
 

CACHED TWO-LEVEL ADAPTIVE BRANCH 
PREDICTORS WITH MULTIPLE STAGES 
 
EGAN, C., STEVEN, G. B., VINTAN, L. 

University of Hertfordshire, University “Lucian Braga” of Sibiu 

Hatfield, Hertfordshire, U.K. AL10 9AB Sibiu-2400, Romania 

email: G.B.Steven@herts.ac.uk vintan@cs.sibiu.ro 
 

Abstract 
During the last decade, the accuracy of branch predictors was significantly improved by the 

development of Two-Level Adaptive Branch Predictors.  However, although these predictors 

deliver very high prediction rates, they have several disadvantages.  Firstly, the size of the second-

level Pattern History Table (PHT) increases exponentially as a function of history register length 

and therefore becomes very costly if a large amount of branch history is exploited.  Secondly, 

many of the prediction counters in the PHT are never used.  Thirdly, predictions are frequently 

generated from non-initialised counters.  Finally, several branches may update the same counter, 

resulting in interference between branch predictions.  In this paper, we quantify the performance of 

a novel family of multi-stage Two-Level Adaptive Predictors.  In each two-level predictor,  the 

PHT is replaced by a Prediction Cache.  Unlike a PHT, a Prediction Cache saves only relevant 

branch prediction information.  Furthermore, predictions are never based on uninitialised entries 

and interference between branches is eliminated.  In the case of a Prediction Cache miss in the first 

stage, our two-stage predictors uses a default two-bit prediction counter stored in a second stage.  

We demonstrate that a two-stage Cached Predictor is more accurate than a conventional two-level 

predictor and quantify the crucial contribution made by the second prediction stage in achieving 

this high accuracy.  We then extend our Cached Predictor by adding a third stage and demonstrate 

that a Three-Stage Cached Predictor further improves the accuracy of cached predictors. 

Keywords 

Two-Level Adaptive Branch Predictors, Cached Correlated Branch Predictors, Prediction Cache, 

Multi-Stage Branch Predictors. 

INTRODUCTION 

The advent of superscalar processors has given renewed impetus to branch 

prediction research.  On a scalar processor, an incorrect branch prediction costs 

only a small number of processor cycles and only one or two instructions are lost.  

mailto:G.B.Steven@herts.ac.uk
mailto:vintan@cs.sibiu.ro


 

In contrast, in a superscalar processor many cycles may elapse before a 

mispredicted branch instruction is finally resolved.  Furthermore, each cycle lost 

now represents multiple lost instructions.  As a result branch mispredictions are 

far more costly on a superscalar processor. 

This renewed interest in branch prediction led to a dramatic breakthrough in 

the 1990s with the development of Two-Level Adaptive Branch Predictors by 

Yale Patt’s group [Yeh91] and by Pan, So and Rahmeh [Pan92].  More recently 

two-level branch predictors have been implemented in several commercial 

microprocessors [Int00, Kes99].  However, although high prediction rates are 

achieved with two-level adaptive predictors, this success is obtained by providing 

very large arrays of prediction counters or PHTs (Pattern History Tables).  Since 

the size of the PHT increases exponentially as a function of history register length, 

the cost of the PHT can become excessive, and it is difficult to exploit a large 

amount of branch history effectively.  Two-level Adaptive Branch Predictors have 

two other disadvantages.  Firstly, in most practical implementations each 

prediction counter is shared between several branches.  There is therefore 

interference or aliasing between branch predictions.  Secondly, large arrays of 

prediction counters require extensive initial training.  Furthermore, the amount of 

training required increases as additional branch history is exploited, further 

limiting the amount of branch history that can be exploited. 

We have developed [Ega00] a family of Two-Level Branch Predictors that 

addresses the three problems of conventional two-level predictors: cost, 

interference and initial training.  We have called these novel predictors Cached 

Correlated Branch Predictors.  By replacing the second level PHT with a cache, 

we significantly reduce the cost.  At the same time, our predictor outperforms the 

traditional implementations.  For equal cost models, this performance advantage is 

particularly significant.  These advantages are achieved for three reasons.  Firstly, 

our cached predictor only holds those prediction counters that are actually used.  

