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Abstract: In this article, a numerical simulation has been performed to investigate the sub-cooled 

boiling flow in axisymmetric channels using the two-phase particle model. The equivalent diameter of 

the channel is 4.38 mm with 365.7 cm in length. The fouling deposited layer is filled with 

subsequent two-thirds of the flow channel. The internal surface of the channel is covered by a 

fouling deposit layer with a thickness ranging from 0.225 mm to 1.55 mm. Uniform heat flux of 

29267.6 W/m2 is applied on the heated wall. Validation of the CFD model is carried out through 

comparison with open published experimental data and a close agreement is achieved. A new 

parameter, Security factor, is introduced and defined in the current study. Numerical results show that 

the developed two-phase particle model could well predict the water-steam two-phase change flow. 

The Nusselt number in the fouling region without fouling deposited could be 50 times higher than that 

with fouling layer. The heat transfer performance of the channel with thickness of 0.225 mm fouling 

deposit layer is 5 times larger than that with thickness of 1.55 mm fouling deposit layer. It is also 

found that the inlet velocity has significant impact on the boiling and total pressure drops along the 

channel.  
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NOMENCLATURE 

Aw whole surface is covered with bubbles of 

the wall (m2) 

Ma momentum from phase β to phase a 

(kg∙m/s) 

CP specific heat capacity (J/kg∙K) maβ transfer of mass from phase β to phase a 

(kg/s) 

dw bubble detachment diameter (mm) Z distance along the channel (m) 

Ea energy from phase β to phase a (W) Greek letters 

L length of the channel (m) 
h heat transfer coefficient (W/m2∙K) 
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ha enthalpy of phase a (J/kg) 
r volume fraction (-) 

Nu Nusselt number (-) 
µ effective viscosity (Pa∙s) 

Pa pressure of phase a (Pa) 
λ thermal conductivity (W/m∙K) 

qw wall heat flux (W/m2) 
ρ density (kg/m3) 

SF security factor Subscripts 

Ta temperature of phase a (K) 
α Phase 

Tw wall temperature (K) 
β Phase 

Tsat saturation temperature (K) 
w Wall 

Ua velocity of phase a (m/s) 
m Average 

 

1. INTRODUCTION 

Development of two phase channel technology requires a comprehensive fundamental understanding of 

virtually all hydrodynamic and thermal aspects of phase change in small channels. Thus, the ability to 

accurately predict flow boiling heat transfer for a given channel geometry under different operating 

conditions is of paramount important to the performance assessment of a small channels, especially with 

fouling deposit layer inside the channels. Many studies have been devoted to the heat transfer performance 

of the flow boiling in small channels over the past decades. Various available correlations of the saturated 

flow boiling heat transfer of the vertical tubes were summarized in a systematic manner [1-3]. Kandikar [4] 

developed a new flow boiling map to depict the relationships among the heat transfer coefficient, quality, 

heat flux, and mass flux for different fluids in the subcooled and the saturated flow boiling regions. It was 

found that the trends observed in the experimental data and correlations for water and refrigerants could be 

used in deriving the flow boiling map. Gupta et al. [5] carried out an experimental investigation to 

determine the local forced convective boiling heat transfer coefficient in small tube bundles consisting of 

horizontal tubes in a vertical column arranged in a large channel under low cross-flow velocities in 

saturated distilled water at atmospheric pressure. A Chen-type relation has been used to correlate the data 



 

 

on local forced convective heat transfer coefficients of upper tubes with reasonably accuracy. Kumar et al. 

