� � and ��
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