Secondly, interference between branches is eliminated; each branch prediction is 

determined solely by historical information related to the branch being predicted.  

Thirdly, a simple default prediction mechanism is included that is initialised after 

a single occurrence of each branch.  This avoids the high number of initial 

mispredictions sustained during the warm-up phase of conventional two-level 

predictors and minimises the impact of misses in the Prediction Cache. 



 

In an earlier feasibility study [Ste00] we presented a Cached Correlated 

Branch Predictor that used a fully associative Prediction Cache.  Although the 

concept of a cached PHT was successfully demonstrated, a fully associative cache 

would be too costly in practice.  In contrast, all the Cached Correlated Branch 

Predictors, presented in this paper, use a set-associative Prediction Cache that is 

indexed by hashing the PC with the history register.  We also quantify the crucial 

role played by a second prediction stage in our cached predictor.  We then extend 

cached prediction techniques to three-stages for the first time. 

TWO-LEVEL BANCH PREDICTION 

Recent research on branch prediction has focused almost exclusively on 

Two-Level Adaptive Branch Predictors, which are usually classified using a 

system proposed by Yeh and Patt [Yeh92, Yeh93].  The six most common 

configurations are GAg, GAp, GAs, PAg, PAp and PAs. The first letter specifies 

the first-level mechanism and the last letter the second level, while the “A” 

emphasises the adaptive or dynamic nature of the predictor.  GAg, GAp and GAs 

rely on global branch history while PAg, PAp and PAs rely on local branch 

history. 

GAg uses a single global history register, that records the outcome of the 

last k branches encountered, and a single global PHT containing an array of two-

bit prediction counters.  To generate a prediction, the k bit pattern in the first-level 

global history register is used to index the array of prediction counters in the 

second level PHT.  Each branch prediction therefore seeks to exploit correlation 

between the next branch outcome and the outcome of the k most recently executed 

branches.  The prediction counter in the PHT and the global history register are 

updated as soon as the branch is resolved.  Finally, a separate BTC is still required 

to provide branch target addresses. 

Unfortunately, since all the branches in a GAg predictor share a common set 

of prediction counters, the outcome of one branch can affect the prediction of all 

other branches.  Although this branch interference limits the performance, the 

prediction accuracy improves as the history register length is increased.  At the 

same time, the number of counters in the PHT also increases, which in turn 

increases both the number of initial mispredictions and the cost of the PHT.  



 

Eventually, the increased number of initial mispredictions negates the benefit of 

additional branch history and the prediction accuracy stops improving. 

Several researchers have attempted to reduce interference in the PHT.  The 

Gshare Predictor [McF93, Cha94], for example, hashes the PC and history register 

bits before accessing the PHT, in an attempt to spread accesses more evenly 

throughout the PHT.  Alternatively, the Bimodal Predictor [Lee97] uses twin PHT 

arrays to decrease destructive interference between branch predictions and to 

maximise positive interference.  Finally, the Agree Predictor [Spr97] also attempts 

to maximise positive interference. 

GAp was first proposed by Pan et al [Pan92] and called Correlated Branch 

Prediction.  Like GAg, GAp uses a single history register to record the outcome of 

the last k branches executed.  However, to reduce the interference between 

different branches, a separate per-address PHT is provided for each branch.  

Conceptually in GAp, the PC and the history register are used to index into an 

array of PHTs.  Although this ideal model eliminates interference between 

branches, it leads to an exceptionally large PHT array.  For example, with a 30-bit 

PC and 12-bit history register, 242 counters are required.  In practice, to limit the 

size of the predictor, only a limited number of PHT arrays is provided; each PHT 

is therefore shared by a group of PCs with the same least significant address bits.  