[6] conducted an experimental study to measure the enhancement in the nucleate pool boiling heat transfer 

of upper heating tubes of copper. A model was developed to predict the heat transfer coefficient of 

individual tube in a multi-tube row and the bundle heat transfer coefficient. Da Silva et al. [7] presented 

an experimental investigation of nucleate boiling on a vertical array of horizontal plain tubes. A 

general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array 

of horizontal tubes under flooded conditions was proposed. The new correlation compared reasonably 

well with independent data from the literature. Mishima and Hibiki [8] performed an experimental 

study for air-water two-phase flow in capillary tubes to measure flow regime, void fraction, rising 

velocity of slug bubbles and frictional pressure loss. The void fraction was correlated well by the drift 

flux model with a new equation for the distribution parameter as a function of inner diameter. The rise 

velocity of the slug bubbles was also correlated well by the drift flux equation. Lee and Lee [9] 

proposed new correlations for the two-phase pressure drop through horizontal rectangular channels 

with small gaps at atmospheric pressure. The two-phase frictional multiplier was expressed using the 

modified Lockhart-Martinelli type correlation. Shannak [10] conducted an experimental investigation 

of the air water two-phase flow frictional pressure drop of vertical and horizontal smooth and 

relatively rough pipes, respectively. A new prediction model for frictional pressure drop of two-phase 

flow in pipes was proposed and the proposed model fits the experimental data very well for vertical, 

horizontal, smooth and rough pipes. Chen et al. [11] carried out an experimental study to measure the 

frictional pressure drops for water single-phase and two-phase air-water flow in three small 

rectangular channels. A modified C factor of Chisholm method considering the effect of aspect ratio 

was proposed and this correlation was valid in wide ranges of mass flux, gas quality, Martinelli 



 

 

parameter and aspect ratio.  

On the numerical side, many researchers used computational fluid dynamic (CFD) simulation to 

estimate the hydrodynamics of two phase flow. Tryggvason et al. [12] applied the Eulerian multiphase flow 

model to investigate the boiling process in a coiled tube. It was found that the phase distributions showed a 

continuous stratification in the horizontal tubes and were influenced by both buoyancy force and 

centrifugal force in the tube bends. Simulation of flow boiling in vertical pipes using CFX-5 CFD codes 

showed good agreement with experimental results [13]. Boiling at walls was also modeled with a wall heat 

flux partitioning model and the turbulence induced by the bubbles also was taken into account in 

turbulence modeling. Yang et al. [14] presented a numerical simulation, using the VOF multiphase flow 

model, and the corresponding experiments to investigate the boiling flow of R141B in a horizontal coiled 

tube. Their numerical predictions of phase evolution were in a good agreement with the experimental 

observations, and the two phase flow in the tube bends was much more complicated due to the influence of 

liquid-vapor interaction with the interface evolution. Yuan et al. [15] performed numerical simulation on 

the natural convection film boiling and forced convection film boiling on a sphere at saturated conditions. 

Their results showed that numerical simulations with the interface tracking method to study the transient 

and dynamic aspects of liquid-vapour phase change could be a promising prospect. Mazumder [16] 

performed CFD analysis of single- phase and two-phase flow in a 90 degree horizontal to vertical elbow 

with 12.7 mm inside diameter. Characteristic flow behaviour was investigated at six different upstream and 

downstream locations of the elbow. Comparison of CFD results with available empirical models showed 

reasonably good agreement. Giannoulis and Margaris [17] numerically studied a two-phase buoyancy 

driven flow within a 20 m of the riser tube. The numerical solution of the discretized two-dimensional 

Navier-Stokes equations over a structured grid with quadrilateral elements was accomplished with 



 

 

FLUENT package. Saffari et al. [18] simulated the effects of the pipe diameter, coil diameter, and coil pitch 

on the single-phase and two-phase (air-water) bubbly fluid flows. It was concluded that the friction 

coefficient increases with an increase in the curvature, pipe diameter and coil pitch, whereas decreases with 

an increase in the coil diameter and void fraction. Harikrishnan et al. [19] implemented a new solver called 

Boiling-Foam to simulate the sub-cooled boiling flow in vertical pipes. It was found that the solver can 

predict the parameters correctly in some regions which are very close to the heated wall. As for the fouling 

studies, Changani et al. [20] and Youcef et al. [21] carried out the study on the fouling of processing heat 

exchangers used for heating dairy fluids such as pasteurizing and sterilizing milk in dairy industry. Their 

results showed that the aggregation rate of unfolded protein was found to increase exponentially with 

increasing wall temperature, and the rate of cleaning depends on both the deposit present and the type of 

chemical treatment used. Some researchers have studied the deposition process in fouling in the steam 

generators of pressurized water reactors, and found multiple factors affect to deposit formation rate [22]. 