Since a separate set of PHT counters is provided for each set of branch addresses, 

this configuration is classified as GAs.  However, while the size of the PHT array 

is significantly reduced, branch interference is now reintroduced.  As in the case 

of GAg, a separate BTC is provided to furnish branch target addresses in both the 

GAp and GAs configurations. 

The Two-Level Adaptive Branch Prediction mechanism originally proposed 

by Yeh and Patt in 1991 [Yeh91] was later classified as PAg.  PAg uses a separate 

local history register for each branch, or a Per-address history register, and a 

single shared global PHT.  Each branch prediction is therefore based entirely on 

the history of the branch being predicted.  The local history registers can be 

integrated into the BTC by adding a history register field to each entry.  Since all 

branches share a single PHT, PAg is also characterised by interference between 

different branches.  Interference can be reduced by providing multiple PHTs.  If 

we retain the Per-Address Branch History Table and provide a separate PHT for 

each address or a Per-Address PHT, we have the PAp configuration.  As in the 



 

case of GAp, the size of the PHT array is excessive, and the initial training 

problem is exacerbated.  A separate PHT is therefore usually provided for sets of 

branches, giving rise to the PAs configuration. 

We have emphasised that most branch prediction research is based on Two-

Level Adaptive Branch Predictors.  Yet, branch prediction is a specific example of 

a general Time Series Prediction problem that occurs in many diverse fields of 

science.  It is therefore surprising that there has not been more cross-fertilisation 

of ideas between different application areas.  A notable exception is a paper by 

Mudge‘s group [Che96] that demonstrates that all Two-Level Adaptive Predictors 

implement special cases of the Prediction by Partial Matching [PPM] algorithm 

that is widely used in data compression.  Mudge uses the PPM algorithm to 

compute a theoretical upper bound on the accuracy of branch prediction.  Another 

exception is a recent attempt to use Neural Networks for dynamic branch 

prediction [Ste01]. 

TWO STAGE CACHED CORRELATED PREDICTION 

The high cost of Two-level Adaptive Branch Predictors is a direct result of 

the size of the second level PHTs which increase exponentially in size as a 

function of History Register length.  In a Cached Correlated Predictor [Ega00, 

Ste00], the second-level table is therefore replaced with a Prediction Cache, while 

the first level is unchanged.  Unlike PHTs in conventional two-level predictors, 

the number of entries in a Prediction Cache is not a direct function of the History 

Register length.  Instead, the size of the cache is determined by the number of 

prediction counters that are actually used.  This number increases only slowly as a 

function of History Register length.  Since the Prediction Cache only needs to 

store active prediction counters, most of the entries in a traditional PHT can be 

discarded.  However, to implement caching, a tag field must be added to each 

entry and the size of the tag field increases linearly as a function of History 

Register length.  A Cached Correlated Branch Predictor will therefore only be 

cost effective as long as the cost of the redundant counters removed from the PHT 

exceeds the cost of the added tags.  Two Cached Correlated Branch Predictors are 

presented in this section.  The first predictor employs a global history register, 

while the second employs multiple local or per-address history registers.   



 

Global Cached Correlated Predictor 

Figure 1 shows a four-way set-associative Global Cached Correlated Branch 

Predictor.  Each entry in the Prediction Cache consists of a PC tag, a history 

register tag, a two-bit prediction counter, a valid bit and a LRU (Least Recently 

Used) field.  A four-way set-associative BTC is also provided to furnish the 

branch target address.  Each BTC entry is augmented with a two-bit default 

prediction counter and consists of a branch target address, a branch address tag, 

the two-bit prediction counter, a valid bit and a LRU field.  The BTC is accessed 

using the least significant bits of the PC, while the Prediction Cache index is 

obtained by hashing the PC with the global history register bits.  As long as there 

is a miss in the BTC, the predictor has no previous record of the branch and 

defaults to predict not taken.  Whenever there is a BTC hit a prediction is 

attempted.  If there is also a hit in the Prediction Cache, the corresponding two-bit 

counter from the Prediction Cache entry is used to generate the prediction.  In this 

case the prediction is based on the past behaviour of the branch with the current 

history register pattern.  If, however, there is a miss in the Prediction Cache, the 

prediction is based on the default prediction counter held in the BTC and is 

therefore based on the overall past behaviour of the branch.  Once the branch 

outcome is known, the relevant saturating counters are updated in both the 

Prediction Cache and the BTC.  In the case of misses in either cache, new entries 

are added using an LRU replacement algorithm.  Finally, the global history 

register is updated. 

Figure 1: A Global Cached Correlated Branch Predictor. 

PC 

Prediction Cache 

Correlated hit 

predictions 

BTC hash 

Global History Register 

k bit pattern 

1 

actual prediction 

BTC

hit
priority selector 

1 0 2 

0 2 3 

3 



 

Adding a default prediction counter to each BTC entry has several 

advantages.  Firstly, the default predictor is initialised after only one execution of 

the branch.  In contrast, with a k bit history register, up to 2k Prediction Cache 

entries must be initialised for each branch before the two-level predictor is fully 

trained.  Adding a default predictor should therefore significantly reduce the 

number of initial mispredictions.  Secondly, the default predictor minimises the 

impact of misses in the Prediction Cache. 

The hashing function to access the Prediction Cache requires careful 

consideration.  Both a BTC and an instruction cache are usually indexed by the 

least significant bits of the PC.  However, this solution is completely 

unsatisfactory for a Prediction Cache.  Consider, for example, a four-way set-

associative cache.  In the absence of collisions with other branches, each branch is 

restricted to only four entries.  However, if k history register bits are used by the 

predictor, as many as 2k cache entries may theoretically be required for each 

branch.  Although most history register patterns will never occur, a PC indexed 

cache will clearly suffer from excessive collisions, even with modest history 

register lengths. 

A second alternative is to use the history register to index the Prediction 

Cache.  This solution also has disadvantages.  Firstly, if only a small number of 

history register bits is used, only part of the Prediction Cache will be used.  

Secondly, when the number of history register bits exceeds the number of bits in 

the cache index, sufficient collisions occur to prevent the predictor from reaching 

its full potential. 

We found that the most accurate predictions were obtained when the history 

register bits were XORed with the PC bits to form the Prediction Cache index.  A 

single XOR followed by truncation was found to be non optimum.  Instead, the 

following hashing algorithm was adopted.  First, the PC was concatenated with 

the history register.  Second, the resulting bit pattern was divided into groups that 

contained the same number of bits as the required index.  Finally, all the groups 

were XORed to generate the Prediction Cache index. 

Local Cached Correlated Predictor 

The Local Cached Correlated Predictor (Figure 2) also replaces the PHT 

with a Prediction Cache.  Since a history register is now required for every 



 

branch, a local history register field is added to each BTC entry.  As with the 

Global Cached Correlated Predictor, a prediction counter is included in each BTC 

entry.  The BTC is accessed using the least significant bits of the PC.  On a BTC 

hit, the history register associated with the PC is obtained along with a default 

prediction.  The history register is then hashed with the PC and the resulting bit 

pattern is used to access the Prediction Cache.  Whenever possible a prediction 

counter stored in the Prediction Cache is used to make a prediction.  However, in 

the case of a Prediction Cache miss and a hit in the BTC, the prediction from the 

BTC is used. 

Figure 2: A Local Cached Correlated Branch Predictor. 

 

Hybrid predictors [McF93, Cha95] also use two or more predictors to 

generate each prediction.  A hybrid predictor chooses dynamically between two or 

more distinct predictors on the basis of each predictor’s past success.  In contrast, 

our priority prediction mechanism uses the Prediction Cache whenever possible, 

and only uses the prediction counter in the BTC when no other prediction is 

available. 