The material used for the heat-transfer pipes and the physicochemical properties of the metal used in the 

components of the second-loop equipment of a nuclear power plant also affect deposit of fouling [23]. The 

formed deposits and sludge can be removed from the heat exchangers by chemical and mechanical means , 

and combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for 

certain combinations of parameters [24]. Sepehr Sanaye[25] used the optimization algorithm to optimize 

the fouling cleaning schedule in a heat exchanger network. S. Jun , V.M. Puri[26] carried out 2D simulation 

in milk pasteurizer process , the predicted mass deposit values at each channel were in good agreement 

with the experimental data, and results can be used to determine the sensor locations that can provide 

needed information on the degree of fouling to monitor and cleaning process . Mariusz Markowski, et al[27] 

presented a novel method for on-line determination of the thermal resistance of fouling in shell and tube 



 

 

heat exchangers by considering parameters such as splitting operation period and consecutive time intervals 

etc. M.S. Abd-Elhady et al[28] carried out fouling experiments with particles of different sizes and different 

materials running under different gas speeds. It is found that the smallest particles in the flow deposit on the 

tubes of the heat exchanger at areas of minimum flow velocities, and then the large particles deposit and the 

fouling layer starts to build up, and there is a critical flow velocity to prevent fouling deposited and the gas 

speed of a HE should be larger than the critical flow velocity. Mariusz Markowski[29] studied the 

influence of fouling on heat exchanger with a decision making model of optimal cleaning 

schedule correspond to the maximum of avoided economic loss. Results show that the cleaning 

interventions scheduled saved about 5% of the maximum attainable value of energy. Mostafa 

et al. [30] studied the effect of the surface temperature on the fouling rate. The setup was constructed 

using a test tube with 3 m in length and 5.53 cm in inner diameter, and three different electric heaters 

fixed at the center. Results showed that the asymptotic fouling resistance decreased as the surface 

temperature increased under the same operating conditions, especially in the surface temperature range 

from 55 °C to 71°C.The objective of the present study is to examine the wall temperature at different 

fouling deposit layers on the sub-cooled water flow inside channel under a uniform heat flux along the 

heated wall. In the current work, the equivalent diameter of the channel is 4.38 mm with a 365.7 cm in 

length. Water is selected as the working fluid and it enters the channel as liquid and the outlet pressure 

is 0.438 MPa. The heat capacity of fouling layer and the heated wall are not uniform along the 

channel. The arrangement of channel is finned. 

2. Geometrical configurations 

Published experimental data showed that there would be high shear acting on wall films inside the 

long channel. The reason could be that the flow would be largely shear dominated and followed by the 



 

 

gravitational effects. Since the test model is axial symmetry, the computational domain can be 

simplified to a quarter in tube channel of two-phase flow with three solid domains and one fluid 

domain. Figure 1 demonstrates the geometrical model and the mesh generated in the present work. 

The three solid domains are (i) alloy steel tube, (ii) aluminium fin, and (iii) fouling layer, respectively. 

There is only one fluid domain which is water-vapour two-phase flow. The fouling layer occurs at two 

thirds of the total length from the inlet. Table 1 lists the detailed geometrical parameters of the model. 

Figure 2 shows the sketch of the fins. In the current work, there are six wide fins and three thin fins 

along the channel and these fins can significantly influence the fluid flow.  