TWO STAGE PREDICTOR PERFORMANCE 
In this section, we quantify the performance of two-stage Cached Correlated 

Predictors.  First we compare their performance with conventional two-level 

predictors.  We then quantify the crucial contribution of the second stage.  Our 

Correlated 
hit 

Default prediction 

Pred Cache 

prediction 

Prediction Cache 

BTC 

hash 

1 

PC 

actual prediction 

BTC hit 

prediction selector 

hrl pc 
tag 

cnt 

0 2 3 

…



 

simulations used a set of eight integer programs known collectively as the 

Stanford benchmarks.  Since the programs are shorter than the SPEC benchmarks, 

each branch is executed fewer times.  The branches are therefore more difficult to 

predict and the initial training problems are more acute.  As a result, a classic 

BTC only achieves an average misprediction rate of 11.86% with the Stanford 

benchmarks. The benchmarks were compiled for the Hatfield Superscalar 

Architecture [Ste97], a high-performance multiple-instruction-issue architecture 

developed to exploit instruction-level parallelism through static instruction 

scheduling.  The HSA instruction-level simulator was then used to generate 

instruction traces for the branch prediction simulations.  All the predictors 

simulated use a four-way set-associative BTC with 1K entries; sufficient entries 

are always available to minimise BTC misses.  A four-way set-associative 

organisation is also always used for the Prediction Cache. 

Global Cached Predictors 

For comparative purposes, we first simulated a GAg predictor, a GAs 

predictor with 16 sets and a GAp predictor.  The best misprediction rates were 

achieved by the GAp predictor (Figure 2).  The average misprediction rate 

initially falls steadily as a function of the history register length before flattening 

out at a misprediction rate of around 9.5%.  The best misprediction rate of 9.23% 

is achieved with the 26 history register bits.  In general, however, there is little 

benefit from increasing the history register length beyond 16 bits. 

The average misprediction rates achieved with a Global Cached Correlated 

Predictor are also shown in Figure 2.  The number of entries in the Prediction 

Cache is varied from 1K to 64K.  Initially, the misprediction rate steadily 

improves as a function of history register length for all cache sizes.  However, 

after history register lengths of 12 bits, the limited capacity of the 1K Prediction 

Cache prevents further improvement.  In contrast, with larger Prediction Cache 

sizes, the prediction rate continues to improve until a history register length of 26 

bits is reached.  Not surprisingly, the larger the Prediction Cache the better the 

misprediction rates.  The lowest misprediction rate of 5.99% is achieved with a 

32K entry Prediction Cache and a 30-bit history register.  This represents a 54% 

reduction over the best misprediction rate achieved by a conventional global Two-

Level Adaptive Predictor. 



 

The high performance of the Cached Predictor depends crucially on the 

provision of the two-stage mechanism.  Without the default predictors in the BTC, 

Prediction Cache misses result in an excessive number of mispredictions.  To 

quantify the contributions of the default prediction counters, we repeated our 

simulations with the BTC counters removed (Figure 3).  The best misprediction 

rate achieved rose to 9.12%.  Removing the second stage therefore degrades the 

prediction accuracy by 52%.  As a result, the Prediction Cache performance is 

now only marginally better than a conventional Two-Level Adaptive Predictor 

and only 12 bits of history register information can be exploited.  Even worse, as 

the history register length is increased beyond twelve bits, the prediction accuracy 

is degraded catastrophically. 

Figure. 2: Global Cached Correlated 

misprediction rates. 
Figure. 3: Global Cached Correlated 

misprediction rates (no default predictor). 

Local Cached Predictors 

Again for comparative purposes, we first simulated conventional PAg, PAs 

and PAp predictors.  Conventional local predictors achieve average misprediction 

rates of around 7.5%, significantly better than GAg/GAs predictors.  The best 

conventional local performance of 7.35% is achieved with a PAp predictor and a 

30-bit history register length (Figure 4).  Local predictors are therefore able to 

benefit from longer history registers than their global counterparts. 