It is well recognized that the thermal conductivity and heat capacity of the steel tubes (the heated 

wall) varies with the bulk temperature, and they were determined by experiment. The thermal 

conductivity and heat capacity of the steel tubes can be correlated using the available experimental 

data as follows: 

]/[  45.1300173.01046.3 226 KmWTTk                         (1) 

]/[  1142.01046.31065.8 526 KkgJTTCP                        (2) 

 

where, the T is Kelvin temperature of the heated wall. 

The cross section of the geometrical model is presented in Figure 3. The symbol of s in Figure 3 

denotes the thickness of the deposited fouling layer. The thicknesses of the fouling layer are 0, 0.225, 

0.45, 0.675, 0.9 and 1.55 mm, respectively. The gap between the heated wall and the aluminium fin is 

1.55 mm, and it is easy to understand that the fouling can fill the gap with the deposited fouling 

thickness of 1.55 mm where the two-third region between the steel tube and the aluminium fins will be 

fully filled with deposited fouling layer.  

3.1．Governing equations 



 

 

 In the present study, steady-state solvers for buoyant, turbulent flow of the incompressible fluids 

will be taken into account. The continuous phase is liquid and the dispersed phase is gaseous.  

Continuity equation: 

( )r U m m                                     (3) 

Momentum equation: 

The momentum equation for each phase is solved separately. The momentum equation for phase 

a is given as: 

[ { ( ( ) )}] ( )Tr U U U U M r P r g m U m U                             (4) 

and the energy equation for phase a follows as: 

Energy equation: 

( ( ))r U h T m h m h Q E                                       (5) 

Due to the lower density of vapor, it is commonly assumed that, in sub-cooled boiling flow, the 

motion of the dispersed vapor phase follows the fluctuations in the continuous liquid phase; therefore, 

the turbulent stresses are modeled only for the liquid phase. A k  turbulence model is employed 

for the continuous phase while the dispersed vapor phase remains laminar.  

3.2. Modeling of boiling 

Boiling models are used to compute the rate of the bubble formation and evaporation at the heated 

walls. 

Wall heat flux partitioning:  

The wall boiling phenomena is modelled with the heat flux partitioning model [33]). Accordingly, 

the heat flux applied to the external wall is written as a sum of the three heat fluxes as: 

     t o t a l c o n v q u e n e v a pQ Q Q Q  
                               (6) 



 

 

Qconv, Qquen, and Qevap, represent the convective, quenching and evaporative heat fluxes, 

respectively. They are modelled as a function of the wall temperature and local flow parameters. Eq. 

(6) is solved iteratively for the local wall temperature, Tw, which satisfies the wall heat flux 

partitioning. Each of the heat flux component can be modelled as given below.  

The turbulent convection is modelled exactly as that of turbulent single phase convection as: 

(1 )( )conv c w w lQ h A T T  
                               (7) 

where, hc is the convection heat transfer coefficient that is calculated as:  

c t l pl lh S c u                                        (8) 

where St is the Stanton Number, St =Nu/RePr, ul is the velocity of the first control volume which 

parallel to the heated wall, and the subscript l represents the liquid phase.  

The quenching heat flux is modelled by: 

( )quen Q w w lQ h A T T 
                                  (9) 

2
Q wait l l plh f t C 




                               (10) 

f is the bubble detachment frequency and twait is the waiting time between successive bubble 

detachments, calculated by  

0.8
waitt

f


. 

The evaporative heat flux is modelled as: 

3

6 wevap g fgQ d fN h


 
                                  (11) 

N" is the nucleation site density, dw is the bubble detachment diameter and hfg is the latent heat of 

vaporization. Nucleation site density is given by:   

6 1.8050.8 10 ( )w l

reff

T T
N

T


  


                            (12) 



 

 

Bubble detachment frequency is modelled as: 

4 ( )

3

l g

D w l

g
f

C d

 






                                      (13) 

Due to its dependence on gravity, this correlation is taken from pool boiling. It is simply estimated 

as the bubble rise velocity divided by the bubble departure diameter. The drag coefficient factor CD is 

calculated by:    

                       
0 . 7 524

(1 0.1Re )
Re

DC                                   (14)                     

Bubble detachment diameter depends upon many control factors, i.e., heat flux, system pressure, 

liquid properties. The diameter can be modelled as: 

sat l

reff

T T

T

w refd d e






                                      (15) 

where dref is taken as 0.6 mm, and  ∆Tref = 45 K. 