The misprediction rates achieved by a Local Cached Correlated Predictor 

are also recorded in Figure 4.  The number of entries in the Prediction Cache is 

varied between 1K and 64K.  Initially the misprediction rate falls steadily as a 

function of history register length for all cache sizes.  Then as more and more 

0

5

10

15

20

25

30

35

2 6 10 14 18 22 26 30

History Register Length (bits)

M
is

pr
ed

ic
tio

n 
R

at
e 

(%
)

 1K  4K  8K
 32K  64K GAp

0

2

4

6

8

10

12

14

2 6 10 14 18 22 26 30

History Register length (bits)

M
is

pr
ed

ic
tio

n 
R

at
e 

(%
)

 1K  4K
 8K  32K
 64K GAp



 

predictions need to be cached, the larger caches deliver superior prediction rates.  

However, no significant benefit is derived from increasing the cache size beyond 

8K.  The best misprediction rate of 6.19% is achieved with a 64K cache and a 28-

bit history register.  This figure is slightly worse than the best global predictor, but 

represents a 19% improvement over the best PAg/PAp configuration. 

In Figure 5, we record the impact of removing the default prediction stage 

from our Global Cached Correlated Predictors.  Again, the impact is severe.  The 

best misprediction rate rises to 8.21%, an increase of 33%.  This figure is 

achieved with 12 history register bits and a 32K Prediction Cache.  Overall, the 

performance is now worse than a conventional Two-Level Adaptive Predictor.  

We conclude that Local Cached Predictors are ineffective without a default 

prediction mechanism and are unable to exploit more than around 12 bits of 

branch history information.

Figure. 4: Local Cached Correlated 

misprediction rates. 

Figure. 5: Local Cached Correlated 

misprediction rates (no default predictor). 

THREE-STAGE PREDICTOR 

The simulation results in the previous section suggest that a Cached 

Predictor can deliver a higher prediction accuracy than a conventional Two-Level 

Adaptive Predictor.  However, this superiority is crucially dependent on the 

provision of default prediction counters in the BTC.  Default prediction counters 

improve performance for two reasons.  Firstly, each counter is initialised after 

only a single execution of a branch.  In contrast, a branch may have to be executed 

many times before a useful entry is made in the Prediction Cache.  Furthermore, 

several entries must be initialised for each branch.  Secondly, the Prediction 

Cache is of finite size and is therefore unable to retain all the relevant branch 

0

2

4

6

8

10

12

14

2 6 10 14 18 22 26 30

History Register length (bits)

M
is

pr
ed

ic
tio

n 
R

at
e 

(%
)

 1K  4K
 8K  32K
 64K PAp

0
2
4
6
8

10
12
14
16
18
20

2 6 10 14 18 22 26 30

History register length (bits)

M
is

pr
ed

ic
tio

n 
ra

te
 (%

)

 1K  4K  8K

 32K  64K PAp



 

prediction information.  In the absence of a default predictor, a high proportion of 

Prediction Cache misses will generate mispredictions. 

Furthermore, the best misprediction rates were achieved with long history 

registers.  For example, the best Global Cached Predictor achieved a 

misprediction rate of 5.99% with a 30-bit History register, while the best Local 

Cached Predictor achieved 6.19% with 28 bits.  This is remarkable, since 

Prediction Caches using 30-bit history registers require considerable initiation.  

We therefore believed that there was scope for introducing a third prediction level 

of intermediate complexity.  This third prediction stage would use fewer history 

register bits than the main Prediction Cache, but, unlike the BTC, would not throw 

away all the history register information. 

These considerations led to the development of a Three-Stage Cached 

Predictor with the following stages: a Primary Prediction Cache with k history 

register bits, a Secondary Prediction Cache with k/2 history register bits and a 

default BTC predictor.  Our expectation was that the new Secondary Prediction 

Cache, with only half the number of history register bits, would be initialised 

more rapidly than the Primary Prediction Cache.  It would therefore be able to 

generate more accurate predictions than the BTC when there were misses in the 

Primary Prediction Cache. 

A Three-Stage Predictor can be viewed as a practical implementation of 

Prediction by Partial Matching [Che96].  Predictions are generated as follows.  If 

there is a miss in the BTC, the predictor has no knowledge of the branch and 

defaults to predict-not-taken.  However, whenever there is a BTC hit, a prediction 

is attempted on a strict priority basis.  Whenever possible, the Primary Prediction 

Cache is used, then the Secondary Prediction Cache, and finally the BTC. 

Three Stage Predictor Performance 

We repeated our simulations using both Global and Local versions of our 

Three-Stage Cached Predictors.  As before, the size of the Primary Prediction 

Cache was varied between 1K and 64K.  The Secondary Prediction Cache was 

always half the size of the Primary Cache and used exactly half the number of 

history register bits.  The results for the Global Three-Stage Predictors are 

summarised in Figure 6.  As expected, the three-stage predictor consistently 

outperforms the simpler global two-stage predictor, particularly when a large 



 

number of history register bits is involved.  The best misprediction rate of 5.57% 

is achieved with a 32K Primary Prediction Cache and a 30-bit history register.  

This represents a 7.5% improvement over the best Two-Stage Global Predictor. 

The results for the Local Three-Stage Cached Predictor are summarised in 

Figure 7.  Again, the three-stage predictor consistently outperforms its two-stage 

counterparts.  The best misprediction rate of 6.00% is achieved with a 64K 

Primary Prediction Cache and a 28-bit history register, an improvement over the 

best Local Two-Level Predictor of 3.2%. 

Three-Stage Predictors therefore consistently recorded a small but 

significant improvement over their two-stage counterparts.  Furthermore, this 

improvement was not necessarily achieved by increasing cost.  For example, a 

Global Three-Stage Predictor with an 8K primary cache and a 4K secondary 

cache outperforms a Global Two-Stage Predictor with a 32K Prediction Cache. 

Figure. 6: Global Three Stage misprediction 

rates. Figure. 7: Local Three Stage misprediction 

rates. 

CONCLUSIONS 

Our simulations show that a Cached Correlated Branch Predictor is 

significantly more accurate than a conventional Two-level Adaptive Predictor.  In 

earlier work, we also demonstrated that cached predictors are more cost-effective 

than conventional predictors [Ega00, Ste00].  Our best global predictor is 54% 

better than the best GAs predictor and our best local predictor is 19% better than 

the best PAg/PAp predictor.  We ascribe this higher accuracy to our more 

disciplined approach.  Our predictions are always based on counters that have 

been trained using at least one previous encounter with the branch being 

0

2

4

6

8

10

12

14

2 6 10 14 18 22 26 30

History register length (bits)

M
is

pr
ed

ic
tio

n 
ra

te
 (%

)

 1K  4K
 8K  32K
 64K GAp

0

2

4

6

8

10

12

14

2 6 10 14 18 22 26 30

History register length (bits)

M
is

pr
ed

ic
tio

n 
ra

te
 (%

)

 1K  4K
 8K  32K
 64K PAp



 

predicted.  Furthermore, there is never any interference between branch 

predictions. 

The higher accuracy depends crucially on the addition of default predictors 

in the BTC.  Removing the default prediction counters degrades the performance 

of the best global predictors by 52% and the best local predictor by 33%.  As 

history register lengths increase, two-level predictors require an increasing 

number of counter initialisations and therefore suffer an increasing numbers of 

initial mispredictions.  In contrast, the default counter is initialised after only one 

execution of a branch, significantly reducing the number of initial mispredictions.   

Even higher prediction accuracy was achieved with our Three-Stage Cached 

Predictors, which can be viewed as a practical implementation of Prediction by 

Partial Matching.  The best three-stage predictor delivered a misprediction rate of 

5.43%, a 35% improvement over the best conventional Two-Level Adaptive 

Predictor, and a 4.6% improvement over the best two-stage cached predictor.  