The wall area fraction influenced by the vapour bubble is calculated by: 

2( )
2

w
w

d
A a N 

                                   (16) 

where, a is the bubble influence factor. Aw=1 indicates that the whole surface is covered with 

bubbles. 

The heat transfer coefficient along the axial length of the model, α, is then calculated from the heat 

flux, outside wall temperature and local saturation temperature deduced from the local pressure. 

)(

q

pTT satw

w


                                   (17) 

To evaluate the effect of the two phase heat transfer inside the channel, Nusselt number is defined 

as follows： 

                          
m

L
Nu




                                    (18) 



 

 

where, w

w sat

q
h

 



, and m           

 To estimate the safety of the operation system, security factor is defined as follows: 

                         w

s a f e

T
SF

T
                                     (19) 

where, Tsafe is the safety temperature of the tube and it is considered as 700 K for the system in 

nuclear station; and it is considered that the SF=0.85 is the critical value for the system. 

3.3 Boundary conditions 

  The inlet velocity of the water is 0.0176 m/s, the inlet water temperature is 120 °C, the volume 

fraction of water is 1, and the volume fraction of vapour is 0. 0. The outlet pressure is 438729.2 Pa. 

The heat flux for the inner wall of steel tube is 29267.6 W/m2. Other walls are symmetric except the 

interface walls. The thermal conductivity of the fouling layer is 0.173 W/m2·K. 

3.4 Mesh Independence 

A mesh independence study was conducted to identify an appropriate mesh density for the aimed 

calculations. Five meshes were investigated ranging from 0.72 million to 1.62 million cells. The mesh 

designation and number of cells are shown in Table 2. For the purpose of comparison, average bulk 

temperatures were calculated on the centreline of the outer steel tube for the five different meshes. It 

can be seen in Figure 4 that the bulk temperature shows typical converging behavior, and the 

temperature profiles appear to converge to a central solution profile as the mesh density is increased. 

Analysis of the bulk temperature shows that all simulated structures appear to be similarly modeled 

even at the lowest mesh resolution. The temperature magnitudes of these structures are also consistent. 

In the current work, the 1,232,000 cell mesh (M4) was selected for the calculation. 

3. Model validation  

In the current study, two groups of experimental data from open published literatures were used to 



 

 

validate the developed model. The experimental data in reference [31] for the case of 250-3 have been 

used to examine the effect of various parameters and models on the numerical prediction in detail. 

Figure 5 compares the measured and calculated values of the heat transfer coefficient on equilibrium 

quality using models examined in the current study. Figure 6 shows another validation of the model 

used in present study with experimental result given in reference [32] (provided by the original author). 

It can be seen clearly that the maximum deviation between the experimental data and numerical results 

was found to be within 10.2%.  

4. Results and discussion 

After verifying the reliability of the computational model, the influence of the different 

thicknesses of the fouling layer on two-phase flow inside the channel was investigated. Figure 7(a) 

shows the effect of the fouling layer thickness on the bulk temperature of the steel wall, whereas 

Figure 7(b) presents the bulk temperature in the fouling region. It can be seen clearly that the bulk 

temperature increases with the increase of the fouling layer thickness. It is also noted that there is 

about 200 K temperature difference between the fouling layer thickness of 1.55 mm and 0 mm. 