A major advantage of Cached Correlated Branch Predictors is their ability to 

exploit correlations from a large number of history bits.  In our two-stage 

Combined Cached Predictor, this advantage is exploited to combine local and 

global history information in a single predictor.  This combined predictor 

delivered a misprediction rate of 5.68%, 29.4% better than the best conventional 

two-level predictor.  Finally, a three-stage combined predictor delivered a 

misprediction rate of 5.42%, the lowest misprediction rate reported in this paper. 

REFERENCES 

[Cha94] CHANG, P.; HAO, E.; YEH. T. and PATT, Y. N. Branch Classification: A New Mechanism for 

Improving Branch Predictor Performance, Micro-27, San Jose, California, pp. 22-31, November 1994. 

[Cha95] CHANG, L; HAO, E. and PATT, Y. N. Alternative Implementations of Hybrid Branch 

Predictors, Micro-29, Ann Arbor, Michigan, pp. 252-257, November 1995. 

[Che96] CHEN, I. K.; COFFEY, J. T. and MUDGE, T. N. Analysis of Branch Prediction via Data 

Compression, ASPLOS  VII, pp. 128-137, October 1996. 

[Ega00] EGAN, C. Dynamic Branch Prediction in High Performance Superscalar Processors, PhD thesis, 

University of Hertfordshire, August 2000. 

[Int00] IA-64 Application Developer’s Guide, Intel, 2000. 

[Kes99] KESSLER, R. E. The Alpha 21264 Microprocessor, IEEE Micro, pp. 24-36, March 1999. 

[Lee97] LEE, C. C.; CHEN, I. K. and MUDGE, T. N. The Bi-Mode Branch Predictor, Micro-30, 

Research Triangle Park, North Carolina, pp. 4-13, December 1997. 

[McF93] McFARLING, S. Combining Branch Predictors, Western Research Laboratories Technical 

Report TN-36, June 1993. 



 

[Pan92] PAN, S.; SO, K. and RAHMEH, J. T. Improving the Accuracy of Dynamic Branch Prediction 

Using Branch Correlation, ASPLOS-V, Boston, pp. 76 - 84, 1992. 

[Spr97] SPRANGLE, E., CHAPPELL, R. S., ALSUP, M. and PATT, Y. N. The Agree Predictor: A 

Mechanism for Reducing Negative Branch History Interference, ISCA ‘24, Denver, Colorado, pp. 284-291, 

June 1997. 

[Ste97] STEVEN, G. B.; CHRISTIANSON, D. B.; COLLINS, R.; POTTER, R. D. and STEVEN, F. L. A 

Superscalar Architecture to Exploit Instruction Level Parallelism, Microprocessors and Microsystems, 20 (7), 

pp. 391 – 400, 1997. 

[Ste00] STEVEN, G. B.; EGAN, C.; QUICK P. and VINTAN, L. A Cost Effective Cached Correlated 

Two-level Adaptive Branch Predictor, 18th IASTED International Conference on Applied Informatics (AI 

2000), Innsbruck, February 2000. 

[Ste01] STEVEN, G.;  ANGUERA, R.;  EGAN, C.;  STEVEN, F. and VINTAN, L.  Dynamic Branch 

Prediction  Using Neural Networks, DSD 2001, September 2001, Warsaw, pp178-185.  

[Yeh91] YEH, T. and PATT, Y. N. Two-Level Adaptive Training Branch Prediction, Micro-24, 

Albuquerque, New Mexico, pp. 51 - 61, November 1991. 

[Yeh92] YEH, T. and PATT, P. Alternative Implementations of Two-Level Adaptive Branch Prediction, 

ISCA-19, Gold Coast, Australia, pp. 124 – 134, 1992. 

[Yeh93] YEH, T. and PATT, Y. N. A Comparison of Dynamic Branch Predictors that use Two Levels of 

Branch History, ISCA - 20, pp. 257 - 266, May 1993. 