When the thickness is less than 0.9 mm, the bulk temperature increases 30 K for every 0.225 mm 

thickness, but there is about 70 K temperature difference between the cases with 1.55 mm and 0.9 mm 

thickness of fouling layer. This can be explained by the fact that when the thickness is 1.55 mm, the 

deposited fouling layer fills the gap between the tube and the fins in the fouling region; the cross 

section area of the fluid becomes smaller which results in a significant increase in the heat transfer 

resistance of the wall. These results show that the fouling thickness can be estimated from the bulk 

temperature which can be very helpful in making economic plan for cleaning the fouling layer in 

practical operations. Figure 8 shows the distribution of the total pressure of the two-phase flow inside 



 

 

the channel with different fouling layers. Since there are 9 fins along the channel, as shown in Figure 1, 

especially for the flow after 1978.2 m, the distance between the fins are very close, and the Figures 8 has 

the staircase-like pressure distribution. It can also be seen clearly that the total pressure does not 

decrease with the increase of the fouling layer thickness along the channel. The distribution of the 

vapor volume fraction is shown in Figure 9. The onset of the steam is at the location of 0.5 m, and the 

variation of the volume fraction changes irregular for all the channels. This may be induced due to a 

combination of different impact factors, since the boiling within the channel is determined by multiple 

factors such as the rate of the bubble formation, bubble detachment frequency, waiting time and other 

factors as described above in the model of the wall boiling. Figure 10 represents the steam volume 

fraction contours at seven different cross sections along the channel with the fouling thickness of 1.55 

mm. The seven cross sections are labeled in Figure 2. It can be seen that the cross section of the fluid 

for E, F and G become smaller and the steam volume fraction contours are not symmetrical. Besides, 

the maximum volume fraction of the vapor is lower than 1.0. Figure 11 presents the water (liquid) 

temperature along the channel at different fouling layer thicknesses. It is noted that the evaporation 

temperatures are slightly different because different total pressures lead to different evaporation 

temperature. Figure 12(a) shows the wall Nusselt number along the channel at different fouling 

thickness. It can be seen that the heat transfer decreases greatly with the presence of the fouling layer, 

and the Nusselt number drops dramatically with the increase of the fouling thickness compared with 

that without fouling layer. However, the wall heat transfer effect in the region without fouling shows 

similar tendency. The mean Nusselt number in the fouling region with deposited fouling layer 

decreases about 50 times than that without. Figure 12(b) shows that the heat transfer performance with 

thickness of 0.225 mm is 5 times than the one with thickness of 1.55 mm. The security factor of the 



 

 

system can be well predicted from Figure 12(c). The system becomes more dangerous with the 

increase of the fouling thickness, and it shows the system become dangerous with fouling thickness of 

1.55 mm. 

It is recognized that the inlet velocity could affect both the thermal and hydraulic performance of 

the two-phase flow inside the channel. Numerical analysis were carried out by varying the inlet 

velocity (Vin) in range of 2-6 times than the original inlet velocity (0.0176 m/s) with the fouling 

thickness of 1.55 mm. Figure13 shows the bulk temperature distributions along the channel at different 

inlet velocities. It can be seen that the inlet velocity affect the bulk temperature near the inlet area and 

near the fins area in the fouling region. However, the pressure drop is higher because of the increased 

inlet velocity. Figure 14 shows that by increasing inlet velocity 6 times than its original value the 

pressure drop increases by 57% compared to the pressure drop for the case of original inlet velocity. 

Figure 15 shows the variation of the vapor volume fraction along the channel at different inlet 

velocities. The onset of the boiling is delayed with the increase of the inlet velocity, but the maximum 

volume fractions are similar. Figure 16 presents the variation of the Nusselt number along the channel 

at different inlet velocities. The relationship between inlet velocity and Nusselt number is not linear, 

and the effect of inlet velocity on the heat transfer is similar in the fouling region.  

5. Conclusions 

 Numerical simulations have been preformed for three dimensional conjugated heat transfer 

during water (liquid-vapor) two-phase flow to study the effects of deposited fouling layers on thermal 

and hydraulic performance. The numerical results are in a good agreement with the available 

experimental results. Different fouling layer thicknesses are selected to investigate the effect of the 

deposited fouling on the distributions of the bulk temperature, two-phase flow total pressure, and 



 

 

water vapor volume fraction and wall heat transfer coefficient. 

 Results show that for fouling thickness less than 0.9 mm, bulk temperature will increase 30 K 

for every 0.225 mm thickness, but there are about 70 K temperature difference between the thickness 

of 1.55 mm and 0.9 mm. The Nusselt number decreases dramatically in the region where the deposited 

fouling layer forms compared to that without the fouling layer, and the heat transfer effect shows 

similar tendency for the case of without fouling. The mean Nusselt number in the fouling region with 

deposited fouling layer decreases about 50 times than that without the fouling layer, and the heat 

transfer performance with thickness of 0.225 mm is 5 times than that with thickness of 1.55 mm. The 

system becomes more dangerous with increase of the fouling thickness. Results also show that the 

inlet velocity affects the onset of boiling and pressure drops and has little impact on the bulk 

temperature and heat transfer performance in the fouling region. 
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Figure 3. Cross section of the 
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All dimensions are in mm 
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Figure 4. Bulk temperature profile at outer side of tube for each 

mesh 

Figure 2. Sketch of fins 

All dimensions are in mm 
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Figure 6. Comparison of numerical and experimental results [32] 

Figure 7.  Effect of different fouling thickness on bulk 

temperature 
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Figure 8.  Distributions of total 

pressure along the channel 

Figure 9.  Distributions of vapor 

volume fraction along the channel 
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[58]. Figure 10. Contours representation of vapor volume fraction along the channel(s=1.55mm) 
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Figure 12c . Effect of fouling 

thickness on security factor (in fouling 

region) 

Figure11. Distributions of water (liquid) 

temperature along the channel 
Figure 12a . Effect of fouling 

thickness on the Nusselt number 

Figure 12b . Effect of fouling 

thickness on the Nusselt number(in 

fouling region) 
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Figure14. Distributions of pressure along 

the channel with different inlet velocities 

Figure13. Distributions of bulk 

temperature along the channel with different 

inlet velocities velocities velocities velocities 

velocities velocities velocities velocities 
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Table 1 Detailed structure of the model 

  
 
 
 

W
ith

o
u

t fo
u
lin

g
 

 
la

ye 

  r 

Region name (Z) 

From 

(mm) 

(Z ) 

To(mm) 

Total 

Height

(mm) 

 

Heated Wall(HW) 

first part 

0 647.7 647.7 

First wide fin 647.7 680.7 33 

HW.Second part 680.7 1169.7 489 

Second wide fin 1169.7 1202.7 33 

HW.Third part 1202.7 1691.7 489 

Third wide fin 1691.7 1724.7 33 

HW. Fourth part 1724.7 1960.2 235.5 

First thin fin 1960.2 1978.2 18 

HW. Fifth part 1978.2 2213.7 235.5 

Fourth wide fin 2213.7 2246.7 33 

HW.Sixth part(1) 2246.7 2438.4 191.7  
 
 

 

W
it

h
 

fo
u

lin

g
 

la
y 

er HW.Sixth part(1) 2438.4 2482.2 43.8 



 

 

Second thin fin 2482.2 2500.2 18 

HW. Seventh part 2500.2 2735.6 235.4 

Fifth wide fin 2735.6 2768.6 33 

HW. Eighth part 2768.6 3004.1 235.5 

Third thin fin 3004.1 3022.1 18 

HW. Ninth part 3022.1 3257.6 235.5 

Sixth wide fin 3257.6 3290.6 33 

HW.Tenth part 3290.6 3657.6 367 

 

                             

 

 
Mesh designation Number of 

cells in domain 

M1 722350 

M2 819500 

M3 1123100 

M4 1232000 

M5 1623200 

Table 2. Designations and number of cells 


